
Understanding and Detecting On-the-Fly
Configuration Bugs

Abstract—Software systems introduce an increasing number of1

configuration options to provide flexibility. In order to improve2

the flexibility and provide persistent services, modern software3

systems support updating configuration options on the fly without4

restarting the system. However, on-the-fly updating configuration5

options also affects the system reliability, leading to unexpected6

results like software crashes or functional errors. In this paper,7

we refer to the bugs caused by on-the-fly configuration updates8

as on-the-fly configuration bugs, or OCBugs for short.9

In this paper, we conducted the first in-depth study on 7510

real-world OCBugs from 5 open-source software systems to11

understand the symptoms, root causes, and triggering conditions12

of OCBugs. Based on our study, we designed and implemented13

PARACHUTE, an automated testing framework to detect OCBugs.14

Our key insight is that the value of one configuration option,15

either loaded at the startup phase or updated on the fly, should16

have the same effects on the target program. PARACHUTE can17

generate tests for on-the-fly configuration updates with existing18

tests and conduct differential analysis to identify OCBugs. We19

evaluated PARACHUTE on 7 software systems. The results show20

that PARACHUTE detected 75% (42/56) of the known OCBugs,21

and reported 13 unknown bugs from 5 software. Until the time22

of writing, 11 of the unknown bugs have been confirmed or fixed23

by developers.24

I. INTRODUCTION25

Software systems introduce an increasing number of con-26

figuration options to provide flexibility [1]–[3]. Users can set27

option values through modifying configuration files. After that,28

software systems load the files during their startup phases.29

This procedure, however, is still limited since the users have30

to restart the software system once changing an option vaule.31

The requirement of restarting is impractical for software32

systems providing persistent services, e.g., database servers33

and web servers. To solve this problem, modern software34

systems support updating configuration options at runtime. For35

example, MySQL-8.0 has 981 configuration options, of which36

about 63% support runtime updating [4]. We refer to these37

systems as runtime configurable systems.38

The runtime configurable systems create more flexibility,39

but may affect the system reliability at the same time. Many40

bug reports [5]–[14] show that, on-the-fly updating configu-41

ration options may lead to unexpected results like software42

crashes or functional errors, even if the new option values are43

valid. In this paper, we refer to the bugs caused by on-the-44

fly configuration updates as on-the-fly configuration bugs, or45

OCBugs for short.46

Figure 1 illustrates a real-world OCBug [5] related to the47

configuration option log_queries_not_using_indexes in48

MySQL, including the error symptom, the reproduction steps,49

the root cause, and the fix patch. This option is used to retrieve50

MySQLBug #28808 log_queries_not_using_indexes dynamic change is ignored

Description:
The option log_queries_not_using_index
can be changed during system running.
But it does not change server behavior.
Reproduction：
1. Start server with the configuration

slow_query_log True
log_queries_not_using_indexes False.

2. Update the option: set global
log_queries_not_using_indexes=True;

3. Execute operations:
CREATE TABLE, INSERT, SELECT.

4. Check slow query log.

Patch:

sql/mysqld.cc
1 static void get_options(int argc){
2 - if (opt_log_queries_not_using_indexes)
3 - opt_specialflag |= NO_INDEX;

sql/sql_parse.cc
4 void log_slow_statement(THD *thd){
5 if (thd->enable_slow_log &&
6 - (opt_specialflag & NO_INDEX)
7 + opt_log_queries_not_using_indexes

Fig. 1: A real-world example of on-the-fly configuration bugs.
The dynamic change of MySQL option does not take effects,
since MySQL uses an stale value of the option.

the queries that do not use indexes for row lookups. Admin- 51

istrators use this option to diagnose performance problems of 52

SQL queries. As shown in Figure 1, the user changed the 53

option value from False to True, but the system did not record 54

related queries. The root cause is that MySQL used the stale 55

option value rather than the updated one. Specially, MySQL 56

used variables opt_log_queries_not_using_indexes 57

and opt_specialflag to save the option value (Line 2- 58

3), but only update the former one when receiving the 59

updating command. MySQL missed to change variable 60

opt_specialflag before using it (Line 6). The patch is 61

to remove the stale variable opt_specialflag, and use 62

opt_log_queries_not_using_indexes instead. 63

There has been much research on addressing problems 64

involving configuration-related bugs [15]–[22]. These works 65

reuse official tests and oracles to detect configuration-related 66

bugs and defects. For example, Ctest [22] reuses official 67

tests and production configurations to detect configuration- 68

induced failures. SPEX [16] injects configuration errors into 69

the system under test, and evaluates software reliability re- 70

garding misconfigurations. The official test cases, however, are 71

not designed specifically for on-the-fly configuration updates. 72

Therefore, those works are hard to detect OCBugs. Many 73

other works [23]–[30] use the Fuzzing technique to expose 74

bugs. This technique requires test oracles (e.g., crashes or 75

memory sanitizers) to determine if a test input passes or 76

not. The OCBugs, however, may or may not lead to obvious 77

symptoms like crashes or bad memory usage. For example, 78

MySQL-28808 [5] in Figure 1) results in functional errors, 79

and requires specific oracles to detect. The most related work 80

for detecting OCBugs is Staccato [31], which checks if values 81

of configuration-related variables are changed after dynamic82

configuration updates. If not, Staccato reports a bug. This is83

a conservative method, and may cause many false negatives,84

since the variables do not necessarily change to correct values.85

More details will be in the end of Section II-C.86

In this paper, we conducted the first in-depth study on87

OCBugs based on 75 real-world bugs from 5 popular software88

systems. We study the symptoms, root causes, and triggering89

conditions of OCBugs. The major findings include: 1) More90

than half (64%) of OCBugs have no easy-to-observe symp-91

toms like crashes, meaning an ideal fuzzing tool can handle92

up to 36% cases. This result inspires us to design specific93

oracles for OCBugs. 2) The root causes of OCBugs arise94

from two aspects: incorrect propagations of configuration-95

related variables (45%), or incorrect usages of the variables96

(55%). The former cases can be detected by analyzing internal97

variables of the program, while the latter cases are hard to be98

detected by program analysis due to program-specific usage99

scenarios. Instead, they can only be detected by examining100

external behaviors of the program. More details of these two101

kinds of bugs will be in Section II-C.102

Guided by the findings, we propose PARACHUTE, an auto-103

mated testing framework to detect OCBugs. The key insight104

of PARACHUTE is that the value of one configuration option,105

either loaded at the startup phase or updated on the fly, should106

have the same effects on the target program. Based on the root107

cause study, these effects can be further divided into internal108

effects and external effects: a) internal effects are value changes109

of variables related to the option; b) external effects are be-110

haviors that can be observed outside the program. An internal111

effect does not necessarily lead to observable behaviors, which112

may also requires specific inputs. Meanwhile, an external113

effect is not always caused by wrong configuration-related114

variables, which can cause incorrect propagations bugs, but115

not incorrect usages bugs.116

PARACHUTE leverages the idea of metamorphic testing [32]117

to detect OCBugs using the above two types of effects. In118

general, PARACHUTE tests the program with two executions.119

Given an option value, the first execution loads the value at the120

startup phase, while the second execution updates the option121

to that value at runtime. Then, PARACHUTE determines if both122

the internal and external effects are the same between these123

two executions. There are two challenges in this process. First,124

the testing space is huge. To address this challenge, we conduct125

a comprehensive study towards the triggering conditions of126

OCBugs in Section II-D, and get three conclusions to guide127

the design of test-case generation. Second, the effects may128

not happen immediately after an option is dynamically up-129

dated. Runtime configurable systems generally allow existing130

sessions to adopt the updated values after they complete131

the currently-executing transactions and commands [40]–[43].132

This is a common practice, but PARACHUTE may believe the133

updated options do not take effect. To avoid false positives,134

we propose a three-stage metamorphic testing approach.135

We evaluate the effectiveness of PARACHUTE in detecting136

both known and unknown OCBugs. First, we reproduced 38137

TABLE I: Studied software systems and their descriptions.

Project Desc. LOC # Option # ROption.†

MySQL SQL database 3714K 981 622
PostgreSQL SQL database 1869K 344 272
Redis NoSQL database 181K 149 126
Nginx Web Server 144K 664 664
Squid Web Server 309K 342 342
† ROption is short for Runtime Configurable Option.

known OCBugs from the real-world OCBugs in our empirical 138

study. To avoid over-fitting, we also reproduced 18 known 139

OCBugs from MariaDB and Httpd, which are not included 140

in the study. The evaluation shows that PARACHUTE can suc- 141

cessfully detect 42 bugs (75%), while Staccato [31] detected 142

15 out of the 56 OCBugs. Moreover, PARACHUTE detected 13 143

unknown OCBugs from 5 software systems, and 11 of them 144

have already been confirmed or fixed by developers. 145

To summarize, this paper makes three major contributions. 146

• We conducted the first in-depth study on real-world 147

OCBugs from 5 open-source software systems to help 148

understand the characteristics and root causes of OCBugs. 149

• We designed and implemented an automated testing 150

framework, PARACHUTE. It can generate tests for on-the- 151

fly configuration updates with existing tests and conduct 152

differential analysis to identify OCBugs. All data and 153

source code can be found in the repository: 154

https://github.com/ocbug/ocbug
• We evaluated PARACHUTE on 7 software systems. 155

PARACHUTE detected 75% (42/56) of the known 156

OCBugs, and 13 unknown bugs from 5 software systems. 157

Until the time of writing, 11 of the unknown bugs have 158

been confirmed or fixed by developers. 159

II. UNDERSTANDING OCBUGS 160

We conduct an empirical study on OCBugs to guide the 161

design of PARACHUTE. In this section, we will first describe 162

the study methodology, then introduce our findings including 163

the symptoms, root causes and triggering conditions of real- 164

world OCBugs. 165

A. Study Methodology 166

The study methodology includes the criteria to choose study 167

targets, the way to collect OCBugs, as well as how to validate 168

and analyze the collected data. 169

Studied Subjects. Table I describes 5 software systems used 170

in our study. We chose these projects because: a) they cover 171

different domains, including database and web server; b) they 172

are widely used and studied by the existing works [15], [16], 173

[33]–[35]; c) they are highly-configurable and expose many 174

runtime configurable options; d) they are open-source and well 175

maintained by community. These criteria ensure the impacts 176

of studied bugs, and allows us to not only obtain the buggy 177

and fixed code versions, but also collect related details of the 178

bugs, such as root causes and reproduce methods. 179

Data Collection. We collected real-world OCBugs from 180

tracking systems, mailing lists, and fix commits of the studied 181

TABLE II: Symptoms of on-the-fly configuration bugs.

Project Crash Hang Functional Resource SumError Abuse

MySQL 5 0 16 0 21
PostgreSQL 7 0 5 2 14
Redis 6 3 16 2 27
Nginx 4 0 3 0 7
Squid 2 0 4 0 6

Total 24 3 44 4 75

projects. In order to locate OCBugs, we used the following two182

types of keywords to search for related issues and commits:183

a) keywords related to description of configuration updating,184

e.g., reconfig, resize and update; b) keywords related to the185

command to update options dynamically, e.g. Config SET for186

Redis, nginx -s reload for Nginx.187

Validation and Analysis. We manully validate each poten-188

tial OCBugs by inspecting each issue description and related189

code patches. Each case is inspected by two inspectors. When190

they diverged, a third inspector was consulted for additional191

discussion until consensus was reached. It spent two months192

validating and analyzing the bugs. We filter out the issues193

where configuration options are not updated on-the-fly during194

software running. For example, users change a configuration195

file and restart the software. In the case that we are not196

sure whether a bug is caused by configuration updating or a197

special value of the related option, we would try to reproduce198

the bug to validate whether the value itself would cause the199

bug. Eventually, we collected 75 OCBugs from five selected200

projects. We further analyze each OCBug to answer the201

following three research questions:202

• RQ1: What are the common symptoms of OCBugs?203

• RQ2: What are the root causes of OCBugs?204

• RQ3: What are the triggering conditions of OCBugs?205

B. Symptoms of OCBugs206

We study symptoms of OCBugs to understand how the bugs207

affect software systems. The results are shown in Table II,208

OCBugs could cause the systems to crash, hang, functional209

error and resource misuse.210

Crash and Hang. About one third (27/75=36%) of OCBugs211

lead to system crashes or hangs. For example, in Redis-212

4545 [6], when Redis is working on AOF rewrite operations,213

and users close the AOF mode by dynamically turning off the214

option appendonly at the same time, Redis would infinitely215

repeat the AOF rewrite operations. The detailed root causes216

will be described in Section II-C2.217

Functional Error. Most (44/75=59%) of OCBugs result in218

functional errors, including unexpected behaviors and wrong219

results. For example, the option in Figure 1 did not take effect220

after updating. Another example is that MySQL calculated221

a wrong increment value in MySQL-65225 [8]. Functional222

errors have no easy-to-observe characteristics to identify, this223

is different from system crashes and hangs.224

Resource Abuse. Other OCBugs (4/75=5%) may cause225

catastrophic resource abuse. For example, in PostgreSQL-226

TABLE III: Root causes of on-the-fly configuration bugs.

Incorrect propagations of configuration-related variables 34
Fail to consider loading updated values 7
Load wrong updated values 16
Miss to propagate to other variables 11

Incorrect usages of configuration-related variables 41
Fail to consider handling updated values 8
Improperly handle updated values 27
Bad update timing that causes data race 6

16160 [7], option ssl_ca_file is used to specifie the SSL 227

certificate authority file. When users update an unexsiting path 228

for the option and reload PostgreSQL, the system will suffer 229

from memory leaks or even OOM errors, since PostgreSQL 230

did not free the failed file object during reloading. 231

Finding 1: About one third (36%) of OCBugs have
obvious symptoms like crash or hang, while most (64%)
of OCBugs result in functional errors that have no easy-
to-observe characteristics.

This finding implies that most OCBugs are hard to be 232

detected by the existing testing technology like Fuzzing, which 233

typically requires easy-to-observe symptoms as test oracals. It 234

means an ideal fuzzing tool can detected up to 36% OCBugs. 235

During the study, we found users frequently compare the 236

effects of an option either loaded at the startup phase or 237

updated on the fly, and report bugs [5], [9], [11] if not 238

consistent. Inspired by these bug reports, we propose a more 239

effective test oracle — The value of one configuration option, 240

either loaded at the startup phase or updated on the fly, should 241

have the same effects on the target program. 242

C. Root Causes of OCBugs 243

We study root causes of OCBugs by manually analyzing 244

the patches and comments of each OCBug. The overall 245

finding is that the root causes can be clearly classified into 246

two categories: a) incorrect propagations of configuration- 247

related variables; and b) incorrect usages of the variables. 248

Configuration-related variables include the variable that reads 249

and stores the original value of the involved configuration 250

option, as well as variables that are control/data dependent on 251

the original variable. All these variables should be well defined 252

druing the propagation phase before using. This classification 253

is straightforward since every variable should be first defined 254

and then used. The results are shown in Table III. 255

1) Incorrect propagations of configuration-related vari- 256

ables: Nearly half (34/75=45%) of OCBugs happened during 257

propagating configuration-related variables. In specific, the 258

propagation process may occur three error scenarios: a) the 259

programs do not load the on-the-fly updated values at all; b) 260

the programs try to load the values, but get wrong values 261

since the parsing methods are incorrect; c) the programs 262

correctly load the values, but errors occur because of missing 263

to propagate the values to other configuration-related variables 264

after configuration updates. The following paragraphs will 265

present OCBug examples for each error scenario. 266

1 void set_config_option(const char *name,...){
2 + /* If value == NULL then we reset some value to
3 + * its default (removed from configuration file).*/
4 + else if (source == PGC_S_DEFAULT)
5 + newval = conf->boot_val;

1 // parse options from config file
2 if (!strcmp(argv, "client-output-buffer-limit")){
3 hard = memtoll (argv[2],NULL);
4
5 // parse options when updating
6 set_special_field("client-output-buffer-limit") {
7 - hard = strtoll (v[j+1],NULL);
8 + hard = memtoll (argv[2],NULL);

1 // Initialize variables when system starting
2 static void mainInitialize(void){
3 useragentlog = logfileOpen(useragent_log);
4 }
5
6 // Update variables when system reconfiguring
7 static void mainReconfigureFinish(void *) {
8 + useragentlog = logfileOpen(useragent_log);

(a) Fail to consider loading the updated values. (b) Load wrong updated values. (c) Incorrectly propagate to other variables.

1 // Called server.hz times per second
2 int serverCron(...){
3 // Trigger an AOF rewrite if needed
4 if (server.rdb_child_pid == -1 &&
5 + server.aof_fd != AOF_ON &&
6 server.aof_current_size > server.rewrite_min){
7 rewriteAppendOnlyFileBackground();

1 if (got_SIGHUP){
2 if (strcmp((Log_directory, currentLogDir) != 0){
3 currentLogDir = pstrdup(Log_directory);
4 + //Create new directory if not present
5 + mkdir(Log_directory);
6 logfile_rotate(Log_directory, Log_filename);

1 - if (!buf_pool_is_obsolete(withdraw_clock)
2 - && optimistic_latch_leaves(
3 - cursor->modify_clock,...) {
4 + if (m_block != NULL) {
5 + rw_lock_s_lock(latch);
6 + ...
7 + rw_lock_s_unlock(latch);

(d) Fail to consider handling updated values. (e) Improperly handle updated values. (f) Bad update timing that causes data race.

Fig. 2: Examples of root causes. Each example illustrates one type of OCBugs listed in Table III.

Fail to consider loading the updated values. The updated267

options are sometimes not loaded by the system. For example,268

in PostgreSQL-3589 [10], the user removed one option in269

postgres.conf to use its default value, then reloaded con-270

figuration file at runtime. The configuration-related variable,271

however, remained the old value, rather than its default value.272

In Figure 2(a), developers fixed the bug by changing options273

to their default values when removed from configuration files.274

Load wrong updated values. The programs may get wrong275

values when parsing dynamically updated options. Taking the276

bug [9] in Figure 2(b) as an example, Redis uses memtoll()277

to parse the option client-output-buffer-limit during278

system startup, but uses strtoll() to parse the same option when279

reconfiguring. One option value might be parsed into different280

values when using these two methods, e.g., memtoll(“64mb”)281

returns 67108864, while strtoll(“64mb”) returns 64. The fix282

is to use memtoll() instead of strtoll() when reconfiguring.283

Miss to propagate to other variables. The variable that284

holds the original option value may frequently propagate to285

other variables through data-flow or control-flow dependen-286

cies. Figure 2(c) shows an example [11] caused during data-287

flow propagation. Squid uses the option useragent_log to288

initialize the logfile. The user tried to disable the option and at289

runtime, but the stale logfile continued to collect logs. This is290

because the variable useragentlog, propagated by data flow291

in line 3, is not updated. The patch is to update the variable292

when receiving updating command (line 8).293

Besides the above case, some options may propagate294

through control-flow paths. Taking Figure 1 as an example, the295

variable opt_log_queries_not_using_indexes holds the296

original option value, while the variable opt_specialflag297

is controlled by the option value. When the option is true,298

opt_specialflag would be initialized (line 2-3). MySQL,299

however, does not update opt_specialflag when users300

turning on the option at runtime. The patch is to remove the301

stale variable opt_specialflag.302

2) Incorrect usages of configuration-related variables: 303

Besides the above cases, the other half (41/75=55%) of 304

OCBugs are about using configuration-related variables. Our 305

study shows that these cases can be further classified into 306

three types. First, the programs may not use the dynamically 307

updated variables at all, although the variables have been well- 308

defined by assigning or propagating the latest values. Second, 309

the programs have considered using the updated values, but the 310

values trigger bugs since the handling code is faulty. Third, 311

the handling of new option values itself is correct, but the 312

updating timing may trigger data race. We will present OCBug 313

examples for each type in the following paragraphs. 314

Fail to consider handling updated values. The programs 315

may miss to handle the situation of configuration updates in 316

special program paths. Taking Redis-4545 [6] as an example, 317

of which the symptoms have been described in Section II-B. 318

As shown in Figure 2(d), Redis evaluates whether AOF rewrite 319

is completed every few milliseconds (line 6), and continue to 320

rewrite if not. The developers miss to handle the situation 321

of appendonly updating from ‘yes’ to ‘no’, when the AOF 322

rewrite has not been completed. It caused Redis to infinitely 323

repeat the AOF rewrite operations (line 7). The fix is to add 324

handling of the updated value (line 5). 325

Improperly handle updated values. After on-the-fly con- 326

figuration updates, the programs try to handle and use the 327

updated options, but the handling code may be faulty. For 328

example, in Figure 2(e), when users dynamically update the 329

option Log_directory (line 2), PostgreSQL would force log 330

rotation to ensure writing logfiles in the right place (line 6). 331

PostgreSQL, however, does not create a new directory when 332

the option is updated to a nonexistent path. This will cause 333

functional errors in the PostgreSQL logger [36]. The patch is 334

to create a new directory. 335

Bad update timing that causes data race. Users can 336

update options at anytime during program executions. This 337

mechanism will potentially cause data race. For example, 338

in MySQL, if the option innodb_buffer_pool_size is 339

reduced, MySQL would resize the buffer pool, and free340

unused buffer blocks. In Figure 2(f), MySQL-100630 [13]341

occured if MySQL shrinked the buffer pool just between342

buf pool is obsolete() and optimistic latch leaves(). The for-343

mer is to check if the buffer pool is resized, while the latter344

is to access the buffer. This bug causes buffer overflow, and345

the patch is to add locks for buffer blocks (line 5-7).346

Finding 2: Nearly half (45%) of OCBugs happened
during propagating configuration-related variables, while
the other half (55%) of OCBugs are about using those
variables.

This finding implies that OCBugs can be basically divided347

into two main types. The first type can be detected by ana-348

lyzing the states of configuration-related variables inside the349

target program, since there exist control or data dependencies350

among the variables. The second type, however, is hard to351

be detected by program analysis. Instead, they can only be352

detected by examining external behaviors of the program.353

Taking the OCBug in Figure 2(d) as an example, it is hard354

to recognize that the code snippet misses the check in line355

5. In this regard, we extend the test oracle described in the356

end of Section II-B — The effects should be divided into357

internal and external effects. Internal effects are value changes358

of variables related to configuration options, while external359

effects are behaviors that can be observed outside the program.360

On one hand, an internal effect does not necessarily lead361

to observable behaviors, which may also require other trig-362

gering conditions. On the other hand, an external effect is363

not always caused by wrong configuration-related variables.364

Instead, it may be caused by other program logic that use365

the variables. Staccato [31] first collects configuration-related366

program variables, then checks if their values are changed after367

dynamic configuration updates. If not, Staccato reports a bug.368

This approach will miss the cases having external effects, since369

the configuration-related variables have changed as expected.370

It may also miss some cases having internel effects, which load371

wrong updated values. In both cases, Staccato cannot report372

bugs. As a result, Staccato can detected up to (7+11)/75=24%373

OCBugs in ideal.374

D. Triggering Conditions of OCBugs375

In order to guide and facilitate automated test-case genera-376

tion for testing OCBugs, we conduct a comprehensive study377

towards the triggering conditions of OCBugs in this section.378

In specific, we break RQ3 into following three sub-questions:379

• RQ3.1: What option values are able to trigger OCBugs?380

• RQ3.2: How many updating times can trigger OCBugs?381

• RQ3.3: What dependencies are required by the OCBugs?382

1) Option values: An option value may be either valid383

or invalid, where an invalid value means breaking constrains384

of the option. We first investigate if option values triggering385

OCBugs should be valid or not. To achieve this, we manually386

collect option constraints from documents and source code.387

The results show that both valid values (66/75=88%) and388

invalid ones (9/75=12%) can trigger OCBugs. It means we 389

need to generate both valid and invalid option values when 390

testing OCBugs. 391

For invalid values, we only need to generate one value that 392

breaks the option constraints. For valid values, however, the 393

generating policies may be different according to the option 394

types. It is easy to generate values for Boolean or enumerable 395

options, since we can simply enumerate all possible values. 396

As for numeric options, we need to study the characteristics 397

of the specific values that trigger OCBugs. The results show 398

that, among 33 OCBugs that are related to numeric options 399

with valid values, most (22/33=67%) of them are insensitive 400

to option values. It means an arbitrary numeric value is 401

enough to trigger a bug. Meanwhile, one third (11/33=33%) of 402

OCBugs can be triggered by changing the values drastically, 403

e.g., exponentially increasing or decreasing the values. For 404

example, MySQL-100630 [13] is triggered by changing the 405

buffer pool size from 2G to 128M. In this regard, when testing 406

numeric options, we can always exponentially increase or 407

decrease their values. 408

Finding 3.1: Both valid and invalid option values should
be taken into consideration when testing OCBugs. The
option values should be drastically changed when testing
numeric options.

2) Updating times: An OCBug may require multiple up- 409

dating operations to be triggered. It will be exponentially 410

explosive if testing all combinations of multiple updating oper- 411

ations. To help this situation, we study the times of updating 412

operations required to trigger OCBugs. To achieve this, we 413

checked all bug descriptions and commit messages of all 414

OCBugs. The results show that the vast majority (71/75=95%) 415

of OCBugs require one time of on-the-fly update on one 416

option to trigger the bugs. In very limited cases (4/75=5%), 417

multiple updating operations are needed, i.e., updating one 418

option multiple times or even updating multiple options. For 419

example, in Redis-8030 [37], the bug is triggered by first 420

updating the option appendonly from ‘yes’ to ‘no’, then back 421

to ‘yes’. 422

Finding 3.2: Most (95%) of OCBugs can be triggered
by dynamically updating one option once. It means
performing one updating operation in one test execution
is enough for exposing the vast majority of OCBugs.

3) Option dependencies: One configuration option usually 423

depends on other options to take effects, no matter the option 424

is loaded at the startup phase or updated on the fly. The 425

dependency problem may also lead to exponential explosion 426

similar to the above paragraph. Therefore, we study option 427

dependencies required to trigger OCBugs. Please note that 428

these dependencies are different to the cases of updating 429

multiple options above. Here the dependencies mean options 430

that should be set during the startup phase. To achieve this, 431

we record the options set by users during the startup phase, 432

and replace their values with default ones. If an OCBug can 433

be no longer triggered, it means there is a dependency.434

The results show that most (55/75=73%) of OCBugs do435

not depend on any other option, while more than one fourth436

(20/75=27%) of OCBugs have dependencies. In this regard,437

we further investigate source code and documentation related438

to the 20 OCBugs. Among these, the updated options of 20%439

(15/75) OCBugs are data/control dependent on other options440

in source code. For example, triggering MySQL-28808 [5]441

needs to turn on slow_query_log to enable the updated442

option opt_log_queries_not_using_indexes. Besides,443

the dependencies of 7% (5/75) OCBugs are hard to be obtained444

from source code. For example, triggering MySQL-5394 [38]445

first needs to turn on query_cache_type, then updates446

max_sort_length. The buggy code snippet, however, does447

not consider using the updated option. As a result, updating448

max_sort_length does not take effect. In this case, it is hard449

to obtain the dependency between query_cache_type and450

max_sort_length, which does not appear at all.451

Finding 3.3: Most (73%) of OCBugs do not depend on
any other option. Dependencies of 20% OCBugs can be
obtained by program analysis. The other 7% can only be
detected by exhaustive testing of option combinations.

III. DETECTING OCBUGS452

In this section, we describe the design of PARACHUTE, an453

automated testing framework in detecting OCBugs. We first454

introduce the overview of PARACHUTE, as well as its technical455

challenges. After that, we introduce two main components456

of PARACHUTE, i.e., test-case generations and OCBug de-457

tections. Suggested by Finding 2, the detection component is458

supposed to handle two situations: test cases that cause either459

internal effects or external effects.460

A. Overview of the OCBug Testing Framework461

Figure 3 shows the overview of PARACHUTE, which re-462

quires three inputs: source code of Software Under Test (SUT),463

target configuration options of SUT, and the official test suite464

of SUT. The PARACHUTE framework contains two major465

tasks: generating on-the-fly tests and detecting OCBugs.466

Generating on-the-fly tests. PARACHUTE first generates467

test cases of on-the-fly configuration updating for the target468

options. To achieve this, PARACHUTE leverages and mutates469

the existing test suite. The main challenge of this task is470

the huge testing space. For each target option, PARACHUTE471

needs to mutate all test cases of the test suite. For each test472

case, PARACHUTE further needs to generate a large number473

of mutations, since one option may have different values,474

updating times, dependencies and so on. To address this475

challenge, we conduct a comprehensive study towards the476

triggering conditions of OCBugs in Section II-D, and get three477

conclusions to guide the design of test-case generation.478

Detecting OCBugs. PARACHUTE then leverages metamor-479

phic testing to detect OCBugs. In spesific, PARACHUTE tests480

the target program twice, using configuration options loaded481

since system startup or updated on-the-fly, separately. After482

Test Case

Select and
Generate Tests

Potential
OCBug

Generate
On-the-fly Test

Taint
Analysis

Three-stage
Testing

External Effect
Detection

OCBug Detection

Sampling
Option Values

Target Option

Source Code

Internal Effect
Detection

Fig. 3: Overview of PARACHUTE

that, PARACHUTE detects OCBugs based on the following 483

oracles according to Finding 2: 484

• Oracle I (Internal Effects): The values of program vari- 485

ables related to configuration options should be the same, 486

no matter the options are loaded since system startup or 487

updated on-the-fly. 488

• Oracle II (External Effects): The outputs of the system 489

under test should be the same, no matter configuration 490

options of the system are loaded since system startup or 491

updated on-the-fly. 492

For Oracle I, its main challenge is to determine the involved 493

variables. The challenge of Oracle II is that the effects may not 494

happen immediately after an option is dynamically updated. 495

Instead, programs usually finish the current workload using 496

old option values, and apply new values later. In this case, the 497

programs have no OCBugs, but PARACHUTE may believe the 498

updated options do not take effect and report false positives. 499

To solve this problem, we propose a three-stage metamorphic 500

testing approach. 501

B. Generating On-the-fly Tests 502

Mature software projects usually have official test suite, 503

which is rarely designed for the situation of on-the-fly option 504

updating. Therefore, PARACHUTE mutates the existing test 505

cases to trigger OCBugs. This process, however, is non-trivial. 506

First, a project may have thousands of test cases and hundreds 507

of options. It is time-consuming to perform all test cases for 508

each option. PARACHUTE should filter out the test cases that 509

are not related to the target option. Second, in each selected 510

test case, PARACHUTE will insert a command to update on 511

option, which may have a large number of possible values. 512

PARACHUTE has to determine the values that should be tested. 513

Third, PARACHUTE needs to generate new test cases based on 514

the selected test cases and values. Each new test case contains 515

two exections, since PARACHUTE uses metamorphic testing. 516

Selecting existing test cases. As running all the test cases 517

for all options may be time-consuming, we need to pre-select 518

a subset of test cases for each target option, and filter out 519

the most majority of cases that are not related to the option. 520

To achieve this, PARACHUTE first integrates ConfMapper [39] 521

to find the variables used to load options, then instruments 522

the uses of those variables by using Clang [45]. After that, 523

PARACHUTE runs all test cases for one time, and obtains the 524

option set that can be triggered by each test case. Finally, 525

PARACHUTE filters out the test cases that can not trigger the 526

target option. 527

Determining option values. According to Finding 3.1 in528

Section II-D, we need to test both valid and invalid values529

for a target option. To achieve this, PARACHUTE first collects530

constraints of the option by applying the existing tools [15],531

[16]. On one hand, PARACHUTE uses the constraint violation532

rules defined in [15] to generate invalid values of the target op-533

tion. In specific, for Boolean, enumerable or numeric options,534

PARACHUTE generates invalid values beyond the value set or535

valid range (e.g. MIN-1, MAX+1). For options of other types536

in [15], PARACHUTE generates invalid values by violating their537

syntax (e.g., an invalid ip address).538

On the other hand, PARACHUTE samples values satisfying539

the configuration constraints. For each Boolean and enumer-540

able option, PARACHUTE chooses all its possible values. As541

for numeric options, it is hard to test all values. Guided542

by Finding 3.1, PARACHUTE samples values changed ex-543

ponentially for a given sampling number. For example, the544

valid range of option binlog_cache_size is [212, 232].545

PARACHUTE will sample {212, 216, 220, 224, 228, 232}, if546

users want to sample six values. For options of other types,547

PARACHUTE generates valid values by satisfying their syntax548

(e.g., a valid ip address).549

Generating new test cases. This process involves two tasks.550

First, for each pair of the selected values, PARACHUTE needs551

to generate two executions as one new test case. As shown in552

the first two executions of Figure 4, Execution 1 assigns the553

option ConfA to v0 at startup, while Execution 2 uses v1 at554

startup but updates the value back to v0 at a random place555

during runtime. Please note that, PARACHUTE only needs556

to insert one updating command according to Finding 3.2.557

After the update, the program is supposed to have the same558

behaviors in two executions since ConfA has the same value559

v0. Thus, PARACHUTE can leverage the above metamorphic560

relation to detect OCBugs.561

Second, the updated option ConfA may depend on other562

options to become effective. According to Finding 3.3, besides563

the 73% OCBugs that do not depend on any other option,564

dependencies of 20% OCBugs can be obtained by program565

analysis. In this regard, PARACHUTE integrates SPEX [16],566

an existing tool that can obtain option dependencies automati-567

cally. PARACHUTE would satisfy control and value dependen-568

cies for the target option before running each new test case.569

While for the other 7% OCBugs that can only be detected570

by combination testing, PARACHUTE provides an exhaustive571

testing mode with a given time budget provided by users.572

C. Detecting OCBugs573

With the new test cases available, PARACHUTE can detect574

OCBugs by using two oracles as mentioned in Finding 2,575

i.e., comparing both internal and external effects between two576

executions of each new test case.577

1) Detecting OCBugs using Internal Effects: The internal578

effects are used to detect incorrect propagations bugs. When579

updating an option, the internal effects are value changes of its580

corresponding variables, including the variable that reads and581

stores the original value of the option, as well as variables that582

Initial
Configuration Steps of Test Case Outputs

Execution 1

Execution 2

Execution 3

Execution 4

Step 1 Step 2 Step N

Step 1 Step 2 Step N
Update

ConfA to v0

Output 1

Step 1 Step 2 Step N

Output 2

Output 3

Output 4Update
ConfA to v0 Step 1 Step 2 Step N

ConfA = v1

ConfA = v0

ConfA = v1

ConfA = v1

Fig. 4: Examples of metamorphic test executions

are control/data dependent on the original variable. Therefore, 583

PARACHUTE needs to collect the option-related variables. To 584

achieve this, PARACHUTE firstly conducts taint analysis to find 585

the configuration-related variables, then instruments the source 586

program. 587

The taint analysis starts from the variable which first reads 588

and stores the option value. PARACHUTE uses ConfMap- 589

per [39] to find the original variable of each option, then 590

propagates the taints along data-flow paths. The data-flow anal- 591

ysis is inter-procedural, field-sensitive, and supports pointer 592

analysis. Besides, PARACHUTE also supports control-flow taint 593

analysis. For example, in line 2-3 of Figure 1, the analysis will 594

taint opt_specialflag which is control depended on the 595

option variable opt_log_queries_not_using_indexes. 596

Then, PARACHUTE instruments the source program to 597

record the values of tainted variables. One option may taint 598

many program variables, and lead to significant overhead after 599

instrumentation. To remedy this situation, we investigated the 600

incorrect propagations bugs again, and find the overwhelming 601

bugs (32/34=94%) are triggered by global variables storing 602

incorrect or stale values. The other two cases will cause 603

crashes when loading new values. The crash cases have 604

obvious symptoms, and do not need to check internal effects. 605

Therefore, PARACHUTE only records global configuration- 606

related variables. For example, both opt_specialflag and 607

opt_log_queries_not_using_indexes in Figure 1 are 608

global variables. The taint analysis is implemented using 609

LLVM [44], while the instrumentation is based on Clang [45]. 610

2) Detecting OCBugs using External Effects: The external 611

effects are used to detect incorrect usages bugs. When updat- 612

ing an option, its external effects are program behaviors that 613

can be observed outside the program. PARACHUTE records 614

outputs, crashes, and hangs as external effects during testing. 615

The challenge here is that the effects of option updateing 616

may not happen immediately. Runtime configurable systems 617

generally allow existing sessions to adopt the updated values 618

after they complete the currently-executing transactions and 619

commands [40]–[43]. PARACHUTE needs to avoid false posi- 620

tives caused by the delayed usage of new values. To achieve 621

this, we propose a three-stage metamorphic testing approach to 622

Conduct Execution 1 & 2 Conduct Execution 3

Conduct Execution 4

Output 1 == Output 2 Output 2 == Output 3
No

Output 1 == Output 4

No

No

Yes
Config update takes effect,
but improperly handled.

The config update was
not handled.

Yes

Yes
Delay Usage

Well handled

Fig. 5: Flowchart for detecting OCBugs with externel effects

address this challenge. The workflow is illustrated in Figure 5.623

• First Stage: PARACHUTE compares external effects be-624

tween the first two executions. If the effects are the same,625

it means the program successfully handle the updating.626

If the effects are different, there are three cases: a) the627

program is using old values for the current transaction,628

while new values do not take effects so far; b) the629

program improperly handles new values; c) the program630

does not handle new values at all. The first case is a631

common practice, while the last two cases are OCBugs.632

• Second Stage: PARACHUTE adds an execution in the test633

case, as shown in Figure 4 Execution 3, which deletes634

the updating command. Then, PARACHUTE compares the635

effects between Execution 2 and 3. If the effects are636

different, it indicates the new value has already taken637

effects, meaning the program improperly handles the new638

value. Thus, PARACHUTE reports an OCbug. If the effects639

are the same, there still are two possibilities: delay usage640

or no handling at all.641

• Third Stage: PARACHUTE adds another execution in642

the test case, as shown in Figure 4 Execution 4, which643

places the updating command at the beginning of the644

test. Then, PARACHUTE compares the effects between645

Execution 1 and 4. If the effects are the same, it indicates646

the program successfully handle the updating, since there647

is no working transaction before the updating command648

in Execution 4. Otherwise, it means the program does not649

handle the new value at all. Thus, PARACHUTE reports650

an OCbug.651

Figure 6 shows a real-world example of using the three-652

stage metamorphic testing approach in MySQL. The option653

div_precision_increment indicates the number of deci-654

mal places for answers of division operations. PARACHUTE 1)655

runs Execution 1 and 2, and finds the outputs are different; 2)656

runs Execution 2 and 3, and finds the outputs are the same;657

3) runs Execution 1 and 4, and finds the outputs are also the658

same. Thus, PARACHUTE knows the case is caused by delay659

usage of the new option value, and does not report any bug.660

IV. EVALUATION661

To evaluate PARACHUTE, we consider the following three662

research questions:663

RQ1: How effective is PARACHUTE in detecting the known664

OCBugs?665

//System starts with
//div_precision_increment as 0
1 Create Table t1 Select 1/3 as col;
2 Select col from t1;

Output: 0

//System starts with
//div_precision_increment as 2
1 Create Table t1 Select 1/3 as col;
2 Set div_precision_increment = 0;
3 Select col from t1;

Output: 0.33

//System starts with
//div_precision_increment as 2
1 Create Table t1 Select 1/3 as col;
2 Select col from t1;

Output: 0.33

//System starts with
//div_precision_increment as 2
1 Set div_precision_increment = 0;
2 Create Table t1 Select 1/3 as col;
3 Select col from t1;

Output: 0

(a) Execution 1 (b) Execution 2

(c) Execution 3 (d) Execution 4

Fig. 6: A MySQL example of using three-stage testing

RQ2: How effective is PARACHUTE in detecting unknown 666

OCBugs? 667

RQ3: How does PARACHUTE compare with the state-of-the- 668

art configuration bug detection tool? 669

A. Effectiveness of Detecting Known OCBugs 670

We evaluate the effectiveness of PARACHUTE in detecting 671

known OCBugs. As PARACHUTE is primarily designed to 672

detect functional OCBugs, we tried our best effort to reproduce 673

all the 44 OCBugs studied in Section II, whose symptoms 674

are functional errors. We successfully reproduced 38 bugs. 675

To avoid over-fitting, we followed the bug collection steps 676

on MariaDB and Httpd, and successfully reproduced 18 bugs 677

that are not included in the empirical study. We evaluate 678

PARACHUTE on these 56 OCBugs. 679

We run PARACHUTE on a 64-bit Ubuntu 18.04 machine 680

(8 cores, Intel Core i7-9700K, and 32GB RAM). To detect 681

a known OCBug, we condutct PARACHUTE with the official 682

test suite for 20 hours, on the buggy version of the software. 683

PARACHUTE successfully detected 75% (42/56) of the ex- 684

isting bugs. The results are shown in Table IV. PARACHUTE 685

can detect most (31/33=94%) of Incorrect propagations bugs, 686

and nearly half (11/23=48%) of Incorrect usages bugs. 687

PARACHUTE failed to detected 14 bugs due to the following 688

reasons: 1) The triggering conditions for the bugs are not met 689

(6 cases). As the testing space is huge, PARACHUTE uses 690

heuristic strategies to generate tests for configuration updates. 691

Some corner cases are missed: a) updating the target option 692

to special values (e.g. Triggering Nginx-796 [46] needs to 693

update the option to a new file path, but pointing to the 694

same file); b) updating the target option more than one time; 695

c) the dependency for the target option are hard to obtain 696

from source code by existing works. 2) The taint analysis is 697

not sound (2 cases). PARACHUTE is limited by complicated 698

pointer and alias analysis. 3) Some bugs require proper test 699

scenarios and operations (6 cases). For example, MariaDB- 700

23988 [47] occured in a cluster of three nodes. But the official 701

test suites do not satisfy the required scenarios and operations. 702

TABLE IV: The effectiveness of detecting existing OCBugs.

OCBug Type
Reproduced Detected by Detected by

OCBugs PARACHUTE Staccato

Fail to consider loading. 8 8 8
Load wrong updated values. 15 15 0
Miss to propagate. 10 8 7

Fail to consider handling. 7 4 0
Improperly handle. 16 7 0

TOTAL 56 42 15

Answer to RQ1: This result indicates PARACHUTE can703

effectively (42/56=75%) detect the existing OCBugs.704

B. Effectiveness of Detecting Unknown OCBugs705

We also apply PARACHUTE on the recent released version706

of the target systems to evaluate if PARACHUTE can detect un-707

known OCBugs. We evaluate PARACHUTE on the 7 software708

systems, including MariaDB, Httpd and the systems listed709

in Table I. Because each software has hundreds of runtime710

configurable options, we randomly select 100 options from711

each system for testing. We condutct PARACHUTE to test each712

option for 20 hours.713

PARACHUTE reported 13 true positives and 3 false positives714

according to our manual analysis. We report the 13 OCBugs715

to developers, and 11 of the bugs have been confirmed or716

fixed by developers, shown in Table V. The 13 OCBugs come717

from 5 systems, including MySQL, Redis, Squid, PostgreSQL718

and MariaDB. Among these new bugs, 5 cases are Incorrect719

propagations bugs, and 8 cases are Incorrect usages bugs.720

We find the unknown OCBugs would cause the systems721

functional errors or performance degradation. For example722

in MySQL, updating option time_zone between two same723

Select operations, would make MySQL Query Cache invalid to724

identify the same queries. Specially, changing time_zone had725

no effect on the result of the Select operations. However, Query726

Cache incorrectly identified them as different queries, due to727

improperly handling the updated value. It would also cause728

serious performance degradation in extreme cases; MySQL729

does repetitive query operations and stores redundant results,730

rather than returning the result from cache directly.731

Meanwhile, PARACHUTE also reported 3 false positives in732

the target systems. 1) One false positive comes from Oracle733

I. PostgreSQL uses option statement_timeout to control734

the maximum time of executing any statement. PARACHUTE735

found the option was propagated to a global variable, but had736

not been changed after configuration update. However, we737

communicated with the developer and confirmed that it was738

not a bug. It is designed to updated after the current statement739

is executed. 2) Two false positives come from Oracle II, which740

are caused by inexact results of some operations in the tests.741

For example in MySQL, the operation Explain Select is used742

to predict the statement execution plan, and returns the number743

of rows MySQL plans to examine for the query [48]. However,744

TABLE V: New OCBugs detected by PARACHUTE.

Bug ID† Version(s) Status Type‡ OracleI OracleII Staccato

MySQL-1 v5.7-latest Confirmed Type-2 X
MySQL-2 v5.7-latest Confirmed Type-2 X
MySQL-3 v5.7-latest Confirmed Type-2 X
MySQL-4 v5.7-latest Confirmed Type-1 X X X
MySQL-5 v5.7 Confirmed Type-2 X
MySQL-6 v5.7 Confirmed Type-2 X
MySQL-7 v5.7 Confirmed Type-2 X
Redis-1 v6.2-v7.0 Fixed Type-1 X
Squid-1 v5.0-latest Pending Type-1 X X
Squid-2 v5.0-latest Pending Type-1 X X
Postgres-1 v14.2-latest Confirmed Type-1 X X X
MariaDB-1 v10.3-latest Fixing Type-2 X
MariaDB-2 v10.3-latest Fixing Type-2 X

† The Bug ID is hidden for double-blind review.
‡ Type-1 is short for Incorrect propagations of configuration-related variables;

Type-2 is short for Incorrect usages of configuration-related variables.

the number is an estimate and not always exact, which misled 745

the external effect analysis of PARACHUTE. 746

Answer to RQ2: This result indicates PARACHUTE can 747

effectively detect unknown OCBugs in popular, real-world 748

software systems with limited false positives (3/16=19%). 749

C. Comparison with the State-of-the-art Technique 750

We compare PARACHUTE with Staccato [31], one of the 751

state-of-the-art technique for detecting configuration-related 752

bugs. Staccato first collects configuration-related program 753

variables, then checks if their values are changed after dy- 754

namic configuration updates. We evaluate the effectiveness 755

of Staccato in detecting the same known OCBugs in IV-A, 756

and the unknown bugs which were found by PARACHUTE. 757

Because Staccato is a bug detection tool for java programs and 758

PARACHUTE for C/C++ programs, we evaluate the theoretical 759

upper bound of Staccato in detecting these bugs. As Staccato 760

did not publish the reproduction steps for its detected bugs, we 761

do not evaluate PARACHUTE on the same java programs that 762

stacatto was evaluated on. We do not compare PARACHUTE 763

with Fuzzing, because Fuzzing could not effectively detect 764

functional bugs, due to the lack of special test oracles. How- 765

ever, Fuzzing techniques could generate various tests to help 766

PARACHUTE detect OCBugs in the future work. 767

The evaluation shows that Staccato can detect 27% (15/56) 768

of the reproduced OCBugs, shown in Table IV. On one hand, 769

Staccato can detect less than half (15/34=44%) of Incorrect 770

propagations bugs. We analyze and find that Staccato can only 771

detect whether the option value is updated, but misses the 772

ability to detect the correctness of the updated values. So, 773

Staccato missed all of the bugs caused by Loading wrong 774

updated values. Moreover, Staccato can detect most (7/10) of 775

OCBugs arising from Missing to propagate, while also also 776

failed to detect 3 OCBugs caused by control-flow propagation. 777

(e.g. MySQL-28808 in Figure 1). Traditional taint analysis 778

usually ignores this type of propagation. On the other hand, in 779

Incorrect usages bugs, the configuration-related variables are 780

correctly updated. So, Staccato has no ability (0%) to detect 781

this type of OCBugs. However, PARACHUTE can detect all782

types of OCBugs.783

Moreover, we find Staccato can only detect four of the 13784

unknown bugs, reported by PARACHUTE, as shown in Table V.785

The four bugs were both caused by Missing to propagate.786

While, the other 9 bugs are caused by Loading wrong updated787

values and Incorrect usages of configuration-related variables.788

Staccato has limited ability to detect these types of OCBugs.789

Answer to RQ3: This result indicates PARACHUTE can790

detect more types of OCBugs than the state-of-the-art791

technique, Staccato.792

D. Discussion793

Quality of test suite. PARACHUTE leverages and mutates794

existing test suite, instead of generating new test cases. The795

test suite can affect the effectiveness of PARACHUTE in796

detecting OCBugs. If the existing test cases do not provide797

proper test environment and operations to trigger the bugs,798

PARACHUTE will lose the opportunity to detect and identify799

them. Many crash bugs usually require complicated envi-800

ronment and test steps. To this end, PARACHUTE provides801

interfaces to accept user-provided test suite and configurations,802

to specifically test some options and scenarios. On the other803

hand, fuzzing [23]–[30], [49], [50] is popular automated test-804

ing technique to generate diverse tests and improve the code805

coverage. Our future work will lie in combining PARACHUTE806

with fuzzing techniques to generate high-quality test cases to807

detect OCBugs.808

Reproducing bugs. We tried our best to reproduce the809

known OCBugs, but failed to reproduce some due to the810

following reasons: 1) The bugs need special environment and811

workload to trigger. For instance, MariaDB-18699 [51] re-812

quires distributed cluster and complicated workload. 2) A few813

bugs need special system status and scenarios when updating814

the option. For instance, Redis-8030 [37] was triggered in the815

situation where Redis AOF write errored due to disk error.816

V. THREATS TO VALIDITY817

A main threat to validity is likely insufficient representative-818

ness of configurable software used in our study. We attempt819

to study a wide variety of popular open-source configurable820

systems; the 5 studied systems cover a variety of domains,821

including database systems and web server. Another criterion822

for our selection of studied systems is that the system exposes823

many options which are runtime configurable. It makes us824

abandon some popular software (e.g. HDFS has only 16 (out of825

583) runtime configurable options [52]. Most options can only826

be updated after restarting the system). The findings of our827

research may only apply to database and web server systems.828

Software, from other domains or closed-source, could have829

different characteristics.830

Another main threat is likely incompleteness of keywords831

to collect OCBugs. To alleviate the threat, we use two types832

of keywords to search for the issues and commits, related833

to OCBugs. The final main threat is likely incorrectness834

of manual inspection. To minimize the effect, each bug is835

inspected by two inspectors. If the two inspectors diverged, 836

a third inspector was consulted for additional discussion until 837

consensus was reached. 838

VI. RELATED WORK 839

Detecting Configuration-Related Bugs. Many OCBugs are 840

non-crashed, leading to various forms of functional errors, 841

which requires specific oracles to detect. Popular automated 842

testing techniques, such as Fuzzing [23]–[30], [49], [50], could 843

not effectively detect such functional bugs due to the lack of 844

test oracles. However, fuzzing method could generate various 845

tests to help PARACHUTE detect OCBugs. 846

Some works [22], [31], [33], [34], [53]–[56] focus on de- 847

tecting configuration-related functional defects or performance 848

defects in software codes. Ctest [22], [53] connects production 849

system configurations to software tests to detect configuration- 850

induced failures. Ctest simply reuses official tests and oracles, 851

which cannot detect OCBugs effectively. CP-Detector [34] 852

suggests performance properties for configuration options to 853

detect Configuration-handling Performance Bugs. The most 854

related work for detecting OCBugs is Staccato [31], which 855

is designed to find bugs for dynamic configuration updates. 856

Staccato collects configuration-related program variables, then 857

checks whether their values are changed after dynamic con- 858

figuration updates. Our study shows that Staccato misses all 859

of Incorrect usage bugs, and the cases which load wrong 860

updated values. In this paper, based on our in-depth research, 861

we conduct metamorphic testing by mutating existing tests 862

to identify OCBugs. PARACHUTE check both the internal and 863

external effects of configuration updates. So, PARACHUTE can 864

detect all types of OCBugs and report diagnosis information 865

to help fix the bugs. 866

Configuration Error Injection Testing. Some works [15]– 867

[21] focus on evaluating software reliability and diagnosability 868

regarding configuration errors. Configuration error injection 869

testing is to inject configuration errors into the system under 870

test (SUT), and then evaluate the SUT reaction under system 871

test suites. ConfErr [19], ConfInject [21], ConfTest [20], and 872

ConfDiagDetector [17] use predefined mutation rules to gen- 873

erate types of configuration errors. SPEX [16], ConfVD [18] 874

and CeitInspector [15] generate configuration errors by vio- 875

lating the specifications of configuration options, including 876

semantic type, data range and dependencies. However, all 877

these works directly leverage the official test suite, which are 878

not designed specifically for on-the-fly configuration updates. 879

Therefore, these works are hard to detect OCBugs. 880

Metamorphic Testing. Some works [57]–[62] use meta- 881

morphic testing [32] to detect logical bugs. Adamsen et al. [57] 882

use specific metamorphic relations to enhance existing test 883

suites for Android. SetDroid [58] uses setting-wise metamor- 884

phic fuzzing for finding system setting defects in Android 885

applications. The work [59] uses metamorphic model-based 886

testing with equivalence of queries to test DAT systems. Our 887

work also leverages the idea of metamorphic testing to detect 888

OCBugs in runtime configurable systems. Based on the root 889

cause study of OCBugs, we proposed two oracles to identify890

OCBugs.891

VII. CONCLUSION892

Many modern software support updating configuration op-893

tions on the fly without restarting the system, in order to894

improve the flexibility of configuration and provide persis-895

tent services. However, on-the-fly updating configuration also896

affects the system reliability, resulting in software crashes897

and functional errors. We refer to the bugs caused by on-898

the-fly configuration updates as OCBugs. In this paper, we899

conducted the first in-depth study on real-world OCBugs from900

5 open-source software systems. Based on our study, we901

designed and implemented PARACHUTE, an automated testing902

framework to detect OCBugs. Our key insight is that the903

value of one configuration option, either loaded at the startup904

phase or updated on the fly, should have the same effects on905

the target program. PARACHUTE can generate tests for on-906

the-fly configuration updates with existing tests and conduct907

differential analysis to identify OCBugs. PARACHUTE can908

detecte 75% (42/56) of the known OCBugs and 13 unknown909

bugs. Until the time of writing, 11 of the unknown bugs have910

been confirmed or fixed by developers.911

REFERENCES912

[1] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker, “Hey,913

You Have given Me Too Many Knobs!: Understanding and Dealing with914

over-Designed Configuration in System Software,” in Proceedings of the915

2015 10th Joint Meeting on Foundations of Software Engineering, ser.916

ESEC/FSE 2015. New York, NY, USA: Association for Computing917

Machinery, 2015, pp. 307–319.918

[2] Y. Zhang, H. He, O. Legunsen, S. Li, W. Dong, and T. Xu, “An919

evolutionary study of configuration design and implementation in cloud920

systems,” in 2021 IEEE/ACM 43rd International Conference on Software921

Engineering (ICSE). IEEE, 2021, pp. 188–200.922

[3] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and923

S. Pasupathy, “An empirical study on configuration errors in commercial924

and open source systems,” in Proceedings of the Twenty-Third ACM925

Symposium on Operating Systems Principles, 2011, pp. 159–172.926

[4] “MySQL 8.0 Reference Manual. Server Option,927

System Variable, and Status Variable Reference.”928

https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-929

reference.html, 2022.930

[5] “MySQL Bug #28808. log queries not using indexes variable dynamic931

change is ignored.” https://bugs.mysql.com/bug.php?id=28808, 2007.932

[6] “Redis Bug #4545. dead loop AOF rewrite when config set appendonly933

no.” https://github.com/redis/redis/issues/4545, 2017.934

[7] “PostgreSQL Bug #16160. Minor memory leak in case of starting post-935

gres server with SSL encryption.” https://www.postgresql.org/message-936

id/16160-18367e56e9a28264%40postgresql.org, 2019.937

[8] “MySQL Bug #65225. InnoDB miscalculates auto-938

increment after changing auto increment increment.”939

https://bugs.mysql.com/bug.php?id=65225, 2012.940

[9] “Redis Bug #4904. Use memtoll() in CONFIG SET client-output-buffer-941

limit.” https://github.com/redis/redis/pull/4904/, 2018.942

[10] “PostgreSQL Bug #3589. postgresql reload doesn’t re-943

flect log statement.” https://www.postgresql.org/message-944

id/200708300302.l7U32sP9005096%40wwwmaster.postgresql.org,945

2007.946

[11] “Squid Bug #579. useragent log disable.” https://bugs.squid-947

cache.org/show bug.cgi?id=579, 2005.948

[12] “Nginx Bug #945. when setting master process off, nginx949

segmentation fault when sent mutiple HUP singals.”950

https://trac.nginx.org/nginx/ticket/945, 2018.951

[13] “MySQL Bug #100630. buf pool is obsolete is not thread safe.”952

https://bugs.mysql.com/bug.php?id=100630, 2020.953

[14] “Redis Bug #5025. Fix config set numerical field() integer overflow.” 954

https://github.com/redis/redis/pull/5020, 2020. 955

[15] W. Li, Z. Jia, S. Li, Y. Zhang, T. Wang, E. Xu, J. Wang, and 956

X. Liao, “Challenges and opportunities: an in-depth empirical study on 957

configuration error injection testing,” in Proceedings of the 30th ACM 958

SIGSOFT International Symposium on Software Testing and Analysis, 959

2021, pp. 478–490. 960

[16] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, 961

and S. Pasupathy, “Do not blame users for misconfigurations,” in Pro- 962

ceedings of the Twenty-Fourth ACM Symposium on Operating Systems 963

Principles, 2013, pp. 244–259. 964

[17] S. Zhang and M. D. Ernst, “Proactive detection of inadequate diagnostic 965

messages for software configuration errors,” in Proceedings of the 2015 966

International Symposium on Software Testing and Analysis, 2015, pp. 967

12–23. 968

[18] S. Li, W. Li, X. Liao, S. Peng, S. Zhou, Z. Jia, and T. Wang, “Confvd: 969

System reactions analysis and evaluation through misconfiguration injec- 970

tion,” IEEE Transactions on Reliability, vol. 67, no. 4, pp. 1393–1405, 971

2018. 972

[19] L. Keller, P. Upadhyaya, and G. Candea, “Conferr: A tool for assessing 973

resilience to human configuration errors,” in 2008 IEEE International 974

Conference on Dependable Systems and Networks With FTCS and DCC 975

(DSN). IEEE, 2008, pp. 157–166. 976

[20] W. Li, S. Li, X. Liao, X. Xu, S. Zhou, and Z. Jia, “Conftest: Generating 977

comprehensive misconfiguration for system reaction ability evaluation,” 978

in Proceedings of the 21st International Conference on Evaluation and 979

Assessment in Software Engineering, 2017, pp. 88–97. 980

[21] F. A. Arshad, R. J. Krause, and S. Bagchi, “Characterizing configuration 981

problems in java ee application servers: An empirical study with 982

glassfish and jboss,” in IEEE International Symposium on Software 983

Reliability Engineering, 2014. 984

[22] X. Sun, R. Cheng, J. Chen, E. Ang, O. Legunsen, and T. Xu, “Testing 985

configuration changes in context to prevent production failures,” in 14th 986

USENIX Symposium on Operating Systems Design and Implementation 987

(OSDI 20), 2020, pp. 735–751. 988

[23] H. Sun, Y. Shen, C. Wang, J. Liu, Y. Jiang, T. Chen, and A. Cui, “Healer: 989

Relation learning guided kernel fuzzing,” 2021. 990

[24] R. Zhong, Y. Chen, H. Hu, H. Zhang, W. Lee, and D. Wu, “Squir- 991

rel: Testing database management systems with language validity and 992

coverage feedback,” 2020. 993

[25] M. Wang, J. Liang, C. Zhou, Y. Jiang, R. Wang, C. Sun, and J. Sun, 994

“RIFF: reduced instruction footprint for coverage-guided fuzzing,” in 995

2021 USENIX Annual Technical Conference, USENIX ATC 2021, July 996

14-16, 2021, 2021, pp. 147–159. 997

[26] M. Wang, Z. Wu, X. Xu, J. Liang, C. Zhou, H. Zhang, and Y. Jiang, 998

“Industry practice of coverage-guided enterprise-level dbms fuzzing,” in 999

2021 IEEE/ACM 43rd International Conference on Software Engineer- 1000

ing: Software Engineering in Practice (ICSE-SEIP), 2021, pp. 328–337. 1001

[27] C. Zhou, M. Wang, J. Liang, Z. Liu, and Y. Jiang, “Zeror: Speed 1002

up fuzzing with coverage-sensitive tracing and scheduling,” in 35th 1003

IEEE/ACM International Conference on Automated Software Engineer- 1004

ing, ASE 2020, Melbourne, Australia, September 21-25, 2020. IEEE, 1005

2020, pp. 858–870. 1006

[28] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin, “Razzer: 1007

Finding kernel race bugs through fuzzing,” in 2019 IEEE Symposium 1008

on Security and Privacy (SP). IEEE, 2019, pp. 754–768. 1009

[29] A. Fioraldi, D. C. D’Elia, and D. Balzarotti, “The use of likely invariants 1010

as feedback for fuzzers,” in 30th USENIX Security Symposium (USENIX 1011

Security 21), 2021, pp. 2829–2846. 1012

[30] “American Fuzzy Lop.” https://lcamtuf.coredump.cx/afl/, 2022. 1013

[31] J. Toman and D. Grossman, “Staccato: A bug finder for dynamic 1014

configuration updates,” in 30th European Conference on Object-Oriented 1015

Programming (ECOOP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer 1016

Informatik, 2016. 1017

[32] S. C. C. Tsong Y. Chen and S. M. Yiu, “Metamorphic testing: a new 1018

approach for generating next test cases,” in Technical Report. HKUST- 1019

CS9801, HongKong University of Science and Technology., 1998. 1020

[33] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy, “Early 1021

detection of configuration errors to reduce failure damage,” in 12th 1022

USENIX Symposium on Operating Systems Design and Implementation 1023

(OSDI 16), 2016, pp. 619–634. 1024

[34] H. He, Z. Jia, S. Li, E. Xu, T. Yu, Y. Yu, W. Ji, and X. Liao, “Cp- 1025

detector: using configuration-related performance properties to expose 1026

performance bugs,” in ASE ’20: 35th IEEE/ACM International Confer-1027

ence on Automated Software Engineering, 2020.1028

[35] S. Zhou, X. Liu, S. Li, Z. Jia, Y. Zhang, T. Wang, W. Li, and X. Liao,1029

“Confinlog: Leveraging software logs to infer configuration constraints,”1030

in 2021 IEEE/ACM 29th International Conference on Program Compre-1031

hension (ICPC). IEEE, 2021, pp. 94–105.1032

[36] “PostgreSQL Bug. Log collector doesn’t respond to reloads.”1033

https://www.postgresql.org/message-id/4F99E37E.309041034

[37] “Redis Bug #8030. AOF: recover from last write error after turn on1035

appendonly again.” https://github.com/redis/redis/pull/8030, 2020.1036

[38] “MySQL Bug #5394. Max sort length does not invalidate queries in1037

the query cache.” https://bugs.mysql.com/bug.php?id=5394, 2004.1038

[39] S. Zhou, X. Liu, S. Li, W. Dong, and X. Yun, “Confmapper: Automated1039

variable finding for configuration items in source code,” in 2016 IEEE1040

International Conference on Software Quality, Reliability and Security1041

Companion (QRS-C), 2016.1042

[40] “PostgreSQL. Setting Parameters.” https://www.postgresql.org/docs/14/config-1043

setting.html, 2022.1044

[41] “Nginx. Changing Configuration.” http://nginx.org/en/docs/control.html,1045

2022.1046

[42] “MySQL. Dynamic System Variables.”1047

https://dev.mysql.com/doc/refman/8.0/en/dynamic-system-1048

variables.html, 2022.1049

[43] “Redis. CONFIG SET parameter value.”1050

https://redis.io/commands/config-set/, 2022.1051

[44] “LLVM Programmers Manual.” https://llvm.org/docs/ProgrammersManual.html,1052

2022.1053

[45] “Clang: a C language family frontend for LLVM.”1054

https://clang.llvm.org/, 2022.1055

[46] “Nginx Bug #796. nginx.pid is removed during reload if pid path is1056

changed in nginx.conf but points to the same file through a symlink.”1057

https://trac.nginx.org/nginx/ticket/796, 2022.1058

[47] “MariaDB Bug #23988. SST failed: No route to host after set global1059

wsrep node name on donor.” https://jira.mariadb.org/browse/MDEV-1060

23988, 2020.1061

[48] “MySQL 5.7 Reference Manual. EXPLAIN Output Format.”1062

https://dev.mysql.com/doc/refman/5.7/en/explain-output.html, 2022.1063

[49] Q. Zhang, J. Wang, M. A. Gulzar, R. Padhye, and M. Kim, “Bigfuzz:1064

Efficient fuzz testing for data analytics using framework abstraction,” in1065

2020 35th IEEE/ACM International Conference on Automated Software1066

Engineering (ASE). IEEE, 2020, pp. 722–733.1067

[50] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed1068

greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC Conference1069

on Computer and Communications Security, 2017, pp. 2329–2344.1070

[51] “MariaDB Bug #18699. Galera: Rolling upgrade: Upgraded1071

node is stopped on commit if wsrep trx fragment size ¿ 0.”1072

https://jira.mariadb.org/browse/MDEV-18699, 2019.1073

[52] “Apache Hadoop 3.3.2 - HDFS Architecture.”1074

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-1075

hdfs/HdfsDesign.html, 2022.1076

[53] R. Cheng, L. Zhang, D. Marinov, and T. Xu, “Test-case prioritization1077

for configuration testing,” in Proceedings of the 30th ACM SIGSOFT1078

International Symposium on Software Testing and Analysis, 2021, pp.1079

452–465.1080

[54] F. Behrang, M. B. Cohen, and A. Orso, “Users beware: preference1081

inconsistencies ahead,” in Joint Meeting on Foundations of Software1082

Engineering, 2015, pp. 295–306.1083

[55] H. Huang, M. Wen, L. Wei, Y. Liu, and S.-C. Cheung, “Characterizing1084

and detecting configuration compatibility issues in android apps,” in1085

2021 36th IEEE/ACM International Conference on Automated Software1086

Engineering (ASE). IEEE, 2021, pp. 517–528.1087

[56] A. Nistor, L. Song, D. Marinov, and S. Lu, “Toddler: Detecting per-1088

formance problems via similar memory-access patterns,” in 2013 35th1089

International Conference on Software Engineering (ICSE). IEEE, 2013,1090

pp. 562–571.1091

[57] C. Q. Adamsen, G. Mezzetti, and A. Mller, “Systematic execution of1092

android test suites in adverse conditions,” in the 2015 International1093

Symposium, 2015.1094

[58] J. Sun, T. Su, J. Li, Z. Dong, and Z. Su, “Understanding and finding1095

system setting-related defects in android apps,” in ISSTA ’21: 30th ACM1096

SIGSOFT International Symposium on Software Testing and Analysis,1097

2021.1098

[59] M. Lindvall, D. Ganesan, R. Ardal, and R. E. Wiegand, “Metamorphic 1099

model-based testing applied on nasa dat – an experience report,” in 1100

International Conference on Software Engineering, 2015. 1101

[60] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Corts, “A survey 1102

on metamorphic testing,” IEEE Transactions on Software Engineering, 1103

vol. 42, no. 9, pp. 805–824, 2016. 1104

[61] Z. Q. Zhou, L. Sun, T. Y. Chen, and D. Towey, “Metamorphic relations 1105

for enhancing system understanding and use,” IEEE Transactions on 1106

Software Engineering, vol. 46, no. 10, pp. 1120–1154, 2020. 1107

[62] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad: 1108

Gan-based metamorphic testing and input validation framework for 1109

autonomous driving systems,” in 2018 33rd IEEE/ACM International 1110

Conference on Automated Software Engineering (ASE). IEEE, 2018, 1111

pp. 132–142. 1112

