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Re-Thinking the Effectiveness of Batch
Normalization and Beyond

Hanyang Peng, Yue Yu, and Shiqi Yu

Abstract—Batch normalization (BN) is used by default in many modern deep neural networks due to its effectiveness in accelerating
training convergence and boosting inference performance. Recent studies suggest that the effectiveness of BN is due to the
Lipschitzness of the loss and gradient, rather than the reduction of internal covariate shift. However, questions remain about whether
Lipschitzness is sufficient to explain the effectiveness of BN and whether there is room for vanilla BN to be further improved. To answer
these questions, we first prove that when stochastic gradient descent (SGD) is applied to optimize a general non-convex problem, three
effects will help convergence to be faster and better: (i) reduction of the gradient Lipschitz constant, (ii) reduction of the expectation of the
square of the stochastic gradient, and (iii) reduction of the variance of the stochastic gradient. We demonstrate that vanilla BN only with
ReLU can induce the three effects above, rather than Lipschitzness, but vanilla BN with other nonlinearities like Sigmoid, Tanh, and SELU
will result in degraded convergence performance. To improve vanilla BN, we propose a new normalization approach, dubbed complete
batch normalization (CBN), which changes the placement position of normalization and modifies the structure of vanilla BN based on the
theory. It is proven that CBN can elicit all the three effects above, regardless of the nonlinear activation used. Extensive experiments on
benchmark datasets CIFAR10, CIFAR100, and ILSVRC2012 validate that CBN makes the training convergence faster, and the training
loss converges to a smaller local minimum than vanilla BN. Moreover, CBN helps networks with multiple nonlinear activations (Sigmoid,
Tanh, ReLU, SELU, and Swish) achieve higher test accuracy steadily. Specifically, benefitting from CBN, the classification accuracies for
networks with Sigmoid, Tanh, and SELU are boosted by more than 15.0%, 4.5%, and 4.0% on average, respectively, which is even
comparable to the performance for ReLU.

Index Terms—Normalization, Batch Normalization, Accelerating Convergence.
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1 INTRODUCTION

BBatch normalization (BN) [1] is a key technique in deep
neural network (DNN) development, known to accelerate
training and significantly improve generalization perfor-
mance during inference. Its enormous success has inspired
a range of normalization approaches for other learning
scenarios, such as layer normalization (LN) for Recurrent
Neural Network (RNN) and Transformer architectures [2], [3],
instance normalization (IN) for neural stylization [4], spectral
normalization for generative adversarial networks (GANs)
[5] , adaptive batch normalization (AdaBN) for fine-tune
leaning [6], and shuffle batch normalization (ShuffleBN) for
contrastive learning [7]. BN normalizes the features along the
batch dimension, so the performance of BN is influenced by
the batch size. Hence, various other normalization approach-
es, group normalization (GN) [8], batch renormalization
(BRN) [9], and moving average batch normalization (MABN)
[10], are proposed to restore the performance of BN in small
cases. However, when the batch size is sufficiently large,
these newly proposed normalization methods exhibit no
superiority to BN.

The practical success of BN is indisputable, but the roots
of its effectiveness remain largely unexplored [11]. The
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reduction in internal covariate shift (ICS) induced by BN
was originally thought to interpret the effectiveness of BN.
Recently, however, recent studies by [12] have challenged
this view, arguing that the link between ICS reduction and
performance improvement with BN is weak. Instead, from
the perspective of landscape smoothness, [12] demonstrated
that BN results in the Lipschitzness of both the loss and
the gradient, which induces more predictive and stable
gradients, thus allowing for faster training; then, some other
works further explained the success of BN with the view
of improving Hessian conditioning (that is also a type of
Lipschitzness) [13], [14].

However, two open questions about BN that still need to
be further explored,

Is Lipschitzness sufficient to explain the effectiveness of BN?
Is there room to further improve vanilla BN, rather than mere
explanation?

The efficacy of BN is primarily embodied by two aspects
– accelerating the training process and boosting the inference
performance, which are closely related to faster optimizing
convergence and a final smaller converged minimum. More
fundamentally, BN can be viewed as an optimization algorith-
m, so we adopt a top-down strategy to answer both questions
above from the perspective of optimization. Specifically, we
first deduce sufficient conditions for faster convergence and
smaller converged minima, and then we identify whether
BN can induce some of these conditions to explain its
effectiveness. Moreover, we try to modify the structure of
BN to elicit all of the above conditions to complete BN.

Following this strategy, we prove that three conditions
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(a) Network w/o Normalization (b) Network with vanilla BN (c) Network with CBN

Fig. 1. The structures of a standard block embedded with (a) no normalization, (b) vanilla BN and (c) CBN. The shortcut is optional.
Vanilla BN is placed behind the linear activation layer, while CBN is located in the front of the linear activation layer. Moreover, mean
removal and normalization with `2 norm are tangled in vanilla BN, but the two parts are decoupled in CBN. Additionally, CBN adds ρ
to tune the magnitude of normalization for better performance.

- reduction in the gradient Lipschitz constant, reduction in
the stochastic gradient squared expectation, and reduction
in the stochastic gradient variance - can make the conver-
gence faster and the converged minimum smaller, when
stochastically optimizing a general nonconvex problem. The
first two conditions are responsible for the ”faster” aspect,
while the last two conditions are responsible for the ”smaller”
aspect. We then propose a modified version of BN, called
complete batch normalization (CBN), which can theoretically
induce all three of these conditions. CBN involves four
key modifications, as shown in Figure 1. First, we place
normalization before the linear activation, which justifies
the use of a wider range of activation functions in DNNs,
including Tanh and Sigmoid. Second, we decouple the mean
removal and normalization processes. Third, we add a new
parameter to tune the magnitude of normalization, which
can lower the gradient Lipschitz constant and the stochastic
gradient squared expectation. Fourth, we substitute the
statistics determined over a single batch with the adaptive
moving average statistics that utilize historical batch infor-
mation, thus lowering the variance of the stochastic gradient.
Meanwhile,we also reveal the limitations of BN, showing that
it can induce the three conditions only with ReLU, and may
perform poorly with other activation functions such as Tanh,
Sigmoid and SELU. Overall, CBN provides a more complete
and theoretically justified approach to batch normalization,
with the potential to improve the performance of DNNs.

Our contributions are summarized as follows:

• We we view BN-like normalization as an optimization
algorithm and provide theoretical evidence for the
three key effects that can accelerate convergence and
decrease the converged minima while stochastically
optimizing a nonconvex problem. This theoretical
foundation enables us to explain and enhance vanilla
BN’s performance.

• We propose a novel normalization approach that is
theoretically justified by theory and can elicit all the
effects described above.

• We identify the root cause for the effectiveness of
vanilla BN with ReLU and the inefficacy of vanilla
BN with other nonlinear activation functions.

2 RELATED WORK

Inspired by the success of BN, various normalization variants
have been proposed to address specific learning scenarios.
For instance, Layer Normalization (LN) [2] and Recurrent
Batch Normalization (RBN) [15] were developed for use
in recurrent neural networks, while Instance Normalization
(IN) [4] was designed to enhance neural stylization. Adaptive
Batch Normalization (AdaBN) [6] was proposed for practical
domain adaptation. Spectral Normalization (SN) [5] helps
prevent model collapse in generative adversarial networks.
Stochastic Normalization (SN) [16] aims to enhance fine-
tuning performance, and Shuffle Batch Normalization (Shuf-
fleBN) [7] replaces the current batch statistics with the statis-
tics of other batches to improve unsupervised contrastive
learning.

Batch normalization (BN) is widely known to be inef-
fective in small batch size cases, and then many methods
have been proposed to alleviate this problem. Synchronized
batch normalization (SyncBN) [17] computes statistics across
multiple GPUs. It actually does not essentially solve this
issue but transforms it into an engineering task. Several
methods mimic T the principle of BN while decoupling the
computational batch from the normalization batch . Layer
normalization (LN) [2] exploits instance-level statistics along
the channel dimension, and group normalization (GN) [8]
further divides all channels into predefined groups and
uses group-wise statistics. Weight normalization (WN) [18]
is a simple reparameterization of the weight vectors in a
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neural network that can also accelerate the convergence
process. Another line of approaches utilizes moving average
statistics in both forward and backward passes to restore the
performance when the batch size is insufficient, such as batch
renormalization (BRN) [9], memorized batch normalization
(MBN) [19], online normalization (ON) [20] and moving
averaged batch normalization (MABN) [10]. Although these
normalization methods are more effective than vanilla BN
in small batch size cases, vanilla BN still outperforms them
when the batch size is sufficiently large. Recently, instance
level Meta Normalization (ILM) [21], instance enhancement
batch normalization (IEBN) [22] and representative batch
normalization (RBN) [23] have added an extra subnet or more
steps with learning parameter to vanilla BN to introduce
instance-level statistical information, and such approaches
have achieved more competitive performance in large-size
batch cases. However, these methods with instance-level
statistical information still have to compute extra nonlinear
operations during the inference procedure, while vanilla BN
can be merged to the convolution layer or the fully-connected
layer in the inference stage. Hence, these methods with
instance-level statistics are inappropriate for applications
in time-sensitive industrial scenarios. [24] extra introduces
Proxy Normalization to GN to restore BNs beneficial proper-
ties that are not retained when solely using the prototypical
batch-independent norm.

Despite ubiquitous use and the practical benefits of
vanilla BN, the community has not yet reached a broad
consensus on the theoretical explanations for its empirical
tremendous success. The original paper claimed that BN
was designed to reduce ICS to boost the training and
inference performance [1]. However, [12] provided strong
evidence supporting the idea that the link between the ICS
reduction and the performance gain of BN is weak. [12]
argued that the effectiveness of BN is attributed to smoothing
the landscape of both the loss and the gradient, but its
theoretical analysis only simply considers a single block with
no nonlinearity activations. Afterward, several papers [13],
[14] further uncovered that BN is beneficial to improving
the Hessian conditioning, which can help to accelerate the
convergence. In [25], the authors thought the larger learning
rate brought by BN was the main reason behind its success.
[26] believes the acceleration for BN is due to the fact that
BN decouples the optimizing length and direction of the
parameters, and theoretically proves that this decoupling
will make the gradient-based descent algorithm achieve
exponential convergence rates when optimizing a learning
Halfspace problem and a multilayer perceptron (MLP) with
one hidden layer. [27] demonstrates that scale-invariance
of BN allows (stochastic) gradient descent to succeed with
less tuning of learning rates. [28] theoretically and exper-
imentally shows BN can provably prevent rank collapse
for linear networks. [29] gives a uniform understanding
of normalization in DNNs from the perspectives of stable
forward propagation, informative forward propagation, and
stable backward propagation.

Although these previous studies have contributed valu-
able insights into the mechanisms underlying vanilla BN
from different perspectives, their theoretical analyses com-
monly focus on a single factor and often rely on idealized
assumptions that do not accurately reflect the complexities

of training modern DNNs. More importantly, they do not
provide guidance on how to improve it. In contrast, our
approach takes a top-down strategy, first identifying three
effects that are sufficient to accelerate the training process
and improve inference performance. We then propose a
modification to vanilla BN that has been shown to achieve
these effects.

3 PRELIMINARY

In this section, we theoretically deduce vital factors that are
responsible for accelerating convergence and leading the
objective function to converge to a smaller minimum when
stochastically optimizing a general nonconvex problem.

In a machine learning task, given a set of samples {xi}ni=1,
the optimization objective is commonly the empirical risk
loss, i.e.,

F (w; {xi}ni=1) =
1

n

n∑
i=1

fi(w;xi), (P)

where fi(w;xi) is the loss of the i-th sample with respect to
w. Note that F (w; {xi}ni=1) and fi(w;xi) are abbreviated as
F (w), F and fi(w), f , respectively.

For large-scale machine learning, such as deep learning,
SGD is commonly applied to minimize the empirical risk loss
(P) due to its low computational cost. At the k-th iteration,
an index set Bk is randomly sampled in a batch where 1 ≤
|Bk| � n , and then w is then updated with

wk+1 ← wk − αkvk, (1)

where αk+1 is the learning rate. For the basic SGD,
vk = 1

|Bk|
∑
ik∈Bk ∇fik(wk;xik). In deep learning, mod-

ern SGD algorithms are applied [30], [31], [32]. They
can be uniformly expressed as a weighted gradient sum:
vk = β1kvk−1 + β2k

1
|Bk|

∑
ik∈Bk ∇fik(wk;xik), where the

weights β1k and β2k are predefined constants or functions
with respect to 1

|Bk|
∑
ik∈Bk ∇fik(wk;xik) and the historical

gradient 1
|Bt|

∑
it∈Bt ∇f(wt;xit) (0 ≤ t < k).

We adopt the following standard assumptions regarding
the objective function in problem (P) when investigating its
convergence behaviors.
Assumption 1. The objective function in problem (P) satisfies:

1). Function F (w) is continuously differentiable and bounded,
i.e., F ∗ := inf F (w) > −∞;

2). Each gradient ∇fi(w) (i = 1, 2, 3, ..., n) is Lipschitz
continuous, i.e., for any w1, w2 ,

‖∇fi(w1)−∇fi(w2)‖ ≤ L‖w1 − w2‖, (2)

where L is also called the gradient Lipschitz constant.
Below, under Assumption 1, we present a convergence

analysis of the general objective function in problem (P).
Theorem 1. Let Assumption 1 hold and let SGD in Eq. (2)

be applied to optimize problem (P). Suppose that the stepsizes (the
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learning rates) {αk} satisfy αk ≤ 1
L and αk+1 ≤ αk. Then, for

any number of iterations K , we have

E

[
1

K

K∑
k=1

‖∇F (wk)‖
]2

≤ 2(E[F (w0)]− F ∗)
αKK︸ ︷︷ ︸
T1

+
1

KαK

K∑
k=1

αkE[‖∇vk‖2]︸ ︷︷ ︸
T2

+
1

KαK

K∑
k=1

αkE
[
‖vk −∇F (wk)‖2

]
︸ ︷︷ ︸

T3

,

(3)

The proof of Theorem 1 can be found in Appendix A.
blueIt is important to note that everal theoretical convergence
analyses have been conducted on stochastically optimizing
non-convex problems [33], [34], [35], [36], [37], [38], [39], and
some intermediate results of these analyses is somewhat
similar to those in Theorem 1. However, However, their
final formulations are either impractical or have unfavorable
performance for deep learning tasks. For instance, the
analyses in [33], [34], [35] require large batch sizes (i.e.,
b ∝
√
n where b is the batch size and n is the total number of

samples), and the gradients of the universal samples should
be computed periodically. Alternatively, the learning rate
scenarios in [36], [37] are closely related to the total number
of samples (i.e., αk ∝ 1√

n
), or the learning rate decays with

the number of steps (i.e., αk ∝ 1√
k

) [38], [39]. In contrast, our
convergence analysis in Theorem 1 does not impose strict
conditions on the batch size and the learning rate. Therefore,
it is more in line with the actual situation when training deep
neural networks.

According to Theorem 1, we know that the convergence
speed depends on the vanishing rate of T1 in Eq. (3). It can be
easily concluded that a large learning rate αk+1 will directly
speed up the vanishing rate, which is in accordance with the
conclusion in [25]. However, the learning rate is constrained
by αk+1 <

1
L . Thus, to accelerate the convergence of problem

(P), we should decrease the gradient Lipschitz constant L.
From Theorem 1, we also know that as k → ∞, T1

in Eq. (3) will approach to zero, and the final value of

E
[

1
K

∑K
k=1 ‖∇F (wk)‖

]2
depends on the value of T2 and

Term T3 in Eq. (3). It is known that a final small value for
the gradient is more likely to enjoy favorable performance
in machine learning tasks. To achieve the goal of a small
value for the gradient in Eq. (3), we need to lower the
value of T2 and T3. vk is an additive weighted gradient
sum: vk = β1kvk−1 + β2k

1
|Bk|

∑
ik∈Bk ∇fik(wk;xik). Thus,

at each iteration reducing the gradient squared expectation
E[‖∇f(wk;xik)‖2] is helpful to decrease E[‖vk‖2] and ulti-
mately reduce the value of T2. As for T3, we known that
E[(x−C)2] = V[x]+(E[a]−C)2 where x is a random variable
and C is a constant, so lowering the stochastic gradient vari-
ance V[‖vk‖] helps to reduce E[‖vk −∇F (wk)‖2] and finally
bring down the value of T3. Notably, the conclusion that
gradient variance reduction is beneficial for convergence was

initially demonstrated in [40], and a wealth of later ingenious
optimization algorithms [33], [34], [35] were proposed to
lower the variance of the stochastic gradient, resulting in
great achievements in recent years.

In summary, if an approach ensures fast convergence and
a small converged minimum when applying SGD, it should
elicit at least one of the following effects:

• Reducing the gradient Lipschitz constant (fast);
• Reducing the expectation of the squared stochastic

gradient (small);
• Reducing the variance of the stochastic gradient

(small).

4 COMPLETE BATCH NORMALIZATION

In this section, we present a new normalization approach that
can be easily embedded in the existing DNNs. It is proven
to induce all three effects during training: reduction in the
gradient Lipschitz constant, reduction in the expectation of
the squared stochastic gradient, and reduction in the variance
of the stochastic gradient. Note that the new approach
induces these effects to make convergence faster and better
by changing the structure of the network rather than devising
ingenious optimization algorithms [33], [34], [35], [40].

4.1 Reduction in the Gradient Lipschitz Constant and
Stochastic Gradient Squared Expectation

Inspired by the basic form of vanilla BN, we construct
a new normalization approach, referred to as CBN. The
standard block that embeds CBN layers of a network can be
formulated as

µ
[l]
Bk =

1

|Bk|
∑
ik∈Bk

x
[l]
ik
,

x′
[l]
ik

= xlik − µ
[l]
Bk + β

[l]
k ,

 (Mean Removal) (4)

σ
[l]
Bk =

√
1

|Bk|
∑
ik∈Bk

(x′
[l]
ik
)2,

x′′
[l]
ik

=
γ

[l]
k

ρ
·
x′

[l]
ik

σ
[l]
Bk

,


(Normalization via `2 Norm)

(5)

y
[l]
ik

= w
[l]
k x
′′[l]
ik
, ( Linear Activation) (6)

x
[l+1]
ik

= I(SC)x[l]
ik
+ δ(y

[l]
ik
), (Nonlinear Activation) (7)

where CBN consists of two steps – mean removal and
normalization. The subscript k is the iteration index and the
superscript [l] is the block index, β[l]

k and γ
[l]
k are the shift

parameter and the scale parameter to be learned, respectively,
and ρ is a hyperparameter to tune the normalization mag-
nitude. δ(·) is an activation function. I(SC) indicates that if
there is a shortcut, it is 1, otherwise, it is 0. Note that we
sometimes omit the block index [l] in the following equations
for simplicity.

We now compare a plain non-normalized network with
the same network after inserting a CBN in each block
to demonstrate the effectiveness of CBN. The standard
network with no normalization and the standard network
with CBN are respectively shown in Figure 1(a) and Figure
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1(c). The inputs of both networks are fed with the same
raw data and the outputs of both networks are fed to the
same empirical risk loss. Moreover, the weight w[l]

k to be
learned at any l-th block in both networks are identical. We
have an additional CBN term that includes removal and
normalization to process the inputs of any l-th block. In the
following, we will theoretically demonstrate the two parts
of CBN lower the stochastic gradient squared expectation
and the gradient Lipschitz constant. It is worth noting that
we employ (̃·) for the symbols in the network without
normalization(such as x̃[l]

ik
and ỹ

[l]
ik

), and utilize (̂·) for the
symbols in the network with normalization(such as x̂[l]

ik
and

ŷ
[l]
ik

) to better better distinguish them, and then we have the
following conclusions.
Theorem 2. [Justification of Mean Removal, Eq. (4)] A
standard network with no normalization and a standard network
with mean removal, the inputs of the first block and the outputs
of the last block for the both networks satisfy x̂

[1]
ik

= x̃
[1]
ik

,
‖∇

x̂
[L]
ik

f̂ik‖2 = ‖∇
x̃
[L]
ik

f̃ik‖2 and ‖∇2

x̄
[L]
ik

f̂ik‖2 = ‖∇2

x̃
[L]
ik

f̃ik‖2.

Suppose that at l-th block with mean removal 0 ≤ η̂[l]
k ≤ 2 where

η̂
[l]
k =

µ̂
[l]
Bk
−β[l]

k

E[x̂
[l]
ik

]
. For the arbitrary l-th block, we then have the

following:
(1) The upper bound of the gradient Lipschitz constant of F̂

with respect to wk[l] for the network with mean removal is lower
than the upper bound of the gradient Lipschitz constant of F̃ with
respect to wk[l] for the non-normalized network.

(2) The upper bound of the stochastic gradient squared
expectation E[‖∇[l]

wk f̂ik‖2] for the network with mean removal
is lower than the upper bound of the stochastic gradient squared
expectation E[‖∇[l]

wk f̃ik‖2] for the non-normalized network .
Theorem 3. [Justification of Normalization via `2-Norm,
Eq. (5)] For the standard network with no normalization and a
standard network with normalization via l2-Norm , the inputs
of the first block and the outputs of the last block for the both
networks satisfy x̂[1]

ik
= x̃

[1]
ik

, ‖∇
x̂
[L]
ik

f̂ik‖2 = ‖∇
x̃
[L]
ik

f̃ik‖2 and

‖∇2

x̄
[L]
ik

f̂ik‖2 = ‖∇2

x̃
[L]
ik

f̃ik‖2. Suppose that at any l-th block 0 <

τ
[l]
k < 1 where τ [l]

k =
γ
[l]
k

ρσ̂
[l]
Bk

, for the arbitrary l-th block, we then

have the following:
(1) The upper bound of the gradient Lipschitz constant of

F̂ with respect to wk[l] for the network with normalization via
`2-Norm is lower than the upper bound of the gradient Lipschitz
constant of F̃ with respect to wk[l] for the non-normalized network.

(2) The upper bound of the stochastic gradient squared
expectation E[‖∇[l]

wk f̂ik‖2] for the network with normalization
via `2-Norm is lower than the upper bound of the stochastic gra-
dient squared expectation E[‖∇[l]

wk f̃ik‖2] for the non-normalized
network.

The proof of Theorem 2 and Theorem 3 is provided in
Appendix E and Appendix H. As shown in Figure 2, the
assumption 0 ≤ ηk ≤ 2 in Theorem 2 and the assumption
0 ≤ τk ≤ 1 in Theorem 3 can be commonly satisfied in
practice.

Remark 1. In [1], the positioning of BN was discussed,
but the paper empirically concluded that placement before a
non-linearity activation is better. [41] and [42] experimentally

placed BN after a non-linearity activation as an optional
experimental scheme, without making it a component of
their proposed methods. In contrast, in our CBN, placing
normalization after non-linearity is compulsory, which is
theoretically justified. Note that empirical ”try-and-error”
methods are easily misled by superficial and incomplete
phenomena. Vanilla BN placed before widely-used ReLU
commonly performs better than vanilla BN placed after ReLU
when the magnitude ρ is not tuned(the reason for this can be
found in Section 5), and this phenomenon made prior works
tend to place BN before a non-linearity activation. Howev-
er, as our theory is guided without empirical distraction,
placing normalization after a non-linearity activation with
properly tuned magnitude enjoys significant improvements;
for details, please refer to our experiments.

Remark 2. The proofs of Theorem 2 and Theorem 3
indicate that the upper bounds of the gradient Lipschitz
constant and the stochastic gradient squared expectation
are proportional to 1

ρ2 , which means that a larger ρ speeds
up convergence more quickly. However, ρ cannot be too
large; otherwise, x̂ik will become too small, which will
lower the dynamic range and even lead to underflow
since machine precision is finite. Hence, ρ should be tuned
moderately in practice. In a broad sense, adding ρ is simply
equivalent to changing f(x>w) to f(x

>

ρ w). Thus, it seems
that the optimization trajectory remains the same when w is
magnified by an exact factor ρ. w is not more likely to learn
to be magnified exactly by a large factor ρ. The number of
local minima of a DNN is very large, and they are scattered
throughout the entire space. Therefore, adding ρ is likely
to help w in the network to more quickly converge to a
local minimum near the initial value rather than follow
a long and indirect trajectory to converge to the original
local minimum, since overparameterized neural networks
commonly converge to lower training losses while their
parameters hardly vary from their initial value [43], [44],
[45]. It is important to note that in the case of using a deep
and straight network, the prerequisite 0 < γ[l]

ρσ̂B[l] < 1 stated
in Theorem 3 is often not satisfied during initialization if
we simply set ρ = 1. As a result, the norm of the gradient
will exponentially increase with depth, in accordance with
theoretical predictions [46]. Therefore, in such scenarios, it
becomes necessary to tune the parameter ρ to ensure that
0 < γ[l]

ρσ̂B[l] < 1. Furthermore, by adopting the gradient
independence assumption presented in [46], we have the
potential to achieve more robust theoretical results, thereby
eliminating the need for the upper bounds in both Theorem
2 and Theorem 3.

4.2 Reduction in the Variance of the Stochastic Gradi-
ent

We now turn our attention to a technique that can
be embedded into CBN to reduce the stochastic gradient
variance. Its core idea is substituting the statistics µBk and
σBk determined over the current batch with the adaptive
moving average statistics during training.

Recalling Eqs. (4-7), it is easy to know that ∇wkfik =

(∇yik fik)x
′′>
ik

. Then, we conclude that reducing the vari-
ance of x′′ik is helpful to minimize the variance of the
stochastic gradient ∇wkfik due to the facts V[ab] =
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(a) Layer #2 (b) Layer #8 (c) Layer #14

Fig. 2. The distribution cross channels of ηk of (a) layer#2.cbn (stage1.0.cbn1), (b) layer#8.cbn (stage2.0.cbn1) and (c) layer#14.cbn
(stage3.0.cbn1) in ResNet-20 during training on CIFAR10, where ηk = (µBk − βk)

/
E[x[l]ik ] is defined in Theorem 2. µBk and βk have

been shown in Eq.(4). E[x[l]ik ] depending on the full sets make it difficult to compute, so we practically substitute it with the exponential
moving average µAk in Eq.(8). In practice, the assumption 0 ≤ ηk ≤ 2 in Theorem 2 can be commonly satisfied.

(a) Layer #2 (b) Layer #8 (c) Layer #14

Fig. 3. The distribution cross channels of τk of (a) layer#2.cbn (stage1.0.cbn1), (b) layer#8.cbn (stage2.0.cbn1) and (c) layer#14.cbn
(stage3.0.cbn1) in ResNet-20 during training on CIFAR10, where τ [l]k = γ

[l]
k

/
ρσ̂

[l]
Bk is defined in Theorem 3. γk and σBk have been

shown in Eq.(5), and we set ρ = 1 in the experiment. In practice, the assumption 0 ≤ τk ≤ 1 in Theorem 3 can be commonly
satisfied.

Algorithm 1. Training in the l-th layer of a standard
neural network with Complete Batch Normalization
Input: the training mini-batch data x[l]k = [x

[l]
1k
, x

[l]
2k
, x

[l]

|B|k
]

from the (l − 1) block at the k-th iteration, and the buffer
data µ

[l]

|A|k
, σ

[l]

|A|k
, and the learning rate αk at the k-th

iteration, and the positive constant ω.
Output: x[l+1]

k

µ
[l]
Bk ←

1
|Bk|

∑
ik∈Bk

x
[l]
ik

rµk ←
µ
[l]
Ak
µ
[l]
Bk

x′
[l]
ik
← xlik − rµkµ

[l]
Bk + β

[l]
k

(σ
[l]
Bk )

2 ← 1
|Bk|

∑
ik∈Bk

(x′
[l]
ik
)2

rσk ←
σ
[l]
Ak
σ
[l]
Bk

x′′
[l]
ik
← γ

[l]
k
ρ
·

x′[l]ik
rσkσ

[l]
Bk

y
[l]
ik
← w

[l]
k x

′′[l]
ik

x
[l+1]
ik

← I(SC)x[l]ik + δ(y
[l]
ik
)

ηk ← max(1− ωαk, 0)
µ
[l]
Ak+1

← ηkµ
[l]
Ak + (1− ηk)µBk

(σ
[l]
Ak+1

)2 ← (ηkσ
[l]
Ak )

2 + (1− ηk)(σ[l]
Bk )

2

1
2

(
V[a](E[b2] + E2[b]) + (E[a2] + E2[a])V[b]

)
if the random

variables a and b are independent. From Eqs.(4-5), we
know that x′′ik = γ(xk − µBk + βk)/ρσBk . Again exploiting
V[ab] = 1

2

(
V[a](E[b2] + E2[b]) + (E[a2] + E2[a])V[b]

)
and

another fact V[a + b] = V[a] + V[b] when a and b are
independent, minimizing the variance of the batch statistics
µBk and σBk is beneficial for decreasing the variance of

x′′ik and will ultimately lower the variance of the stochastic
gradient.

Because the batch statistics µBk and σBk are Monte Carlo
estimators, their variances are inversely proportional to
the number of given examples. The exponential moving
average statistics, µAk+1

= ηµAk + (1 − η)µBk+1
and

σ2
Ak = ησ2

Ak + (1 − η)σ2
Bk , are used in the testing stage in

vanilla BN. Actually, the modest exploitation of exponential
moving average statistics during training will reduce the
variance, but applying historical statistics will also inevitably
bring bias. Thus, we should strike a wise balance between
variance reduction and bias increase by controlling η. If the
bias is large, we should decrease η, and vice versa. Note
that the bias is inversely proportional to the learning rate
(the theoretical analysis is provided in Appendix E). Thus,
adaptively adjusting η by carefully tracking the learning rate
helps to reduce the variances of µBk and σBk . We present the
adaptive moving average technique (AMAT) as follows:

µAk+1
= ηkµAk + (1− ηk)µBk , (8)

σ2
Ak+1

= ηkσ
2
Ak + (1− ηk)σ2

Bk , (9)

where ηk is a decreasing function of the learning rate αk.
The batch statistics µBk and σBk are substituted by adaptive
moving average statistics µAk and σAk during training.

Notably, during training, if we use only the moving
average historical statistics to normalize data, the current
minibatch statistics will have less impact on backpropagation.
This can result in model parameter growth without any
improvement in loss. To solve this problem, as shown in
Algorithm 1, we use a technique from [9] where we introduce
ratios between the moving average historical statistics and
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the current minibatch statistics, treating them as a constant
during computation. This allows us to use the historical
statistics for the forward pass, while the backpropagation
focuses on the current minibatch statistics.

Remark 3. BRN [9], MBN [19], ON [20] and MABN [10]
also leverage moving average historical statistics during
training. However, there are two differences between these
existing techniques and our proposed AMAT.First, the
previous normalization techniques adopted moving average
historical statistics to correct the current statistics in cases
with insufficient batch size and fill the gap between the
training and inference statistics, while AMAT aims to reduce
the variance of the stochastic gradient. Second, the previous
normalization techniques adopted fixed η or those that
diminished with the number of iterations, while the weighted
parameter η in AMAT is set to adapt to the learning rate.

5 RE-EXPLAINING THE EFFECTIVENESS OF BN
A standard block with BN is formulated as follows:

y
[l]
ik

= w
[l]
ik
x

[l]
ik
, (10)

y′
[l]
ik

= y
[l]
ik
− 1

|Bk|
∑
ik∈Bk

y
[l]
ik
, (11)

y′′
[l]
ik

= y
′[l]
ik
/
√√√√ 1

|Bk|
∑

ik∈Bk

(
ȳ
[l]
ik

)2
, (12)

x
[l+1]
ik

= I(SC)x[l]
ik
+ δ(y′′

[l]
ik
), (13)

where δ(·) is an activation function. The shift and scale
parameters are omitted for simplicity.

Although CBN is similar to vanilla BN, there are still
significant distinctions, as shown in Figure 1. First, the
placement positions are different. Vanilla BN is placed behind
the linear activation layer, while CBN is located in the
front of the linear activation layer. Second, mean removal
and normalization with the `2 norm are tangled in vanilla
BN, but the two parts are decoupled in CBN. Third, we
add a hyperparameter ρ in CBN to tune the magnitude
of normalization to achieve better performance. Fourth, we
adopt adaptive moving average statistics in CBN to exploit
historical information rather than statistics over the single
current batch.

Since each step of CBN in Eqs. (4-7) is theoretically
justified, we can analyze the effectiveness and weakness of
BN via the differences between BN and CBN. BN is applied
after the linear activation and before the nonlinear activation
function. Hence, from our theoretical analysis in Section 4,
BN actually takes effect for the linear activation in the next
block. Due to the nonlinearity of the activation function,
the benefits of normalization are impaired. However, when
ReLU is used, the degradation is not so serious. The reason
for this is presented as follows. Due to mean removal in Eq.
(11), the intermediate features {y′′[l]ik}ik∈Bk are commonly
symmetrical around zero, such that the following holds:

x
[l+1]
ik

= δ

 y′′
[l]
ik√

1
|Bk|

∑
ik∈Bk

(
y′′

[l]
ik

)2
 =

δ(y′′
[l]
ik
)√

2
|Bk|

∑
ik∈Bk

(
δ(y′′

[l]
ik
)
)2 .

(14)

When used in conjunction with ReLU, vanilla BN can be
seen as equivalent to performing `2-norm normalization with
a normalization magnitude of ρ =

√
2 for CBN. This means

that regardless of whether the normalization is performed
before or after the ReLU activation, the effects of `2-norm nor-
malization are the same, but with a scaling factor difference.
According to Theorem 3, this approach can effectively reduce
the gradient Lipchitz constant and the stochastic gradient
squared expectation. Moreover, placing vanilla BN before
ReLU usually outperforms placing it after ReLU without
tuning ρ, and this is because the scale factor

√
2 is naturally

suited to ReLU-like nonlinearities. However, this coincidence
does not hold for other types of nonlinearities. On the other
hand, the position and construction of CBN is designed
based on theory and offers a more general guarantee of
effectiveness. This is confirmed by experimental results in
Section 6, which show that the more a nonlinearity differs
from ReLU, the greater the improvement CBN provides over
vanilla BN.

Remark 4. The prior work of Santurkar et al [12] demon-
strated that the effectiveness of vanilla BN is due to its ability
to improve the Lipschitzness and ”effective” β-smoothness
of the loss. However, our work makes new contributions
to deepen the understanding of batch normalization and
identify a direction for further improvements. Firstly, while
[12] shows that vanilla BN enhances the Lipschitzness and
β-smoothness of the loss, it remains unclear how these effects
lead to faster convergence and smaller converged minima,
which are the primary benefits of vanilla BN. In contrast, we
adopt a top-down strategy, deducing sufficient conditions for
faster convergence and smaller converged minima when
stochastically optimizing a general non-convex problem.
We then construct CBN, which can elicit all these effects.
Secondly, in [12], the authors omit non-linear activation when
performing theoretical analysis. However, our theoretical
analysis considers non-linear activation and shows that
normalization should be placed after the non-linearity. Our
extensive experiments have demonstrated the ineffective-
ness of pre-activation vanilla BN and the validity of post-
activation CBN. Thirdly, [12] only analyzes a fixed block with
or without vanilla BN, assuming that the input and output
of a fixed block are the same in both cases. However, this
idealized assumption deviates from reality, as the outputs
of the block with or without BN will be different, and the
inputs of the next block with or without BN will also be
inequable. In comparison, we analyze the entire network
with multiple blocks, and our analysis does not require the
inputs and outputs of the intermediate blocks to be the same.

6 EXPERIMENTS

6.1 General Settings
We assess the performances of vanilla BN and CBN when
embedding in widely-used VGG-Net [47], ResNet [48] and
EfficientNet [49] on the CIFAR10, CIFAR100 and ILSVRC2012
benchmark datasets in this section.

For the experiments on CIFAR10 and CIFAR100, the
experimental settings are the same as that in the original
paper proposing ResNet [48] except for the total iterations.
We sample a set of 128 examples with replacement for each
batch. SGD is adopted with a momentum of 0.9 and a
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(a) Sigmoid (b) Tanh (c) ReLU (d) SELU (e) Swish

Fig. 4. Visual comparison of training losses for BN and CBN embedded ResNet-20 and VGG-16 on CIFAR10 with different activation
functions: (a) Sigmoid, (b) Tanh, (c) ReLU, (d) SELU, and (e) Swish.

(a) Sigmoid (b) Tanh (c) ReLU (d) SELU (e) Swish

Fig. 5. Visual comparison of training losses for BN and CBN embedded ResNet-20 and VGG-16 on CIFAR100 with different active
functions: (a) Sigmoid, (b) Tanh, (c) ReLU, (d)SELU, and (e) Swish.

TABLE 1
Comparison of mean test accuracy and standard deviation of 10 trials for BN and CBN embedded ResNet-20 with different activation

functions on CIFAR10.

Methods Before Decouple Tune ρ AMAT ResNet-20
Opera. Sigmoid Tanh ReLU SELU Swish

¬ BN (Baseline) - - - - 78.97 ± 0.53 87.59 ± 0.12 91.13 ± 0.09 89.69 ± 0.11 91.24 ± 0.11

­ CBN X X X X 91.20 ± 0.06 91.73 ± 0.07 91.98 ± 0.06 91.57 ± 0.08 92.16 ± 0.04

Improv. (+12.13) (+4.14) (+0.85) (+1.88) (+0.92)
® X - - - 88.78 ± 0.11 89.85 ± 0.06 91.27 ± 0.16 91.08 ± 0.16 91.72 ± 0.13

(+9.81) (+2.26) (+0.14) (+1.39) (+0.48)
¯ X X - - 89.75 ± 0.13 91.29 ± 0.05 91.50 ± 0.11 91.17 ± 0.04 91.89 ± 0.06

(+10.78) (+3.70) (+0.37) (+1.48) (+0.65)
° X X X - 90.93 ± 0.11 91.39 ± 0.10 91.58 ± 0.07 91.45 ± 0.12 91.93 ± 0.08

(+11.96) (+3.80) (+0.45) (+1.76) (+0.69)
± - - X - 79.75 ± 0.21 87.64 ± 0.08 91.53 ± 0.18 90.13 ± 0.06 91.32 ± 0.11

(+0.98) (+0.05) (+0.40) (+0.44) (+0.08)
² - - X X 80.27 ± 0.16 87.77 ± 0.06 91.67 ± 0.08 90.31 ± 0.04 91.52 ± 0.09

(+1.30) (+0.18) (+0.54) (+0.62) (+0.28)

TABLE 2
Comparison of mean test accuracy and standard deviation of 10 trials for BN and CBN embedded VGG-16 with different activation

functions on CIFAR10.

Methods Before Decouple Tune ρ AMAT VGG-16
Opera. Sigmoid Tanh ReLU SELU Swish

¬ BN, Baseline - - - - 82.38 ± 0.56 88.80 ± 0.08 93.12 ± 0.09 89.60 ± 0.05 92.58 ± 0.11

­ BN X X X X 92.66 ± 0.08 92.94 ± 0.08 93.86 ± 0.06 93.81 ± 0.08 94.07 ± 0.07

Improv. (+10.26) (+4.15) (+0.73) (+4.21) (+1.49)
® X - - - 91.40 ± 0.16 92.81 ± 0.08 93.24 ± 0.05 93.02 ± 0.08 93.48 ± 0.06

(+9.02) (+4.01) (+0.12) (+3.42) (+0.90)
¯ X X - - 92.13 ± 0.10 92.77 ± 0.11 93.32 ± 0.13 93.21 ± 0.05 93.63 ± 0.11

(+9.75) (+3.97) (+0.20) (+3.61) (+1.05)
° X X X - 92.31 ± 0.11 92.85 ± 0.13 93.51 ± 0.11 93.44 ± 0.12 93.71 ± 0.13

(+9.93) (+4.05) (+0.39) (+3.84) (+1.13)
± - - X - 86.57 ± 0.11 89.70 ± 0.09 93.44 ± 0.06 89.86 ± 0.09 92.76 ± 0.11

(+4.19) (+0.90) (+0.32) (+0.26) (+0.18)
² - - X X 86.69 ± 0.08 89.84 ± 0.06 93.63 ± 0.05 89.98 ± 0.05 92.90 ± 0.12

(+4.31) (+1.04) (+0.51) (+0.39) (+0.32)
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TABLE 3
Comparison of mean test accuracy and standard deviation of 10 trials for BN and CBN embedded ResNet-20 with different activation

functions on CIFAR100.

Methods Before Decouple Tune ρ AMAT ResNet-20
Opera. Sigmoid Tanh ReLU SELU Swish

¬ BN (Baseline) - - - - 46.05 ± 0.20 63.15 ± 0.09 67.21 ± 0.12 63.81 ± 0.14 67.82 ± 0.10

­ CBN X X X X 66.92 ± 0.08 67.13 ± 0.07 68.55 ± 0.05 67.43 ± 0.08 69.52 ± 0.16

Improv. (+20.87) (+3.98) (+1.34) (+3.62) (+1.70)
® X - - - 65.06 ± 0.09 66.42 ± 0.11 66.78 ± 0.12 66.13 ± 0.09 67.25 ± 0.12

(+19.01) (+3.09) (-0.43) (+2.32) (-0.57)
¯ X X - - 66.64 ± 0.08 66.24 ± 0.10 67.90 ± 0.08 66.22 ± 0.16 68.31 ± 0.13

(+20.59) (+3.27) (+0.69) (+2.41) (+0.49)
° X X X - 66.82 ± 0.11 67.13 ± 0.15 68.28 ± 0.09 66.40 ± 0.09 69.17 ± 0.15

(+20.77) (+3.98) (+1.07) (+2.59) (+1.35)
± - - X - 48.82 ± 0.24 63.26 ± 0.14 67.38 ± 0.11 65.03 ± 0.14 67.93 ± 0.10

(+2.77) (+0.11) (+0.17) (+1.22) (+0.11)
² - - X X 49.88 ± 0.15 63.45 ± 0.10 67.51 ± 0.09 65.25 ± 0.08 68.01 ± 0.11

(+3.83) (+0.40) (+0.30) (+1.44) (+0.19)

TABLE 4
Comparison of mean test accuracy and standard deviation of 10 trials for BN and CBN embedded VGG-16 with different activation

functions on CIFAR100.

Methods Before Decouple Tune ρ AMAT VGG-16
Opera. Sigmoid Tanh ReLU SELU Swish

¬ BN (Baseline) - - - - 60.37 ± 0.10 66.54 ± 0.15 72.56 ± 0.07 65.52 ± 0.17 71.78 ± 0.08

­ CBN X X X X 72.41± 0.07 72.12 ± 0.08 73.72 ± 0.06 71.39 ± 0.07 73.93 ± 0.08

Improv. (+12.04) (+5.58) (+1.16) (+5.87) (+2.15)
® X - - - 70.03 ± 0.10 70.89 ± 0.09 72.09 ± 0.07 70.18 ± 0.11 72.15 ± 0.10

(+9.66) (+4.35) (-0.47) (+4.66) (+0.37)
¯ X X - - 71.01 ± 0.08 71.16 ± 0.10 72.86 ± 0.09 70.27 ± 0.17 72.79 ± 0.11

(+10.64) (+4.62) (+0.30) (+4.75) (+1.01)
° X X X - 71.44 ± 0.11 71.53 ± 0.12 73.45 ± 0.12 70.60 ± 0.09 73.11 ± 0.12

(+11.07) (+4.99) (+0.89) (+5.08) (+1.33)
± - - X - 63.33 ± 0.19 66.89 ± 0.17 72.77 ± 0.14 66.57 ± 0.25 71.97 ± 0.15

(+2.96) (+0.35) (+0.21) (+1.05) (+0.09)
² - - X X 64.09 ± 0.08 66.98 ± 0.08 72.91 ± 0.06 66.80 ± 0.15 72.05 ± 0.08

(+3.72) (+0.44) (+0.35) (+1.28) (+0.17)

(a) Sigmoid (b) Tanh (c) ReLU (d) SELU (e) Swish

Fig. 6. Visual comparison of training losses for BN and CBN embedded in ResNet-18, ResNet-50, and EfficientNet-B0 on ILSVRC2012
with different active functions: (a) Sigmoid, (b) Tanh, (c) ReLU, (d)SELU, and (d) Swish.

TABLE 5
Comparison of top-1 test accuracy for BN and CBN embedded ResNet-18, ResNet-50 and EfficientNet-B0 with different activation

activation functions on ILSVRC2012.

ResNet-18 ResNet-50 EfficientNet-B0
SigmoidTanh ReLU SELU Swish SigmoidTanh ReLU SELU Swish SigmoidTanh ReLU SELU Swish

BN 52.03 64.45 70.02 65.46 70.81 44.38 69.35 76.02 69.68 76.21 55.04 67.95 73.71 69.51 74.61
CBN 70.15 70.12 70.43 71.10 71.39 72.82 73.93 76.38 74.69 76.75 70.36 71.47 74.05 72.57 75.08
Imp. (+18.12) (+5.67) (+0.41) (+5.64) (+0.58) (+28.44) (+4.58) (+0.36) (+5.01) (+0.54) (+15.32) (+3.52) (+0.34) (+3.06) (+0.47)
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weight decay of 0.0005. To simplify the tuning process and
ensure fair comparisons, in each case, we start with the
same learning rate of 0.1, divide the learning rate by 10
after 60 and 100 epochs, and finally terminate the procedure
after 120 epochs. For the experiments on ILSVRC2012,
SGD is adopted with a momentum of 0.9 and a weight
decay of 0.0001. We sample a set of 256 examples with
replacement for each batch, and each batch is uniformly
distributed across 8 GPUs. The learning rate starts at 0.1
and is divided by 10 after 30, 60 and 90 epochs; training is
finally terminated after 120 epochs. The data augmentation
and implementation follow the PyTorch official codes at http-
s://github.com/pytorch/examples/tree/main/imagenet.

6.2 Comparison with Vanilla BN
We evaluate the performance of the proposed CBN in
comparison with that of vanilla BN based on the training
convergence speeds and the inference classification accura-
cies achieved on CIFAR10, CIFAR100 and ILSVRC2012. Note
that when applying AMAT, we simply set the exponential
parameter in Eq. (9) to ηk = max(1− 10× lr, 0). The results
are reported in Figures 4-6 and Tables 1-5.

In comparison with vanilla BN, CBN can make the
training loss converge faster and the final converged value
smaller ( Figures 4-5), and then it enjoys better inference
classification accuracy (please see the first two lines in
Tables 1-4). Specifically, benefitting from CBN, the training
convergence for networks with Sigmoid, Tanh and SELU
improves considerably in terms of speed the final converged
values, with the test accuracy improvements of more than
13%, 4%, 3.5% on average, respectively. Compared with
vanilla BN, the improvement for CBN with ReLU is not
so substantial as that with Sigmoid, Tanh and SELU. The
reason for this has been elaborately demonstrated in Section
4. When we apply ReLU, placing normalization before
or after the linear activation is roughly equivalent, while
applying Sigmoid or Tanh, the position of normalization
plays a key role in boosting performance. However, when
ReLU changes slightly, such as Swish, the equivalence of
placing normalization before or after the linear activation is
also slightly impaired. Therefore, as illustrated in Figures
Fig.2-5 and Tables 1-4, CBN with Swish can receive greater
improvement in terms of its training convergence speed and
inference accuracy than CBN with ReLU ( approximately
1.6% versus 1.0% on average). In other words, our extensive
experiments have confirmed that the less the nonlinearity
resembles ReLU, the more obvious the improvement of CBN
over vanilla BN becomes; this situation is in accordance with
the theoretical analysis in Section 5. Notably, with the help
of CBN, the performance of the networks with Sigmoid and
Tanh are fairly close to that of the networks with ReLU, thus
further verifying the power of the proposed approach.

There are four main different features in CBN – placing
normalization before the linear activation, decoupling the
mean removal and normalization process, tuning the best
normalization parameter ρ and adopting AMAT during
training. To validate the effectiveness of each feature, we also
implement experiments with intermediate methods in which
BN with one or more features. As displayed in Tables 1-4,
placing BN before the linear activation (®) achieves substan-
tial improvements when Sigmoid, Tanh or SELU is equipped.

However, when ReLU or Swish is applied, the performance
of ® is even inferior to vanilla BN (comparing ¬ (vanilla BN)
and ®). No matter whether the normalization approach is
performed before or after ReLU, the effects of normalization
with the `2 norm are the same (except for a scaled factor

√
2),

and only the scaling factor makes BN slightly outperform
®. Decoupling the mean removal and the normalization
with `2-norm yields further improvement(comparing ®
and ¯). With the assistance of the tuned ρ, a significant
gain in test accuracy is achieved (comparing ¬ (vanilla
BN) and ±, ¯ and °), which experimentally demonstrates
the effectiveness of tuning normalization magnitude. When
exploiting AMAT, the modified method steadily increases
the test accuracy (comparing ­ (CBN) and °, ± and ² ).
Interestingly, compared with ¬ (vanilla BN) and ±, the
standard deviations for ­ (CBN) and ² are decreased,
which implies that adaptive moving average can reduce
the variance.

We also report the results of classification experiments
performed on the large-scale ILSVRC2012 dataset. As shown
in Figure 6 and Table 5, the training convergence rate for
CBN is also consistently faster than that for BN, and the
test accuracy achieved with CBN is also higher than that
achieved with BN, demonstrating that CBN is also effective
on large-scale datasets. Specifically, when Sigmoid, Tanh or
SELU is applied, CBN substantially boosts the classification
performance by more than 20, 5% and 5%, respectively on
average, respectively. When ReLU is employed, the test
accuracy improvement is not so obvious (approximately
0.4%), but it is still completive to the-state-of-art modified
batch normalization [9], [19], [42]. Similar to the experimental
results obtained on CIFAR10 and CIFAR100, compared CBN
with ReLU, the gains of CBN with Swish in terms of the
training convergence and the inference accuracy are also
boosted, which experimentally validate theoretical analysis
in Section 5. Notably, ReLU is originally employed in ResNet
[48], and Swish is specifically equipped for EfficientNet
[49], but the gains from the use of CBN with ReLU and
Swish for both ResNet and EfficietNet are not obviously
distinguishable, which indicates the benefits of CBN may be
independent of the use of specific network architectures.

6.3 Performance Analysis for Components

We perform ablation experiments with ResNet-20 on CI-
FAR100 to clarify the contributions of mean removal and
the normalization with the `2-norm of CBN. We find
the maximal learning rate (lr) from the candidate set
{0.0001, 0.001, 0.01, 0.1, 1} that ensures that training does
not collapse for the four approaches ( no normalization,
mean removal, normalization with `2-norm and CBN). From
Theorem 1, we know that the maximal lr is inversely pro-
portional to the gradient Lipschitz constant, i.e., lrmax = 1

L .
Hence, the results in Table 6 imply that both mean removal
and normalization with the `2-norm can help to reduce the
gradient Lipschitz constant, but normalization with `2-norm
contributes more, which experimentally validates the first
conclusion in Theorem 2 and Theorem 3. Moreover, as shown
in Figure 7, mean removal and normalization with `2-norm
are also beneficial to reduction in the stochastic gradient
squared expectation, experimentally validating the second



11

TABLE 6
Ablation study on mean test accuracy and standard deviation of 10 trials with ResNet-20 on CIFAR10.

Mean Removal Normalization Max. lr
Test Accuracy

Sigmoid Tanh ReLU SELU Swish
- - 0.001 35.96 ± 0.24 69.67 ± 0.06 80.40 ± 0.55 77.15 ± 0.42 81.37 ± 0.23

X - 0.01 63.99 ± 0.36 87.30 ± 0.13 89.99 ± 0.06 87.61 ± 0.14 90.01 ± 0.07

- X 0.1 81.22 ± 0.23 88.65 ± 0.17 91.33 ± 0.12 90.76 ± 0.08 91.17 ± 0.06

X X 0.1 91.20 ± 0.05 91.43 ± 0.07 91.98 ± 0.06 91.57 ± 0.08 92.16 ± 0.04

(a) Sigmoid (b) Tanh (c) ReLU (d) SELU (e) Swish

Fig. 7. Visual comparison of gradient norm for CBN components embedded ResNet-20 on CIFAR10 with different active functions:
(a) Sigmoid, (b) Tanh, (c) ReLU, (d) SELU, and (e) Swish.

conclusion in Theorem 2 and Theorem 3. This then leads to
the higher testing accuracy shown in Table 6. Normalization
with the `2-norm still performs better than mean removal
in this case. More importantly, the results of CBN (mean
removal + normalization with `2-norm) demonstrate mean
removal and normalization together can generate the effect
of ”1 + 1 > 2”, especially when Sigmoid, Tanh or SELU is
applied.

6.4 Sensitivity Analysis For ρ
We add a scaling factor ρ to magnify the normalization
magnitude for CBN. In this subsection, we analyze influences
of different values of the scaling factor ρ: {0.25, 0.5, 1, 2, 4, 8}
for CBN embedded ResNet-20.

As shown in Figures 8-9, when ρ is moderately large, it is
not only beneficial for speeding up training but also helps
the training loss to ultimately converge to a smaller value
so that CBN achieves higher test accuracy. However, if we
further increase ρ to a large value, although the convergence
speed is further accelerated, the training loss is more likely
to converge to a larger local minimum. The reason for this is
discussed in Remark 2 of Section 4. An excessively large ρ
causes the activation function (tanh or sigmoid) to operate
predominantly in the linear regime, which further harms the
representation capability of the neural network, making it
difficult for the training loss to reach a better local minimum.
An excessively large ρ also lowers the dynamic range since
machine precision is finite. On the other hand, as displayed
in Figure 8, when ρ is too small, the training convergence
becomes slow and unstable.

Another interesting phenomenon is that the best values
of ρ among CBN with ReLU, Tanh and Sigmoid become
larger in order. ReLU, Tanh and Sigmoid compress the inputs
greater in order, so the outputs of ReLU, Tanh and Sigmoid,
which are also the inputs of CBN, successively become
smaller. The best value of ρ in CBN with Sigmoid is even
smaller than 1.

From Figures 8-9, we know the performance for CBN
with ReLU, SELU or Swish is robust to the varying range of

ρ. Although the performance for CBN with Sigmoid or Tanh
is sensitive to the value of ρ, CBN with Sigmoid or Tanh
achieves better performance in the worst-case scenario than
vanilla with Sigmoid or Tanh. Therefore, if we simply set
ρ = 1 as the default value, CBN will still outperform vanilla
BN.

6.5 Variance Reduction Analysis for AMAT
Previous works have leveraged moving average statistics
during training. Our contribution is not initially exploiting
moving average statistics. The concept ”adaptive” is just the
core of our method to receive better performance due to
resulting in stochastic gradient variance reduction. From our
theoretical analysis, AMAT adaptively adjusts the moving
parameter η by carefully tracking the learning rate to help
reduce the variance the stochastic gradient. In contrast,
fixing the moving parameter η may degrade rather than
improve the performance. To verify this claim, we implement
comparison experiments including vanilla BN, CBN without
AMAT, CBN with a fixed moving parameter and CBN with
AMAT embedded in ResNet-18 on ILSVRC2012. Notably,
when applying the adaptive moving average scheme, we
simply set the exponential parameter ηk = max(1−10×lr, 0),
and when adopting the fixed moving average parameter η,
we simply set η = 0.9. We also set η = 0.9 for vanilla BN.

igure 10 illustrates that CBN with AMAT offers significant
advantages over vanilla BN and CBN without AMAT. Specif-
ically, using CBN with AMAT reduces both the stochastic
gradient variance and the gradient itself. However, it is
worth noting that fixing the moving parameter η does not
necessarily decrease the stochastic gradient variance. In
fact, fixing η may increase bias, which negatively affects
performance. These results suggest that CBN with AMAT is
a valuable technique for improving the performance of deep
learning models.

7 CONCLUSION AND DISCUSSION

The practical success of vanilla BN in accelerating training
convergence and improving inference performance is indis-
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(a) Sigmoid (b) Tanh (c) ReLU (d) SELU (e) Swish

Fig. 8. Sensitivity analysis of training losses for CBN with different ρ embedded VGG-16 on CIFAR100 combining with different active
functions: (a) Sigmoid, (b) Tanh, (c) ReLU, (d) SELU, and (e) Swish.

(a) Sigmoid (b) Tanh (c) ReLU (d) SELU (e) Swish

Fig. 9. Sensitivity analysis of training losses for CBN with different ρ embedded VGG-16 on CIFAR100 combining with different active
functions: (a) ReLU, (b) Tanh, (c) ReLU, (d) SELU, and (e) Swish.

(a) Sigmoid (b) Tanh (c) ReLU (d) SELU (e) Swish

Fig. 10. Visual comparison of the variance of the stochastic gradient for CBN without AMAT, with fixed moving parameter and with
AMAT embedded ResNet-18 on ILSVRC2012 combining different active functions: (a) Sigmoid, (b) Tanh, (c) ReLU, (d) SELU, and
(e) Swish.

putable. However, the mechanism behind its effectiveness
is not fully understood. In this paper, we do not directly try
to theoretically justify vanilla BN and then improve it. In
contrast, we derive the factors that influence convergence
rate and the final converged minimum, and used this
knowledge to construct a new normalization approach, called
CBN, which is proven to induce these factors. We then
compared CBN to vanilla BN, which allowed us to assess the
effectiveness of vanilla BN. Our analysis show that vanilla
BN is only effective when used with ReLU, and that even
minor changes to ReLU, such as Swish, can result in a decline
in performance.We conducted extensive experiments that
validate our theoretical analyses and demonstrate that CBN
is superior to vanilla BN. Specifically, when Sigmoid Tanh,
SELU is applied, CBN boost network classification accuracy
by an average of 15%, 4% and 3.5%, respectively, compared
to vanilla BN.

Theoretical work by Lipschitz (2018) shows that it is NP-
hard to exactly estimate the Lipschitz constant, which has
important implications for estimating the gradient Lipschitz
constant and the stochastic gradient squared expectation.
Therefore, it is more realistic to estimate their upper bounds,
which are still theoretically and practically significant. Tight-
ening these upper bounds is an avenue for future research.

Normalization approaches can be thought of as opti-
mization algorithms that modify the structure of machine
learning models to accelerate convergence. This is in contrast
to conventional gradient descent algorithms that work on
gradients. By modulating the structure of the model, we can
potentially develop promising new optimization approaches,
which we plan to explore further in future research.
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APPENDIX A
PROOF OF THEOREM 1
Proof. Since Assumption 1 holds, at the k-th iteration we
have

F (wk+1) ≤ F (wk)+〈∇F (wk), wk+1 − wk〉+
L

2
‖wk+1−wk‖2.

(15)
It is known wk+1 = wk − αkvk in Eq. (2), which further
implies that

F (wk+1) ≤F (wk)− αk 〈∇F (wk), vk〉+
Lα2

k

2
‖vk‖2

=F (wk)− αk+1 〈∇F (wk), vk −∇F (wk)〉

− αk‖∇F (wk)‖2 +
Lα2

k

2
‖vk‖2

≤F (wk)−
αk
2
‖∇F (wk)‖2 +

αk
2
‖vk −∇F (wk)‖2

+
Lα2

k

2
‖vk‖2,

(16)
where the last equality follows the fact that −〈x, y〉 ≤
‖x‖2+‖y‖2

2 . Taking expectation on both sides of the above
inequality, we have

E[F (wk)] ≤F (wk)−
αk
2
‖∇F (wk)‖2

+
αk
2
E
[
‖vk −∇F (wk)‖2

]
+
Lα2

k

2
E
[
‖vk‖2

]
.

(17)
Rearranging the terms yields

αk
2
‖∇F (wk)‖2 ≤F (wk)− E[F (wk)] +

Lα2
k

2
E
[
‖vk‖2

]
+
αk
2
E
[
‖vk −∇F (wk)‖2

]
.

(18)
Taking the total expectation and summing over 1 to K and
combining F ∗ ≤ F (wK), we obtain

1

2

K∑
k=1

αkE
[
‖∇F (wk)‖2

]
≤E[F (w0)]− F ∗

+
K∑
k=1

L

2
α2
kE[‖∇vk‖2]

+
1

2

K∑
k=1

αkE
[
‖vk −∇F (wk)‖2

]
.

(19)
It is known the the stepsizes (the learning rates) {αk+1}

satisfy αk ≤ 1
L and αk ≤ αk, and then we we have

αK
2

K∑
k=1

E
[
‖∇F (wk)‖2

]
≤(E[F (w0)]− F ∗)

+
K∑
k=1

αk
2
E[‖∇vk‖2]

+
K∑
k=1

αk
2
E
[
‖vk −∇F (wk)‖2

]
.

(20)
Observing the fact E[A + B] = E[A] + E[B] and

the Cauchy-Schwarz Inequality ( 1
K

∑K
i=1 ‖∇F (wk)‖)2 ≤

1
K

∑K
i=1 ‖∇F (wk)‖2 and dividing the both sides of Eq. (20)

with αK
2 , we further obtain

E

[
1

K

K∑
k=1

‖∇F (wk)‖
]2

≤2(E[F (w0)]− F ∗)
αKK

+
1

KαK

K∑
k=1

αkE[‖∇vk‖2]

+
1

KαK

K∑
k=1

αkE
[
‖vk −∇F (wk)‖2

]
,

(21)
and finally we arrive at the desired result. �

APPENDIX B
LEMMA 1

Lemma 1. Given L : Rm×p → R, A ∈ Rm×n, B ∈ Rp×q ,
C ∈ Rm×q and Z ∈ Rn×p, we define f(U) = f(AZB + C);
then, the Hessian matrix with respect to Z is:

∇2
Zf(Z) = (B ⊗A>)∇2

Uf(U)(B> ⊗A), (22)

where ∇2 is the second-order derivative operator, ⊗ is the
Kronecker product operator.
Proof. Since f(U) = f(AZB + C), we know

∂L =Tr
(
(∇Uf(U))

>
∂U
)

=Tr
(
(∇Uf(U))

>
∂(AZB)

)
=Tr

(
(∇Uf(U))

>
A∂ZB

)
=Tr

(
B (∇Uf(U))

>
A∂Z

)
,

(23)

where the last equality results from Tr(XY ) = Tr(Y X)

Hence, we obtain

∇ZL(Z) = A>∇Uf(U)B>. (24)

Further, we have

vec(∂ (∇Zf(Z))) =vec
(
∂
(
A>∇Uf(U)B>

))
=(B ⊗A>)vec (∂ (∇Uf(U)))

=(B ⊗A>)vec(∂ (∇Uf(U)))

vec(∂U)
vec(∂U)

=(B ⊗A>)∇2
Uf(U)vec(A∂ZB)

=(B ⊗A>)∇2
Uf(U)(B> ⊗A)vec(∂Z)

(25)
where the second equality and the fifth equality is due to the
fact that vec(XYW ) = (W> ⊗X)vec(Y ).

It implies that

∇2
Zf(Z) =

vec((∂∇Zf(Z))
vec(∂Z)

= (B⊗A>)∇2
Uf(U)(B>⊗A),

(26)
and finally we achieve the desired result. �
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APPENDIX C
LEMMA 2
Lemma 2. Given that a ∈ Rd is a vector and it satisfied ‖a‖ = 1,
we obtain ‖I − aa>‖2 = 1.
Proof. aa> and a>a have the same non-zero eigenvalues,
and we know a>a is actually a scalar and the value is a>a =
‖a‖2 = 1, so that the eigenvalue of a>a is 1. Therefore, the
eigenvalues of aa> is either 1 or 0, and then the eigenvalues
of I − aa> is either 1 or 0, so we obtain the conclusion
‖I − aa>‖2 = 1. �

APPENDIX D
LEMMA 3
Lemma 3. A standard network with no normalization and a
standard network with CBN are respectively shown in Figure 1(a)
and Figure 1(b). The inputs of the first block and the outputs of the
last block for the both networks satisfy x̃[1]

ik
= x̂

[1]
ik

, ‖∇
x̂
[L]
ik

f̂ik‖2 =

‖∇
x̃
[L]
ik

f̃ik‖2 and ‖∇2

x̂
[L]
ik

f̂ik‖2 = ‖∇2

x̃
[L]
ik

f̃ik‖2. Suppose that at

l-th block with mean removal 0 ≤ η̂[l]
k ≤ 2 where η̂[l]

k =
µ̂
[l]
Bk
−β[l]

k

E[x̂
[l]
ik

]
,

we then have the following at any block:
(1). The upper bound of E[‖x̂[l]

ik
‖22] is less than the upper bound

of E[‖x̃[l]
ik
‖22].

(2). The upper bound of E[‖∇
x̂
[l]
ik

f̂ik‖2] is less than the upper

bound of E[‖∇
x̂
[l]
ik

f̃ik‖2].

(3). The upper bound of ‖∇2

x̂
[l]
k

F̂k‖2 is less than the upper

bound of ‖∇2

x̃
[l]
k

F̃k‖2.

Proof. We use mathematical induction to prove the proposi-
tions.

(1) We first to comparative analysis for the forward paths
for the network with mean removal and the network without
normalization.

For the inductive step, we assume the following inequali-
ty holds, i.e.,

sup(E[‖x̂[l]
ik
‖22)]) ≤ sup(E[‖x̃[l]

ik
‖22]), (27)

We analyze the network with mean removal. It is known

x̂′
[l]

ik
= x̂

[l]
ik
− µ[l]

Bk + β
[l]
k where µ[l]

Bk − β
[l]
k = η̂

[l]
k E[x̂[l]

ik
], and

then

E[‖x̂′
[l]

ik
‖22] =E[‖x̂[l]

ik
− µ[l]

Bk + β
[l]
k ‖

2
2]

=E[‖x̂[l]
ik
− η̂[l]

k E[x̂[l]
ik
]‖22]

=E[‖x̂[l]
ik
‖22]− η̂

[l]
k (2− η̂[l]

k )E[‖x̂[l]
ik
‖]2,

(28)

It is known that 0 ≤ η̂
[l]
k ≤ 2, so 0 ≤ η̂

[l]
k (2 − η̂[l]

k ) ≤ 1.
Then, we have

E[‖x̂′
[l]

ik
‖22] ≤ E[‖x̂[l]

ik
‖22]. (29)

ŷ
[l]
ik

= w
[l]
k x̂
′[l]
ik

implies that

‖ŷ[l]
ik
‖22 ≤ ‖w

[l]
k ‖

2
2‖x̂′

[l]

ik
‖22 (30)

Since the nonlinear activation δ(·) is a shrinkage function,
we obtain

x̂
[l+1]
ik

= I(SC)x̂[l]
ik
+ ζ̂

[l]
ik
ŷ

[l]
ik

(31)

where I(SC) indicates whether there is a shortcut, and 0 ≤
ζ̂

[l]
ik
≤ 1.
Combining Eq.(28-31), we obtain

E[‖x̂[l+1]
ik
‖22] ≤

(
I(SC) + (ζ̂

[l]
ik
)2‖w[l]

k ‖
2
2

)
E[‖x̂[l]

ik
‖22]

≤
(
I(SC) + ‖w[l]

k ‖
2
2

)
E[‖x̂[l]

ik
‖22]

(32)

Similar to Eq.(30-32), for the l-th layer in the network
without normalization, we also have

E[‖x̃[l+1]
ik
‖22] ≤

(
I(SC) + (ζ̃

[l]
ik
)2‖w[l]

k ‖
2
2

)
E[‖x̃[l]

ik
‖22]

≤
(
I(SC) + ‖w[l]

k ‖
2
2

)
E[‖x̃[l]

ik
‖22]

(33)

Combining Eq.(27), Eq.(32) and Eq.(33), we obtain

sup(E[‖x̂[l+1]
ik
‖22]) ≤ sup(E[‖x̃[l+1]

ik
‖22]), (34)

where this completes the inductive step. We know that
the inputs of the network with mean removal and the
non-normalized network are the the same, i.e., x̂[1]

ik
= x̃

[1]
ik

.
Since both the base case and the induction step have been
proved as true, by mathematical induction the statement
sup(E[‖x̂[s]

ik
‖22]) ≤ sup(E[‖x̃[s]

ik
‖22]) holds for any layer s

(1 ≤ s ≤ L) 1

(2) We first comparatively analyze the backward paths of
the network with mean removal and the network without
normalization.

For the inductive step, we assume that the upper
bound of E[‖∇

x̂
[l+1]
k

f̂k‖]2 is less than the upper bound of

E[‖∇
x̃
[l+1]
k

f̃ik‖2] at the l-th layer holds, i.e.,

sup(E[‖∇
x̂
[l+1]
k

f̂ik‖2]) ≤ sup(E[‖∇
x̃
[l+1]
k

f̃ik‖2]) (35)

We analyze the network with mean removal. We know
x̂

[l+1]
k = δ(ŷ

[l]
ik
). Then, for the derivative with respect to ŷ[l]

ik
,

we have

‖∇
ŷ
[l]
k

f̂ik‖2 = ‖δ′(ŷ[l]
ik
)�∇

x̂
[l+1]
k

f̂ik‖2 ≤ ‖∇x̂[l+1]
k

f̂ik‖2, (36)

where ‖δ′(ŷ[l]
ik
)‖ ≤ 1 since the derivative of the nonlinear

activation δ(u) with respect to u is less than 1.

It is known ŷ[l]
k = w

[l]
k x̂
′[l]
ik

, and then according to Lemma
1, we have

‖∇
x̂′

[l]
ik

f̂ik‖2 = ‖(w[l]
k )>∇

ŷ′
[l]
ik

f̂ik‖2 ≤ ‖w
[l]
k ‖

2‖∇
ŷ′

[l]
ik

f̂ik‖2.
(37)

1. The equality of Eq.(30) can be basically satisfied in practice. Because
we commonly employ Xavier Initialization for the network, so that at the
beginning, the parameter w[l]

0 at the l-th layer make sure E(‖y[l]i0 ‖
2
2) =

E(‖x[l]i0‖
2
2) satisfied. According to the latest neural tangent kernel(NTK) theory,

overparameterized neural networks make their parameters hardly vary from
their initial value in optimizing process. Furthermore, the nonlinear activation
function δ(·) can make the following statement satisfied that when ‖ŷ[l]ik‖2 ≤
‖ỹ[l]ik‖, ‖x̂

[l+1]
ik
‖ ≤ ‖x̃[l+1]

ik
‖2. Therefore, loosely speaking, E[‖x̂[l+1]

ik
‖22] ≤

E[‖x̃[l+1]
ik
‖22] can also hold without the upper bound symbol.
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It is known x̂′
[l]

ik
= x̂

[l]
ik
− 1
|B|
∑
ik∈B x̂

[l]
ik

+ β
[l]
k , and we

define
x̂

[l]
Bk =

[
x̂

[l]
1k
, x̂

[l]
2k
, ..., x̂

[l]
|B|k

]
(38)

and
x̂′

[l]

Bk =

[
x̂′

[l]

1k
, x̂′

[l]

2k
, ..., x̂′

[l]

|B|k

]
. (39)

Then, we have(
x̂′

[l]

Bk

)
j

=
(
x̂

[l]
Bk

)
j

(
I − 1

|B|
11>

)
+ (β

[l]
k )j , (40)

where j ∈ [1, 2, ..., d] and d is the number of dimension of

x̂
[l]
1k

and x̂′
[l]

1k
, and I is the identity matrix and 1 = [1, 1, ..., 1︸ ︷︷ ︸

|B|

].

Next, we obtain∥∥∥∥∥
(
∇
x̂
[l]
Bk
f̂Bk

)
j

∥∥∥∥∥
2

=

∥∥∥∥∥
(
∇
x̂′

[l]
Bk
f̂Bk

)
j

(
I − 1

|B|
11>

)>∥∥∥∥∥
2

≤
∥∥∥∥∥
(
∇
x̂′

[l]
Bk
f̂Bk

)
j

∥∥∥∥∥
2 ∥∥∥∥I − 1

|B|
11>

∥∥∥∥2

=

∥∥∥∥∥
(
∇
x̂′

[l]
Bk
f̂Bk

)
j

∥∥∥∥∥
2

,

(41)
where the first equality is due to Lemma 1, and the last
inequality is owing to Lemma 2.

We further have

E

[∥∥∥∥∇x̂[l]
ik

f̂ik

∥∥∥∥2
]
=

1

|B|
E

[∥∥∥∥∇x̂[l]
Bk
f̂ik

∥∥∥∥2
]

=
1

|B|
E

 d∑
j=1

∥∥∥∥∥
(
∇
x̂
[l]
Bk
f̂Bk

)
j

∥∥∥∥∥
2


≤ 1

|B|
E

 d∑
j=1

∥∥∥∥∥
(
∇
x̂′

[l]
Bk
f̂Bk

)
j

∥∥∥∥∥
2


=
1

|B|
E

[∥∥∥∥∇x̂′[l]Bk f̂Bk
∥∥∥∥2
]

= E

[∥∥∥∥∇x̂′[l]ik f̂ik
∥∥∥∥2
]
.

(42)

Combining Eq.(36-42) and the fact x̂[l+1]
ik

= I(SC)x̂[l]
ik

+

δ(ŷ
[l]
ik
) where I(SC) indicates whether there is a shortcut, we

have

E
[
‖∇

x̂
[l]
ik

f̂ik‖2
]
=E[‖I(SC) + (w

[l]
k )>(δ′(ŷ

[l]
ik
)�∇

x̂
[l+1]
ik

f̂ik)

(I − 1

|B|
11>)>‖2]

≤
(
I(SC) + ‖w[l]

k ‖
2
)
E[‖∇

x̂
[l+1]
ik

f̂ik‖2]
(43)

Similar to Eq.(36-37)and Eq.(43), we can obtain the
following inequality for the l-th layer in the network without
normalization,

E[‖∇
x̃
[l]
ik

f̃ik‖2] =E[‖I(SC) + (w
[l]
k )>(δ′(ỹ

[l]
ik
)�∇

x̃
[l+1]
ik

f̃ik)‖2]

≤
(
I(SC) + ‖w[l]

k ‖
2
)
E[‖∇

x̃
[l+1]
ik

f̃ik‖2].
(44)

Combining Eq.(35), Eq.(43) and Eq.(44), we have

sup(E[‖∇
x̂
[l]
ik

f̂ik‖2]) ≤ sup(E[‖∇
x̃
[l]
ik

f̃ik‖]), (45)

It completes the inductive step. We know that l2-norm of
the derivative of f̂ik with respect to x̂ik for the network with
mean removal and f̃ with respect to x̃ik for the network with-
out normalization are equal, i.e., ‖∇

x̂
[L]
ik

f̂ik‖2 = ‖∇
x̃
[L]
ik

f̃ik‖2.

Since both the base case and the induction step have been
proved as true, by mathematical induction the statement
sup(E[‖∇

x̂
[s]
ik

f̂ik‖2]) ≤ sup(E[‖∇
x̃
[s]
ik

f̃ik‖2]) holds for any

layer s (1 ≤ s ≤ L) 2.
(3) We comparatively analyze the backward paths of

the network with mean removal and the network without
normalization.

For the inductive step, we assume that the upper bound
of ‖∇2

x̂
[l+1]
k

F̂k‖2 for the network with mean removal is less

than the upper bound of ‖∇2

x̂
[l+1]
k

F̃k‖ for the network without
normalization at the l-th layer holds, i.e.,

sup(‖∇2

x̂
[l+1]
k

F̂k‖2) ≤ sup(‖∇2

x̂
[l+1]
k

F̃k‖), (46)

where F̂ = 1
|U|
∑
i∈U f̂i where U is the universal sample set

and x[l]
k = [x

[l]
1k
, x

[l]
2k
, · · ·, x[l]

|Uk|k ].
We analyze the network with mean removal. For the

second-order derivative with respect to any sample ŷ[l]
ik

, we
have

‖∇2

ŷ
[l]
k

f̂ik‖2 = ‖δ′′(ŷ[l]
ik
)�∇2

x̂
[l+1]
k

f̂ik‖2 ≤ ‖∇2

x̂
[l+1]
k

f̂ik |2, (47)

where‖δ′′(ŷ[l]
ik
)‖ ≤ 1 since the second derivative of the

nonlinear activation δ(u) with respect to u is less than 1.
Next, according to Lemma 1, we have

‖∇2

x̂′
[l]
ik

f̂ik‖2 =‖(I ⊗ (w
[l]
k )>)∇2

ŷ′
[l]
ik

f̂ik(I ⊗ w
[l]
k )‖2

≤‖∇2

ŷ′
[l]
ik

f̂ik‖‖(I ⊗ (w
[l]
k )>)(I ⊗ w[l]

k )‖2

=‖I ⊗ ((w
[l]
k )>w

[l]
k )‖2‖∇2

ŷ′
[l]
ik

f̂ik‖2

=‖(w[l]
k )>w

[l]
k ‖2‖∇

2

ŷ′
[l]
ik

f̂ik‖

=‖w[l]
k ‖

2
2‖∇2

ŷ′
[l]
ik

f̂ik‖,

(48)

where the third equality (ii) results from (A⊗B)(C ⊗D) =
AC ⊗BD, and the fourth equality is following the fact that
‖A⊗B‖2 = ‖A‖2‖B‖2.

2. The equality of Eq.(37) can be basically satisfied in practice. Because
we commonly employ Xavier Initialization for the network, so that at the
beginning, the parameter w[l]

0 at the l-th layer make sure E(‖∇
x
[l]
i0

fik‖22) =

E(‖∇
y
[l]
i0

fik‖22) satisfied for both network with mean removal and the network

without normalization. According to the latest neural tangent kernel(NTK)
theory, overparameterized neural networks make their parameters hardly vary
from their initial value in optimizing process. Furthermore, it is reasonable for
‖δ′(ŷ[l]ik )�∇x̂[l+1]

k

f̂ik‖ ' ‖δ′(ŷ
[l]
ik
)�∇

x̃
[l+1]
k

f̃ik‖. Because if the nonlinear

activation is Sigmoid or Tanh, it commonly works in the linear range, so
that θ̂[l]k and θ̃[l]k are both close to 1, and if nonlinear activation is a ReLU-
type nonlinearity, the positive inputs will be passed almost without distortion
and the negative inputs will be set to zero, and the inputs {x̂[L]

ik
}ik∈U and

{x̃[L]
ik
}ik∈U are commonly symmetrical around zero. Hence, loosely speaking,

E[‖∇
x̂
[l]
k

f̂ik‖2] ≤ E[‖∇
x̃
[l]
k

f̃ik‖] can hold without the upper bound symbol.
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It is known x̂′
[l]

ik
= x̂

[l]
ik
− 1
|B|
∑
ik∈B x̂

[l]
ik

+ β
[l]
k , and the

definitions of X̂ [l]
Bk and X̂ ′

[l]

Bk are shown in Eq.(38) and Eq.(39),

and then we have
(
x̂′

[l]

Bk

)
j

=
(
x̂

[l]
Bk

)
j

(
I − 1

|B|11
>
)
+(β

[l]
k )j .

We set V = I − 1
|B|11

>, and we further obtain∥∥∥∥∥
(
∇2

x̂
[l]
Bk

f̂Bk

)
j

∥∥∥∥∥ =
∥∥∥∥∥(V ⊗ I)

(
∇2

x̂′
[l]
Bk

f̂Bk

)
j

(V > ⊗ I)
∥∥∥∥∥

≤ ‖(V ⊗ I)‖2
∥∥∥∥∥
(
∇2

x̂′
[l]
Bk

f̂Bk

)
j

∥∥∥∥∥
= ‖V ‖2

∥∥∥∥∥
(
∇2

x̂′
[l]
Bk

f̂Bk

)
j

∥∥∥∥∥
=

∥∥∥∥∥
(
∇2

x̂′
[l]
Bk

f̂Bk

)
j

∥∥∥∥∥
2

,

(49)
where the first equality is due to Lemma 1; the second
inequality is due to the fact that (A ⊗ B)> = A> ⊗ B>

for any A and B and V > = V ; the third equality results
from the fact that ‖A⊗B‖2 = ‖A‖2‖B‖2 for any A and B;
the last inequality is owing to Lemma 2.

Then, we obtain

E

[∥∥∥∥∇2

x̂
[l]
ik

f̂ik

∥∥∥∥2
]
=

1

|B|
E

[∥∥∥∥∇2

x̂
[l]
Bk

f̂ik

∥∥∥∥2
]

=
1

|B|
E

 d∑
j=1

∥∥∥∥∥
(
∇2

x̂
[l]
Bk

f̂Bk

)
j

∥∥∥∥∥
2


≤ 1

|B|
E

 d∑
j=1

∥∥∥∥∥
(
∇2

x̂′
[l]
Bk

f̂Bk

)
j

∥∥∥∥∥
2


=
1

|B|
E

[∥∥∥∥∇x̂′[l]Bk f̂2
Bk

∥∥∥∥2
]

= E

[∥∥∥∥∇2

x̂′
[l]
ik

f̂ik

∥∥∥∥2
]

(50)

Combining Eq.(47-50) and the fact x̂[l+1]
ik

= I(SC)x̂[l+1]
ik

+

δ(ŷ
[l]
ik
) where I(SC) indicates whether there is a shortcut, we

have

‖∇2

x̂
[l]
k

F̂k‖2 ≤E[‖∇2

x̂
[l]
ik

f̂ik‖2]

≤
(
I(SC) + ‖w[l]

k ‖
4
2

)
E[‖∇2

x̂
[l+1]
ik

f̂ik‖2]
(51)

Similar to Eq.(47-48)and Eq.(51), we can obtain the
following inequality for the l-th layer in the network without
normalization,

‖∇2

x̃
[l]
k

F̃k‖2 ≤ E[‖∇2

x̃
[l]
ik

f̂ik‖2]

=E
[
I(SC)∇2

ỹ′
[l]
ik

f̃ik + ‖(I ⊗ (w
[l]
k )>)(δ′′(ŷ

[l]
ik
)�∇2

ỹ′
[l]
ik

f̃ik)(I ⊗ w
[l]
k )‖2

]
≤(I(SC) + ‖w[l]

k ‖
4
2)E[‖∇2

x̃
[l+1]
ik

f̂ik‖2]
(52)

Combining Eq.(46), Eq.(51) and Eq.(52), we have

sup(‖∇2

x̂
[l]
k

F̂k‖) ≤ sup(‖∇2

x̂
[l]
k

F̃k‖), (53)

where this completes the inductive step. We know that l2-
norm of the second-order derivative of F̂k with respect to
x̂ik for the network with mean removal and F̃ with respect
to x̃k for the network without normalization are equal, i.e.,
‖∇2

x̂
[L]
k

F̂k‖2 = ‖∇2

x̃
[L]
k

F̃k‖2. Since both the base case and the
induction step have been proved as true, by mathematical
induction the statement sup(‖∇2

x̂
[s]
k

F̂k‖) ≤ sup(‖∇2

x̂
[s]
k

F̃k‖)
holds for any layer s (1 ≤ s ≤ L). �

APPENDIX E
PROOF OF THEOREM 2
Proof. (1). If Assumption 1 holds, the following inequality
can be obtained with Lagrange Mean Theorem:

L = ‖∇2
wF‖2, (54)

where L is the gradient Lipschitz constant and ∇2
wF is the

second-order derivative of F .
It is known F̂ = 1

|U|
∑
i∈U f̂i where U is the universal

sample set. At the l-th block, ŷ[l]
ik

= w
[l]
k x̂

[l]
ik

, and then second-
order derivative of F with respect to w[l]

k is

∇2

w
[l]
k

F̂k =
1

|U|
∑
ik∈U
∇2

w
[l]
k

f̂ik

=
1

|U|
∑
ik∈U

(
(x̂

[l]
ik
⊗ I)∇2

ŷ
[l]
ik

f̂ik((x̂
[l]
ik
)> ⊗ I)

)
,

(55)

where the second equality holds by following Lemma 1.
Then, we obtain

‖∇2

w
[l]
k

F̂k‖2 =

∥∥∥∥∥∥ 1

|U|
∑
ik∈U

(
(x̂

[l]
ik
⊗ I)∇2

ŷ
[l]
ik

f̂ik((x̂
[l]
ik
)> ⊗ I)

)∥∥∥∥∥∥
2

≤ 1

|U|
∑
ik∈U

∥∥∥∥(x̂[l]
ik
⊗ I)∇2

ŷ
[l]
ik

f̂ik((x̂
[l]
ik
)> ⊗ I)

∥∥∥∥
2

(i)
=

1

|U|
∑
ik∈U

∥∥∥∥((x̂[l]
ik
)> ⊗ I)(x̂[l]

ik
⊗ I)∇2

ŷ
[l]
ik

f̂ik

∥∥∥∥
2

≤ 1

|U|
∑
ik∈U

(∥∥∥((x̂[l]
ik
)> ⊗ I)(x̂[l]

ik
⊗ I)

∥∥∥
2

∥∥∥∥∇2

ŷ
[l]
ik

f̂ik

∥∥∥∥
2

)
(ii)
=

1

|U|
∑
ik∈U

(∥∥∥(x̂[l]
ik
)>x̂

[l]
ik
)⊗ I

∥∥∥
2

∥∥∥∥∇2

ŷ
[l]
ik

f̂ik

∥∥∥∥
2

)
(iii)
=

1

|U|
∑
ik∈U

(∥∥∥(x̂[l]
ik
)>x̂

[l]
ik

∥∥∥
2

∥∥∥∥∇2

ŷ
[l]
ik

f̂ik

∥∥∥∥
2

)
=

1

|U|
∑
ik∈U

(∥∥∥x̂[l]
ik

∥∥∥2

2

∥∥∥∥∇2

ŷ
[l]
ik

f̂ik

∥∥∥∥
2

)
(iv)

≤

 1

|U|
∑
ik∈U

∥∥∥x̂[l]
ik

∥∥∥2

2

∥∥∥∥∇2

ŷ
[l]
k

F̂k

∥∥∥∥
2

(v)
= E

[∥∥∥x̂[l]
ik

∥∥∥2

2

] ∥∥∥∥∇2

ŷ
[l]
k

F̂k

∥∥∥∥
2

(56)
where the equality (i) holds due to that ‖ABC‖2 =
‖CAB‖2;the equality (ii) results from (A ⊗ B)(C ⊗ D) =
AC ⊗ BD; the equality (iii) is following the fact that
‖A ⊗ B‖2 = ‖A‖2‖B‖2; the inequality (iv) is due to
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Cauchy-Schwarz inequality; the equality (v) is owing to

E[‖x̂[l]
ik
‖22] = 1

|U|
∑
ik∈U

∥∥∥x̂[l]
ik

∥∥∥2

2
.

Now we turn attention to the network with no normal-
ization. Similar to Eq.(55-56), we can obtain

‖∇2

w
[l]
k

F̃k‖2 ≤ E
[∥∥∥x̃[l]

ik

∥∥∥2

2

] ∥∥∥∥∇2

ỹ
[l]
k

F̃k

∥∥∥∥
2

(57)

According to Lemma 3, we know

sup(E[‖x̂[l]
ik
‖22]) ≤ sup(E[‖x̃[l]

ik
‖22]), (58)

and

sup(‖∇2

ŷ
[l]
k

F̂k‖2) ≤ sup(‖∇2

ỹ
[l]
k

F̃k‖). (59)

Eq. (56-59) implies that

sup(‖∇2

w
[l]
k

F̂k‖2) ≤ sup(‖∇2

w
[l]
k

F̃k‖2) (60)

Therefore, we conclude that the upper bound of the
gradient Lipschitz constant with respect to ŵ

[l]
k at any l-

th block for the network with mean removal is lower than
that for the non-normalized network.

(2). We also first analyze the network with mean removal.
At the l-th block, ŷ[l]

ik
= w

[l]
k x̂

[l]
ik

where w[l]
k ∈ Rd2×d1 , x̂[l]

ik
∈

Rd1×1 and ŷ[l]
ik
∈ Rd2×1 , and then we have

∇
w

[l]
k

f̂ik = ∇
ŷ
[l]
ik

f̂ik(x̂
[l]
ik
)>. (61)

Hence

E[‖∇
w

[l]
k

f̂ik‖22] =E[‖∇
ŷ
[l]
ik

f̂ik(x̂
[l]
ik
)>‖22]

≤E[‖∇
ŷ
[l]
ik

‖22]E[‖x̂
[l]
ik
‖22]

(62)

Now we analyze the network with no normalization.
Similar to Eq. (62), we can obtain

E[‖∇
w

[l]
k

f̃ik‖22] ≤ E[‖∇
ỹ
[l]
ik

f̃ik‖22]E[‖x̃
[l]
ik
‖22] (63)

According to Lemma 3, we know

sup(E[‖x̂[l]
ik
‖22]) ≤ sup(E[‖x̃[l]

ik
‖22]), (64)

and

sup(E[‖∇
ŷ
[l]
k

f̂ik‖2)]) ≤ sup(E[‖∇
ỹ
[l]
k

f̃ik‖2]). (65)

Eq. (62-65) implies that

sup(E[‖∇
w

[l]
k

f̂ik‖22]) ≤ sup(E[‖∇
w

[l]
k

f̃ik‖22]) (66)

Therefore, we conclude that at any l-th block the upper
bound of the gradient squared expectation E[‖∇[l]

wk f̂ik‖2] for
the network with mean removal is lower than the upper
bound of the gradient squared expectation E[‖∇[l]

wkfik‖2] for
the non-normalized network. �

APPENDIX F
LEMMA 4

Lemma 4. Given f(u) = f( z
‖z‖2 ) where z ∈ Rn×1 and u ∈

Rn×1, we have

‖∇fz(z)‖2 ≤
1

‖z‖2
‖∇fu(u)‖2 (67)

and

‖∇2fz(z)‖2 ≤
1

‖z‖22
‖∇2fu(u)‖2 (68)

Proof. Since f(u) = f( z
‖z‖2 ), we have

∂f =(∇fu(u))>∂u

=Tr

(
∇f>u (u)∂(

z

‖z‖2
)

)
=Tr

(
∇f>u (u)

(
I

‖z‖2
− zz>

‖z‖32

)
∂z

)
.

(69)

Hence,

∇fz(z) =
∂f

∂z
=

(
I

‖z‖2
− zz>

‖z‖32

)
∇fu(u). (70)

Then, we obtain

‖∇fz(z)‖2 =

∥∥∥∥∥
(

I

‖z‖2
− zz>

‖z‖32

)
∇fu(u)

∥∥∥∥∥
2

=
1

‖z‖2

∥∥∥∥∥
(
I − zz>

‖z‖22

)
∇fu(u)

∥∥∥∥∥
2

≤ 1

‖z‖2

∥∥∥∥∥I − zz>

‖z‖22

∥∥∥∥∥
2

‖∇fu(u)‖2

=
1

‖z‖2
‖∇fu(u)‖2,

(71)

where the inequality results from Lemma 2.
We further have

vec(∂(∇fz(z))) = vec

(
∂

((
I

‖z‖2
− zz>

‖z‖32

)
∇fu(u)

))
=

(
I

‖z‖2
− zz>

‖z‖32

)
vec (∂(∇fu(u)))

=

(
I

‖z‖2
− zz>

‖z‖32

)
∇2fu(u)vec

(
∂

(
z

‖z‖2

))
=

(
I

‖z‖2
− zz>

‖z‖32

)
∇2fu(u)vec

((
I

‖z‖2
− zz>

‖z‖32

)
∂z

)
=

(
I

‖z‖2
− zz>

‖z‖32

)
∇2fu(u)

(
I

‖z‖2
− zz>

‖z‖32

)
vec(∂z)

(72)

Therefore,

∇2fz(z) =
vec(∂(∇fz(z)))

vec(∂z)

=

(
I

‖z‖2
− zz>

‖z‖32

)
∇2fu(u)

(
I

‖z‖2
− zz>

‖z‖32

)
(73)
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Then, we obtain

‖∇2fz(z)‖2 =

∥∥∥∥∥
(

I

‖z‖2
− zz>

‖z‖32

)
∇2fu(u)

(
I

‖z‖2
− zz>

‖z‖32

)∥∥∥∥∥
2

≤
∥∥∥∥∥ I

‖z‖2
− zz>

‖z‖32

∥∥∥∥∥
2

2

‖∇2
uf(u)‖2

=
1

‖z‖22
‖∇2fu(u)‖2.

(74)
where the inequality still results from Lemma 2. �

APPENDIX G
LEMMA 5
Lemma 5. A standard network with no normalization and a
standard network with normalization via l2-Norm are respectively
shown in Figure 1(a) and Figure 1(c). The inputs of the first block
and the outputs of the last block for the both networks satisfy
x̂

[1]
ik

= x̃
[1]
ik

, ‖∇
x̂
[L]
ik

f̂ik‖2 = ‖∇
x̃
[L]
ik

f̃ik‖2 and ‖∇2

x̂
[L]
ik

f̂ik‖2 =

‖∇2

x̃
[L]
ik

f̃ik‖2. Suppose that at any l-th block with normalization

via l2-Norm τ
[l]
k =

γ
[l]
k

ρσ̂
[l]
Bk

< 1 , we then have the following at any

block:
(1). The upper bound of E[‖x̂[l]

ik
‖22] is less than the upper bound

of E[‖x̃[l]
ik
‖22].

(2). The upper bound of E[‖∇
x̂
[l]
ik

f̂ik‖2] is less than the upper

bound of E[‖∇
x̂
[l]
ik

f̃ik‖2].

(3). The upper bound of ‖∇2

x̂
[l]
k

F̂k‖2 is less than the upper

bound of ‖∇2

x̃
[l]
k

F̃k‖2.
Proof. We use mathematical induction to prove the proposi-
tions.

(1) We first to comparative analysis for the forward paths
for the network with mean removal and the network without
normalization.

For the inductive step, we assume the following inequali-
ty holds, i.e.,

sup(E[‖x̂[l]
ik
‖22]) ≤ sup(E[‖x̃[l]

ik
‖22]), (75)

where U is the universal sample set.
We analyze the network with mean removal. It is known

x̂′′
[l]

ik
=

γ
[l]
k

ρ ·
x̂′

[l]
ik

σ̂
[l]
Bk

and γ
[l]
k

ρσ̂
[l]
Bk

≤ 1, so we have

‖x̂′′
[l]

ik
‖22 ≤ ‖x̂

[l]
ik
‖22. (76)

And then following Eq.(30-31) in proof of Lemma 3, we
obtain

E[‖x̂[l+1]
ik
‖22] ≤

(
I(SC) + ζ̂

[l]
ik
‖w[l]

k ‖
2
2

)
E[‖x̂[l]

ik
‖22]

≤
(
I(SC) + ‖w[l]

k ‖
2
2

)
E[‖x̂[l]

ik
‖22].

(77)

For the l-th layer in the network without normalization,
in Eq.(33) in the proof of Lemma 3, we also have

E[‖x̃[l+1]
ik
‖22] ≤

(
I(SC) + ζ̃

[l]
ik
‖w[l]

k ‖
2
2

)
E[‖x̃[l]

ik
‖22].

≤
(
I(SC) + ‖w[l]

k ‖
2
2

)
E[‖x̃[l]

ik
‖22].

(78)

Combining Eq.(75), Eq.(77) and Eq.(78)

sup(E[‖x̂[l+1]
ik
‖22]) ≤ sup(E[‖x̃[l+1]

ik
‖22]), (79)

where this completes the inductive step. We know that
the inputs of the network with mean removal and the
non-normalized network are the the same, i.e., x̂[1]

ik
= x̃

[1]
ik

.
Since both the base case and the induction step have been
proved as true, by mathematical induction the statement
sup(E[‖x̂[s]

ik
‖22]) ≤ sup(E[‖x̃[s]

ik
‖22]) holds for any layer s

(1 ≤ s ≤ L).
(2) We first comparatively analyze the backward paths of

the network with mean removal and the network without
normalization.

For the inductive step, we assume that the upper bound
of ‖∇

x̂
[l+1]
k

f̂ik‖2 is less than the upper bound of ‖∇
x̂
[l+1]
k

f̃ik‖2
at the l-th layer holds, i.e.,

sup(E[‖∇
x̂
[l+1]
k

f̂ik‖2]) ≤ sup(E[‖∇
x̃
[l+1]
k

f̃ik‖2]) (80)

We first analyze the network with normalization via `2-
Norm. Similar to Eq.(36-37) in the proof of Lemma 3, we can
obtain

‖∇
x̂′′

[l]
k

f̂ik‖ =‖w
[l]
k (δ′(ŷ

[l]
ik
)�∇

x̂
[l+1]
ik

f̂ik)‖

≤‖w[l]
k ‖‖∇x̂[l+1]

ik

f̂ik‖,
(81)

where ‖δ′(ŷ[l]
ik
)‖ ≤ 1 since the derivative of the nonlinear

activation δ(u) with respect to u is less than 1.

It is known x̂′′
[l]

ik
=

γ
[l]
k

ρ ·
x̂
[l]
ik

σ̂
[l]
Bk

where σ̂
[l]
Bk =√

1
|Bk|

∑
ik∈Bk(x̂

[l]
ik
)2 = 1√

|Bk|
‖x̂[l]

k ‖2, and we define

x̂
[l]
Bk =

[
x̂

[l]
1k
, x̂

[l]
2k
, ..., x̂

[l]
|B|k

]>
(82)

and

x̂′′
[l]

Bk =

[
x̂′′

[l]

1k
, x̂′′

[l]

2k
, ..., x̂′′

[l]

|B|k

]>
. (83)

Then, we have

(x̂′′
[l]

Bk)j =
γ

[l]
k

√
|Bk|
ρ

(x̂
[l]
Bk)j

‖(x̂[l]
Bk)j‖

(84)

where j ∈ [1, 2, ..., d] and d is the number of dimension of

x̂
[l]
1k

and x̂′′
[l]

1k
.

Following Lemma 4, we obtain∥∥∥∥∥
(
∇
x̂
[l]
Bk
f̂

[l]
Bk

)
j

∥∥∥∥∥
2

≤γ
[l]
k

√
|Bk|

ρ‖x̂[l]
Bk‖2

∥∥∥∥(∇x̂′′[l]k f̂ [l]
Bk

)
j

∥∥∥∥
2

=
γ

[l]
k

ρσ̂
[l]
Bk

∥∥∥∥(∇x̂′′[l]k f̂ [l]
Bk

)
j

∥∥∥∥
2

(85)

Since γ
[l]
k

ρσ̂
[l]
Bk

≤ 1, Eq. (85) can ge further rearranged as∥∥∥∥∥
(
∇
x̂
[l]
Bk
f̂

[l]
Bk

)
j

∥∥∥∥∥
2

≤
∥∥∥∥∥
(
∇
x̂′′

[l]
Bk
f̂

[l]
Bk

)
j

∥∥∥∥∥
2

(86)
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We further have

E

[∥∥∥∥∇x̂[l]
ik

f̂ik

∥∥∥∥2
]
=

1

|B|
E

[∥∥∥∥∇x̂[l]
Bk
f̂ik

∥∥∥∥2
]

=
1

|B|
E

 d∑
j=1

∥∥∥∥∥
(
∇
x̂
[l]
Bk
f̂Bk

)
j

∥∥∥∥∥
2


≤ 1

|B|
E

 d∑
j=1

∥∥∥∥∥
(
∇
x̂′′

[l]
Bk
f̂Bk

)
j

∥∥∥∥∥
2


=
1

|B|
E

[∥∥∥∥∇x̂′′[l]Bk f̂Bk
∥∥∥∥2
]

= E

[∥∥∥∥∇x̂′′[l]ik f̂ik
∥∥∥∥2
]

(87)

Combining Eq.(81-87) and the fact x̂[l+1]
ik

= I(SC)x̂[l]
ik

+

δ(ŷ
[l]
ik
) where I(SC) indicates whether there is a shortcut, we

have

E
[
‖∇

x̂
[l]
ik

f̂ik‖2
]
≤(I(SC) + ‖w[l]

k ‖
2)E[‖∇

x̂
[l+1]
ik

f̂ik‖2]
(88)

In terms of the l-th layer in the network without normal-
ization, recalling Eq.(44), we obtain

E[‖∇
x̃
[l]
ik

f̃ik‖2] =E[‖I(SC) + (w
[l]
k )>(δ′(ỹ

[l]
ik
)�∇

x̃
[l+1]
ik

f̃ik)‖2]

≤(I(SC) + ‖w[l]
k ‖2)E[‖∇x̃[l+1]

ik

f̃ik‖2].
(89)

Combining Eq.(80), Eq.(88) and Eq.(89), we have

sup(E[‖∇
x̂
[l]
ik

f̂ik‖2]) ≤ sup(E[‖∇
x̃
[l]
ik

f̃ik‖]). (90)

It completes the inductive step. We know that l2-norm of
the derivative of f̂ik with respect to x̂ik for the network with
mean removal and f̃ with respect to x̃k for the network with-
out normalization are equal, i.e., ‖∇

x̂
[L]
ik

f̂k‖2 = ‖∇
x̃
[L]
k

f̃k‖2.

Since both the base case and the induction step have been
proved as true, by mathematical induction the statement
sup(E[‖∇

x̂
[s]
k

f̂ik‖2]) ≤ sup(E[‖∇
x̃
[s]
k

f̃ik‖2]) holds for any
layer s (1 ≤ s ≤ L).

(3) We first comparatively analyze the backward paths of
the network with mean removal and the network without
normalization.

For the inductive step, we assume that the upper bound
of ‖∇2

x̂
[l+1]
k

F̂ik‖2 is less than the upper bound of ‖∇2

x̃
[l+1]
k

F̃ik‖
at the l-th layer holds, i.e.,

sup(‖∇2

x̂
[l+1]
k

F̂k‖2) ≤ sup(‖∇2

x̃
[l+1]
k

F̃k‖) (91)

We analyze the network with normalization via `2-Norm.
Similar to Eq.(46-47) in the proof of Lemma 3, we can obtain

‖∇2

ŷ
[l]
k

f̂ik‖ ≤‖w
[l]
k ‖

2‖δ′′(ŷ[l]
ik
)�∇2

ŷ′
[l]
ik

f̂ik‖

≤‖w[l]
k ‖

2
2‖∇2

ŷ′
[l]
ik

f̂ik‖,
(92)

where‖δ′′(ŷ[l]
ik
)‖ ≤ 1 since the second derivative of the

nonlinear activation δ(u) with respect to u is less than 1.

It is known x̂′′
[l]

ik
=

γ
[l]
k

ρ ·
x̂
[l]
ik

σ̂
[l]
Bk

where σ̂
[l]
Bk =√

1
|Bk|

∑
ik∈Bk(x̂

[l]
ik
)2 = 1√

|Bk|
‖x̂[l]

k ‖2 , and the definitions

of x̂[l]
Bk and x̂′′

[l]

Bk are shown in Eq.(82) and Eq.(83). Following
Lemma 3, we have∥∥∥∥∥
(
∇2

x̂
[l]
Bk

f̂
[l]
Bk

)
j

∥∥∥∥∥
2

≤
(
γ

[l]
k

√
|Bk|

ρ‖x̂[l]
Bk‖2

)2 ∥∥∥∥∥
(
∇2

x̂′′
[l]
k

f̂
[l]
Bk

)
j

∥∥∥∥∥
2

=

(
γ

[l]
k

ρσ̂
[l]
Bk

)2 ∥∥∥∥∥
(
∇2

x̂′′
[l]
k

f̂
[l]
Bk

)
j

∥∥∥∥∥
2

(93)

Since γ
[l]
k

ρσ̂
[l]
Bk

≤ 1, Eq. (93) can ge further rearranged as∥∥∥∥∥
(
∇2

x̂
[l]
Bk

f̂
[l]
Bk

)
j

∥∥∥∥∥
2

≤
∥∥∥∥∥
(
∇2

x̂′′
[l]
Bk

f̂
[l]
Bk

)
j

∥∥∥∥∥
2

. (94)

We further have

E

[∥∥∥∥∇2

x̂
[l]
ik

f̂ik

∥∥∥∥2
]
=

1

|B|
E

[∥∥∥∥∇2

x̂
[l]
Bk

f̂ik

∥∥∥∥2
]

=
1

|B|
E

 d∑
j=1

∥∥∥∥∥
(
∇2

x̂
[l]
Bk

f̂Bk

)
j

∥∥∥∥∥
2


≤ 1

|B|
E

 d∑
j=1

∥∥∥∥∥
(
∇2

x̂′′
[l]
Bk

f̂Bk

)
j

∥∥∥∥∥
2


=
1

|B|
E

[∥∥∥∥∇2

x̂′′
[l]
Bk

f̂Bk

∥∥∥∥2
]

= E

[∥∥∥∥∇2

x̂′′
[l]
ik

f̂ik

∥∥∥∥2
]

(95)

Combining Eq.(92-95) and the fact x̂[l+1]
ik

= I(SC)x̂[l]
ik

+

δ(ŷ
[l]
ik
) where I(SC) indicates whether there is a shortcut, we

have

‖∇2

x̂
[l]
k

F̂ik‖2 ≤E[‖∇2

x̂
[l]
ik

f̂ik‖2]

≤(I(SC) + ‖w[l]
k ‖

4)E[‖∇2

x̂
[l+1]
ik

f̂ik‖2]
(96)

In terms of the l-th layer in the network without normal-
ization, recalling Eq.(52), we obtain

‖∇2

x̃
[l]
k

F̃k‖2 ≤E[‖∇2

x̃
[l]
ik

f̂ik‖2]

=E
[
I(SC)∇2

ỹ′
[l]
ik

f̃ik + ‖(I ⊗ (w
[l]
k )>)

(δ′′(ŷ
[l]
ik
)�∇2

ỹ′
[l]
ik

f̃ik)(I ⊗ w
[l]
k )‖2

]
≤(I(SC) + ‖w[l]

k ‖
4
2)E[‖∇2

x̃
[l+1]
ik

f̂ik‖2]

(97)

Combining Eq.(91), Eq.(96) and Eq.(97), we obtain

sup(‖∇2

x̂
[l]
k

F̂k‖2) ≤ sup(‖∇2

x̃
[l]
k

F̃k‖), (98)

It completes the inductive step. We know that l2-norm of
the second-order derivative of f̂ik with respect to x̂ik for the
network with mean removal and f̃ with respect to x̃ik for the
network without normalization are equal, i.e., ‖∇2

x̂
[L]
k

F̂k‖2 ≤
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‖∇2

x̃
[L]
k

F̃k‖. Since both the base case and the induction step
have been proved as true, by mathematical induction the
statement sup(‖∇2

x̂
[s]
k

F̂k‖2) ≤ sup(‖∇2

x̃
[s]
k

F̃k‖)‖2 holds for
any layer s (1 ≤ s ≤ L). �

APPENDIX H
PROOF OF THEOREM 3
Proof. (1) We analyze the network with normalization via
l2-Norm. Following Eq.(55-56), we can obtain, we obtain

‖∇2

w
[l]
k

F̂k‖2 ≤ E
[∥∥∥x̂[l]

ik

∥∥∥2

2

] ∥∥∥∥∇2

ŷ
[l]
k

F̂k

∥∥∥∥
2

(99)

For the network with no normalization, from Eq.(57)we
know

‖∇2

w
[l]
k

F̃k‖2 ≤ E
[∥∥∥x̃[l]

ik

∥∥∥2

2

] ∥∥∥∥∇2

ỹ
[l]
k

F̃k

∥∥∥∥
2

(100)

According to Lemma 5, we know

sup(E[‖x̂[l]
ik
‖22]) ≤ sup(E[‖x̃[l]

ik
‖22]), (101)

and
sup(‖∇2

ŷ
[l]
k

F̂k‖2) ≤ sup(‖∇2

ỹ
[l]
k

F̃k‖). (102)

Eq. (99-102) implies that

sup(‖∇2

w
[l]
k

F̂k‖2) ≤ sup(‖∇2

w
[l]
k

F̃k‖2) (103)

Therefore, we conclude that the upper bound of the
gradient Lipschitz constant of F̂ with respect to w

[l]
k for

the network with normalization via `2-norm is lower than
the upper bound of the gradient Lipschitz constant of F̃ with
respect to w[l]

k for the non-normalized network.
(2) We analyze the network with with normalization with

l2-Norm. Following Eq.(62), we obtain

E[‖∇
w

[l]
k

f̃ik‖22] ≤ E[‖∇
ỹ
[l]
ik

f̂ik‖22]E[‖x̃
[l]
ik
‖22] (104)

Now we analyze the network with no normalization.
From Eq. (63), we know

E[‖∇
w

[l]
k

f̂ik‖22] ≤ E[‖∇
ŷ
[l]
ik

f̃ik‖22]E[‖x̂
[l]
ik
‖22] (105)

According to Lemma 5, we know

sup(E[‖x̂[l]
ik
‖22]) ≤ sup(E[‖x̃[l]

ik
‖22]), (106)

and

sup(E[‖∇
ŷ
[l]
k

f̂ik‖2)] ≤ sup(E[‖∇
ỹ
[l]
k

f̃ik‖2]). (107)

Eq. (104-107) implies that

sup(E[‖∇
w

[l]
k

f̂ik‖22]) ≤ sup(E[‖∇
w

[l]
k

f̃ik‖22]) (108)

Therefore, we conclude that the upper bound of the
gradient squared expectation E[‖∇[l]

wk f̂ik‖2] for any l-th block
in the network with normalization with `2-norm is lower
than E[‖∇[l]

wk f̃ik‖2] for any l-th block in the non-normalized
network. �

APPENDIX I
THEORETICAL ANALYSIS FOR ADAPTIVE MOVING
AVERAGE STATISTICS

In the main manuscript, we demonstrate reducing the vari-
ance of batch statistics directly decrease the gradient variance
and ultimately make training converged minima smaller. In
this subsection, we justify the idea that substituting statistics
over a single batch with adaptive moving average statistics
reduces the variance and brings few side effects.

We can utilize the moving average statistics to reduce the
variance because the moving average increases the number
size of batch statistics by exploiting historical information. It
is easy to know that the batch statistics in the l-th block (µ[l]

Bk
and σ

[l]
Bk ) are the functions of the weights to be learned in

the first to the (l − 1)-th block (w[1]
k , w

[2]
k , ..., w

[1−1]
k ), and the

weights at the historical iteration and the current iteration
are different, which will inevitably results in bias. We take
the moving average mean as an example, i.e.,

µ
[l]
Ak =ηµ

[l]
Ak−1

+ (1− η)µ[l]
Bk

=
k∑
s=1

(1− η)ηk−sµ[l]
Bs

=
k∑
s=1

(1− η)ηk−sµ[l]
Bs→k︸ ︷︷ ︸

variance reduction

+
k∑
s=1

(1− η)ηk−s(µ[l]
Bs − µ

[l]
Bs→k)︸ ︷︷ ︸

bias increase

,
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where µ

djc
Bs = g(w

[1]
s , w

[2]
s , ..., w

[l−1]
s ;x

[0]
s ) and µ

[j]
Bs→k =

g(w
[1]
k , w

[2]
k , ..., w

[l−1]
k ;x

[0]
s ).

Therefore, we should carefully tune the parameter η;
otherwise, the side effects resulting from increased bias
will exceed the benefits stemming from variance reduction.
Specifically, if the difference between µ[l]

Bs and µ[l]
Bs→k is small,

we can set η large to enjoy greater variance reduction, and
vice versa. Thus, η is better to adaptively track the difference.
A network is commonly β-Lipschitz smooth, i.e.,∥∥∥µ[l]

Bs − µ
[l]
Bs→k

∥∥∥ ≤ β l−1∑
p=1

∥∥∥w[p]
s − w

[p]
k

∥∥∥ . (110)

According to the SGD update rule in Eq. (1) in the main
manuscript, we know that

w[p]
s − w

[p]
k =

k∑
r=s

αr∇w[p]
r
fBr , (111)

where αr is the learning rate and fBr is the gradient with
respect to w[p]

r at the r-th iteration.
In summary, loosely speaking, the learning rate α is

proportional to the differences between µ[l]
Bs and µ[l]

Bs→k . Thus,
if we set η to be a decreasing function of the learning rate α,
the moving average statistics will adaptively strike a wise
balance between variance reduction and bias increase.
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