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Abstract—The computing demand for massive applications has
led to the ubiquitous deployment of computing power. This trend
results in the urgent need for higher-level computing resource
scheduling services. The Computing and Network Convergence
(CNC), a new type of infrastructure, has become a hot topic.
To realize the visions of CNC, such as computing-network
integration, ubiquitous collaboration, latency-free, and ready-to-
use, an intelligent scheduling strategy for CNC should integrate
and collaborate with the network. However, the Computing
and Network Convergence is built on the cloud, edge, and
endless terminals, making the scheduling problem more difficult
due to its wide-area requests, available flexibility arrangements,
interconnections, and resource adaptations. In view of this,
in this survey, we comprehensively review the literature on
scheduling in various scenarios. We cover the scheduling problem
of Computing and Network Convergence from heterogeneous
resources, multiple-objective optimization, and diverse tasks.
Possible explanations and implications are discussed. Finally, we
point out important challenges for future work.

Index Terms—Computing and Network Convergence, Schedul-
ing, Resource Allocation, Internet Technology

I. INTRODUCTION

MODERN society has entered the era of a digital econ-
omy. All walks of life are undergoing digital transfor-

mation, and computing power has become the core productiv-
ity of this era. However, as Moore’s Law tends to the limit, the
construction of single-point computing facilities, such as large-
scale computing centers, cannot fully meet computing power
needs. The Computing and Network Convergence (CNC), alias
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Fig. 1. The overview picture of CNC scheduling. CNC schedulers jointly
optimize resources such as network, computing, and storage, achieving high-
level orchestration based on resource abstraction. ITU Telecommunication
Standardization Sector (ITU-T) published the standard of CNC with ongoing
studies (e.g., [1]–[5]).

Computing Force Network or Computing Power Network,
connects various computing powers distributed in ubiquitous
places through the network, making the services instantly
available as water and electricity. Especially for large-scale
high-computation geo-distributed services, such as Metaverse
and foundation model training, CNC can intelligently break
through the performance limit of single-point computing
power with ubiquitous computing power and networks. With
the foundational infrastructure for computing power, determin-
istic networks, and the fifth Generation (5G) widely deployed,
CNC services now extend to approximately 300 cities and have
been tested in various business scenarios, from mobile phone
applications to large model training. In academia, the commu-
nity primarily focuses on refining architecture, communication
standards, schedulers, heterogeneity handling, and security.

Scheduling is the core technology of the CNC control
plane and the key to reaching ultra-low-latency and on-
demand computing. It determines which computing node the
task is placed on and how resources are allocated. Fig-
ure 1 shows the scheduling overview in CNC. Specifically,
CNC schedulers coordinate diverse geographically distributed
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data centers, clouds, edge devices, and terminals, linked by
networks. Schedulers could assign the execution location
of a task, affecting data and storage scheduling, network
scheduling, computing performance, transmission delay, and
cost. The computing resources (e.g., CPU) and network re-
sources mainly determine the processing speed of the task.
The scheduling algorithm requires a comprehensive set of
capabilities. It should not only improve the success rate of task
execution to ensure the availability of CNC but also reduce the
task completion time to ensure user satisfaction. In addition,
a superior scheduling algorithm can improve the efficiency of
the computing center and save energy. Therefore, a smart, real-
time-available, and green CNC is closely related to efficient
scheduling algorithms. The CNC architecture comprises multi-
ple layers. Please see Figure 3 in Section II for the scheduling
process under the architecture.

The current CNC resource schedulers present some chal-
lenges that must be addressed.

First of all, in CNC, the management of dynamic, diversi-
fied, and ubiquitous heterogeneous resources is challenging.
CNC abstracts diverse resources into computing power and
supports computing power through the network (e.g., the
sixth Generation (6G) and the networks which could provide
deterministic latency). To realize the goal of computing-
network integration, it faces two primary challenges. One
is the abstraction of computing resources. The CNC covers
a variety of computing resources, including CPUs, GPUs,
programmable network devices, Field Programmable Gate
Arrays (FPGAs), Tensor Processor Units (TPUs), and other
types. Abstraction is essential to provide a unified view of
computing powers upward for further allocation. The other is
cooperative scheduling. Heterogeneous computing resources
with different characteristics have different workload prefer-
ences. Resource scheduling solely based on abstract computing
power cannot adapt to scenarios with complex and diverse
workloads. Meanwhile, to meet the Service Level Agreement
(SLA) level, improve service quality, and reduce the costs of
service providers, it is necessary to coordinate the scheduling
of distributed computing resources. Besides, the CNC architec-
ture supports using other available resources such as storage,
data, and model resources, to speed up the computing process.

Secondly, the scheduler balances multiple dynamic schedul-
ing objectives, such as different levels of latency, security,
reliability, energy consumption, and cost requirements. On the
one hand, the computing power providers need to save energy
and improve scheduling efficiency. Users, on the other hand,
expect their requests to be processed as quickly as possible at
the lowest possible cost while meeting business requirements.
It may be easy to optimize a single objective, but there may
be contradictions among optimization objectives.

Finally, in CNC, diverse tasks need different scheduling
considerations, increasing the complexity. An in-depth inves-
tigation of the task characteristics can better match specific
types of workloads with more appropriate resources. Real-
time tasks, for instance, must prioritize latency and deadlines.
Therefore, schedulers tend to employ additional edge devices
and In-Network Computing or set higher priority to preempt
machines. Whereas Deep Learning (DL) tasks prioritize select-

TABLE I
COMPARISON OF RELATED CNC SURVEYS

Categories Survey [16] Survey [17] This survey
CNC ✓ ✓ ✓

INC resources ✓

Diverse
task scheduling

Caching ✓
Control ✓ ✓ ✓

Computation ✓ ✓ ✓
Communication ✓ ✓ ✓

Dynamic
scheduling goals

Basic ML/Heuristics ✓ ✓
DRL ✓

ing suitable hardware for accelerating intensive and long-term
computing with the resource affinity considered.

A. Related Works and Motivation

Scheduling problems have been investigated by many re-
searchers. Earlier surveys focused on cloud computing. For
example, Khallouli et al. [6] summarized and classified the
existing cluster scheduling frameworks from three aspects:
scheduling architectures, goals, and methods. In addition,
schemes for applying Machine Learning (ML) methods to
resource scheduling in cloud computing are also investigated.
Li et al. [7] decomposed the serverless architecture into four
layers and investigated the resource scheduling problem of
serverless in the System Orchestration Layer. Recently, edge
computing has also gradually attracted attention. For example,
Luo et al. [8] surveyed various SOTA scheduling algorithms in
edge computing and proposed an edge-computing architecture.
Moreover, cloud computing and fog computing are sometimes
considered together. Singh et al. [9] investigated cloud and
fog computing scheduling techniques. For the scheduling
techniques on geo-distributed Datacenters (DCs), Wang et al.
[10] surveyed the scheduling of data-intensive applications in
computing clusters with a focus on data locality. Hogade et
al. [11] investigated resource scheduling techniques using ML
algorithms for these geographically dispersed DCs. Further-
more, some surveys analyzed the existing literature from the
perspective of scheduling technology. For example, Garı́ et al.
[12] reviewed Reinforcement Learning (RL) methods to deal
with the autoscaling problem in cloud computing, Soltani et
al. [13] summarized heuristic resource scheduling algorithms
in cloud computing, and Soni et al. [14] delved into applying
ML methods in emerging cloud computing paradigms. Addi-
tionally, some surveys explored resource scheduling problems
in specific application domains. For example, Afrin et al. [15]
surveyed resource scheduling in robotic applications.

In summary, the above studies address either cloud, edge,
geo-distributed DCs, or specific scheduling issues only, while
none of them focuses on the hierarchical scheduling issue
with both the network and computing resources in CNC in
a comprehensive way. The existing surveys focus on the
architecture design of CNC [16], [17]. To the best of our
knowledge, this is the first systematic survey of the scheduling
techniques of CNC. To fill this research gap, we review
from multiple perspectives, including scheduling objects as
resources, scheduling objectives such as green and Quality-
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Fig. 2. Road map of the survey.

of-Service (QoS) with Artificial Intelligence (AI) support,
and diverse typical scheduling tasks in CNC. We present a
comprehensive state-of-the-art survey for adapting the current
scheduling techniques to the CNC architecture. Table I shows
a comparison of related surveys with ours, the scheduling
including caching (e.g., cached data or services for fast re-
sponse), control (e.g., load balance, migration), computation
(e.g., tasks division, offloading), and communication (e.g.,
network scheduling, parameter synchronization).

B. Contribution and Organization

This paper provides a comprehensive survey of CNC
scheduling techniques with empirical, computational, and the-
oretical considerations discussed. For the convenience of read-
ers, Figure 2 outlines the structure of the survey. In particular,
we analyze the following four aspects:

• Resources for Scheduling (Section II): The typical re-
sources included in the CNC are introduced in this
chapter. Specifically, we consider GPU scheduling, In-
Network Computing (INC), and two heterogeneous com-
puting resource (i.e., FPGA, TPU) schedulers.

• Scheduling Objectives (Section III): We review schedulers
with different scheduling objectives. We mainly describe
it from the aspects of green scheduling, QoS-based
scheduling, and AI-driven scheduling, showing practical
explorations to balance multiple objectives.

• Diverse Task Scheduling (Section IV): We summarize
various scheduling tasks in CNC, including scheduling
in real-time tasks, AI training and inference tasks, big
data applications with geographically distributed DCs,
and High Performance Computing (HPC) tasks. The
scheduling solutions for these scenarios with different
characteristics are crucial to the realization of the CNC.

• Challenges and Future Work (Section V): We con-
sider the directions and challenges in scheduling to
achieve CNC, including intelligent computing, distributed
scheduling, real-time computing scheduling, green CNC,
digital twins, credibility, and security concerns in case of
possible data and job exposure.

The rest of this article is organized as follows: Section II
describes the resources included in the CNC. Then, Section
III classifies scheduling algorithms from the perspective of
scheduling objectives, and Section IV summarizes various
scheduling tasks in CNC. Challenges and future work are
described in Section V. Finally, Section VI draws conclusions.

II. SCHEDULING RESOURCES

Offering computing results as soon as possible, CNC sched-
ules massive services to heterogeneous computing nodes in
different places on demand through the unified coordination
of multi-dimensional resources. For example, run Metaverses
for agriculture in several regions to provide control decisions.
Multiple ML models should handle multi-modal (e.g., video),
multi-dimensional (e.g., climate, soil), timely monitoring data
from plan making, vegetative stage, and sale period. Sched-
ulers analyze tasks and choose resources. INC is used to
perform simple arithmetic operations in the network in ad-
vance to reduce latency and communication costs. GPUs are
chosen with the scheduling characteristics considered. CPU
supports GPU and FPGA. FPGAs may attend in sensor fusion,
Input/Output, and acceleration. Besides, foundation models are
introduced to support Metaverses by extracting features and
long-term dependencies. For training of foundation models,
schedulers decide whether to train in parallel in the same
computing GPU/NPU cluster, separating models or data in
multiple highly connected machines by high-speed links, or
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in multiple geo-distributed clusters cooperatively with privacy-
guaranteed intermediate information transferred. For inference
tasks, models can be scheduled on GPUs and TPUs.

The introduction of network softwarization in CNC enables
the allocation and management of network services, functions,
and protocols to be separated from dedicated hardware, fa-
cilitating resource sharing, multi-tenancy, diversified services,
and quick deployment. Software Defined Networking (SDN)
decouples the data plane and control plane, and logically
centralizes physical device control to enhance forwarding and
network reliability. Network Functions Virtualization (NFV)
decouples software functions and hardware, virtualizes re-
sources, and enables the realization of Virtualized Network
Functions (VNFs) on Virtual Machines (VMs) and containers.
A comparison of SDN and NFV is discussed in [18]. Based
on these key enablers, network slicing builds multiple logical
virtual networks on a common infrastructure. Each slice is an
end-to-end logical network with a group of network functions
and its allocated resources [19]. These slices, which can be
independently controlled and isolated, possess very different
network performance indicators (e.g., use cases in 5G/6G, such
as massive ultra-reliable and low-latency communications).
Network slicing resource management can be divided into four
phases (similar to [20]). The initial phase, admission control
of requests, balances resource utilization, network efficiency,
SLAs, and profits. It leverages characteristic models of slices
and users [21] in admitting and ranking the requests. After
that, resource allocators plan the resources of each slice,
taking from Radio Access Network, core, transport, and edge
networks (such as spectrum [22], VNFs, and other computing,
network resources). Subsequently, determine the exact usage
of allocated resources for the admitted request, mainly from
the time dimension due to the time constraints of service
duration and resource reservation. Finally, orchestrators are
responsible for the rapid [23] adjustment of service chains
[24] and resources. This adjustment comes from the fluctuating
service requirements, traffic, and resource availability, together
with the need to keep satisfactory QoS for the related slices.
Additionally, resource management needs to handle cross-
domain slicing heterogeneity. A slice may have resources from
different operators, such as in the smart factory scenario [25].
Besides, the phases affect each other and require cooperation.

Except for storage-only scheduling, storage often cooperates
with other resources in scheduling, such as data placement
(e.g., in geo-distributed DCs), caching policy maintenance,
and capacity constraints [26]. SiloD [27] reduces the cache
or remote IO bottlenecks by co-designing the cache system
with schedulers and considering the impacts of various storage
resources. Figure 3 shows the general scenario of resource
scheduling in CNC. Multiple layers cooperate together in the
scheduling process. In this section, we will review the typical
computing resources modeled and scheduled in CNC based
on their advantages, characteristics, and application scenarios.

A. GPU Scheduling

As a highly integrated system of computing and network,
the primary problem of the CNC is computing immobility. AI
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Fig. 3. A general scenario of resource scheduling under the CNC archi-
tectures. The architecture has four layers (marked with dashed boxes). The
Service Layer perceives the user’s service request and converts it into the
computing power demand of the corresponding service. The Control Layer
maps computing power requirements to resource requirements according to
the status of computing and network resources, and coordinates scheduling
tasks in cloud computing, edge computing, high-performance computing, in-
network computing, and others. The Resource Layer provides the underlying
resources upward, such as computing, network, and storage resources.

tasks are bound to increase significantly such as the Internet
of Things (IoT), smart city, immersive Extended Reality (XR),
and all manner of ML tasks. CNC has to handle the large scale:
(i) cooperatively training of foundation model; (ii) the large
amount of tasks. In this case, GPUs are indispensable. The
GPU is a graphics processing unit with thousands of cores
designed for parallel processing. Unlike CPUs, GPUs excel
in parallelism and calculating simple repetitive tasks. This
makes them well-suited for AI tasks, which involve a large
number of parallel matrix operations. GPUs accelerate parallel
computations to solve massive multi-modal data. GPUs can
flexibly combine with others, such as offloading in CPUs,
and support various applications, such as multimedia, AI,
and gaming. We will review works in terms of GPU sharing
techniques and GPU resource scheduling under DL workloads.

1) GPU Sharing: Most of today’s commercial GPU re-
source allocation is exclusive allocation, which means that
schedulers can only assign each GPU to one application. This
exclusive allocation method is conducive to the simplification
of the GPU hardware design and makes the GPU efficient.
However, this also brings two major problems: (i) the coarse-
grained allocation paradigm lowers the GPU cluster manager’s
scheduling flexibility and compels the use of higher-cost
methods, such as suspending and migrating jobs; (ii) the low
utilization of GPU resources. Therefore, the scheduler should
modify the allocation mode of GPU resources and share the
GPU with multiple applications. Common GPU sharing tech-
nologies include GPU virtualization, Multi-Process Service
(MPS), and NVIDIA Multi-Instance GPU (MIG).

Many works are based on GPU virtualization. There are
three types of GPU virtualization: hardware-supported Virtu-
alization, Application Programming Interface (API) remoting,
and Para & full virtualization.

Hardware-supported virtualization allows the guest to di-
rectly access the GPU through the hardware features of
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Input/Output virtualization and maps the interrupts and data
transmission to VMs. NVIDIA GRID [28] made it possible
for multiple VMs to share resources on a single GPU.

API remoting virtualizes the GPU at the library level of the
GPU execution stack, enabling GPU calls to be intercepted and
redirected for the remote process. Therefore, only the results
are passed to the application. It is easy to implement and use,
and thus more widely used. Relatively early API remoting
methods include GVirtuS [29] and vCUDA [30]. These meth-
ods focus on providing GPU virtualization services, which
divide a physical GPU into multiple virtual GPUs. Unlike
the former, GaiaGPU [31] prefers GPU sharing rather than
virtualization, providing a complete GPU sharing technology
at the container level. Virtual CUDA in GaiaGPU is a GPU
resource-limiting component that uses CUDA hijacking to
realize memory isolation. The cGPU [32] is also a GPU
sharing scheme based on the container. It realizes the isolation
of memory and computing power through kernel hijacking.

Para & full virtualization implements driver-level GPU
virtualization by leveraging custom GPU drivers. The host
exposes simulated virtual GPUs to the guest driver. Par-
avirtualization changes customer GPU drivers to improve
performance, and full virtualization uses unmodified GPU
drivers. VMware SVGA II [33] uses the paravirtualization
method. VMware uses the VMware SVGA Driver to replace
the original GPU driver of the guest. It provides the guest
with access to a virtual GPU created by the hypervisor, named
VMware SVGA II. LoGV [34], HSA [35] realized the GPU
resource virtualization by also modifying the GPU drivers of
the guest. GPUvm [36] implemented full virtualization and
paravirtualization of GPU resources by using the Nouveau
driver in the Xen hypervisor. To provide full virtualization,
the GPUvm scanned the entire page table at each TLB refresh
and generated a page error for each GPU access so that the
hypervisor could simulate the access. However, performance
issues arise mainly from the need for intercept access when
using full virtualization techniques. Therefore, gVirt [37] al-
lowed each VM to reach related components in the GPU to
bypass the hypervisor layer’s intervention.

MPS [38] is a GPU sharing component officially launched
by Nvidia. It belongs to space multiplexing, while almost
all GPU virtualization technologies use time multiplexing
for GPU sharing. MPS shares GPU computing power by
combining multiple tasks into a single context to execute
computing cores submitted by multiple CPU processes. This
overlap can lead to more thorough resource usage and better
overall throughput. Similar to MPS, MIG [39] also uses space
multiplexing to share GPU resources. However, MIG is more
suitable for running multiple computing cores with different
users. This is due to the strict partitioning of resources by MIG,
where each MIG instance has a guaranteed set of resources
and is completely isolated.

2) GPU Scheduling for DL Workload: As mentioned be-
fore, GPUs are perfectly suited to DL tasks. In this regard,
for the scheduling problem of GPU resources, we conducted
a survey based on the characteristics that highly affect the
scheduling performance such as inherent heterogeneity, place-
ment sensitivity, iterative process, and elastic training. We

summarized the representative GPU schedulers in Table II.
a) Inherent Heterogeneity: DL training workloads are

heterogeneous because they target different application do-
mains. Among them, GPU resources favor different workloads.
In addition, memory use, CPU core utilization, and other
factors such as algorithms, and job order [40] also cause
interference. Therefore, selecting the appropriate resource
configuration based on job characteristics is necessary. The
heterogeneous resources could be divided into GPUs with
other resources and different GPU generations.

Resource fairness is widely discussed. Fairness tends to
improve the utilization of complementary or previous ones.
Some works are based on the assumption that CPU and GPU
are interchangeable to serve the tasks. The authors in [41]
presented tables of interchangeability-support frameworks and
incompatible resource managers. Multiple resource demands
to accept for each job at run-time are made possible by inter-
changeable flexibility with alternatives to support and online
analysis of workload characteristics, offering a new scheduling
dimension. Allox [41] models schedule as a minimum-cost
binary matching problem. The results showed improvements in
user equality, starvation prevention, and significantly reduced
average Job Completion Time (JCT). TetriSched [42] uses
Mixed-Integer Linear Programming (MILP) and interchange-
ability to satisfy deadlines with combinatorial constraints
[43]. Using the MILP may suggest that solutions cannot be
found in polynomial time. Except for the interchangeable
assumption, which is too strong, some schedulers assume
CPUs and memories are auxiliary resources. The sensitivity
of auxiliary resources could offer another factor in avoiding
interference. SwapAdvisor [44] focuses on GPU memory
exhaustion problem and uses a genetic algorithm. It enables
the models up to 12× limit. Mobius [45] works on large
models too. It supports fine-tuning, assists GPU with hetero-
geneous memory, and reduces communications. Synergy [46],
a round-based scheduler, models schedule as a fungible multi-
dimensional bin-packing problem. Experimental results show
an up to 3.4× reduction in average JCT than GPU-proportional
allocations which could hardly solve CPU-sensitive jobs with
high demands on data pre-processing. However, it is designed
in a homogeneous GPU cluster, and MinIO cache [47] should
be used for better profiling. Muri [48] leverages the iterative
process nature and enables concurrently running jobs by multi-
resource interleaving rather than packing.

Most GPU clusters host multi-generation GPUs. The sched-
uler considers the user’s demand, utilization rate, costs, and
job characteristics. Gandivafair [49] was claimed to sched-
ule cluster-wide GPU time among users fairly by using an
automatic trading mechanism. Meanwhile, it designs a load
balancer based on ticket weighting. It distributes jobs evenly
through the job migration mechanism to achieve fairness.
Gavel [50] can optimize multiple complex objectives, such
as max-min fairness and finish-time fairness. It uses modified
linear programming in each iteration, assuming jobs may be
time-sliced across heterogeneous resources. For each type
of accelerator, the throughput estimator measures its perfor-
mance. It leverages MPS to share the GPU.

Schedulers could also deal with heterogeneous resources
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TABLE II
REPRESENTATIVE GPU SCHEDULERS

Issue Ref. Main Idea Contributions Limitations

Inherent Heterogeneity
AlloX [41]

Transforms the multi-configuration schedule problem into a
minimum-cost binary matching problem to realize GPU

resource scheduling under heterogeneous tasks.

Considers DL task
heterogeneity, dynamic
allocation, and fairness.

GPU
heterogeneity

Gandivafair [49] Realizes high efficiency and fairness of DL task scheduling
for different users in heterogeneous GPU clusters.

Considers GPU
heterogeneity, dynamic
allocation, and fairness.

DL task
heterogeneity

SchedTune [51] Schedules heterogeneous DL tasks to heterogeneous GPU
resources based on heterogeneity perception.

Considers DL task
heterogeneity and GPU
heterogeneity, dynamic

allocation

Fairness

Placement Sensitivity Themis [54]
Uses a semi-optimistic auction-based approach to realize
ML task scheduling of GPU cluster, taking into account

fairness and efficiency.

Short-term efficiency,
long-term fairness

Task
characteristics
consideration

Tiresias [55] Determines when to relax task placement constraints based
on simple, externally observable, model-specific criteria.

Considers resource
utilization and efficiency

under priorities.
Fairness

Iterative Process & Elastic
Training Gandiva [63] Allocates GPU time slices based on task predictability and

performs performance introspection and job migration.

Increases efficiency with
performance introspection
and increases utilization

with predictability.

GPU
heterogeneity
and fairness

Elastic Training Optimus [64] Designs a dynamic scheduler based on the
resource-performance model.

Low job completion time
and makespan

GPU
heterogeneity
and fairness

without considering fairness. For example, the scheduler [51]
uses memory requirements predicted by regression models
whose inputs are features of the DL model and GPUs.

b) Placement Sensitivity: Most distributed DL jobs are
highly sensitive to GPU placement. Communication quality
and delay between devices directly determine the completion
time and even cause failure. In addition to adopting new com-
munication technologies to provide a high order of magnitude
of bandwidth, a location-aware allocation method for GPU
resources is also essential. For better placement arrangements,
the straightforward idea is to use topology graph mapping.
The authors in [52] proposed a best-effort placement strategy
mapping from DL training tasks’ job graph to physical GPU
topology with satisfactory communication requirements, less
application interference, and minimal fragmentation. Recur-
sive bi-partitioning [53] is used to select the GPUs. Besides,
they found that packing jobs to the same CPU socket is faster.

Generally, the placement sensitivity is combined with other
characteristics. THEMIS [54] combines it with long-run fair-
ness, a typical scheduling goal to achieve balance, using a
semi-optimistic auction-based approach. First, the scheduler
picks the set of applications with the worst finish-time fair-
ness and provides them with a capacity-and-location view of
available GPUs. The location-advantaged application wins the
auction. Experiments show that the average application com-
pletion time is lowered by 4.6% − 55.5%. Although Tiresias
[55] has a lower comprehensive performance than THEMIS, it
combined with the model structure and iterative characteristics
without requiring users to provide any additional configura-
tion. Besides, it is common to use a profiler, either online or
offline, in DL training workload because of the long duration.
When given the profiler, the scheduler obtains an estimation
of running time and then adjusts the processing sequence.
SCHED2 [56] tries multiple placement strategies in profiling.

Experiments indicate that DL training jobs will run much
faster on the same GPU node than when they are distributively
allocated. For example, VGG16 [57] is 5.9× faster on one
server than on two. Meanwhile, the closer distance in the
allocated topology is preferred, especially for communication-
intense jobs with a high transfer-computation ratio [58]. In
short, the matching of locality sensitivity and cluster fragmen-
tation is needed. SCHED2 uses Deep Q-Network (DQN) [59],
a Deep Reinforcement Learning (DRL) algorithm, and design
states with topology information. For schedulers considering
deadline, GENIE [60] pre-processes the task sequence in
the waiting queue. GENIE uses a lightweight-profiler-based
prediction model in offline profiling. The model maps task
information to processing rate and response latency, reducing
the over-claimed number of GPUs. Best placements could be
dynamically assigned according to the impact of occupied
GPU topology. The authors observed that the large batch
size and multi-task setting show less obvious local sensi-
tivity, providing insights into different placement strategies.
However, this algorithm could not be directly deployed to
TensorFlow [61] without default option modifications such
as allow growth. Chronus [62], a deadline-aware scheduler,
uses online profiling. Chronus has dynamic capacity scaling
mechanisms for clusters. A round-up placement strategy for
Service Level Objective (SLO) guaranteed jobs and local
search for jobs in the Best-effort queue. The Allocator for
local search ranks the jobs by their potential, representing how
much the run-time speed will improve compared to the optimal
consolidation solution by profiling. An exhaustive search for
the top-K jobs is executed while the others are still allocated
in a quasi-consolidation manner.

c) Iterative Process: The DL training job iterates the
forward propagation, backward propagation, and parameter
update processes tens of millions of times. This feature makes
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Fig. 4. Typical application scenarios of INC. In the telemetry system, the
switch embeds its own information into the packet according to different
queries, and this information will be returned to the application as telemetry
data to facilitate the execution of subsequent network tasks, such as congestion
control. In the aggregation scenario, the aggregator in the switch is used to
aggregate gradient updates from different workers. In the cache system, the
hotspot key values are stored in the switch for subsequent quick access.

it possible to predict job-level GPU resource usage (how
many) and completion time (how long), and is therefore
commonly used in scheduling. The scheduler attempts to dis-
tribute GPU resources properly by assessing prediction results.
For example, Gandiva [63] uses the predictability of jobs to
allocate GPU time slices among multiple jobs to fully use GPU
resources and reduce latency. This predictability is also used
for performance introspection and job migration. Experimental
results show a 26% improvement in clustering efficiency and a
nearly 77% reduction in the early feedback time. In addition,
the predictability of jobs enables SLO requirements based on
job execution times.

d) Elastic Training: Many GPU resource scheduling
systems currently try to employ elastic training, which can
dynamically adjust the GPU numbers required to run training
jobs. In the past, DL workloads were gang scheduled, where
all tasks of the workload needed to use GPU resources
simultaneously in an all-or-nothing manner. This may facil-
itate performance and QoS metrics, while the under-utilized
fragments of GPU cluster resources lower resource utilization.
The elasticity characteristic of DL training jobs allows running
jobs to be paused and resumed through checkpoints. Gandiva
[63] introspects job performance based on the predictability of
DL workloads. With job-switching techniques, when the GPU
utilization is low, multiple jobs are packaged on the same GPU
to shrink resources. When spare resources are available, job
parallelism is opportunistically increased. Suspend-resume,
migration, and grow-shrink mechanisms help to achieve this
fine-grained GPU usage. Optimus [64] designs a greedy
scheduler supported by a resource-performance model, which
enables dynamic adjustment of GPU allocations, increasing or
decreasing the number of GPUs used by each job on the go.

B. In-Network Computing

To make up for the shortage of end-side computing power
and the limitation of network bandwidth, CNC must support
INC. With INC, CNC can offload several computing tasks
to network devices, which relieves the computing pressure,

reduces data volume transmitted in the network, and improves
the overall computing efficiency of the system. INC scheduling
emphasizes network support and low latency (e.g., in-advance
computation), while GPU scheduling focuses on high through-
put, GPU cooperation, and specific characteristics such as gang
scheduling and heterogeneity.

In the past decade, programmable network devices have
been widely used to optimize the performance of distributed
systems. These include programmable switches based on
ASICs and FPGAs and new network hardware such as smart-
NICs. Relying on their location advantage in network topology
and extremely high processing speed, they have triggered
research on INC. In addition to using INC to perform network
tasks, many works apply it to aggregation, querying, caching,
consensus, and so on. Some related works propose isolation
mechanisms on a single network device and multi-tenant
support, which are more suitable for CNC. Figure 4 shows
the typical application scenarios of INC. In this section, we
will review INC for these applications.

1) INC for Network Task: One intuitive way to use the
programmable network device is to perform network tasks
to improve the network’s overall performance. Telemetry
technology should accurately and immediately locate network
management problems such as high delay queues, load im-
balances, and faulty nodes. Programmable network devices
offer an option to improve telemetry techniques. For example,
Sonata has been applied to telemetry tasks and it allows
refined declarative queries to reduce the stream processor’s
workload, improving usage of switch memory, and allows
network operators to apply familiar data flow operators to any
combination of packet fields [65]. Except for combining with
stream processors, programmable network equipment (such
as a programmable switch, or a network interface card) can
be directly used to design telemetry systems [66]. Based on
traditional In-Band Network Telemetry, they proposed PINT
which obtains only approximate telemetry data.

Furthermore, INC provides new ideas for network Conges-
tion Control (CC). For large-scale high-speed networks, the au-
thors in [67] proposed a popular CC mechanism named HPCC.
By using fine-grained network load information from INT,
HPCC can quickly adjust traffic to achieve high utilization and
congestion avoidance with only three independent parameters.
In addition, HPCC limits the total number of transmitted
bytes over busy links to solve INT message delay. Optionally
leveraging INT information with combined per-ACK and per-
RTT (end-to-end round-trip time) reactions supported by the
reference rate, this design speeds up the reactions without
going overboard. The experiments show a 95% reduction in
the stream completion time compared with popular baselines.
HPCC shows no obvious congestion even under large-scale
incast. To achieve an approximate variant of congestion control
and load balancing protocols, Sharma et al. [68] addressed
the problems of limited switch states, few supported types of
operations, and insufficient computing resources per packet by
designing building blocks that use approximation techniques.

2) INC for Consensus System: The coordination service,
a basic building block of modern cloud systems, provides
a strong consistency guarantee for different nodes to access
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shared resources. Different nodes first need to reach a con-
sensus on the current access. However, the communication
cost is unacceptable as the scale increases. One solution is
to deploy a consensus protocol. For example, widely deploy
Paxos consensus protocol in programmable network devices
[69] without many modifications. It improves transaction
throughput with less message delay while relying on the
network message ordering assumption. Another solution is
to optimize lock acquisition, a critical bottleneck limiting
the transaction throughput of coordination services, whose
costs directly depend on the end-to-end round-trip time (RTT).
Many large distributed systems alleviated this problem by
relaxing the consistency semantics. NetChain [70] improves
transaction throughput significantly (e.g., 13333× in experi-
ments) compared with traditional server-based solutions such
as ZooKeeper. It is deployed in the network data plane as a
coordination method for data storage and query processing,
using partitioning data on multiple switches for horizontal
expansion and a fast failover algorithm for fault tolerance.
For resource constraints, key-value items are stored in switch
on-chip memory. For consistency, it uses a variant protocol of
chain replication.

3) INC for Cache System: CNC supports large-scale net-
work systems and Internet services rely heavily on high-
performance key-value storage. A common solution is caching.
However, there are two main challenges. One is the load
imbalance caused by different popularities of key-value pairs.
The other challenge is the inefficiency of CPU-based key
caching. To solve these problems, NetCache [71] uses pro-
grammable switches to cache network data. The architecture
manages hot-key items through a specially designed packet
processing pipeline. NetCache keeps a per-key counter and a
detector with filters for identifying popular key-value entries.
Experimental results show that NetCache significantly reduces
the query latency by up to 40% by half. However, NetCache
does not support network computation for specific applica-
tions. INC requires a simple generic computing abstraction
that can be easily integrated with an application to support
a wide range of data center applications. In this regard,
IncBricks [72], an in-network cache structure, provides basic
computing primitives. It combines hardware and software and
supports programmable network devices. It can be divided
into two modules. IncBox, a hybrid switch/network accelerator
architecture that provides a key-value pair storage interface
for application offloading, and IncCache, a network cache
that maintains key-value pair consistency and provides basic
computation primitives to support general task offloading.

4) INC for Machine Learning: ML tasks gradually become
a major part of the workload. Traditional distributed ML
training in data centers requires gradient aggregation through
parameter servers, while its network devices (such as switches
and routers) only realize common requirements such as routing
and forwarding. This is bound to bring high communication
costs in large model training. INC provides a solution to
this problem. Specifically, some simple arithmetic operations
of model parameters can be performed in advance through
INC to reduce the data volume in network communication.
SwitchML [73] is a co-design of the end-host transport layer

and ML frameworks for in-network aggregation. It breaks
the parameter updates into blocks and pipelined them in the
switch to support line-speed aggregation of model updates
from multiple workers. It also addresses packet loss and
floating-point values conversion. Experiments show that the
training speed of SwitchML is 9.1× faster than that of TCP.
However, It is designed for a single-switch scenario. ATP [74]
extends it to multi-rack settings. ATP modifies the traditional
IP packet field, and co-designs the switch logic and the end
host networking stack to support multi-rack aggregation.

5) INC for Multitenancy Support: Supporting multitenancy
is an inevitable trend in the development of INC. INC re-
sources should be visible to users and shared by multiple
tenants. The above INC works all pursue INC as a hidden
accelerator rather than a visible computing resource. To make
it visible, for a single network device [75], space-sharing could
be supported by components from compile-time and run-time.
Compile-time components link multiple tenants’ programs
and run them simultaneously. The run-time component allo-
cates and reclaims stateful memory from tenants for dynamic
scheduling. However, this design ignores the different needs
of users and the characteristics of INC resources. The design
of HIRE [76] comprehensively considers the challenges that
INC encounters as a new computing resource paradigm, which
is extremely consistent with the scenario of CNC. HIRE
supports the offloading of applications to INC. Specifically,
HIRE provides a resource model where tenants can specify
their requirements for servers and INC resources by submitting
a job formed from templates. The resource model translates
the user-submitted requirements into different implementation
options and provides more detailed job resource requirements.

C. Heterogeneous Computing Resources

In addition to the aforementioned computing resources
(GPU, programmable network device) that perfectly adapt the
functions of CNC, there are also other heterogeneous comput-
ing resources, such as FPGAs for general designs, TPUs for
TensorFlow [61] acceleration, and so on. In this section, we
review FPGA and TPU because of their prevalence.

1) FPGA Scheduling: Due to their high performance and
flexibility, FPGA-based accelerators have been widely used.
FPGA is reprogrammable and reconfigurable to support mul-
tiple types and functionalities, such as networking, solving
Input/Output bottlenecks, and accelerating tasks. By using
the partial reconfigurable mechanism of FPGA, FPGAs are
abstracted and virtualized to users as cloud resources in
general cloud frameworks [77], [78] to get rid of the hardware
dependence. Specifically, the framework contains an abstract
accelerator pool. Each FPGA has several predefined accelera-
tor slots, each of which is a virtual resource. Both frameworks
require the cloud provider to generate a partial bit stream for
each accelerator and each partial reconfigurable slot. Besides, a
single FPGA can host multiple applications, providing similar
functions as VMs [79]. Putnam et al. [80] adopted FPGA
in Bing search algorithm and reached significant throughput
improvement. Different from GPU and INC, scheduling key
points of FPGA are closely related to the reconfiguration
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TABLE III
FEATURES OF MENTIONED RESOURCES

Computing
resource type Features and functions

CPU General-purpose processor; Support common programming languages; Handle basic operations and instructions

GPU Graphics, DL accelerator; Excels in parallel computing; Low memory for large models; Characteristics such as inherent heterogeneity,
placement sensitivity, iterative process, and elastic training

Programmable
Network Device

Programmable switches based on ASICs and FPGAs and new network hardware such as smartNICs; Support INC; Location advantage in
network topology; High processing speed

FPGA Reprogrammable and reconfigurable accelerator, customized; Sometimes, higher performance and lower latency than GPU
TPU ML accelerator; Together with TensorFlow; Deterministic execution model; More on-chip memory; Expensive

overhead, such as pre-fetching configuration [81] and com-
munication costs after structure changes. Similar to GPU,
FPGA scheduling cares about placement fragments and AI
tasks (FPGA is mainly used for acceleration [82]).

2) TPU Scheduling: TPUs may work better than GPUs
for DL inference tasks. To execute the exponentially growing
DNN tasks in networks at a lower cost, Google designed an
ASIC based on TensorFlow that focuses on neural network
inference acceleration–TPU [83]. The core component of TPU
provides high peak throughput and large on-chip memory. In
addition, TPU also includes other units such as accumulators
and weight FIFO (First In First Out). Compared with the
time-varying optimization of GPU or CPU, the deterministic
execution model of TPU achieves a 15−30 fold speed increase
in inference tasks. Its power efficiency is 30 to 80 times
higher than GPU and CPU. To meet the growing demand for
computing edge ML tasks, Google further designed the Edge
TPU, which is used to accelerate task execution in resource-
constrained edge systems. Boroumand et al. [84] analyzed
inference execution of commercial Edge TPU and found that
edge accelerators have obvious shortcomings in throughput,
energy, and memory access processing. For this purpose,
they proposed Mensa, an edge acceleration framework that
integrates several heterogeneous ML edge accelerators. Specif-
ically, Mensa incorporates and manages multiple on-chip and
near-data accelerators, scheduling different layers to run on
the appropriate accelerators based on layer heterogeneity. The
deployment of edge DNN is a key problem in the edge
system, which involves a problem of scheduling with limited
resources. To solve this, Yin et al. [85] designed a pipeline.
The framework aims to provide a deterministic, optimal, and
extensible scheduler by solving constraint problems. This ap-
proach bypasses the limitations of the learning-based schedul-
ing approach, which lacks determinism and quality assurance.
In practice, GPU scheduling is more generalizable than TPU
in applicable tasks and frameworks.

D. Summary and Lesson Learned
To conclude the discussions above, we surveyed several

typical resources including GPU, the programmable network
device, and other heterogeneous computing resources (FPGA,
TPU). Table III shows the mentioned resource features. We
then identify some important lessons.

1) Summary: To provide ubiquitous and timely computing
services, CNC must coordinate the management and schedul-
ing of various heterogeneous computing resources to provide

a unified view of computing power. This section focuses
on the research of several promising computing resources.
As a relatively early processing unit with high parallelism,
GPU sharing schemes and scheduling algorithms have been
widely studied. INC is a relatively new computing paradigm
in recent years. Its research work includes solving the classical
problems of networks, accelerating specific applications, and
providing common computing services visible to users as
a computing paradigm. In addition, new and efficient het-
erogeneous resources that can be generalized in the future
also include FPGA, TPU, etc., and the current work mainly
focuses on the acceleration function of these resources for
specific applications. The coordination of multiple resources in
CNC mainly falls into chip-wise, node, cluster, and distributed
environments, involving dependence (e.g., CPU initiating the
launching of CUDA kernels on the GPU [86]), interference
(e.g., VM interference affecting placement and consolidation
[87]), complementarity (e.g., upstream servers assisting in
raising local admission control during server overload [88]),
and compensation (e.g., rescheduling, VM migration). The
coordination spans from thread scheduling with data similarity
patterns considered [89] to a massive task executed across geo-
distributed DCs (in Section IV.C).

2) Lesson Learned: The first insight is that INC does
not support common AI task offloading, and cannot provide
common computing services such as CPU and GPU computing
resources. INC, as a relatively new computing paradigm, is a
new direction to solve the problem of overall performance
bottlenecks caused by network communication. In addition to
applying INC to network functions, most relevant works have
proposed new uses of INC to solve specific applications, such
as aggregation, query, caching, and consensus. However, these
efforts do not present INC as a new resource paradigm and
remain invisible to users. In this regard, recent work focuses
on the INC multi-tenant sharing or programming model, but
only for simple tasks or some specific application scope.

Another insight is that most works do not involve the coop-
erative scheduling of various computing resources, and there
is no common, abstract, and extensible resource model and
scheduling framework for constructing complex and diverse
heterogeneous systems. The resource heterogeneity considered
in most works is limited to the performance and function
heterogeneity of the same resource or the heterogeneity of
a few different resources. These works are useful for further
study of cooperative scheduling, but they cannot be directly
applied to CNC with highly heterogeneous resources.
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III. SCHEDULING OBJECTIVES

CNC faces diverse tasks with varying objectives. Due to
extensive computing power usage, the initial focus should be
on environmental responsibility. Besides, QoS with practical
concerns about deadlines, costs, and trustworthiness should be
satisfied. Furthermore, exploring AI for hands-free, flexible
schedulers that may achieve higher performance.

A. Green Scheduling

The growing number of computing devices and demands
brings about significant energy consumption and CO2 emis-
sions. The energy problem is severe for computing centers
consisting of heterogeneous servers, such as clusters, grids,
and clouds. Green computing is an inevitable trend in the
development of CNC. In this section, we will review the
energy-saving schedulers in CNC following green methods:
resource allocation, resource consolidation, and others.

1) Resource Allocation: Due to the heterogeneity of re-
sources, running the same VM job on different hosts may
require more or less energy [90]. Placing VM requests on
appropriate servers can reduce task running time, improve
resource utilization, and save energy.

a) Resource Utilization Improvement: In many cases,
maximizing resource utilization and reducing energy consump-
tion correlate positively or almost linearly. Therefore, optimiz-
ing one will often improve the other. The traditional approach
to solving the energy consumption or resource utilization
problem is to pack VMs into as few physical nodes as possible,
similar to the multidimensional stacked box problem. Multi-
granularity decomposition scheduling includes clouds, edge
resources (stable and unstable), storage resources, and termi-
nals by setting subtasks with network status considered. The
authors in [26] proposed to deploy the decomposed subtasks to
the computing power of cloud and edge by maintaining a cloud
edge decision coefficient. This coefficient considers factors
such as time and monetary cost of cloud and edge separately
under multiple constraints. The scheduling philosophy is to
fully use fragmented resources and reduce the tasks deployed
on the cloud as much as possible. When the task of the edge
node fails, it can be quickly migrated to save time and money.
Some previous work focus on clouds only. For example,
schedulers could use a genetic algorithm for VM placement
that designed server and network energy consumption into the
fitness function [91]. For RL schedulers, the authors in [92]
combined the queueing model with Q-learning to reduce task
response time. The scheduler first assigns requests to servers,
and then prioritizes requests to maximize CPU utilization.

Federate learning may consume more energy than a Trans-
former [93]. Its green challenge revolves around commu-
nication, clients, servers, and training-related configurations.
Communication cost accounts for the majority [94], including
solutions such as compression, frequency and uplink reduc-
tion, and pairing devices by energy availability and proximity
to the edge server. Regarding distance, the large-scale star-
topology is deemed energy inefficient [95] and may benefit
from more flexible topologies [96]. On the client side, a
client-oriented controller commonly dynamically decreases the
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Fig. 5. A framework shows the resource consolidation of physical machines
(PM) in a cluster through VM migration.

processor clock frequencies which slows learning, balances
energy units and data units used in training [97], and chooses
clients [98]. Client energy use can be monitored or profiled
[99]. Sufficient energy and computing budgets should be
provided; otherwise, the client will produce a low-accuracy
local model that harms the global model. Furthermore, model
aggregation energy [100] guides aggregate decisions on place-
ment and numbers in the MEC network. Concurrent active user
numbers and running time are substantial-correlated factors of
carbon footprint [94]. Additionally, the green scheduling of
FL under the 6G network is more complicated [101].

b) Run-Time Reduction: The run-time is an indirect
metric of energy consumption. To reduce the computational
complexity, the authors in [102] decomposed the scheduling
process into VM assignment, server provisioning to perform
simple scheduling, and refined scheduling. Then repeats the
iterations in a negotiation manner [103] until the total cost
no longer decreases. The multi-staged structure has become
popular due to its run-time saving, scalability, and ability to
adapt to dynamically-changing user requests. In stage I, the
scheduler allocates the task to a server farm. In stage II, it
chooses an exact server to run this task. The authors in [104]
designed two DQN agents for each stage. They also tested in
a large-scale environment. DRL schedulers have made great
progress in run-time savings compared to round-robin.

2) Resource Consolidation: In CNC, not all servers are
fully utilized, and by consolidating some servers, it is possible
to reduce the number of hosts in use and thus reduce energy
consumption. The resource consolidation of CNC is usually
implemented by the migration of VM. The existing research
has considered multi-type and multi-objective resource con-
solidation, as shown in Figure 5.

a) Multi-Objective Optimization: Application service
levels may drop during VM migration, live migration should
prevent SLA violations while consolidating resources. The
VM consolidation can be achieved by maintaining a Pearson
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correlation factor to match and balance the load among multi-
ple resources. The work in [105] keeps minimal host shutdown
and considers migration, energy, and SLA violations. It is
common to use threshold. Xiao et al. [106] proposed a multi-
objective VM integration method based on a dual threshold
and ant colony system. The consolidation is triggered and de-
termined by dual thresholds of CPU utilization. During consol-
idation, the scheduler simultaneously selects source migration
VMs and target hosts. It utilizes different selection strategies
based on host load status. The strategy reduced energy usage
and SLA violation rates while improving performance.

b) Multi-Type Resource Consolidation: Considering
more resource types, such as memory and network devices, in
resource consolidation enhances energy model reliability for
their influences on QoS metrics, and considers resource con-
straints, workload preferences, and interdependence. Aryania
et al. [107] proposed a meta-heuristic scheduler considering
the utilization of processor and memory. For more resource
types, the authors in [108] considered common related re-
sources including CPU, bandwidth, RAM, and disk. It op-
timizes three phases of VM consolidation, physical machine
detection, VM selection, and placement. In the physical ma-
chine detection phase, the scheduler uses the Support Vector
Machine for load prediction. In the VM selection phase,
the modified minimization of migration policy selects VMs
from overloaded physical machines. For VM placement, a
modified Particle Swarm Optimization (PSO) is used to avoid
getting trapped in local optima. Similarly, the authors in [109]
designed algorithms for three phases of dynamic VM consol-
idation. The basic ML models (e.g., decision tree regression)
are used to predict the optimal host migration time for each
VM. And then, the scheduler selects the to-migrate VMs with
migration time and host CPU usage considered in a dictionary
order. Finally, it uses Best-Fit decreasing algorithm to select
the target hosts for the migrated VMs. They found that multi-
resource consideration decreases the number of migrations.

c) Migration Energy Cost Considered: The VM migra-
tion also consumes many resources, and this energy con-
sumption is overlooked in traditional algorithms. The straight-
forward idea is to decrease VM migration numbers [110].
However, reducing it alone does not reduce the total energy
consumption. The authors in [107] used an ant colony system
to solve the VM consolidation problem. It significantly reduces
the number of migrated and active physical machines. How-
ever, the energy consumption during VM migration is only
approximated by the size of the migrated VMs.

Improper VM migration can also increase the violation rate
of SLAs and cause unnecessary energy consumption. Li et al.
[111] proposed a hybrid heuristic evolution-based approach
for VM consolidation, focusing on VM placement while
optimizing energy. It mitigates host overload risk and improves
QoS. Farahnakian et al. [112] pointed out that the ignorance of
future resource requirements may back-generate unnecessary
VM migration. To this end, they used regression models to
predict future resource utilization for VM consolidation.

3) Other Green Methods: The above-mentioned resource
allocation and resource integration reduce energy consumption
from the perspective of resource management, however, it is

necessary to point out that green computing solutions are
not limited to resource management. Many schedulers use
other methods to achieve green computing, such as scheduling
computing nodes for on-demand sleep based on the tidal
characteristics of the computing nodes [113]. The schedulers in
this section lack practice results. This subsection presents some
scheduling methods the Dynamic Voltage Frequency Scaling
(DVFS) technique and using renewable energy.

a) Scheduling using DVFS: DVFS is a typical energy-
saving technique in supercomputers. By lowering the operating
frequency, it saves the energy consumption of complementary
metal–oxide–semiconductor circuits. A number of schedulers
support DVFS. Schedulers can combine with a genetic al-
gorithm [114]. This algorithm first performs VM placement
based on makespan metrics. Then, it sets different DVFS
levels as a metric based on computational energy consumption.
The CPU frequency reduction of some nodes saves energy
consumption. Schedulers can combine with lists to improve
convergence. The authors in [115] claimed that a drop in
operating frequency raises the circuit’s error rate and reduces
the system’s reliability. System reliability can be improved by
combining DVFS with checkpoints using rollback criteria. The
checkpoint interval affects the overall performance [116].

b) Scheduling using Renewable Energy: By using elec-
tricity from renewable energy sources [117], computing cen-
ters can reduce the significant carbon emissions that brown
energy (e.g., fossil fuels such as oil) produces. To reduce
greenhouse gas emissions from IP over wavelength-division
multiplexing networks, Shen et al. [118] proposed a “follow
the sun, follow the wind” strategy to maximize the renewable
energy utilization at each network node. However, the inter-
mittent and fluctuating nature of renewable energy introduces
challenges. For example, solar power is dependent on climate
and time. When the generation suddenly drops, the scheduler
reduces node frequency, defers jobs, raises interruption, or
even fails jobs. Besides, energy storage occurs when produced
power surpasses needs. Relying on the predictive simplic-
ity of resources such as solar energy or the probability of
oversupply [119], the scheduler chooses renewable energy
wherever possible [120] or the best energy generator for each
period, with resource types, supply statistics [121], and energy
storage costs considered. The objective is to minimize ex-
penses, carbon emissions, and SLO violations. However, when
the prediction is irregular, maintaining heterogeneous energy
buffers, such as off-site grids, energy storage devices, and
renewable energy sources [122] with a dynamic server load
ratio [123] is also an option. Besides power supply, renewable
resources also contribute to thermal management, including
aisle containment, waste heat handling, and cooling from
air, solar, geothermal, and water. Direct air-side economizers
would greatly benefit the cool climate zones (e.g., 15–22%
energy reduction is observed [124]). However, it requires high
standards of air humidity (which may cause machine aging),
cleanliness (inappropriate for dusty cities), and temperature
to tune the heat exchange and avoid extra process costs.
The use of geographical records (e.g., desert, tundra, adjacent
reservoirs) is more oriented to energy modeling, and it can
be used to balance power-saving estimation and computing
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TABLE IV
THE GREEN SCHEDULERS

Method Considerations Ref. Strategies or Contributions Limitations

Resource
Allocation

Resource
Utilization
Improvement

[26] Maintains cloud-edge decision coefficient. And then it
deploys the decomposed subtasks to the cloud and the edge.

Heuristic algorithms may have local
optimal concerns.

[91] Considers communication and utilization together. The convergence speed and scalability.

[92]
First, distributes requests to the server through a centralized

scheduler using the queuing model, and then uses the
Q-learning scheduler on the server for resource allocation.

Lacks experiments and evaluations in
large-scale cloud environments.

Run-Time
Reduction

[102]
Reduces run time through three-stage decision-making of
VM allocation, resource allocation, and task scheduling.

Runs very slowly when the problem size is
large.

[104] Uses DRL agents to optimize each stage of scheduling. Lacks balance between energy and
performance.

Resource
Consolidation

Multi-Objective
Optimization

[105]
Acts as a dynamic VM consolidation method to balance

energy reduction, SLA violations, and VM migration.
Only the number of migrations is

considered, which is coarse-grained.

[106]

Simultaneous optimizes energy consumption and SLA
violation rate using a dual-threshold and ant colony

system-based multi-objective VM consolidation method.

The adaptive thresholds for variable
workloads need further study.

Multi-Type
Resource
Consolidation

[108]
Adds physical machine detection and load prediction for

energy-aware multi-resource VM consolidation.
Lacks support for emerging paradigms of

cloud platforms.

Migration Energy
Cost Considered

[110]
Reduces energy consumption by reducing the number of

VM migrations.
The reduction of migration numbers may
not lead to energy consumption reduction.

[107]
Models the energy consumption during VM migration to

approximate the size of the migrated VMs.
The energy modeling granularity of VM

migration is not fine enough.

[111] Mitigating the risk of mainframe overload. Not optimizing resource utilization.

[112]
Considers current and future resource utilization for VM

consolidation. Lacks adaptability to generalize.

Others

Scheduling
using DVFS

[114]
Follows makespan metric to place VMs, and then follows

computed energy consumption to set different DVFS levels.
The drop in reliability that may be brought
by the use of DVFS technology is ignored.

[115]
Combines DVFS technology with a list-based task scheduler

while maintaining QoS.
Insufficient consideration of the

heterogeneity of user needs.

[116]
Improves energy and system reliability through

rollback-support checkpoints.
The evaluation index of user service

quality has not been considered.

Scheduling using
Renewable Energy

[118]
Utilizes renewable energy to its fullest potential at each

network node to reduce non-renewable energy usage.

The challenge of intermittency in
renewable energy generation is not

adequately considered.

[122]
Optimizes power management and load in DCs with

multiple power types and diverse geographic distribution.
The temporal variation of renewable

energy is ignored.

performance when assigning tasks to geo-distributed DCs. For
a specific DC, scheduling and cooling system configuration
(e.g., fan speed) can be jointly optimized [125].

We summarized the main mentioned green schedulers in
Table IV.

B. QoS based Scheduling

Ensuring Quality-of-Service is an important goal of CNC
scheduling, which directly relates to the service capability
of the system as well as the user experience. When a job
is scheduled, the user usually signs an appropriate service-
level agreement with the computing service provider. The QoS
requirements for job scheduling are specified in the SLA,
including application deadlines, a budget for job scheduling,
system reliability, and the security of the service. To improve
user satisfaction with requested services in CNC, the authors
in [126] proposed a Bkd tree-based service optimization
scheduling algorithm that integrates service response time,
scheduling cost, availability, and success rate. In this section,
we will review the schedulers for optimizing the QoS in CNC
following three aspects of the user experience perspective:
deadline-aware, budget-aware, and trustworthy.

1) Deadline-Aware Scheduling: Most tasks in CNC, such as
DL inference tasks, have deadline requirements. Besides real-
time tasks with millisecond-level time requirements (as men-
tioned in Section IV.A), deadline-aware tasks can also have
time constraints beyond seconds and even days [127]. This
section focuses on deadline-aware schedulers using makespan
objectives and deadline constraints.

a) Makespan as an Objective: Makespan, defined as
the maximum completion time of a set of tasks, is a com-
mon metric for schedulers. Many schedulers improve user
service quality by optimizing makespan. The scheduler in
[128] combines Q-Learning and ranking for quick decision-
making, but their effectiveness depends on state and ac-
tion space scale. Then earliest completion time strategy is
used to reduce makespan while allocating processors. As
the number of CNC users continues to grow, the need to
execute more complex workflow applications has emerged.
Providing schedulers for these complex workflows to meet
deadlines is challenging. Suresh et al. [129] proposed a Q-
Learning-based scheduler in a multi-tenant cloud. However,
the resource allocation type of this model is relatively simple.
Few approaches consider the case of providing multiple types
of VM instances simultaneously. For this reason, Wang et al.
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[130] proposed a multi-workflow scheduler. It aims to target
multiple types of workflows by dynamically performing cloud
resource scaling on multiple types of VM instances. A deep-
first search coalition RL provisioning strategy is proposed to
achieve dynamic provisioning of multi-type resources. It first
transforms the input workflows into some queues and then
performs coalition RL to generate multi-type VM instance
bundles. Finally, the task branches are scheduled to the best
VM instance. Theoretically and experimentally, the algorithm
shows improvements in makespan and processing time.

b) Deadline as a Constraint: In addition to the direct
optimization of makespan metrics, a number of works use the
deadline as a constraint. It is common to use a deadline budget,
for example, on heterogeneous servers with QoS considered
[131]. Besides, schedulers use optimization solutions. The two
deadline-sensitive schedulers in [132] add the tightness of the
deadline and improve the greedy scheduler with Ant Colony
Optimization on having less energy cost and makespan. For
workflow jobs, Arabnejad et al. [133] ensured both deadline
and cost budget constraints to improve algorithm stability and
robustness. Furthermore, schedulers can use provision and de-
provision guided by a heuristic algorithm just as per need
[134]. It needs to monitor the status of each task.

2) Budget-Aware Scheduling: Budget or cost is another
issue that users are concerned about in QoS-aware scheduling.

a) Budget as a Constraint: Most contemporary sched-
ulers incorporate both time and cost as restrictions. For data-
intensive applications on heterogeneous systems, schedulers
focus on task graph scheduling problem, which is always
solved by heuristic algorithms. The authors in [135] proposed
a budget and deadline-aware scheduler to solve this scenario.
Aiming at workflows on heterogeneous cloud systems, the
authors in [136] proposed a heuristic scheduler with level-
wise pre-assigned budgets and deadline constraints. Some
algorithms optimize processing time and makespan, together
with budget. Schedulers are enabled to pick faster machines for
critical jobs and assign non-critical tasks to low-cost machines
[137]. Schedulers could also use multi-objective optimization
with budget constraints added, such as combining PSO with
Lion Optimization algorithms [138]. In addition, schedulers
add more scheduling factors, such as fairness [139].

b) Cost as an Objective: The scheduler could opti-
mize the user’s costs directly. Ma et al. [140] presented
a deadline and cost-aware scheduling algorithm for jobs in
the IoT. It optimizes the execution cost of processes in
an Infrastructure as a Service (IaaS) model under deadline
constraints. Aiming at the cost minimization problem of
workflow on cloud systems, Dong et al. [141] proposed a
knowledge scheduling algorithm based on task integration.
To save transfer time of the workflow, sequential tasks could
be optionally merged by vertical clustering. To minimize cost
under deadline constraints, parallel tasks could be aggregated
by horizontal clustering with greedy resource allocation.

3) Trustworthy Scheduling: Availability, trustworthiness,
privacy, and security are also important QoS parameters.

a) Fault Tolerance Support Schedulers: System failures
may occur due to hardware defects, software errors, or un-
expected events. CNC needs a fault tolerance mechanism to

assure availability and resilience. According to [142], fault
tolerance contains active and reactive types. Predicting fail-
ures and replacing suspect components proactively prevents
failures and mistakes. Reactive fault tolerance strategies such
as checkpoints/restarts, replays, and retries lessen application
failure effects in execution. Task replication could be used in
fault tolerance, such as r copies of jobs can endure r − 1
failures. Alternate tasks with checkpoints and retries [143]
could be adopted too. It is observed that alternative tasks
with checkpoints can improve the reliability of grid systems
more than alternative tasks with retries. Ranjbar et al. [144]
presented a task model for mixed-criticality systems and ana-
lyzed task abandonment-aware scheduling of single-processor
MC systems to assure MC task safety in the case of failure.
In workflow management system [145], schedulers support
QoS by converting user-submitted scientific data into scientific
workflows. It experimentally achieves significant advantages in
terms of makespan, cost, and meeting SLA constraints.

b) Trust and Privacy Support Schedulers: Users face
the risk of private data and job exposure when using the
CNC, such as for medical applications. The authors in [146]
divided the privacy algorithms into three categories: cryptog-
raphy (e.g., differential privacy), which may raise computing,
data accuracy, and time concerns in CNC; privacy protec-
tion theories with the support of AI and mathematics (e.g.,
federated learning); and trusted hardware. They could work
collaboratively. Schedulers could consider the task and data
privacy by solving the combinatorial optimization problem.
Federated Learning (FL), a promising way to support edge
intelligence in the 6G networks without revealing the raw data,
could handle decentralized data with privacy concerns while
cooperatively training global ML models. Zhou et al. [147]
proposed a server-led FL scheduler for training multiple jobs
in parallel over heterogeneous edge devices (e.g., 100 devices).
A Bayesian Optimization (BO) scheduler, supported by the
Gaussian Process, and a policy-gradient DRL scheduler with
LSTM device-relationship sharing are proposed to reduce costs
while maintaining data fairness. The Bayesian Optimization
scheduler is suited for simple jobs (e.g., CNN is simpler than
VGG). This DRL scheduler outperforms others for complex
jobs. The authors in [148] further proposed a Meta-Greedy
strategy to choose the cheapest schedulers executed in parallel
(BO, DRL, Genetic, Random, FedCS, and Greedy). Meta-
Greedy experimentally outperforms the single-job FL and
other single schedulers. Nevertheless, a single-server, multi-
client design may struggle in a larger setting with vary-
ing job priorities, inheriting FL’s Byzantine, communication,
heterogeneity of device and data, and security issues. With
benefits of 6G networks such as latency and reliability [149],
CNC schedulers could also use decentralized learning, which
is oriented to device-to-device communications (e.g., swarm
learning focuses on model exchange [150]) and is affected by
topology design. These schedulers support edge intelligence
while handling the limitations raised by the centralized ML.
More specifically, schedulers could also adopt methods such as
combined privacy policies (e.g., federated learning, differential
privacy, blockchain) for collaborative training in unmanned
aerial vehicle networks [151], the model split selection by
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computation between the edge devices and server for collabo-
rative inference [152], and edge node credibility rating [153].

Additionally, schedulers could protect privacy with
blockchain technology [154]. Tan et al. [155] proposed a
scheduler based on the energy blockchain network with
enhanced data confidentiality and security. Besides, Baniata et
al. [156] proposed a scheduler using Ant Colony Optimization
with Fog-enabled blockchain assistance. Furthermore, user
privacy is protected by keeping blockchain miners’ identities,
locations, and tasks anonymous. The authors in [157] used
an improved particle swarm neural network to support
the trust evaluation and management system. This design
shows a solution to the trust evaluation of computing power
cooperation in CNC. Meanwhile, malicious state nodes
are detected to reduce the detection time. Furthermore, the
authors in [158] designed a lightweight model for off-chain
routing in payment channel network-enabled IoT to address
device size limitations during deployment.

c) Security Support Schedulers: Many security-aware
CNC schedulers have emerged by leveraging isolation, access
control, and periodic monitoring or updating. For example,
the authors in [159] designed a three-level security model for
scheduling in industrial control systems. Accordingly, they
used distributed PSO for resource allocation and dynamic
adaptation of resources and workflows. Experiments indicated
a balance between scheduling performance and security. Singh
et al. [160] proposed a real-time scheduler on the network
edge to choose between micro DCs (close to users) and
cloud DCs by considering network latency and security labels.
For attacks, Citeseer et al. [161] processed cross-VM attacks
among hostile cloud users. The VM placement and migration
processes are supported by security policies, enabling cloud
subscribers to express their isolation requirements. Its core
idea is to designate a group of hostile users and avoid placing
VMs owned by hostile users on the same hardware host. The
authors also introduced a fine-grained virtual network access
control to enable a defined set of users to share the virtual
network. Apart from designing schedulers, specific algorithms
for components could provide security detection to schedulers,
such as network anomaly detection [162], [163], or mitigate
attacks, such as construct global models with INC [164].

d) Autoscaling Schedulers: Serverless is topical in CNC
for autoscaling, allowing users to deploy services by simply
uploading code. Serverless task instances are only constructed
and loaded when a request arrives. And when the request
traffic decreases, some will be released automatically. Instance
position scheduling determines the physical node to build an
instance of an application function instance, considering two
factors: load balancing and locality. Load-balancing sched-
ulers mainly use hash, matching instances and deployment
nodes, and multi-objective. For example, maps the task to the
consistent hashing ring, then selects the first usable invoker
encountered as the deployment node. To avoid herd effect,
caused by highly skewed and bursty function calls [165], the
scheduler could detect the popularity of functions when a
task arrives [166]. The scheduler will randomly send burst
workload to other servers and add random Gaussian noise to
the high-load server. Due to multi-objective complexity, cloud

service providers always choose hash-based schedulers.
The invocation modes always include internal invocation

between functions and user-initiated external invocation with
triggers. The scheduler should distinguish internal and external
calls with enhanced function locality, which implies deploying
functions of the same application onto the same physical
node as much as possible to reduce end-to-end latency. Sand
[167], a fine-grained sandbox technique, significantly reduces
latencies. It employs containers to isolate applications, and
grain workers as templates to fork the instances of func-
tion. Complex applications can be represented by workflow
modeled as a DAG. The authors in [168] proposed a DAG
engine, WUKONG, to statically schedule the application’s
DAG graph based on leaf nodes to get many subgraphs.
Subgraphs are isolated by using the AWS lambda function.
The scheduler further focuses on handling running conflicts.
This DAG division enhances the fine-grained locality between
functions with experiments on real-world DAG jobs proved.

C. AI-driven Scheduling

AI-driven schedulers have been used to make the scheduling
automatic. The existing schedulers can be classified into three
categories: heuristic, meta-heuristic, and learning-based. The
first two face scalability issues and rely on manual efforts, and
may not converge to the optimal solution. In this section, we
will review the learning-based schedulers in CNC.

1) Deep Learning Used in Scheduling Problems: Besides
the uninterpretability, DL algorithms are rarely used for direct
scheduling decisions due to their reliance on sufficient, non-
obsolete, clean prior knowledge in the training data. This
requirement is challenging because of the varying distribu-
tions of environment, resources, and workloads. Instead, DL
algorithms indirectly assist schedulers with prediction capa-
bilities. For example, Ismayilov et al. [169] combined neural
networks with a non-dominated sorting genetic algorithm. This
algorithm pays attention to two aspects of workflow scheduling
dynamics, the resource changes over time, such as hardware
failures, and the changes in scheduling goals. Another example
is the use of the knowledge graph to provide schedulers with
predicted availability and relationships of resources [170].

Deep learning could serve as a scheduling algorithm selec-
tor. For diverse tasks with different requirements, schedulers
receive the predicted performance of a set of resource man-
agers [171] or choose the most cost-effective scheduler from
schedulers in each scheduling interval [172].

2) Deep Reinforcement Learning Used in Scheduling Prob-
lems: RL algorithms have become much more expressive after
the breakthrough of DNNs. DNNs capture more underlying
connections within the dynamic factors of CNC. DRL may
perform better in situations where there are large solution
spaces, difficulties in finding clear rules, and feature extraction
is needed. Specifically, the DRL algorithm requires a steady
state distribution and transition without many changes. Table V
shows the DRL schedulers mentioned in this section. We only
surveyed RL algorithms with great generalization ability to fit
in the diversity of CNC. REINFORCE (a fundamental policy
gradient algorithm) and DQN (requires discrete actions) are
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TABLE V
DEEP REINFORCEMENT LEARNING BASED SCHEDULING ALGORITHMS

Reference Algorithm Objectives Strategies or Contributions workflow

DeepRM [178] REINFORCE
with baseline

Makespan,
average job

slowdown, Job
Completion

Time, resource
utilization

A classical automatic non-preemptive resource
management using DRL with images as input

DeepRM Plus
[187]

REINFORCE
with baseline +

Imitation
learning + CNN

Turn-around
time, cycling

time

Use CNN to process images; Behavior cloning traces
are generated by following heuristic methods such as

Shortest Job First

DeepJS [179] Policy Gradient Makespan
Bin packing model; Obtain a fitness by policy gradient
method; The state is a changing-length machine-task

pair list other than images

WSDRL [194]
Actor-Critic +

Pointer Network
with attention

Makespan
Masked actions for dependency representation; A task

sorting list guided by heterogeneous earliest-finish-time
to maintain

✓

[181] Multi-agent
DQN Makespan, cost Two agents for different objectives with concatenated

actions as a joint policy ✓

Decima [177]
REINFORCE

with baseline +
GNN

Job Completion
Time

GNN for scalable state and DAG processing;
Gradually-increasing episode length for stochastic job

arrivals, it is also related to curriculum learning
✓

popular scheduling algorithm options with abundant parameter
tuning experience offered. Besides, the actor-critic algorithm is
promising as a research hotspot. Not only being an optimizer,
DRL is also a supportive guide in choosing methods from the
toolbox. For example, DQN could guide the selection process
of meta-heuristic algorithms with better population diversity
and quality [173]. The results indicated faster convergence,
better asymptotic performance, and stronger search ability than
traditional baselines.

a) Designing the DRL Agents: We surveyed this because
the DRL needs tricky parameter tuning. The design is essential
for achieving fast convergence and flexible generalization.
Usually, the state in DRL could be either in vectors or
images, including characteristics of the resources and jobs.
The action is always designed as a job or server allocation
list. CNC has a much larger scheduling scale than traditional
RL applications and cloud-edge scenarios. To reduce the state
dimension, some works divide the jobs into separate groups by
K-Means and classification [174]. Distributed or decentralized
schedulers [175], state dropout alias oracle guiding [176], state
compression [175] and embedding [177] assist in overcoming
large state dimensions and the challenge of scalability. To
reduce the action dimension, DRL schedulers always conduct
multiple actions within one scheduling step [56], [178], [179].
To note, many works have similar state-and-action designs.

Reward-led Objectives: The reward is a supervision signal
for the agent to learn. Also, sparse/dense supervision signifi-
cantly influences the learning process and final performance.
The reward design corresponds to the goal. The objective
of DRL schedulers is always the cumulative reward, while
the average reward is observed to gain better performance
in [177]. Non-cumulative objectives, which can be used to
solve bottleneck-affected problems in network routing and
the largest reward identification problem, can be achieved by
generalized objectives [180]. To accomplish various goals, the
scheduler is designed as a single-agent-single-goal setting with

manual selection, a single agent with weighted goal-specific
rewards, or multiple cooperative agents with separate objec-
tives [104], [181]. Abstract metric formulation and automatic
reward weight tuning need further investigation. For instance,
the number of unfinished jobs could serve as an indicator of
the average completion time at each timestep [178].

Exploration and Exploitation: Most works only tested
their algorithms in simulators such as CloudSim [182], Work-
flowSim [183], EdgeCloudSim [184] (Modularized. Multi-
tier support with models such as network link, mobility, and
edge server), iFogSim [185] (Edge/Fog), and the extensions.
Therefore, for safety and cost considerations, the choice of
ϵ − greedy, which executes the random action with an ϵ
probability, must be carefully designed before real-world de-
ployment. Similarly, most schedulers evaluate their reliabilities
by inflexible retrospective metrics such as deviation from
expected values. The risk-avoid agent design and offline RL
pre-train [186] address partial risks in advance.

DRL Scheduling Overhead: The effort to minimize the
overhead mainly focuses on reducing training time and pro-
viding flexible adaptation. Strategies such as offline RL pre-
training [186], imitation learning [187], Q function decom-
position [188], heuristic algorithm initialization [189], meta
reinforcement learning [190], and following typical configura-
tions are taken. For less latency, some DRL agents could be
replaced by heuristic methods [191]. In addition, the sched-
uler makes similar decisions [178]. Therefore, the historical
data could be reused. To provide more samples because of
the sample inefficiency nature of RL, synthetic data could
be generated by sampling from a similar distribution [56],
Generative Adversarial Network (GAN), model-based RL, and
simulators. The training sequence is better arranged from easy
or average to challenging to achieve faster convergence and
better performance [177], [192]. However, when the DRL
scheduler performs worse than the heuristic scheduler, try tun-
ing parameters based on design and common settings in simple
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environments. Consider switching to the heuristic scheduler
if it consistently underperforms in multiple environments. If
it only underperforms in a few environments, consider using
curriculum learning [193].

b) Makespan using DRL: DeepRM [178] is a classical
DRL scheduler. The state is represented by images showing
the job occupation slots. A policy gradient method REIN-
FORCE with an average job slowdown baseline to reduce
variance is used to form the scheduler. DeepRM Plus [187]
further introduces imitation learning to speed up convergence.
However, the scheduler here could only handle easy scenarios
without support for preemption, tasks with dependencies, and
unavailable resource profiles. Also, the generalization ability
of images may affect the state transfer ability when adding
or removing machines and workload changes. Retraining is
expensive and time-intensive. Schedulers could also combine
with other optimization problems, for example, the multi-
dimensional bin packing problem. The dimension is the num-
ber of resource types, such as memory. The work in [179]
uses policy gradient methods to compute the fitness, matching
a machine and a task. Experimental results show a reduction in
makespan on 75% of the job chunks. However, this framework
only works on single-task settings. Schedulers could also
combine with lists to solve the slow convergence. Schedulers
in [194] use the Pointer Network as the actor to predict the
policy distribution of the task sorting list. Pointer Network uses
RNN as an encoder and decoder with the merit of variable
sequence sizes and attention mechanisms. When the list is
made by a DRL agent, heterogeneous earliest-finish-time,
a list-based heuristic algorithm mixed with a given policy,
allocates the tasks to the server. Total makespan works as
the reward to show the quality of the ranking list. Besides,
the Mask scheme on actions could provide restraints such as
dependency. This lowers the complexity of computation.

Multi-agent for different objectives balancing is common in
RL settings [195]. For example, DQN agents are designed
to optimize cost and makespan separately with the other’s
rewards and actions as an observation [181]. Then the actions
of two agents are concatenated as a joint policy, as Figure
6 shows. In this multiple-agent interaction environment, the
scheduler always uses a utilitarian selection strategy, maxi-
mizing the sum of rewards from all agents in each state and
achieving correlated equilibria. They tested various classical
workflow templates such as Cybershake. It outperforms the
baselines in terms of makespan with similar total costs.
However, two agents with joint learning might still make the
environment unstationary and this could raise theoretical and
practical issues. Furthermore, instead of cooperating with one
another, agents could be adversarial opponents.

c) Job Completion Time using DRL: The average time
to complete the best-effort jobs could represent the JCT. JCT
could be estimated by online or offline profiling [196], [197]
and prediction [198]. The prediction requires a high similarity
between the source and target settings. For online profiling, the
longer jobs get the iteration time to estimate the JCT without
actually completing them. Offline profiling maintains a model.

Workflow-Dependent Graph Neural Networks: To ease
the complexity of modeling generalizable time-varying task
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Fig. 6. The framework of a DRL scheduler includes multiple DQN agents.
Each agent optimizes its own objectives. It forms a joint action. The agents
could cooperate or become opponents according to the reward setting. In
this work, N = 2 and the agents cooperate through a Utilitarian Selection
mechanism. This framework could be expanded to one or all of the diverse
environments with hierarchical design.

DAGs

Executors

State Scheduling Stage

Environment

Multi-Objectives

RewardObservations from both cluster and jobs

Arrow: Data dependencies 
with different data shuffle volume
Size: The number of paralizable tasks

Color: Different job durations

Graph Neural Network

Information 
Passing

Information 
Summary

Scheduling
Policy Scheduling

Execution

Action
Algorithm

Underlined: The Reinforcement Learning components

! "#$ %&'.
$)*+,) %&'.

Policy 
Converter

Fig. 7. The overview of DRL schedulers supported by GNNs. Each node
represents a computation stage, and each computation stage comprises par-
allelizable jobs. Each edge represents a dependency. Only after the previous
node’s completion could the current node start execution. Policy converter
picks a scheduling policy from a list. The introduction of the GNN as a
representation for the input of the DRL scheduler improves the ability to
solve jobs with task dependencies.

dependency, GNN is used to provide a better representation
of nodes. For jobs with dependent tasks modeled by Directed
Acyclic Graph (DAG), the input should include various task
durations, parallelism, structures, and different attributions of
nodes and edges. Decima [177] models the intricate per-node,
per-job, and global relationships using GNN as the input of RL
to schedule computation stages and determine their levels of
parallelism. The gradually-increasing episode length sampled
from exponential distribution was introduced to improve the
adaptation in the early exploration. Furthermore, it tries to
solve the reward interference of the job arrival sequence using
sequences separately trained [178]. Experimental results show
great improvement by using this graph representation. Decima
is limited to homogeneous servers and detachable jobs. Deep-
Weave [199] further takes data transmission time into account
to schedule coflow in the DAG. Figure 7 shows the scheduling
overview of GNNs combined with DRL. GNN could support
the scheduling in communication networks too [200] for its
topology modeling ability.
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D. Summary and Lesson Learned

To conclude the discussions above, we surveyed typical
scheduling objectives in CNC, including green scheduling,
QoS-based scheduling, and AI-driven scheduling. We then
identify some important lessons learned in this section.

1) Summary: Due to the large-scale nature of CNC and
the increasing use of intelligent services, green scheduling
could not be overlooked. We introduced schedulers to improve
resource utilization, power management, and renewable energy
usage. Then, we surveyed schedulers that guarantee the service
quality, reliability, privacy, and reduce user costs. Intelligent
schedulers are topical. Many works use the predictive ability
of DL for the perception and prediction of highly dynamic
computing resources and user requests in CNC. DRL is
promising for designing schedulers.

2) Lesson Learned: Task deadline and execution cost are
two indicators that users are most concerned about. The main
challenge here is multi-objective optimization. Besides, the
schedulers should be adaptable to varying workloads with
adjustable weights to different objectives. Otherwise, because
of the requirement for retraining, the scheduler design would
have to abandon using well-performed large models or ad-
vanced algorithms to remain lightweight.

Another insight is schedulers with privacy protection and
task reliability need further investigation. The current dis-
tributed multi-backup redundant scheduling requires additional
execution and update costs.

IV. DIVERSE TASK SCHEDULING

A. Scheduling for Real-Time Tasks

In 2009, Amazon found that every 100 millisecond of
latency cost them 1% of their sales [201]. This becomes
serious then. Real-time needs are sometimes vital. Content
Delivery Networks, edge computing, and other technologies
provide real-time infrastructure. Smart factories, autonomous
driving, and Metaverse are classic real-time scenarios. De-
spite sufficient resources, the tasks can conflict and cause
missed deadlines. Many real-time tasks exist in parallel. The
hard real-time task has strict time constraints, and a delay
always leads to a significant impact or even a catastrophe,
while soft real-time tasks could bear the violation to some
degree and the delay does not necessarily cause performance
degradation. These two types are scheduled differently. For
example, hard real-time tasks, such as car operation, preempt
other tasks, such as media access. The scheduling key points
are formulating priorities of hard real-time tasks, scenario
characteristics such as mobility in Autonomous Vehicle (AV)
and smart factory, planning (e.g., pre-caching in Metaverse),
and interaction. More theoretical guarantees are needed instead
of purely using heuristics. In this section, we will review how
the schedulers are equipped with real-time techniques (e.g.,
pre-caching, preemption, and workload offloading).

1) Autonomous Driving: A large data volume (about 4 TB
per day [202]) challenges the data processing and network
bandwidth. Real-time tasks handle varying time requirements.
The infotainment services could bear up to 100 milliseconds
latency while that of the regular driving operations, with hard
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Fig. 8. Diagram of real-time tasks and their solutions. 1⃝ Caching: By pre-
caching the media that passengers need to access from the MEC server in
the Base Station (BS) to the Road Side Unit (RSU), the number of hops for
passengers to access the media and the download delay are decreased; 2⃝
Multi-priority queue: Assign higher priority to real-time tasks. This enables
real-time tasks to preempt the resources of non-real-time tasks; 3⃝ Offloading:
By offloading part of the computing tasks to nearby computing devices, such
as other AVs or RSUs, the task completion time can be greatly reduced and
kept below a certain threshold.

constraint, is less than 1 millisecond [203]. Figure 8 shows
the basic scheme for real-time tasks in the AV scene.

a) Pre-caching in Autonomous Driving: When AV frees
the driver, passengers spend more time having fun. However,
retrieving content from DCs would incur a substantial end-to-
end delay. Media accessing is a soft real-time task. Ndikumana
et al. [204] show a typical scheduling process using DL-based
pre-caching techniques. Mobile Multi-access Edge Computing
(MEC) devices localize the outputs of the Convolutional
Neural Networks (CNNs) and Multi-Layer Perceptrons (MLP)
trained in DC. The media content is cached locally according
to the MLP output with the highest probability. When a
vehicle passes by, the CNN will be downloaded to detect the
characteristics of passengers. Based on these characteristics,
the corresponding media content is pre-cached into the car’s
cache. This pre-caching policy, which could be optimized by
the hit rate, greatly reduces end-to-end latency while requiring
a high room for data/service cache.

b) Single Optimization in Autonomous Driving: It is
critical and challenging to ensure safe driving. Specifically,
AVs need to process large amounts of data (up to 2 GB/s)
accurately in real-time at high speeds with rigorous latency
requirements [205]. For example, collision detection requires
rapid feedback from the CNN model deployed on AVs. On the
resource side, some schedulers focus on GPU acceleration by
preemptive strategies. The NVIDIA GPU in-order execution
framework could be transformed into an event-driven one
by introducing semaphores and synchronization points [206].
The run list is updated according to signals without affecting
the original architecture. On the design side, differentiated
scheduling of real-time tasks and others is a popular option.
DART [207] divides workers into real-time and best-effort
types with preemption allowance. However, it does not follow
mainstream frameworks such as TensorFlow. It divides the
DNN model into multiple stages and dynamically plans them
according to the resource requirements of different stages.
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Methods are assigned to the nodes for pipelined execution.
c) Joint Optimization in Autonomous Driving: It is not

enough to employ AVs’ own computational capabilities to
handle real-time activities while driving, therefore, schedulers
use workload offloading to ensure the fast execution of tasks.
Chekired et al. [203] combined fog, edge, and cloud com-
puting technologies to design a distributed and expandable
SDN core network architecture. They sliced physical network
infrastructure and AV functions to obtain network slices and
service slices. Network slices are independently controlled and
managed by slice owners, who run various service slices to
ensure effective access. To achieve the low latency require-
ment, four logical layers are divided for the wireless network’s
base station (BS) to realize resource allocation, management,
and sharing. Finally, based on the queuing system to calculate
the processing and tail delay, a resource slice management
algorithm is designed for the BS. But such paradigms, close
to edge computing, rely on expensive and slow cellular net-
works. To this end, schedulers could adopt the distributed
collaboration scheme among AVs [208]. AVs with insufficient
resources are regarded as service requesters, and other AVs
with idle resources are regarded as service providers. The
service providers share the workload of service requesters.
Furthermore, the tasks are classified and solved by integer
programming using a greedy-based algorithm.

2) Smart Factory: Industry 4.0, also known as the “smart
factory”, aims to increase factory productivity and utilize
resources in real-time. Smart factories monitor real-time
changes, generating a large volume of real-time data. The
scheduler in the distribution system is inefficient for low
calculation speed and weak exception handling. Therefore, we
seek breakthroughs in the scheduling scheme.

a) Heuristic Algorithm in Smart Factory: The traditional
two-tier (fog/edge and cloud) frameworks cannot meet real-
time requirements, especially when many tasks get stuck in
the Edge Server (ES) queue, there are two directions to solve
it. One simple way is to handle both single-ES and multi-
ES coordination by introducing intelligent network nodes and
agent devices [209]. Besides, in a more complex remanufac-
turing factory environment, the scheduler could use Pareto
methods based on PSO [210] to handle the large population.
The PSO solves the multi-objective problem and generates
the optimal solution set. Then a Pareto model optimizes the
maintenance and assembly scheduling of vehicle engines. The
Pareto method minimizes total energy consumption, cost, and
delay delivery rate. It balances the worker load rate. However,
traditional heuristic methods are expensive in edge computing
due to long computing duration and large data volumes.

b) Learning-based Algorithm in Smart Factory:
Learning-based schedulers may be more suitable for smart
factory scenarios than heuristic schedulers in handling high
data volumes, emergencies, and adaptations [211]. The authors
in [212] proposed a multiple-dispatching-rule strategy. First,
a two-layer self-organizing map network is used to pre-
simulate all possible states of machines to determine the
Q-table size. Then the Q-table is trained by Q-learning to
continuously assign machines in real time. However, finite
state representation of Q-tables cannot accurately distinguish

the difference between machines and may cause misjudg-
ments. Therefore, schedulers adopt DQN [213] and multi-
agent scheme combined with mechanisms, such as bargaining
game-based negotiation, for a large number of devices [214].

3) Metaverse: Metaverse, deeply connected with Virtual
Reality (VR) and Augmented Reality (AR), enables geo-
dispersed participants to immerse and interact in a virtual
world. The immersive content should be streamed to users
cheaply in real-time for Quality-of-Experience. The user feed-
back transmission speed needs to be ultra-high (e.g., motion-
to-photon latency, between the user motion and video display,
is 10 to 20 milliseconds [215]). Also, the synchronization
between physical and virtual should be seamless. The hard
real-time requirement matters, such as exploring the images
in medical AR during surgery or practice. The scheduling
key points are low latency and high-resolution contents with
highly dynamic start-end times, rich interactions, massive geo-
distributed users, and heterogeneous devices.

It is common to add real-time requirements into the schedul-
ing score as a waiting allowance. In multi-user wireless VR
scheduling, a typical scheduler [215] first prepares the payload
data, such as weighting the video frame and processing over-
time packets. Then, it weights the users by channel capacity,
waiting allowance, frame type, and other characteristics such
as requirements of frames per second and resolutions (e.g.,
multi-layered video coding for smooth video). The scheduler
then decides link adaptation, choosing modulation and coding
schemes, for each user. Besides, predictive schedulers on the
server proactively update VR content [216] or the possible
user request information, using freshness metrics such as
effective Age-of-Information [217] or hit rate metrics. The
user-feedback scheduling would be in multiple concurrent
pipelines (e.g., hand, eye, audio).

To satisfy real-time requirements, schedulers could choose
partial immersive content by predictions to reduce bandwidth
consumption. For example, schedulers could track the user’s
Field of View (FoV) of interest and sacrifice the streaming
quality of other unfocused areas. The scheduler in [218]
uses RNNs for prediction. Besides, it further considers user
correlation, using clustering and adding initiative to arrange
multicast transmission. Experimental results indicate that the
high-overlapping user content reuse brought by multicast
reduced the average latency by 12%, and the addition of
proactiveness reduced the average latency by half. Apart from
user’s FOV, the scheduler could use user’s movement patterns
in the virtual world to pre-render images. The schedule is
refined by user location. For example, the scheduler in [219]
supports a two-phase joint optimal policy for VR access
points and divides the playback between two images into an
active scheduling phase before getting the user location, and
a deadline scheduling phase after getting the user location.

Some work focuses on platform design to realize real-
time requirements, considering that Metaverse requires high-
performance Computing, Caching, and Communication (3C)
systems. The authors in [220] believed that the emergence of
Metaverse would necessitate a new NextG network platform
integrating 3C technologies. They proposed a mathematical
framework for end-to-end streaming flow control.
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TABLE VI
COMMON BASIC SCHEDULING POLICIES IN DEEP LEARNING TASKS

Scheduling policy Description
FCFS First come, first serve.
Shortest Job First First solve the shortest job to reduce its time consumption
Minimize Makespan Minimizing maximum duration of a batch of jobs
Minimize average completion time Reduce the number of unfinished jobs [178]
Minimize Cost Maximize resource utilization efficiency; reduce resource occupancy;
Least Attained Service Weighted Max-min fairness. Give preference to the least-served jobs with preemption supported
Finish Time Fairness Shared finish time divides the independent exclusive finish time
Gittins index Reducing average JCT given JCT distributions
Hierarchical Multi-level policies with different priorities

Jobs Results

Computing Power Cluster

Queues

Which queue? Which order? Task: Which machine/machines?

Data: Which machine/machines?

!
Computing Resources
Network Resources
Storage Resources

GPU characteristics (e. g. , af=inities)
Device cooperations

Storage constraints (model structure, frameworks… )
Interferences…

Whether to take further actions?

Network topology changes
HPO: early stopping
Failure process
Migrations…Scheduling:

Leverage models
Understanding…
Diagnose…
Improve…

What to do with results?

Log the scheduling info.
Caching the results
Utilize results
Reschedule…

Resource
Scheduler

HDFS

Fig. 9. The life cycle of DL tasks includes (i) incoming jobs; (ii) job placement and queueing; and (iii) job/task assignment and data placement with balanced
computing power and job characteristics. The CNC scheduler should also consider the possible network topology changes (e.g., fast-reconfigurable optical
switches); (iv) training progress with adjustments and completion.

B. Scheduling for Artificial Intelligence Tasks

AI tasks pursue minimizing loss and convergence time. In
Section II, we introduce the dependency of AI tasks on GPUs
such as float-point computation intensity and related GPU
characteristics, such as gang scheduling. In this section, we
will survey typical AI training and inference tasks in CNC. The
training workloads may last hours or even months, whereas the
inference workloads usually pursue a real-time performance by
using the trained model, pre-cached services, and historical
results. The scheduler could better achieve this by balancing
placement sensitivity and queueing delay, utilization rate and
mutual interference, job characteristics and priorities. Figure
9 shows the life cycle of Deep Learning tasks.

1) Deep Learning Training Tasks: DL training workloads
have multiple characteristics, such as the iterative process,
varied job types and sizes, and placement sensitivity. The
scheduler should consider the algorithmic impacts too.

The scheduler should first obtain the resource require-
ments for each job. Generally, schedulers still utilize the
user-submitted GPU requests. However, an energy-saving or
automatic scheduler should forecast the optimal quota. Ta-
ble VI shows the common basic scheduling policies for
DL workloads. The dependence on one metric may cause
severe job starvation, unfairness, and poor generalization.
When cluster sharing becomes popular, the clusters have to
deal with diverse workloads for which the traditional pre-
defined salient resource demands distribution could hardly be
designed. The diverse workload type may be modeled in a
meta-learning setting with the Deep Attentive Periodic Model
[221]. However, even if the distribution is known, classical
models may fail to solve such a high-dimensional setting (e.g.,

> 10, 000 [222]). To solve this near-infinite job types problem
without available resource demands distribution, the authors in
[222] proposed low-complexity schedulers based on Best-Fit
and Universal Partitioning algorithms. Under their proof, a
server should be empty in a limited time frame, achieved by
techniques such as stalling [223] when the server is inefficient.
Experiments suggest this strategy can reach at least half of
the theoretical maximum throughput with low complexity.
Adhering to the standard training settings may lead to long
queueing time and low GPU utilization (52% in a production
cluster [224]). Advanced techniques that use unique training
configurations, such as shared training, elastic training, and
heterogeneous training, are made possible by state-of-the-art
technology [225], [226].

a) Time Varying Factors: Continuous, flexible schedul-
ing of CNC services needs to adapt to temporal patterns of
user demands, such as tidal patterns and peak hours with
intense requests. For example, during business hours, the
security system needs more cooperation among subsystems.
ML methods could help in modeling temporal patterns with
acceptable distribution shifts. The authors in [227] proposed an
environment-aware framework for the non-stationary environ-
ment in a DRL setting. Other techniques include pre-designed
classifications [174], meta-learning, the Chinese restaurant
process with expectation maximization, continual RL [228],
and time-series methods such as Long Short Term Memory
(LSTM), Graph Neural Network (GNN), and Informer [229].
Prediction needs to exclude the effects of cancellations and
failures for accuracy.

Time Varying User Dynamics: Instead of just assuming
the online job arrivals are experimentally Poisson or Bernoulli
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distributed, the scheduler should consider time-variant user dy-
namics, such as continuous streaming, batching, and stochas-
tic. The job arrival sequence greatly impacts DRL schedulers,
which can be resolved by job sets fix [177], attention model
[230], and a gradually increasing horizon [177]. Furthermore,
for time-variant user arrivals, the scheduler could combine
with a time series prediction model. Based on Deep Deter-
ministic Policy Gradient, a DRL scheduler [231] adds LSTM
as a time series prediction technique and a Markov property
supplement. Also, similar to constructing a hybrid action in
RL [232], the work shows a design with continuous price
action and discrete VM selection action by dividing the actor’s
output. Experiments under multiple user arrival patterns and
budget distributions show this design enhances provider profit
by over 30% and user requests by 15% more. However, LSTM
needs more time for training and is easy to overfit.

Time Varying Resources: Resource usage of some work-
loads changes significantly with time [233], [234]. Algorithm
phases, emergency tasks, sudden failures, and load changes
could cause this [235]. The authors in [174] proposed catego-
rizing workloads. The reward includes a resource contention
penalty to avoid possible simultaneous spikes by maintaining
a lifetime resource vector. Also, workload equivalence classes
mapping with time-shift adjustment helps to schedule this
resource time-variability further. Most works employ general
solutions in AI tasks such as periodic processing. CNC cur-
rently mainly collects the standby machine’s prior information
by carrying it in the packet header of the routing protocol.
Besides, dynamic programming methods can offer utilization
statistics to assist the scheduler in learning the fluctuating
processing speed distribution online [236].

Time Varying Network Traffic: Traditional heuristics may
fail to match actual traffic, therefore, the GNNs are introduced
for their support for relational reasoning and combinational
generalization. GNNs mainly fall into node, edge, and graph
levels. The typical problems might be retraining requirements,
neighbor node weight, subgraph classification, and generaliza-
tion. Although network traffic changes with time, it is still
rather self-similar in most cases [237].

b) Foundation Model Training: Large-scale machine
learning frameworks care more about matrix computation
and resource allocations with diverse underlying ML frame-
works supported [238]. The algorithms, hardware designs, and
network topology optimization further support the training
acceleration [239], [240]. Another challenge is the training
of foundation models such as the Transformer series, whose
parameter counts have reached hundreds of billions recently,
requiring a large fortune of money that could barely be
afforded by individuals and even companies. Therefore, re-
searchers are seeking alternative solutions. It is mainly based
on parallelism strategies. The existing techniques focus primar-
ily on problems including memory capacity limitation [241],
computation burden, communication cost, and cooperatively
training leveraging geographically distributed preemptible in-
stances instead of dedicated high-performance clusters or
supercomputers. Model parallelism provides an option to solve
memory exhaustion. The frequent intra- and inter-server com-
munications such as parameter synchronization [63] provide

a counterweight to latency, which could be alleviated by
increasing batch size [52], [60] and fine-grained asynchronous
pre-cache [242]. Besides, DL workloads could also be trained
on the decentralized accelerators, edge [243], mobile devices
[244], and even smartphones [245] (BERT trainable). Using
tensor partition to parallelize network layers on GPUs with
limited memory is a popular option [246], [247].

The memory footprint is mainly occupied by gradients,
hidden activations, frameworks, and the optimizer states [241].
CPU offloading allows temporarily unnecessary data transfer
and retrieval using CPU memory, resulting in high swapping
costs. Moreover, feature maps encoding [248], gradient check-
point [249], data parallelism [250], offloading to disks with
NVMe used [251], designed optimizers [252], execute logic
modification [253], Mixture of Expert (MoE) [254] still could
not fully solve the exhaustion of memory.

The Mixture-of-Experts method uses a trainable gating
network to sparsely select experts, the subsets of the network,
to participate in generating outputs. SE-MOE [255] places
sparsely activated parameters that occupy a large proportion
of the MoE model on SSD-Nodes, reducing the limitations of
GPU storage. Other densely activated parameters follow Zero-
3 data parallelism [251]. SE-MOE uses 2D prefetch scheduling
with fusion communication over hierarchical storage in train-
ing. For inference, SE-MoE builds the CPU-GPU memory
cooperatively into a ring of sections to load the model and
computes using a round-robin scheduler. For complement to
memory in inference, the tensor store is designed in Tetris
[256] for model load with the sharing of both tensor and
run-time in serverless. Harmony [241] focused on foundation
model training on a single server. It uses the Wrap-Around
pipeline and provides synchronous SGD semantics with a
balanced load. Unlike the former, Whale [257] is a distributed
training framework. It creates two parallel primitives capable
of expressing and implementing current parallel strategies
(e.g., data, pipeline, tensor, model parallels) and their com-
binations. Meanwhile, Whale also supports a load-balancing
algorithm suitable for heterogeneous GPUs, further improving
parallel efficiency. However, the design of specific layers in
MOE may not be compatible with all architectures.

It is a trend to use decentralized or distributed learning
in foundation model training. It tends to be much cheaper
and ecologically friendly. In this case, the schedulers consider
more factors such as communication, varying prices, het-
erogeneous devices, and flexible machine availability. Mean-
while, the scheduler still focuses on typical foundation model
scheduling factors such as parallel strategies, the design of
forward and backward passes, and gradient aggregations.

GNN is popular but has two main challenges in the training
when it scales to large graphs: the large number of GPUs it
requires and the limitation of GPU memory, which prevents
the loading of large-scale graphs into memory at once. Dorylus
[258] is a distributed system designed for training GNNs
with asynchronous execution pipelines. It leverages serverless
computing to meet the low-cost and scalability requirements
of GNNs training simultaneously and edge-cut for graph par-
tition. Dorylus is a scalable solution and the experiments show
improvements in speed and cost-saving. However, the cost
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TABLE VII
TYPICAL DISTRIBUTED OR DECENTRALIZED SCHEDULERS USED IN FOUNDATION MODEL TRAINING

Ref. Strategies Key contributions The support for typical settings Network features Suitable scenarios Challenging scenarios Param. CodeTraining
types

Heterogeneous
devices

Fault
recovery

Dorylus
[258]

pipeline
parallel

A design of a deep,
bounded-asynchronous

pipeline to hide the
network latency by

overlapping graph and
tensor parallel tasks

distributed No No

The bandwidth becomes
smaller as more lambdas

are started. Lambda
optimization is needed

An affordable solution to
train Large-scale GNNs

by leveraging Lambdas at
a low price

Small-dense graphs
Billion-

edge
graphs

Yes

Bamboo
[259]

pipeline
parallel

Introduces redundant
computation into pipeline

parallel design
distributed No according to [261] Yes It may be highly related

to the real configurations

Preemptible and cheap
instances available in a

near place

Frequent and large-scale
interruption; the contention
for satisfying resources; not
support model parallelism

1.5
billion Yes

[260]

data
parallel,
pipeline
parallel

The modeling of
communication cost and
the design of the local

search strategy

decentralized No No

Tested in multiple
scenarios: data center
using on-demand and

spot instances, multiple
DCs, regional and

worldwide
geo-distributed GPUs

A scenario of
geo-distributed computing

resources connected by
heterogeneous network

Unstable communications;
Multiple failed or evicted

devices

1.3
billion Yes

SWARM
[261]

model
parallel

The considerations of
heterogeneous unreliable

resources
decentralized Yes Yes

Slow interconnect.
Experimentally around

200− 500Mbps

In a heterogeneous
unreliable computing

resources scenario
without frequent and

large-scale interruption

Small models; homogeneous
networking; homogeneous

reliable computing
resources; low expected

failures

Around 1
billion Yes

might be higher for some small dense graphs. Schedulers also
support general neural networks. Bamboo [259] is a distributed
system for large model training, which significantly reduces
training costs by effectively using preemptible instances in-
stead of depending on on-demand instances. Some works
explicitly extend to the geo-distributed scenario. The authors
in [260] proposed a bi-level scheduler to train foundation
models on computing resources connected over heterogeneous,
slow networks and distributed geographically. The scheduling
objective is to minimize communication costs. Based on the
constructed symmetric communication graph, the cost model
is decomposed into the communication cost of data parallel
and pipeline parallel. The authors use extended balanced
graph partitioning, and joint graph matching together with the
traveling salesman to model them separately. The scheduling
problem is solved by proposing an evolutionary algorithm with
a local search strategy. The experiments on physically located
devices showed that schedulers could close the gap with
data center training even using a slow interconnect. SWARM
parallel [261] further considers the heterogeneous unreliable
computing resources and failure recovery (e.g. periodic re-
balancing). It establishes randomized temporary connections
between nodes. The authors used GPipe [262] as the pipeline
design because of its low communication cost.

We summarized the above works in Table VII. The pa-
rameter numbers are found in the experiments. Most works
use the pipeline parallel, it is communication efficient [260].
Decentralized or distributed learning brings problems such
as workload imbalance, communication cost, failure recovery,
and model accuracy loss. Besides, the future scheduler should
support the promising multimodal foundation models, which
combine different modalities of data such as image and text.

c) Hyperparameter Optimization Tasks: Hyperparameter
Optimization jobs focus on searching for better parameter
configurations. They have similar iterations with different hy-
perparameters. According to the achieved performance, some
processes terminate early to save resources. The research on
modeling the relation between hyperparameters and the train-

ing dynamical behaviors of neural networks would support this
type of job [263]. TuPAQ [264] uses a planning algorithm
to search the hyperparameters automatically. It stops the
bad-performed trials directly. Apart from the early-stopping
and hyper-parameter search series, job packing separates the
execution logic. Fluid designed an interface to represent the
requirements [265].

2) Deep Learning Inference Tasks: Instead of selecting a
training job, the inference scheduler tends to find a favorable
model. Request density is important in arranging the models,
requests, and resources. DL inference jobs are commonly
used in online services. Therefore, schedulers should handle
substantial dynamic queries and offer accurate and cost-
efficient feedback within a real-time period. This leads to
a choice between reusing the cached results and making an
inference. The DL inference always copes with the queries
in a batch-processing fashion due to the large amounts of
demand and low GPU utilization. Compared with the training,
the scheduler gradually tends to handle the inference tasks with
TPUs, as mentioned in Section II, but GPUs are currently still
the primary accelerator for inference tasks. Due to the lack
of synchronization, it is observed that the processing speed
of inference jobs scales linearly with GPUs [60]. Also, it
is common to deploy DL inference tasks on edge devices
to achieve edge intelligence. Still, the constraint of memory
capacity exists. This could be solved mainly by model parti-
tioning such as parallelizable network layers [256] and shared
tensors [266].

a) Accurate Results: Accuracy is guaranteed by a trust-
worthy model and multiple calculations. AutoML could sup-
port this shared multi-device, multi-tenant scenario to make
all users as happy as possible. The happy may refer to global
happiness, such as average model accuracy [267], or user
happiness, such as fairness [268]. To choose the most trust-
worthy model with the best performance, the authors in [267]
proposed an automatic model recommendation framework
ease.ml with hyper-parameter search in a multi-tenant setting.
The user’s declarative languages guide this automation. Each
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Fig. 10. Three typical scenarios of how geo-distributed DCs cooperate to solve big data tasks. Main schedulers are listed in the top right corner. (a): Related
data is transferred directly or indirectly (e.g., store-and-forward) to one DC for processing. It necessitates bulk data transfer with network scheduling and
privacy assurance. Data replication might happen in every scenario for easy retrieval or disaster recovery. (b): The tasks of one job are distributed in multiple
DCs with privacy requirements considered. They send the intermediate information, which should be much smaller than the raw data, to one specific location.
They could be data or gradients/parameters in a federated learning setting. The abnormal DC might be disrupted or maliciously attacked. This scenario mainly
deals with fault tolerance, latency bottlenecks, and heterogeneity of servers and frameworks on various sites. (c): Distributed jobs with a single location for
final outputs. Data is pre-located or transferred. For example, the data partition divides a large dataset into smaller ones for separate training in a user-located
framework. All the schedulers should balance factors such as time, cost, privacy, user preferences, and utilization rate.

user has multiple candidate models, such as ResNet [269].
The best model is selected and sent for further computation
using simple profiling. Previous algorithms for a single user
could not be used here because of the dependency among the
users. The ease.ml extends GP-UCB to multi-tenant instead of
using multi-tenant GP-EI which follows the immediate model
assignment of free devices [270]. For multiple calculations, the
common algorithm is ensemble. The corresponding techniques
used in DL inference are model abstraction [271], model
switching [272], RL methods [273], and bandit [267], [271].

b) Real-Time Response: DL inference services have
strict latency requirements. At least 98% of inference queries
must be completed within 200 milliseconds. Similar to what
the previous section shows, the real-time inference is provided
by pre-caching [271], preempt priorities [274], configuration
automation [275], and multiple parallel computations [276].
As an example of multiple parallel computations with reduced
over-provisioning, MArk [276] performs active scaling of
instances by predicting the traffic model to reduce the latency
caused by passive scaling. MArk also introduces Function as a
Service (FaaS) for handling bursty traffic beyond prediction. In
another work [277], the authors used batch size and time-out
(i.e., the maximum time to wait for a batch) as online-adjusted
parameters to reduce the batching latency. The authors in [278]
further considered the batching of heterogeneous requests,
i.e., requests of different sizes. It is worth noting that both
papers put the inference tasks to be processed on the serverless
platform to take advantage of its pay-per-use low cost and
other advantages. Furthermore, sometimes the model size is
too large for devices to respond in real-time, such as federated
learning models, the schedulers could adopt weight tuning
and sharing in such cases [279]. End-edge-cloud collabora-
tive methods, such as model partitioning, early exiting, and
caching, reduce the burden of cloud servers and transfers.
They often use distillation and tailoring. Early exiting balances
latency and job performance better [280]. Several exits are
set separately in the middle layers to predict the results. This
round of learning can be halted without running all the layers
if this exit makes a strong prediction above the confidence

metrics. Specifically, the scheduler first assigns the smallest
sub-model to the device, and the threshold for forwarding to
heterogeneous devices at the next level (edge, cloud) is the
target confidence [281]. Terminating the inference process for
samples that are too simple or complex, such as unanswered
queries, saves money and time [280].

C. Scheduling for Big Data Applications with Geographically-
Distributed Data Centers

The Internet, the Internet of Things, and other data sources
make conventional data islands inefficient. With safety and
privacy guaranteed, CNC aims to provide fast and cheap
computation results by connecting geo-distributed DCs, pro-
viding the following benefits: (i) balancing service supply and
demand; (ii) coordinating differentiated DCs; (iii) reducing
costs by considering location advantages; and (iv) providing
data backup and disaster recovery. To adapt to CNC, the
scheduler will focus on data placement, heterogeneous link
routing, machine capacity and computing power performance,
and Wide Area Network (WAN) topology (e.g., GEANT
[282] in Europe). On the data side, moving computation to
the vicinity of data and vice versa, known as data locality,
is essential for reducing communication costs. However, it
does not universally stand [283]. There are mainly two ways
to distribute jobs and data across geographically distributed
DCs [284], the pre-located framework and the user-located
framework. The former assigns jobs to DCs where the data
is generated. The latter includes multiple scheduling dimen-
sions. Figure 10 shows three typical geo-distribution scenarios.
Scheduling methods of the two frameworks are sometimes
used in both types, such as Meta-MapReduce [285]. However,
there is no ready solution for this topic in CNC currently. In
this section, we will review the typical pre- or user-located
frameworks which could be adapted to CNC.

1) Topology Matters for Pre-Located Geo-Distributed Big-
Data: This pre-located framework is explored based partially
on these observations: (i) data is generated much faster than it
is transmitted [286]; (ii) only partial data participates in gener-
ating the outputs or summaries [285]; (iii) WAN bandwidth is
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insufficient, vary by region, and costly (e.g., nearly 17× higher
in bandwidth between intra-region sites than that between
long-distance ones in [287]); (iv) the popular cloud computing
systems do not directly support the geo-graphically distributed
data [284]; (v) data transfer is costly. In this category, data is
geo-distributed before computation and the topology heavily
affects the scheduling process. The pre-located framework
follows transferring computation to data. Users will distribute
multiple jobs to multiple DCs. After separate computations,
schedulers still need to pick one site and assign a specific job
for aggregating all the results from related DCs since the limit
of current single-cluster processing. This is a parallel process
mapping problem in a distributed data analytic context.

Typical approaches to solve pre-located framework are G-
Hadoop [288], G-MR [289], Nebula [290] and Medusa [291]
for MapReduce, while SAGE [292], Jetstream [293], Iridium
[294] belong to the Spark-based framework. G-Hadoop uses
a distributed file system manager called Gfarm [295]. The
central master node of G-Hadoop, equipped with a global
job tracker and a meta-data server, accepts and initializes
the jobs. It then splits and obtains sub-jobs. The slave node,
periodically requests sub-jobs from the global tracker, consists
of an Input/Output server and trackers of task and local jobs.
This master-slave architecture with a global table is pervasive
in current settings. Reducers are randomly placed in related
DCs. G-MR [289] sets a GroupManager in one DC. The
GroupManager maintains a data transformation graph sup-
ported by Dijkstra’s shortest path algorithm [296] to optimize
the potential execution paths. For the outputs, the manager
of jobs could send results to other DCs or aggregate them.
However, Iridium ignores network congestion among DCs,
while Nebula and Rout both focus on run-time savings without
considering the data traffic. Moreover, centralized scheduling
is riskier and more fragile for heavy dependence.

To increase the survivability of DCs, the scheduler tries
explorations including: (i) duplication, e.g., increasing the
number of sites [282], real-time data backup [297], job or
task duplication [291] in multiple sites or flow in multiple
paths [298] with different urgency levels [299]; (ii) rerouting
and relocation, e.g., dynamic service protection [300]; (iii)
infrastructure optimization, e.g., network designs, and spare
power usage optimization [301]. Medusa and Chrysaor could
be good examples of processing corruption, malicious attacks,
and cloud outages for normal fault tolerance. These classical
methods are always achieved by Integer Linear Programming
(ILP) and heuristic methods. Moreover, the protection and
recovery of key DCs are critical.

Various DCs have various privacy standards. The authors
in [287] proposed a process mapping solution under multiple
privacy constraints with heterogeneous networks and fault
tolerance. Parallel processes could be assigned to physical
nodes of geo-distributed sites. The experiment indicated a
58% performance improvement over the privacy-unaware ap-
proach. However, homogeneous instance support is required
in practice. A process, with the same privacy level of its
data input, is mapped to multiple DCs. The scheduler first
tests the network performance, and then uses the Forgy-
initialized [302] K-Means to group the sites by Euclidean

distance according to their physical ordinates. The constraints
include traffic, privacy, and capacity constraints. Thirdly, the
scheduler maps the constrained process to the site by constraint
tightness and possible intra-site communication quantity. The
scheduler would remap the failed process adaptively from
the last checkpoints or to a different site selected by costs.
Finally, pick up the cheapest mapping solution. Both the
real and simulated experiments show their effectiveness. In
CNC, the scheduler could obtain information from the resource
abstraction layer without days of calibration. Furthermore,
more factors can be added, such as multi-dimensional costs
and the site candidates with preferences.

2) Topology Matters for User-Located Geo-Distributed Big-
Data: User-Located frameworks enable users to explicitly
distribute or partition data and jobs to geo-locations prior
to the start of the computation. Schedulers in this frame-
work have multiple scheduling dimensions [303] such as
task assignment, data placement considering data volume and
dependency, network routing and competition, transfer time
slots and rate choice, and other constraints. Still, topology
matters for schedulers. The following rationales could guide
the scheduling, similar to those proposed in Geodis [304]: (i)
keep the balance among data locality, low latency, and cost;
(ii) the tasks of a job should be distributed to multiple DCs
evenly; and (iii) balance the total load among DCs. Moreover,
the current designs of MapReduce, Apache Hadoop, Spark,
and Dryad are limited to a single data center with inter-DC
homogeneous networks and computational capacities.

a) Data Scheduling: Before the bulk data transfer, intel-
ligent analysis is needed. On the traffic reduction side, this
could be achieved by: (i) network scheduling (e.g., using
prior knowledge of traffic patterns); (ii) task scheduling; (iii)
using spatiotemporally inconsistent prices and characteristics
of DCs; and (iv) reducing transfer data volume. There are
a few directions to reduce the transfer data volume: (i) data
routing; (ii) data dimension reduction (e.g., metadata in Meta-
MapReduce, claimed to be exponentially smaller, is obtained
by removing other data not involved in the final outputs [285]);
(iii) storing frequently accessed data in critical or all DCs, (iv)
preferring to put the tasks in the DC with most input data or
participate-in-the-final-output data.

Data replication has two categories: static and dynamic.
Static replication is controlled by pre-defined host nodes
and replication numbers, with triggers such as replication
costs exceeding user budgets and multi-failure resilience. The
dynamic replication strategy creates popular replicas near
users, bandwidth, and storage. The common triggers are file
unavailability, load variance, latency, QoS, energy, and a
minimum number of replicas. This strategy supports pre-
fetching and approximate object location. Data are transferred
as Random Sample Partition (RSP) blocks across DCs. Large
datasets can be stored as ready-to-use non-overlapping data
blocks in the Hadoop Distributed File System (HDFS). These
blocks could also be generated from other HDFS files. The
authors in [305] proposed two strategies for data analysis. One
is storing data without replication, which requires randomly
downloading several RSP blocks from other DCs to analyze
the whole dataset. It separates storage and analysis levels.
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The other strategy is storing data with replication. Each DC
has the important RSP blocks from other DCs to support
immediate response [306] and backup, enabling local learner
models to perform ensemble learning, and when each DC
provides the immediate value, federated learning. The data
placement optimization problem, such as golden division on
specific data distributions [307], could be transformed into a
block-dependent tree construction problem to optimize net-
work traffic with the DC network topology considered. The
block-dependent tree construction is then reduced to a graph
partitioning issue. Volley [308] provides a three-phase iterative
process using SCOPE [309] for log analysis: (i) put the data
near users by IP address; (ii) correct the data placement by
MapReduce; and (iii) relocate the less popular data to the
closest datacenter if the current DC is (almost) overloaded.
To minimize data transfer volume, latency, and avoid data
congestion, Geodis also suggests beginning with the smallest
chunks. Volley supports real-time parameters and end-to-end
security. However, it does not consider bandwidth usage.

b) Inter-DC WAN Scheduling: The scheduling charac-
teristics of Inter-DC WAN focus on (i) bulk size (e.g., ter-
abytes or petabytes); (ii) reducing cost and improving resource
utilization; (iii) deadline-aware and fairness; and (iv) transfer
time. The inter-DC transfer may be classified based on time
demands into (i) delay-sensitive transfers such as interactive
transfers (5%-15% of the whole traffic [310]), though bursty
but largely predictable; (ii) elastic transfers with strict dead-
lines (from milliseconds to days [311]); and (iii) background
transfers without the explicit time demands.

Optimizing bulk data transfers from one source point to
multiple target points could be achieved in two ways: as
multiple separate point-to-point unicast transfers with difficul-
ties in deadline guarantee, or as integration such as gradually
increasing trees with completed nodes re-used as sources [312]
and pruned to avoid bandwidth competition [313], store-and-
forward or client-driven such as overlay network with limited
control over routing. Overlay distribution trees with storage-
and-forward nodes serve together with pricing models [314],
experimentally saves 10%− 60% cost.

For a fairness-deadline balancing scheduler in bandwidth,
the authors in [315] proposed Tina by allowing transfers
between each pair of DCs to compete for the bandwidth
resource freely. With admission control and different band-
width requirements, the bandwidth competition is modeled
as a modified EI Farol game. By deriving the solution of
an asymmetric mixed Nash equilibrium, the scheduler could
get the optimal sending probabilities. Also, the traffic load is
kept within a threshold to prevent network congestion and
collisions. Max-min fairness supports isolation [316]. It is
also used in network scheduling. SWAN [317] uses max-min
fairness and allocates network resources hierarchically at the
granularity of site and service. It shows the Inter-DC WAN
bandwidth competition could be scheduled at multiple levels,
such as link, site, service, and host. Weighted max-min fairness
would be more expressive to present priorities. Game theory
solutions need to reduce their computation complexity, while
heuristic methods need further weight tuning.

To reduce WAN traffic, Hypergraph Partition-based

Scheduling [318], a resource allocation mechanism, models
the task-data-DC dependencies as an enhanced hypergraph
and solves it by graph partition approach. To reduce the
makespan, it also employs a coordination system to assign
network resources in close accordance with job needs.

c) Job Scheduling in User-Located Frameworks: Job
scheduling always uses estimated times as metrics. SWAG
[319] prioritizes jobs with the shortest expected makespan,
computed by placing tasks from the same job in the longest-
to-shortest order in the datacenter’s shortest queue with the
required data. However, SWAG could only assign jobs to the
DCs containing required data without support for sending data
requests. Geodis further considers the cost of data transfer.
Flutter with max-min fairness [320] prioritizes the job with
the worst completion time. Also, the last task to be scheduled
could be moved to a different DC [321]. Lube [322] detects
the bottlenecks at run-time by prediction and uses it in task
reassignment. Kimchi [323] also reassigns the task to other
idle DCs when dynamic changes, such as bandwidth changes,
are detected. The support to handle changes in workload
and regional price consideration needs further investigation.
HDM-MC [324] plays as a decentralized scheduler, separately
solving cluster coordination, plan making, and scheduling. It
supports job stages such as datasets that are local, remote, or
collaboratively located. The first layer schedules the job stages,
and the second layer deals with tasks by delay scheduling,
Min/Max with an estimated minimum completion time, and
the Hungarian algorithm. Similar to Houtu [325], a decen-
tralized scheduler with single and collaborate modes using
work-stealing parametrized delay scheduling, HDM-MC needs
further modification to adapt to current big data frameworks.

D. Scheduling for High Performance Computing System

HPC job scheduling is challenging due to its large scale,
diverse workloads, high accuracy requirement, and error fi-
delity. Also, the cluster scheduler for HPC should give a fast
response (15-30 seconds) to meet realistic needs [326]. Unlike
the predominance of MPI models before, HPC systems have to
deal with larger datasets, real-time or long-duration jobs, and
user behaviors. The observations of HPC clusters may help
design the scheduler [327]. The key points are the scheduler
should be lightweight and easily maintainable, keeping the
balance between job submission frequency and average times
to converge to a placement decision in a cluster of nearly
tens of thousands of nodes. In this section, we will review the
HPC schedulers following three key points always raised in
HPC system observations: heterogeneous workloads, resource
utilization, and failure processing.

1) Heterogeneous Workloads: The HPC jobs could be clas-
sified into rigid, evolving, moldable, and malleable, depending
on how to decide the node numbers. The first two job types
follow the traditional user-commit route, while others are
scheduled. During execution, as their names suggest, node
numbers are allowed to be changed for evolving and malleable
jobs. The malleable job is composed of small, loosely coupled
tasks, and it can better support nodes shrinking and expanding.
This flexibility of moldable and malleable jobs could improve

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3329027

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on November 27,2023 at 03:10:28 UTC from IEEE Xplore.  Restrictions apply. 



TANG et al.: A SURVEY ON SCHEDULING TECHNIQUES IN CNC 25

utilization with less average response time. However, the
assumption of homogeneity clusters, dense communications,
the necessity of an instantly applicable scheduler, and the
lack of simulator support [328] make it hard for research and
industrial HPC facilities to get deeper into these node change-
able jobs. Therefore, in most circumstances, HPC still focuses
on rigid jobs. The authors in [329] proposed mechanisms for
co-scheduling on-demand, malleable, and rigid jobs. The on-
demand jobs that are time-critical get the highest priority for
instant start. Advance notification, arrival (estimated and real),
and completion are three critical scheduling time points for
on-demand jobs. When reaching the first two time points,
the scheduler collects available nodes from three sources:
(i) free nodes; (ii) reserved nodes with time limits, or those
temporarily being used for preemptable backfilling jobs; and
(iii) released nodes after evenly shrinking malleable jobs. The
scheduler decides whether to shrink (preferred) or directly pre-
empt by the ranked rigid or malleable jobs (lower preemption
overhead). Once the on-demand job is completed, the nodes
should be returned to the leased jobs by immediate resume for
in-queue jobs or expanding the malleable jobs if they are still
running. It is observed that frequent checkpointing decreases
preemption overhead and turnaround time for rigid jobs.

The workload may be predicted and served adaptively by its
characteristics, such as (i) requested cores; (ii) wall time; (iii)
run time; (iv) inter-arrival time; (v) degree of parallelism; and
(vi) other information about queues and clusters. Similar to DL
workloads, it would become much more difficult to predict
workload distribution with the growing diversity of types.
Fast adaptation to diverse workloads could be achieved by
classification. DRAS [192] adapts automatically to workload
without human intervention. The reward is designed to be
either capability-oriented or capacity-oriented. The former fo-
cuses on avoiding starvation, determining job-size preferences,
and improving utilization rates. The latter aims to reduce
turnaround time and wait time. The designs are a hierarchical
network to classify jobs into three types and a three-phase
training from easy to hard. Similarly, RLScheduler [330]
proposed a hierarchical network with an in-horizon trajectory
filter. The level-1 network selects immediate or reserved jobs
from the waiting queue window by available nodes. The
Level-2 network chooses a backfilling job candidate at each
scheduling step. DRAS performed 45% better than baselines
such as FCFS, Decima-PG, and Bin Packing. However, tuning
the reward weight and retraining may be risky and costly.

The HPC scheduler should also use expert knowledge and
previous best-performing policies. GARLSched [331] uses
GAN and PPO-Clip to extract expert knowledge. The policy
is guided by experts progressively through learning a task-
embedding discriminator. Besides, schedulers need to reduce
performance variability [332] and job order sensitivity [330].
HPC facilities may have multiple interrelated computing clus-
ters. For example, the HPC system at Argonne National Lab-
oratory consists of large-scale computation-intensive clusters,
Mira and Theta, with large long jobs, and a visualization
cluster, Cooley, with frequent short small-sized jobs [333].
Purpose determines priority. Some system schedulers prefer
time-sensitive jobs [329], and others may emphasize large jobs

with extensive computations with no interference allowed, let
alone preemption [334]. Also, a lightweight binary classifi-
cation decision tree could predict cross-cluster migration and
in-cluster workloads [333].

2) Resource Utilization: Low resource utilization caused by
gaps is a design challenge for HPC schedulers. Resource gaps
arise from the rigid resource demands of HPC tasks. The rigid
demand makes it impossible to use time-division multiplexing
to switch tasks. This causes resource gaps, meaning insuffi-
cient resources remaining to execute the next task selected by
the sequencing policy. Backfilling the gap with less demanding
jobs ahead reduces resource idleness. The HPC scheduling
challenge involves designing an efficient backfilling policy.

a) Single Objective Scheduling: Conservative [335] and
easy backfill [336] are two classic backfill strategies. When a
job arrives, conservative backfill iterates through the configu-
ration list of running and queued tasks. Thus, a job finds an
anchor point to insert. Conservative backfill prevents delays
without considering the user’s over-claimed task execution
time, missing the resource gaps. Easy backfill only guarantees
not to delay the tasks at the top of the queue. As a result,
the resource gap can increase limitedly. For overestimation of
the execution time, easy backfill tries to backfill again after
job execution complete to exploit unforeseen resource gaps.
Easy backfill or its variants are widely used in mainstream
platforms. Gaussier et al. [337] observed strategies achieved
the lowest average waiting time varies with time. Therefore,
changing the ordering strategy of easy backfill over time may
increase the performance. The authors solved this by modeling
a multi-armed slot machine problem. A greedy technique
selects the strategy with the shortest expected wait time by
calculating from historical trajectories. Experimentally, this
strategy improves performance by 8%− 46%.

b) Multi-Objective Scheduling: Existing HPC scheduling
policies are mainly CPU-centric, however, schedulers should
consider emerging complexities. For example, data-intensive
applications have high Input/Output requirements for HPC,
forcing service providers to deploy additional burst buffers
in the production system [338]. This makes burst buffers a
new resource dimension for HPC schedulers. Fan et al. [327]
modeled the multi-resource scheduling as a multi-objective
optimization problem. BBSched uses a genetic algorithm
to derive a set of Pareto sets, determining the order of
queued tasks. Each solution represents a trade-off between
different objectives (i.e., the choice of different resources).
Experimental results show an up to 41% reduction in average
job wait time. However, the computing complexity increased
with the complexity of computing systems and the dynamics
of workloads. To reduce the complexity, Domeniconi et al.
[339] proposed a DRL scheduler with a two-step hierarchical
solution. It selects a waiting job to execute and then chooses
an allocation policy. For training, the authors build the dataset
using a cluster simulator based on real execution times.

c) Execution Time Prediction: HPC systems rely on a
pre-defined resource profile. When submitting a job, users
often specify a larger running time estimate than required
to avoid early termination. This is not conducive to the
HPC backfilling policy since the size of the resource gap is
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always small. Therefore, an appropriate job execution time
will improve HPC scheduling performance. The first work in
our knowledge that attempted execution time prediction was
[340], in which a prediction method known as a template was
developed. However, the experience dependency might lead
to empirical inaccuracies. To uncover the hidden information
from historical data, the optimal template can be selected using
a greedy or genetic algorithm with a regression model fitting
in execution time prediction [341]. However, a regression
model for simple fitting contradicts the actual execution time
variation. Lamar et al. [342] observed that the execution time
variation of the tasks is multimodal. Multimodal means that
the actual execution time of the same function is switched
between several fixed values. To process multimodal variation,
the scheduler selects based on percentages (3% position is
an intermediate value). To make the scheduler focus on the
current modality, the method multiplies the actual execution
time of each job by an exponentially declining discount factor.

3) Failure-Aware Job Scheduling: Given that about 30% of
the tasks failed in some HPC systems [343], it is essential to
design failure-aware schedulers. Analyzing the job logs may
help identify the characteristics of these unsuccessful tasks. It
is observed that in different clusters, identical job failure rates
result in varying degrees of resource waste [344]. Probably
related to how unsuccessful jobs are handled. Currently, many
works also consider the resource waste caused by task failures.
The checkpoint technique can save the program’s state on a
reliable device. When an error occurs in the task, it can run
from the latest checkpoint, avoiding re-running the task from
scratch. Fine-grained checkpointing [345], updating ordering
and allocation mechanisms [346], and increasing the ratio of
low-failure GPUs used in leadership jobs all improve job
reliability. Different types of failures can occur on extreme-
scale systems and affect applications differently. Except for
checkpointing techniques, a RL-based scheduler (FARS) [347]
solves DL training task failures. It uses neural networks to
encode clusters and training jobs. However, the performance
is greatly affected by the cluster size.

E. Summary and Lesson Learned

To conclude the discussions above, we surveyed four typical
tasks, including real-time, AI, big-data tasks solved by geo-
distributed DCs, and HPC tasks. We then identify some
important lessons learned in this section.

1) Summary: This section focuses on typical promising ap-
plications in CNC. We surveyed typical real-time applications
and found that schedulers usually use pre-caching to satisfy
soft real-time requirements and single/joint optimizations for
hard real-time requirements. Typical AI tasks in CNC tend to
emphasize large-scale training of the foundation model. For
geo-distributed big-data tasks, the scheduler decides whether
to transfer the raw data before computation. However, there is
no ready solution for CNC schedulers to directly use in this
topic. For HPC tasks, the current work mainly focuses on the
heterogeneous workloads problem.

2) Lesson Learned: The first insight is the characteristics
of scheduling should be carefully considered. For example, the

definitions of soft and hard constraints in real-time tasks, the
temporal or spacial needs and profiler designs for AI tasks,
and whether to use dedicated networks among DCs.

Another insight is that most works are only tested in
simulators with specified datasets, which may lead to practical
problems because of the gap between virtual and physical,
especially for critical real-time tasks.

The third insight is that adaptations to diverse workloads,
data storage types, and frameworks are critical for practical
use. Schedulers use classification, attention, and algorithms
such as partition to achieve automatic adaptation through
characteristics, models, and task information. For frameworks
and storage types, they need to be unified or converted to
improve the utilization rates.

Finally, the CNC architecture could provide varying hier-
archical information from multiple resources to schedulers
in their information updating procedure conveniently. As for
foundation models, CNC could easily get available computing
resources and related information (e.g., communication infor-
mation, memory budget) to support the decentralized training.

V. CHALLENGES AND FUTURE WORK

In this section, we elaborate on important challenges and
future work in CNC scheduling, including intelligent comput-
ing, distributed scheduling, real-time computing, green CNC,
digital twins, credibility, and security. Each listed challenge
is formidable and will bring about significant performance
improvements to schedulers.

A. Intelligent Computing
There are two ways to combine AI and CNC. One is

applying AI to assist CNC construction, and the other is using
CNC to support AI model training and deployment.

Designing intelligent schedulers is an essential direction
of CNC construction. Intelligent schedulers generally offer
improved capabilities in terms of generalization, continuous
learning, finding the optimal solution, and discovering underly-
ing relationships to manage diversity, heterogeneity, and other
complexities more effectively. It is necessary to design a more
intelligent scheduler. Few schedulers are based on AI, and even
fewer are actually applied.

An important application scenario of the CNC is the training
and deployment of AI models such as foundation models.
There are challenges to accomplishing the above tasks on
the CNC. First, in real-life scenarios, data is usually ge-
ographically dispersed. Due to large data volumes, storage
limitations, costly bandwidth, and privacy issues, collecting
data directly for centralized AI training is unsuitable. These
scattered data are usually heterogeneous, with inconsistencies
in formats and quality. Then, arranging data for effective AI
training is a big challenge. In addition, limited network band-
width, consistency-maintaining tables, and computing powers
with different statuses lead to low collaboration efficiency
in distributed training. Cross-device and cross-silo federated
learning frameworks may help diverse models trained from
both (Independent and Identically Distributed) IID and non-
IID data [147]. Implementing efficient AI training under the
above conditions is also a challenge.
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B. Distributed Scheduling

Centralized scheduling has achieved great success in sce-
narios where computing power nodes are closely connected,
such as DCs, and can often approach the optimal solution
of the scheduling problem. However, centralized scheduling
has natural defects. Firstly, a processing bottleneck gradually
emerges. When the network scale expands, the problem scale
expands, and the time to obtain the scheduling plan may
even increase exponentially. Moreover, a bandwidth bottleneck
gradually emerges. The access bandwidth of the centralized
scheduling platform is limited, which causes request delay
and network congestion during the request peak and cannot
meet the needs of tasks with hard time requirements such
as deadlines. Therefore, the inherent flaws of the centralized
scheduling model make it impossible to become the core
model of a large-scale deployment of CNCs. Just as centralized
cloud computing has to gradually give way to distributed
edge computing, the scheduling algorithm of CNC also needs
to be upgraded to distributed scheduling. Different from the
centralized scheduling mode, distributed scheduling regards
each network device, which can be a router or an end device,
as an independent agent, and each agent will use the limited
network and computing power information obtained by itself
to assist or compete with neighboring agents to achieve sub-
optimal scheduling results. Due to the division of scheduling
tasks, distributed algorithms generally have the advantages
of being simple, flexible, easy to implement, and easy to
expand. Distributed scheduling always gets inspiration from
distribution heuristics and game theory.

However, distributed algorithms still have some open prob-
lems: (i) global optimal solution is hardly achievable. The
distributed algorithm can only reach a slightly inferior local
optimal solution compared with the centralized scheduling;
(ii) unbalanced loads. In distributed scheduling, agents may
follow the herd and schedule all requests to the same server.
If tasks are distributed with a certain probability, the “table
for bins” problem will occur; (iii) dynamic network changes.
The user requests and network resources always vary, posing
challenges to distributed schedulers such as game theory-based
ones. When a request arrives, all agents need to conduct a new
round to reach Nash equilibrium.

C. Real-Time Computing Scheduling

In practice, it is crucial to reduce the scheduling delay. The
current scheduling latency needs to be lowered to improve
the service. In autonomous driving, the computing power of
the driving vehicle is not enough to process the data obtained.
Therefore, obtaining additional computing power via the Inter-
net of Vehicles is required. When the car is moving, it needs to
respond quickly to its surroundings, which requires real-time
scheduling. Virtual Reality has not yet been widely applied
because of its latency. VR equipment needs to process a large
quantity of real-time data, while the local computing power
is generally insufficient. Therefore, creating and scheduling
computing powers, data transmission, and network scheduling
may significantly increase the delay.

D. Green CNC

Computing consumes power. If the CNC considers energy
use factors when scheduling, it can save significant electricity,
reduce its budget, cut carbon emissions, and achieve the goal
of a green CNC. There are many factors that affect energy
consumption. At present, with the advancement of energy-
saving technology and chips with energy-saving characteris-
tics, running tasks on such chips can effectively save power. In
addition, some newly built computing power centers use liquid
cooling technology to dissipate heat instead of traditional
air-cooling technology. Liquid cooling technology can better
reduce power consumption. In addition to the above factors,
the goal of reducing energy consumption can also be indirectly
achieved by fully considering the improvement of resource
utilization during scheduling.

E. Digital Twins

In the CNC, the trial-and-error cost of resource scheduling
is usually high. In addition, data collection is inconvenient and
expensive, resulting in an insufficient volume of data, which
is not conducive to the application of AI.

Using Digital Twins in a CNC can map its physical entities
into a virtual digital space. In the digital space, operations such
as modeling, simulation, and control can be performed. By
analyzing its feedback results, the cost of CNC optimization
can be reduced, and the stability of operation can be improved.
In addition, data can be easily collected to promote the appli-
cation of AI. ComNet [17] is a prototype testbed of CNC based
on a weighted DAG model with computing powers as nodes
and networks as edges. Computation is mainly supported by
graph theory. The graph design may lead to complex modeling
and updating of heterogeneous resources. Currently, it supports
K8S and ignores the network architecture update. Besides, the
simulation-to-real gap could be reduced using a high-fidelity
simulator and well-tuned parameters with online adjustment.
Moreover, the existing security management for digital twins
[348] is still a long way from practical application.

F. Credibility

The diversity of computing power sources affects credibility.
Blockchain technologies such as smart contracts, rules for
accessing key data and parameters can be introduced. Also, the
behaviors of the CNC can be recorded, reviewed, and traced,
which greatly improves the credibility of the data processed
by the CNC. Through the unified coding of data transmission,
data operation, and other information in the CNC, the compre-
hensive perception and management of data can be realized.
In order to achieve the comprehensive credibility of the CNC,
it is necessary to carry out credibility certification at each
level, from physical devices to applications. The credibility of
high-level applications can be based on the credibility of the
underlying devices. The CNC schedulers could be designed
to collect the hierarchical credibility information and further
provide confidence in time and performance with quantified
stability, safety (e.g., constraints on the undesired state or
violation penalties), and robustness.
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G. Security

In CNC, data distributed among various nodes is easy to at-
tack, resulting in data and privacy leakage. Privacy computing
helps to ensure data security when data is available. Common
privacy computing technologies include secure multi-party
computation and homomorphic encryption. Besides integrating
information security technology, the CNC architecture design
requires modifications and consistent standards. Attackers may
mainly target vulnerable CNC layers and key DCs for network
intrusion, data intrusion, malicious code-infected applications,
and unauthorized access. Even the scheduler could be a good
target if it is a white box or uncertainty-sensitive [349]. The
work in [350] discussed the security of using ML with attacks
in data, algorithms, and models in 6G networks. Security risk
detection, defense, and iterative upgrade are essential in such
a highly centralized and cooperative architecture.

VI. CONCLUSION

In this survey, we deliver a comprehensive literature review
on scheduling techniques in Computing and Network Con-
vergence in typical scenarios. This survey aims to provide a
review of scheduler designs to achieve the visions of CNC as
one-click access to computing power with ultra-low latency.
Reviewing explorations to achieve lightweight and easy-to-
maintain schedulers, we identify the scheduling techniques
based on resource abstraction and adaptation issues at multiple
levels, including chips, terminals, edges, clouds, and their
cooperations. We first review the scheduling objects, including
advanced resources such as in-network resources and their
features. Secondly, we provide a guideline for optimizing pos-
sible contradictory multiple scheduling goals, such as energy-
saving, Quality-of-Service, and AI-driven. Furthermore, we
provide scheduler reviews in typical scenarios such as real-
time tasks, AI tasks, the cooperation of geo-distributed data
centers, and high-performance systems with their contribu-
tions, advantages, and limitations. Finally, we outline the
challenges and future research directions for stimulating con-
tinuous efforts toward fully realizing the CNC. In the future,
we will optimize the scheduling systems of China Computing
NET (C2NET) based on emerging research findings.
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