
Evaluating Bug Severity Using Crowd-based Knowledge:
An Exploratory Study

Yang Zhang, Huaimin Wang, Gang Yin, Tao Wang, Yue Yu
Key Lab. of Parallel and Distributed Computing, College of Computer, National University of Defense

Technology, Changsha, 410073, China
{yangzhang15, hmwang, jack.nudt, taowang2005, yuyue}@nudt.edu.cn

ABSTRACT
In bug tracking system, the high volume of incoming bug re-
ports poses a serious challenge to project managers. Triag-
ing these bug reports manually consumes time and resources
which leads to delaying the resolution of important bugs. S-
tackOverflow is the most popular crowdsourcing Q&A com-
munity with plenty of bug-related posts. In this paper, we
explore the correlation between bug severity and the crowd
attributes of linked posts. Two typical types of projects’
bug repositories are studied here, e.g. Mozilla (user-centric
project) and Eclipse (developer-centric project). Our result-
s show that the bug severity is consistent with the crowd-
based knowledge both in Mozilla and Eclipse, i.e. the linked
posts of severe bugs have higher score etc. in StackOverflow
than non-severe bugs. This interesting phenomenon inspires
us that we can optimize the existing evaluation methods of
bug severity by incorporating the crowd-based knowledge
from a third-party in future.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—process metrics

General Terms
Experimentation

Keywords
Bug severity, Bugzilla, crowd-based knowledge, StackOver-
flow

1. INTRODUCTION
Managing the incoming bug reports in a large software project
within the limited time and resources is a challenging task [1].
In order to handle the highly important bugs first and allo-
cate time and resources appropriately, the triager (the per-
son who analyzes the bug reports) needs to prioritize the
incoming bug reports by their order of importance. Bug im-
portance indicates the order in which bugs should be fixed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
INTERNETWARE ’15, November 6, 2015, WuHan, China
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

(priority) or the impact that the bugs have on the system
(severity) [2].

Thus, researchers are interested in building classifier models
to automatically classify bugs as important or non-important
by using machine learning techniques [3][4]. Existing re-
search mainly focuses on the textual description (summary,
description and comments) of bug reports [3] and bug lo-
cation (product, component etc.) [4]. These features are
extracted from the bug tracking system themselves. As yet,
bug importance, like severity in general, is largely dependent
on triagers’ point of view.

StackOverflow1 (SO), a question and answer (Q&A) com-
munity, is widely used by developers to search and publish
answers to technical issues and concerns in software devel-
opment. Some researchers integrate bug tracking systems
with SO to help developers find relevant information to solve
programming problems [5]. In SO, in order to engage more
participants, available quantitative information such as the
score, view count, answer count and other characteristics
of posts are recorded. These post evaluation characteris-
tics capture much practical insights about the crowd-based
knowledge, i.e. the opinions from a large number of differ-
ent users. There are many bug reports that contain URL
links to the posts of SO within user comments. Addition-
ally, many answers or comments submitted on SO contain
URL links to relevant bug reports. The study presented in
this paper is motivated by our belief that we can enhance
existing bug tracking system by exploiting these interesting
characteristics of SO posts. We believe that evaluating bug
severity by using crowd-based knowledge is a relatively un-
explored area and our motivation is to throw light on this
topic.

The specific research aims and contributions of the study
include:

1) We investigate the correlation between the bug severity
in bug tracking system and the linked posts’ crowd-based
knowledge in SO.

2) We focus on two types of projects’ bug repositories, Mozil-
la (user-centric) and Eclipse (developer-centric) for our case
study. Using statistical analysis, we find that there exist-
s correlation between bug severity and the linked posts’
crowd-based knowledge.

1http://stackoverflow.com

3) Using regression modeling on our dataset, we verify that
we have the potential to evaluate bug severity by exploiting
crowd-based knowledge. This is an interesting and promis-
ing research direction, which would guide future software
engineering tool innovations as well as practices.

The remainder of this paper is structured as follows. Sec-
tion 2 presents our empirical study methodology. In Sec-
tion 3, we introduce the study results on Mozilla and Eclipse.
We present conclusions in Section 4.

2. METHODOLOGY
In this section, we first give our research questions, and then
we present our datasets, the process of mining bug-post link
pairs and our statistical analysis methods.

2.1 Research Questions
According to the different product users, projects can be
divided into two types, user-centric projects and developer-
centric projects. The products of user-centric projects are
mainly used by users with less development experience. While
users of developer-centric projects have more knowledge about
software development. Based on the different type of projects,
we present our research questions:
RQ1. What is the correlation between bug severity and
the linked posts’ crowd-based knowledge? Is there some d-
ifference between user-centric projects and developer-centric
projects?
RQ2. Is there the potential to enhance existing evaluation
methods of bug severity in a bug tracking system by incorpo-
rating a third dimension of crowd-based knowledge?

2.2 Datasets
For the bug datasets of different types of projects, we use bug
reports from two large open-source projects using Bugzilla2

as their bug tracking system: Mozilla3 and Eclipse4.

Mozilla : Mozilla is a suite of programs for web brows-
ing and collaboration. Mozilla is a user-centric project. Its
products are mainly used by less savvy users [3]. The bug
database we obtained contains all reports submitted from
April 1998 to March 2015.
Eclipse: Eclipse is an integrated development platform to
support various aspects of software development. Eclipse is
a developer-centric project. It is mainly supported and used
by developers [6]. The bug database contains all reports
submitted from October 2001 to March 2015.

For the dataset of posts, we collect the most recent data
dump (up to March 2015) from SO. The dumped data con-
tains data of seven categories, badges, posts, user, votes, post
history, post links and comments. All information extracted
was saved in a database for the manipulation in the subse-
quent phases.

2.3 Mining bug-post Link Pairs
For automated extracting the bug-post link pairs, we first
mined the URLs which link to the SO posts from the bug re-
ports’ summary, description and comments. Then we mined
2http://www.bugzilla.org
3http://bugzilla.mozilla.org
4http://bugs.eclipse.org/bugs

the URLs which link to the bug reports from the posts’ ti-
tle, body, answer and comments. We refer to these links as
direct-link. There are many posts that link to other posts in
SO, which we consider as related posts [7]. For example, as
shown in Fig.1, if Bug X has a direct-link to Post A, Post A
has a URL which links to Post B or Post B has a URL which
links to Post A, we consider that Bug X has an indirect-link
to Post B. If Post C is also related to Post B but Post C
is not related to Post A, we consider Post C has a weak
relationship with Bug X because it is difficult to determine
whether it is a real related post after several URL links. So
we do not consider these links in our study.

Bug X

Post A
direct-link

Post B

related posts

indirect-link

(Bug X, Post A)
(Bug X, Post B)

Figure 1: Example of mining bug-post link pairs

In a bug report’s life-cycle, there are six states: new, as-
signed, resolved, verified, closed and reopen [2]. We only fo-
cus on the bug reports marked as resolved, verified, or closed
because the severity of such reports is set by the triager
or developer after resolution of the bug. The values of the
severity field varies from trivial, minor, normal, major, criti-
cal, to blocker. We can also use this field to indicate whether
a bug is an enhancement request by setting the severity as
“enhancement”. The normal severity is the default option
for selecting the severity when reporting a bug and it rep-
resents the grey zone. Similar to the approach proposed by
Ahmed Lamkanfi et al. [3], in our study, the normal and
enhancement severities are deliberately not taken into ac-
count and we treat the severities blocker, critical and major
as severe, while we treat severities minor and trivial as non-
severe. Finally, we collect 957 bug-post pairs (176 bugs and
810 posts) for Mozilla and 3501 bug-post pairs (528 bugs
and 2732 posts) for Eclipse. Table 1 presents basic statistics
about our dataset. The number of severe and non-severe
bugs in Mozilla and Eclipse are shown in Table 2. In Mozil-
la, the average value of each bug’s related posts is 6.2 and
the value is 7.6 in Eclipse.

Table 1: Basic statistics for our bug-post dataset
Mozilla Eclipse

bug post bug-post bug post bug-post

direct-link 176 227 238 528 669 728
indirect-link 89 626 776 276 2208 2937

total (duplicates removed) 176 810 957 528 2732 3501

Table 2: Basic statistics for severe and non-severe
bugs

severe non-severe
blocker critical major total minor trivial total

Mozilla 8 40 94 142 27 7 34
Eclipse 56 109 308 473 48 7 55

2.4 Statistical Analysis
After mining the bug-post link pairs, we seek to answer our
research questions by using statistical analysis. We divide
our analysis metrics into two parts, bug-level and post-level.
In the bug-level, the basic analysis metric is the severity. In
addition, we propose two other feature metrics.
ccList: Number of the list of people who get mail when the
bug changes.
Bug Description Complexity (BDC): Total number of
words in bug report’s summary and description.

In the post-level, we propose six feature metrics that capture
much practical insights about the crowd-based knowledge of
the posts.
Score: Total score of the post.
View Count (VC): Number of times the post is viewed.
Because the order of magnitude of VC is larger than other
metrics, in our statistical analysis, the VC is log transformed
to stabilize variance and reduce heteroscedasticity.
Answer Count (AC): Number of answers a post gets.
Comment Count (CC): Number of comments posted on
a post.
Favorite Count (FC): Number of favorites a post gets.
Up Votes (UV): Total number of up votes a post gets.

In our study, we use the entirety of these post-level metrics
to represent the crowd-based knowledge of linked posts. We
first investigate the distribution of post-level metrics in se-
vere and non-severe bugs. Then we use the Mann-Whitney-
Wilcoxon (MWW) test to compare these post-level metrics
in the two sets, severe and non-severe. The MWW test is
a non-parametric statistical test used for assessing whether
two independent distributions have equally large values. In
order to explore the potential of evaluating bug severity us-
ing crowd-based knowledge, we use the multiple linear re-
gression to analyze the correlation between bug severity and
the crowd-based knowledge. The outcome measure is the
severity. We build two models, Model 1 only considering the
bug-level metrics, and Model 2 adding the post-level metrics.

3. STUDY RESULTS ON MOZILLA AND E-
CLIPSE

In this section, we present the results of our empirical study
on Mozilla and Eclipse.

3.1 RQ1. The correlation between bug sever-
ity and the crowd-based knowledge

Table 3 and Table 4 separately display the min, 25%, me-
dian, mean, 75% and max values of post-level metrics in
Mozilla and Eclipse. In Mozilla, the average Score of linked
posts for non-severe bug is 10.2 (median: 1.0), while the val-
ue increases to 30.5 (median: 2.0) for severe bug. In Eclipse,
the average Score of linked posts for non-severe bug is 9.8
(median: 1.0), while the value increases to 13.3 (median:
2.0) for severe bug. Except CC, the similar phenomenon is
observed with respect to the VC, AC, FC and UV.

In order to give a clear description of the distribution of post-
level metrics in severe and non-severe bugs, we present the
boxplots as shown in Fig.2. In Mozilla, Fig.2-a shows that
the linked posts of severe bugs are more likely to have higher
Score, more VC, more AC, more FC and more UV than

(a) Mozilla

(b) Eclipse

Figure 2: The distribution of the post-level metrics
in severe and non-severe bugs

Table 3: The basic statistical results on Mozilla
Min 25% Median Mean 75% Max

Score
severe -6.0 0.0 2.0 30.5 5.0 4928.0

non-severe -2.0 0.0 1.0 10.2 3.0 1326.0

VC
severe 17.0 200.3 662.5 13331.5 2996.0 1254732.0

non-severe 16.0 187.0 598.0 7852.1 2672.0 974177.0

AC
severe 0.0 1.0 2.0 2.6 3.0 36.0

non-severe 0.0 1.0 2.0 2.6 3.0 25.0

CC
severe 0.0 0.0 2.0 2.3 3.0 24.0

non-severe 0.0 0.0 2.0 2.8 4.0 27.0

FC
severe 0.0 0.0 0.0 10.7 1.3 3960.0

non-severe 0.0 0.0 0.0 7.7 1.0 869.0

UV
severe 0.0 0.0 1.0 28.0 4.0 4544.0

non-severe 0.0 0.0 1.0 9.6 3.0 1365.0

Table 4: The basic statistical results on Eclipse
Min 25% Median Mean 75% Max

Score
severe -8.0 0.0 2.0 13.3 5.0 4375.0

non-severe -6.0 0.0 1.0 9.8 2.0 1990.0

VC
severe 9.0 234.0 1160.0 11972.1 4793.0 1596898.0

non-severe 14.0 100.8 366.0 5994.4 1548.8 645282.0

AC
severe 0.0 1.0 2.0 2.9 3.0 39.0

non-severe 0.0 1.0 2.0 2.8 3.0 35.0

CC
severe 0.0 0.0 1.0 2.3 3.0 22.0

non-severe 0.0 1.0 2.0 3.1 4.0 24.0

FC
severe 0.0 0.0 0.0 7.8 2.0 1778.0

non-severe 0.0 0.0 0.0 2.9 0.0 698.0

UV
severe 0.0 0.0 1.0 12.0 5.0 3594.0

non-severe 0.0 0.0 1.0 8.8 2.0 1680.0

Table 5: The MWW test results on Mozilla and E-
clipse

Score VC AC CC FC UV

MWW in Mozilla 5.8e-04 6.7e-03 1.9e-03 9.2e-04 2.9e-03 2.7e-03
MWW in Eclipse <2.2e-16 <2.2e-16 5.3e-03 2.1e-11 <2.2e-16 1.1e-15

non-severe bugs. Similarly, in Eclipse, as shown in Fig.2-
b, the linked posts of severe bugs are more likely to have
more crowd-based knowledge than non-severe bugs which is
cosistent to the results on Mozilla. The MWW test results in
Table 5 show that in Mozilla and Eclipse, all the differences
between severe bugs and non-severe bugs are statistically
significant (p<0.05).

RQ1. There is some correlation between bug severity and
the linked posts’ crowd-based knowledge. No matter in
developer-centric project Eclipse or user-centric project
Mozilla, bug severity has a positive relationship with the
crowd-based knowledge, i.e. the linked posts of severe bugs
have higher score etc. than non-severe bugs.

3.2 RQ2. The potential of using crowd-based
knowledge to evaluate bug severity

In order to explore the potential of using crowd-based knowl-
edge to evaluate bug severity, we use the multiple linear
regression to compare the two models as described in Sec-
tion 2.4. All variance inflation remained well below 3, indi-
cating absence of multicollinearity. For each model variable,
we report its coefficients, standard error, and significance
level. We consider coefficients important if they were sta-
tistically significant (p<0.05). We obtain effect sizes from
ANOVA analyses. The resulting multivariate linear regres-
sion models are shown in Table 6 and Table 7.

As expected, both in Mozilla and Eclipse, ccList and BD-
C play a dominant role in explaining the variance in the
data. Both in Mozilla and Eclipse, Score, VC, AC, FC
and UV all have a positive effect, while CC has a nega-

Table 6: The multiple linear regression results on
Mozilla

Model 1 Model 2
Coeffs(Errors) Sum Sq. Coeffs(Errors) Sum Sq.

(Intercept) 2.866e+00(7.329e-02)*** 3.112e+00(1.919e-01)***
ccList 1.864e-02(1.865e-03)*** 273.68*** 1.884e-02(1.871e-03)*** 273.68***
BDC 7.678e-04(6.489e-05)*** 284.53*** 7.556e-04(6.523e-05)*** 284.53***
Score 7.637e-04 (1.534e-02)* 1.78.

log(VC) 2.744e-02 (3.013e-02)** 1.06
AC 3.002e-03(2.495e-02)** 1.39*
CC -2.487e-02(1.497e-02). 5.48.
FC 7.787e-04(4.872e-03)* 6.05*
UV 1.215e-03 (1.676e-02)* 0.01

Adjusted R2 0.1519 0.2234
P-value <2.2e-16 <2.2e-16

‘***’ p<0.001, ‘**’ p<0.01, ‘*’ p<0.05, ‘.’ p<0.1

Table 7: The multiple linear regression results on
Eclipse

Model 1 Model 2
Coeffs(Errors) Sum Sq. Coeffs(Errors) Sum Sq.

(Intercept) 4.698e+00(2.330e-02)*** 4.279e+00(6.868e-02)***
ccList 1.862e-02(9.038e-04)*** 409.4*** 1.673e-02(9.197e-04)*** 409.4***
BDC 5.319e-05(3.262e-06)*** 303.0*** 4.818e-05(3.274e-06)*** 303.0***
Score 4.201e-03(3.826e-03)* 0.5*

log(VC) 8.606e-02(1.084e-02)*** 60.1***
AC 2.461e-02(7.515e-03)** 20.0***
CC -2.602e-02(6.320e-03)*** 18.7***
FC 1.902e-03(7.626e-04)* 5.4*
UV 6.005e-03(4.814e-03)* 1.7*

Adjusted R2 0.0812 0.1724
P-value <2.2e-16 <2.2e-16

‘***’ p<0.001, ‘**’ p<0.01, ‘*’ p<0.05, ‘.’ p<0.1

tive effect, which is consistent with the previous results of
statistical analysis. Compared to Model 1, Model 2 offers
a significantly better fit (Mozilla: adjusted R2 raises 7.2%,
Eclipse: adjusted R2 raises 9.1%). It indicates that incor-
porating a third dimension of crowd-based knowledge in-
to the evaluation of bug severity is helpful to some extent.

RQ2. There is the potential to enhance existing evalua-
tion methods of bug severity by exploiting the crowd-based
knowledge.

4. CONCLUSIONS
The study presented in this paper shows evidences of the
bug severity in bug tracking system has some relationship
with the crowd-based knowledge in SO. Our statistics results
indicate that no matter in developer-centric project Eclipse
or user-centric project Mozilla, bug severity has a positive
relationship with the linked posts’ crowd-based knowledge,
i.e. the linked posts of severe bugs have more Score etc.
than non-severe bugs. Our study shows that we certainly
have the potential to enhance existing evaluation methods
of bug severity by exploiting the crowd-based knowledge of
SO posts to incorporate a third dimension of knowledge.

5. ACKNOWLEDGMENTS
The research is supported by the National Natural Science
Foundation of China (Grant No.61432020, 61472430 and
61502512) and the Postgraduate Innovation Fund (Grant
No.CX2015B028).

6. REFERENCES
[1] Herraiz I, German D M, Gonzalez-Barahona J M, et al.

Towards a simplification of the bug report form in
eclipse. In Proceedings of the International Working
Conference on Mining Software Repositories, pages
145-148. ACM, 2008.

[2] D’Ambros M, Lanza M, Pinzger M. “A Bug’s Life”
Visualizing a Bug Database. In Proceedings of the
International Workshop on Visualizing Software for
Understanding and Analysis, pages 113-120. IEEE,
2007.

[3] Lamkanfi A, Demeyer S, Giger E, et al. Predicting the
severity of a reported bug. In Proceedings of the
International Working Conference on Mining Software
Repositories, pages 1-10. IEEE, 2010.

[4] Tian Y, Lo D, Xia X, et al. Automated prediction of
bug report priority using multi-factor analysis.
Empirical Software Engineering, pages 1-30, 2014.

[5] Bacchelli A, Ponzanelli L, Lanza M. Harnessing stack
overflow for the ide. In Proceedings of the International
Workshop on Recommendation Systems for Software
Engineering, pages 26-30. IEEE, 2012.

[6] Banerjee S, Helmick J, Syed Z, et al. Eclipse vs.
Mozilla: A Comparison of Two Large-Scale Open
Source Problem Report Repositories. In Proceedings of
the High Assurance Systems Engineering, pages
263-270. IEEE, 2015.

[7] Wang T, Yin G, Wang H, et al. Linking stack overflow
to issue tracker for issue resolution. In Proceedings of
the Asia-Pacific Symposium on Internetware on
Internetware. pages 11-14. ACM, 2014.

