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Abstract

Prompt-based methods have shown their effi-
cacy in transferring general knowledge within
pre-trained language models (PLMs) for low-
resource scenarios. Typically, prompt-based
methods convert downstream tasks to cloze-
style problems and map all labels to verbal-
izers. However, when applied to zero-shot
entity and relation extraction, vanilla prompt-
based methods may struggle with the limited
coverage of verbalizers to labels and the slow
inference speed. In this work, we propose a
novel Discriminative Soft Prompts (DSP) ap-
proach to take advantage of the prompt-based
methods to strengthen the transmission of gen-
eral knowledge. Specifically, we develop a
discriminative prompt method, which reformu-
lates zero-shot tasks into token discrimination
tasks without having to construct verbalizers.
Furthermore, to improve the inference speed
of the prompt-based methods, we design a soft
prompt co-reference strategy, which leverages
soft prompts to approximately refer to the vec-
tor representation of text tokens. The exper-
imental results demonstrate that, our model
outperforms baselines on two zero-shot en-
tity recognition datasets with higher inference
speed, and obtains a 7.5% average relation F1-
score improvement over previous state-of-the-
art models on Wiki-ZSL and FewRel.

1 Introduction

Zero-shot entity and relation extraction (Levy et al.,
2017; Chen and Li, 2021) aim to extract novel en-
tities and their relations by transferring semantic
knowledge from seen classes to unseen ones. It
is a fundamental problem in information extrac-
tion, which can be decomposed into two subtasks:
zero-shot named entity recognition (ZSNER) (Li
et al., 2020, 2022) and zero-shot relation extraction
(ZSRE) (Sainz et al., 2021). Recent works (Li et al.,
2020; Chen and Li, 2021) focus on fine-tuning
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Figure 1: Cloze-style prompt with BERT (MLM) and
discriminative prompt with ELECTRA (DLM) for ZS-
NER task. The underlined text is the task-specific tem-
plate. The yellow-filled token is the candidate entity,
and the blue-filled token in Figure (b) is the label name.
Predicting all labels in the sentence “Jordan is a basket-
ball star. ” requires enumeration over all spans.

PLMs with extra classifiers to leverage the rich lexi-
cal, syntactic, and factual knowledge (Petroni et al.,
2019) within PLMs to compensate for the lack of
domain knowledge in the task training. However,
the significant objective gap between pre-training
and fine-tuning may drive the parameters of the
PLMs away from their initial values, resulting in a
substantial loss of general knowledge.

Recent efforts (Ding et al., 2021) on probing
knowledge have demonstrated that formalizing
downstream tasks in the same form as pre-training
is an efficient way to enhance the transmission of
general knowledge. Inspired by this, prompt-based
learning (Schick and Schütze, 2021) that reformu-
lates downstream tasks as cloze questions has been
introduced. Typically, for the entity type classifica-
tion task, a template is used to convert [X] into a
cloze task (e.g.,“[X] E is a [MASK] entity.”), where
[X] is the placeholder for input sentences, and E



is a candidate entity to be classified. The PLMs,
such as BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019), are asked to infer the words to
fill in [MASK], and the words are further mapped
to corresponding labels through a verbalizer (e.g.,
“people” for label “PERSON”).

However, two issues impede the application of
cloze-style prompts to the zero-shot entity and re-
lation extraction task as follows: (1) we can see
from Figure 1(a) that multiple words or phrases
can represent the same class. Building a verbalizer
that can cover all candidate words comprehensively
is challenging in a zero-shot setting, and a poorly
designed verbalizer can limit the accuracy of pre-
dictions. (2) for the entity recognition task, the
n-grams method needs to be employed for enumer-
ation when generating candidate entities, resulting
in a serious efficiency issue. Figure 1(b) shows
that prompt methods need to run n(n+ 1)/2 times
to recognize all entities in the sentence of length
n during inference, which is unacceptable in real-
world applications.

We argue that the primary reason for these limi-
tations is that the existing prompt-based methods
imitate masked language model (MLM), which
needs to map the labels to verbalizers. Unlike
MLM, the token discrimination task of discrim-
inative pre-trained models (DLM) appears to be
more compatible with zero-shot entity and relation
extraction.

In this work, we introduce a Discriminative Soft
Prompts approach, which utilizes prompt discrim-
inative language models (e.g., ELECTRA (Clark
et al., 2020) ) to address the general knowledge for-
getting problem caused by modifying the structure
of PLMs. Specifically, we present a discriminative
prompt strategy, which leverages the label infor-
mation to construct a template to convert input
sentences into a discriminative language modeling
problem.

As shown in Figure 1(b), our discriminative
prompt method recognizes candidate entities by
classifying entity type into binary categories (i.e.,
original, replaced), thereby bridging the gap be-
tween pre-training and task-training without the
need for verbalizers. Furthermore, we design a
soft prompt co-reference strategy, which leverages
soft prompts to approximately refer to the vector
representation of text tokens. By classifying soft
prompts into binary categories, the inference speed
of our model has significant improvement. Espe-

cially for entity recognition task, it only needs to
run the model once to extract all entities of the
same type in the sentence.

Extensive experiments are conducted on two
zero-shot tasks, ZSNER and ZSRE. Specifi-
cally, our method advances the state-of-the-art
SMXM(Aly et al., 2021) model on two ZSNER
datasets and gains a 7.5% average relation F1-score
improvement over the previous best model on Wiki-
ZSL and FewRel. Moreover, the inference speed
of the DSP is up to 120 times faster than the cloze-
style prompt method on ZSNER. Our main contri-
butions are summarized as follows:

• We reformulate ZSNER and ZSRE as token
discrimination tasks, taking advantage of the
prompt method to strengthen the transmission
of general knowledge without having to con-
struct a verbalizer.

• We propose a soft prompt co-reference strat-
egy, which significantly improves the infer-
ence efficiency of the discriminative prompt
method for zero-shot entity and relation ex-
traction tasks.

• Experiments on four datasets demonstrate the
effectiveness of our model in both ZSNER and
ZSRE tasks. Moreover, the inference speed
of the DSP is up to 120 times faster than the
cloze-style prompt method on ZSNER.

2 Method

In this section, we first formally define the problem
of zero-shot entity and relation extraction. Then we
introduce our Discriminative Soft Prompts (DSP)
method. The following is a detailed description.

2.1 Problem Definition

In zero-shot entity and relation extraction, the goal
is to learn from the seen dataset and generalize
to the unseen dataset. The seen and unseen label
sets are denoted as Cs = {c1, c2, ..., cn} and Ct =
{ĉ1, ĉ2, ..., ĉm}, where n = |Cs| and m = |Ct|
are the sizes of seen and unseen label sets, and
Cs ∩ Ct = ∅. Let S =

{
s1, s2, ..., sL(L+1)

2

}
be all

the possible spans in sentence X up to length L.
The problem can be decomposed into two subtasks:
Zero-Shot Named Entity Recognition The task
is to predict an entity type ye(si) ∈ Ct or ye(si) =
∅ for each span si ∈ S, indicating that span si is
not an entity. The output of the task is Yzsner =



{(si, e) : si ∈ S, e ∈ Ct}, where Yzsner is the set
of all (si, e) pairs such that span i is associated
with entity type e, and si ∈ S and e ∈ Ct.
Zero-Shot Relation Extraction The task is, for
every pair of spans si ∈ S and sj ∈ S, to pre-
dict a relation type yr(si, sj) ∈ Ct, or to indi-
cate that there is no relation between them with
yr(si, sj) = ∅. The output of the task is Yzsre =
{(si, sj , r) : si ∈ S, sj ∈ S, r ∈ Ct}.

2.2 Discriminative Prompt strategy

Discriminative pre-trained language models
(DLMs) (Yao et al., 2022; Xia et al., 2022) are a
compelling alternative to mask pre-trained lan-
guage models (MLMs) and have shown potential
for low-resource scenarios. By casting NLP tasks
as a discriminative language modeling problem,
discriminative prompt strategies can help bridge
the gap between pre-training and task-specific
tuning. The inputs of DLM are formulated with
an input sentence X , and a template T . As shown
in Figure 1(b), an example of ZSNER with the
entity types set C = {c1, c2, ..., cn}, we define a
template that contains candidate entity T (·, e, c).
Given an input text X (e.g., “Jordan is a basketball
star.”), DLM fills the input text into the template as
follows:

T (X, e, ci) = X,The entity type of e is ci (1)

Where e refers to the candidate entity, i is i-th en-
tity type belonging to C. After template filling,
T is fed into DLM to obtain the hidden represen-
tations

{
h[CLS], h1, ..., hn, ..., he, ..., hci , h[SEP ]

}
.

The model then discriminates whether the entity
type ci is accurate, and the score of ci is calculated
as follows:

D(T ([ci])) = 1− σ(h⊤DLMh[ci]) (2)

where hDLM is the reused classifier of DLM, and
σ(·) is the sigmoid activation. DLM then rounds
the output scores into binary categories, i.e., {0,
1} corresponding {replaced, original}. If an entity
type name consists of multiple tokens, such as “
WORK OF ART”, we perform an or operation
on the binary classification results of all tokens.
Since the pre-training task of DLM is similar to this
task, it bridges the gap between pre-training and
downstream tasks without requiring a verbalizer
design.

2.2.1 Problems of Prompt-based Methods For
ZSNER

Nevertheless, prompt-based methods have high
complexity in solving ZSNER task. During the
process of inference, the candidate entities sij that
denote the span starting from xi and ending with
xj need to be enumerated in order to obtain all
possible spans:

sij = Enumerate({xi, ..., xj} , i, j ∈ {1..n})
(3)

For example, the template of MLM can take the
form as “X , The entity type of sij is [MASK].”,
where the cloze-style prompt method predicts an
entity label word at [MASK] (e.g., people) corre-
sponding to an entity label (e.g., PERSON). As the
sequence length increases, the decoding time also
increases, rendering this decoding method time-
consuming.

2.3 Discriminative Soft Prompts Co-reference
For ZSNER

We propose a soft prompts co-reference strategy to
solve the slow inference speed of DLM on ZSNER
tasks. The main idea of our method is to perform
binary classification twice for each token in the
text, to identify whether it is the head or tail to-
ken of an entity. For example, given the input X
as "Badaling Great Wall is located...", the model
performs binary classification twice for each to-
ken. This yields a sequence [1,1,0], representing
whether the token is the head of an entity, and a
sequence [0,0,1], representing whether the token
is the tail of an entity. Finally, the head and tail
tokens are combined as nearest neighbors to obtain
two entity span s31 (“Badaling Great Wall”) and
s32 (“Great Wall”), respectively. However, DLM
has only one classification layer, and adding a new
layer could disrupt the model’s structure and po-
tentially harm its performance. To address this,
we design two soft prompts ([s] , [e]), which can
be easily incorporated into the input with minimal
modification. It is worth noting that we only use
two soft prompts, which are copied to refer to all
tokens.

Figure 2 illustrates that we first link the position
ID of each token with two soft prompts and as-
sign them identical position embeddings. Through
multi-layer Transformer calculations, the embed-
ding of the soft prompts will be closest in proximity
to the token that has the same position embedding.



To avoid damaging the fluency of sentences,
we next modify the attention mask matrix, which
is shown in Appendix B. Specifically, each soft
prompt is only visible to partnering soft prompts
that refer to the same span and is invisible to text
tokens. At the same time, the soft prompts attend
upon the text tokens to aggregate information from
their corresponding spans. By classifying these
soft prompts, we obtain a matrix of span positions
to identify all entities.

Formally, we form a new sequence X̂ consisting
of soft prompts, original text, and template:

X̂ = x1, ..., xl, [s1]..., [sl], [e1]..., [el], t1, ...tm
(4)

where X is a sequence of l text tokens, and [sl] , [el]
represent the soft prompts that have the same posi-
tion embedding as the l-th token xl.

As illustrated in Figure 2, we input X̂ to the
DLM and obtain:

D(X̂([s1])) = 1− σ(h⊤DLMh[s1]) (5)

The DLM outputs the “original” label corre-
sponding to the positions [s1] , [s2] , [e3], indicat-
ing that ([s1] , [e3]) (Badaling Great Wall) and
([s2] , [e3]) (Great Wall) belong to the entity type
of “Work Of Art”.

2.4 Discriminative Soft Prompts Co-reference
For ZSRE

We adopt a pipeline approach to tackle the Zero-
Shot Relation Extraction (ZSRE) task. Specifi-
cally, we employ DSP-ZSNER to identify entity
mentions, and then perform Zero-Shot Relation
Classification (ZSRC) task to classify the relations
between all pairs of mentions. The discriminative
prompt method can only determine if two entities
belong to a particular relation in the prompt tem-
plate at a time. Therefore, if there are K preset
relations, the model needs to run K times to deter-
mine the relationship between the two entities. To
improve inference speed on the ZSRC task, we em-
ploy a co-reference strategy, similar to the approach
used in the ZSNER task.

Given an input sequence X and two entity spans
es and eo, we utilize a soft prompt [r] to represent
the relation between the two entities in the tem-
plate. All labels in the relation label set share the
same position embedding as [r], enabling each la-
bel to obtain the contextual representation of [r]
approximately. Furthermore, to maintain seman-
tic integrity, labels in the relation label set are not

visible to each other in the mask matrix. We form
a new sequence X̂ consisting of the soft prompt,
relation label set, original text, and template, given
by:

X̂ = x1, ..., xn, eo, ..., [r] , ...es, r1, ..., ri, ...rK
(6)

We input X̂ into the model and obtain:

D(X̂(ri)) = 1− σ(h⊤DLMh[ri]) (7)

If D(X̂(ri)) outputs original, it indicates that the
relation between es and eo is ri.

2.5 Training Loss Function
To facilitate optimization and prevent overfitting,
the final training loss combines the cross-entropy
(CE) loss with parameter regularization loss (λ is a
hyper-parameter).

L = L(ce) + λL(w) (8)

The cross-entropy loss is as follows:

L(ce) =
∑
i

(−yilogD(X̂(ci))

−(1− yi)log(1−D(X̂(ci))))

(9)

The parametric regularization is defined as:

L(w) = 1

2

∑
j∈S

(wj − w0
j )

2 (10)

where w0
j represents the initial parameters of the

j-th layer of the pre-trained language model, and
wj represents the parameters of the j-th layer of the
discriminative prompt model during task-training.

3 Experiments

3.1 Setup
Datasets For the ZSNER task, we evaluate our
approach on two popular zero-shot NER datasets:
OntoNotes 5.01 (Pradhan et al., 2013) and Med-
Mentions (Mohan and Li, 2019). To assess the
model’s performance in recognizing nested entities,
we follow Aly et al. (2021) to gather all entities
of each type from the dataset and mapped them
into sentences based on their respective types. As
shown in Table 8, the datasets are divided into a
training set, development set and test set according
to the entity type. For ZSRE task, we utilize the

1https://catalog.ldc.upenn.edu/LDC2013T19

https://catalog.ldc.upenn.edu/LDC2013T19
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Figure 2: An overview of our discriminative soft prompts co-reference strategy for zero-shot named entity recognition
task and zero-shot relation classification task. [s], [e], [r] are the soft prompts. DSP-ZSNER performs binary
classification for each [s] and [e] to obtain the position IDs of head and tail tokens of each entity, and then connects
them to form a complete entity, (e.g. head tokens position id {1,2}, end token position id {3}, connect them we get
two entities Badaling Great Wall (1,3) and Great Wall (2,3)). DSP-ZSRE performs binary classification for each
label (e.g., military rank ) in relation label set to determine the relationship between entities (e.g., ‘caption’ and

‘Nicolas Tindal’).

Dataset #Sents #Ents (#Types) #Rels (#Types)
OntoNotes-ZS 76.7k 58.1k (18) -

MedMentions-ZS 46.9k 116.2k (21) -
Wiki-ZSL 94.3k - 77.6k (113)
FewRel 56.0k - 72.9k (80)

Table 1: The statistics of the adopted datasets.

datasets released by Chia et al. (2022) and adhere
to their prescribed splitting method2 (consisting of
five folds) for both training and evaluation. Addi-
tionally, we make use of their recommended data
pre-processing methods. Table 1 shows the statis-
tics of each dataset. For each dataset, we set the
unseen label size to m ∈ {5, 10, 15}, while treating
the remaining labels as seen labels during training
in the experiments. Details of the datasets are de-
scribed in Appendix C.
Evaluation metrics We follow the standard eval-
uation protocol and use F1-score as the evaluation
metric. For ZSNER task, the unbalanced number
of samples per class necessitates employing evalua-
tion metrics that focus on per-class averaged scores
to properly account for the imbalance. Therefore,
like Aly et al. (2021), we evaluate our model using
the macro average F1-score indicator. We evaluate
ZSRC using the Macro F1 metric to be consistent
with Chia et al. (2022). ZSRE first identifies enti-

2Available here: https://github.com/declare-lab/
RelationPrompt

ties, then predicts the relation between each pair
of entities, which will predict a large number of
negative samples. Thus we use the micro F1-score,
which is standard in structured prediction tasks
(Zhong and Chen, 2020) and report the precision
(P.) and recall (R.). The details for evaluation met-
rics are in Appendix D.
Implementation details We adopt ELECTRA-
Base as the backbone of our model and ini-
tialize with the corresponding pre-trained cased
weights. Models are implemented using Pytorch
framework3 and Huggingface transformers4. DSP-
ZSNER and DSP-ZSRC are optimized by AdamW
(Loshchilov and Hutter, 2017) with the learning
rate of 2e-5. The training batch size used is 16
for all models. For ZSNER task, the soft prompts
and entity-type descriptions take up part of the in-
put length, so the maximum length of the DSP
is limited to 150 tokens. For the ZSRE task, the
maximum length of input token is 256. For both
tasks, we employ an early stopping scheduler to
stop training when there is no improvement on the
validation F1 score. We then conduct three runs
of experiments to mitigate instability issues for all
experiments5.

3https://pytorch.org
4https://github.com/huggingface/transformers
5See Appendix E for further details on the hyperparameter.

https://github.com/declare-lab/RelationPrompt
https://github.com/declare-lab/RelationPrompt
https://pytorch.org
https://github.com/huggingface/ transformers


Ontonotes-ZS MedMentions-ZS
Model Dev Test Dev Test
BEM 18.0 11.0 19.0 22.0
MRC 15.0 18.0 21.0 26.0

SMXM(base) 19.0 20.0 20.0 21.0
SMXM 23.0 25.0 23.0 27.0

DLM-Point 18.3 28.4 26.1 28.6
DSP-ZSNER 27.0 31.6 29.8 32.7

Table 2: The macro-averaged F1-score of ZSNER on
OntoNotes-ZS and MedMentions-ZS, best results are
highlighted in bold. The SMXM model employs Bert-
Large encoders, while our DLM-Point and DSP-ZSNER
models adopt Electra-Base. The remaining models all
use Bert-Base.

3.2 Zero-Shot Named Entity Recognition
3.2.1 Baselines
We compare our DSP-ZSNER with current state-
of-the-art models in both NER and related zero-
shot tasks. Binary Entailment Model(BEM) is
a ZSNER model obtained by modifying the state-
of-the-art zero-shot text classification model (Yin
et al., 2019) by Aly et al. (2021). They add a binary
output layer based on BERT to generate binary out-
put for each class, and the negative prediction of
all classes predicts negative classes. MRC is an
approach by Li et al. (2020) who construct queries
for entity classes and modifie the model structure to
transform NER into fully supervised machine read-
ing comprehension tasks for flat and nested entities.
Similar to MRC, SMXM (Aly et al., 2021) uses
entity type descriptions to aid encoding, and sub-
sequently feeds the entity encoding into a linearly
transformed layer for classification. DLM-Point is
a DLM-based sequence labeling method proposed
by us, which is introduced in Appendix A.

3.2.2 Results
We show the ZSNER result in Table 2. Some ob-
servations are summarized from the experimental
results: (1) Our approach outperforms the baselines
based on fine-tuning by modifying the structure of
PLMs on both Ontonotes-ZS and MedMentions-
ZS datasets, and obtains a +6.3% F1-score im-
provement on MedMentions-ZS. MedMentions-ZS
contains twice as many entities as Ontonotes-ZS
and has a low correlation between training and
testing data. It shows that the DSP-ZSNER can
well preserve the initial general knowledge of the
PLMs to better model the interrelation between
entities and entity types. (2) With the same PLM
(Electra-Base), DSP-ZSNER achieves an absolute

Unseen
Labels Model Wiki-ZSL FewRel

P. R. F1 P. R. F1

m=5

R-BERT 39.2 43.2 41.1 42.2 48.6 45.2
CIM 49.6 48.8 49.2 58.0 61.9 59.9

ZS-BERT 71.5 72.4 72.0 77.0 78.9 77.9
NoGen 51.8 46.8 48.9 72.4 58.6 64.6

RelationPrompt 70.7 83.8 76.6 90.2 88.5 89.3
DSP-ZSRC 94.1 77.1 84.8 93.4 92.5 92.9

m=10

R-BERT 26.2 29.7 27.8 25.5 33.0 28.2
CIM 46.5 47.9 45.6 47.4 49.1 48.2

ZS-BERT 60.5 61.0 60.7 56.9 57.6 57.2
NoGen 54.9 36.5 43.8 66.5 48.3 55.6

RelationPrompt 68.5 74.8 71.5 80.3 79.6 80.0
DSP-ZSRC 80.0 74.0 76.9 80.7 88.0 84.2

m=15

R-BERT 17.3 18.8 18.0 17.0 19.4 18.1
CIM 29.2 30.6 29.9 31.8 33.1 32.4

ZS-BERT 34.1 34.4 34.3 35.5 38.2 36.8
NoGen 54.5 29.4 37.5 66.5 40.1 49.4

RelationPrompt 63.7 67.9 65.7 74.3 72.5 73.4
DSP-ZSRC 77.5 64.4 70.4 82.9 78.1 80.4

Table 3: Zero-Shot Relation Classification, best results
are highlighted in bold.

F1 improvement of +8.7% over DLM-Point on
Ontonotes-ZS dev, which shows the advantage of
soft prompts co-reference strategy in identifying
nested entities. In addition, the soft prompt, which
explicitly represents the boundary of the span, is
also a key factor for the improvement.

3.3 Zero-Shot Relation Classification

3.3.1 Baselines
There are four main categories of competing meth-
ods for the ZSRC task. R-BERT (Wu and He,
2019) is a relation classification model, but it can
adapt to the zero-shot setting by designing a match-
ing module based on BERT to perform the nearest
neighbor search over the label embeddings. CIM
(Rocktäschel et al., 2015) is an entailment-based
method that takes sentences and each possible re-
lation as input to determine whether the relation
matches the sentence semantically. ZS-BERT
(Chen and Li, 2021) learns the independent projec-
tion function to align input sentences with their can-
didate relations in the embedded space and to judge
the relation between pairs of entities by measuring
their distances in a new space. RelationPrompt
(Chia et al., 2022) prompts GPT2 (Radford et al.,
2019) to generate synthetic data, and modifies the
Bart (Lewis et al., 2020) generation decoder to
learn the ability to generate relation triplets from
these data. NoGen indicates that it does not use
generated synthetic samples for training and the
other settings are the same as RelationPrompt.

3.3.2 Results
By providing entity-pair information in the prompt
template, DSP can convert ZSRC task to the ex-
act same task format as ELECTRA pre-training.



Unseen
Labels Model Pre-trained

Model #Param Wiki-ZSL FewRel
P. R. F1 P. R. F1

m=5

TableSequence (Wang and Lu, 2020) GPT-2 124M 43.7 3.5 6.3 15.23 1.9 3.4
NoGen (Chia et al., 2022) BART 140M 15.6 43.2 22.3 9.5 36.7 14.6

RelationPrompt (Chia et al., 2022) GPT-2& BART 264M 29.1 31.0 30.0 20.8 24.3 22.3
DSP-ZSNER & DSP-ZSRC ELECTRA 220M 42.7 43.4 43.0 40.1 27.0 32.3

m=10

TableSequence (Wang and Lu, 2020) GPT-2 124M 45.3 3.6 6.4 28.9 3.6 6.4
NoGen (Chia et al., 2022) BART 140M 9.6 45.0 15.7 6.4 41.7 11.0

RelationPrompt (Chia et al., 2022) GPT-2& BART 264M 30.2 32.3 31.2 21.6 28.7 24.6
DSP-ZSNER & DSP-ZSRC ELECTRA 220M 26.3 48.0 34.0 35.9 27.1 30.9

m=15

TableSequence (Wang and Lu, 2020) GPT-2 124M 44.4 3.5 6.4 19.0 2.0 3.5
NoGen (Chia et al., 2022) BART 140M 7.3 43.7 12.3 4.6 36.4 8.1

RelationPrompt (Chia et al., 2022) GPT-2& BART 264M 26.2 32.1 28.9 17.7 23.2 20.1
DSP-ZSNER & DSP-ZSRC ELECTRA 220M 27.7 32.4 29.9 27.9 25.4 26.6

Table 4: The results for Zero-Shot Relation Extraction (ZSRE), best results are highlighted in bold. DSP-ZSNER &
DSP-ZSRC refers to that we utilize DSP-ZSNER model to recognize entities, and then classify the relation between
every two entities using the DSP-ZSRC model.

Ontonotes-ZS MedMentions-ZS

F1
Speed
(sent/s) F1

Speed
(sent/s)Model

MLM (BERT) 6.3 0.3 3.7 0.3
SMXM 24.0 28.0 25.0 27.2
DLM 30.5 0.1 32.0 0.1

DLM-Point 23.4 86.4 27.4 78.4
DSP-ZSNER 29.3 41.6 31.3 36.0

Table 5: Average macro F1-score and efficiency of dev
and test data on ZSNER benchmark. MLM is the cloze-
style prompt method, which utilizes BERT-Base as en-
coder. The maximum length of MLM, SMXM, DLM
and DLM-Point is 256, while the maximum length of
DSP-ZSNER with soft prompts co-reference is 512.

As shown in Table 3, our approach outperforms
previous methods by strict F1-score of +6.1% on
Wiki-ZSL and +4.7% on FewRel. It is worth noting
that our prompt-based method retains more general
knowledge of PLM. When the invisible label set
size m increases and the training data decreases,
our prompt-based method can utilize this knowl-
edge to maintain relatively high classification F1
performance. This trend suggests that our prompt-
based method can be better extended to a larger
set of invisible tags, which is more critical for real-
world open domain applications.

3.4 Zero-Shot Relation Extraction

3.4.1 Baselines

For the ZSRE, we use several baseline methods
provided by Chia et al. (2022) for comparison with
our DSP method. TableSequence (Wang and Lu,
2020) is a table-based method that extracts entity
relations by encoding different types of informa-

tion in the learning process. Since it cannot directly
solve ZSRE, Chia et al. (2022) used the compos-
ite samples from the relation generator to provide
supervision data for it. Other methods have been
described in Section 3.3.1.

3.4.2 Results
For ZSRE, we use a pipeline approach to train DSP-
ZSNER and DSP-ZSRC models, respectively. Dur-
ing the inference phase, the DSP-ZSNER model
extracts entities from the text and then classifies
the pairs of entities using the DSP-ZSRC model.
We compare DSP with the baselines on ZSRE for
Wiki-ZSL and FewRel datasets in Table 4, our ap-
proach consistently outperforms the previous best
methods in F1-score metrics. Compared to the
previous state-of-the-art model, RelationPrompt,
our approach achieves an absolute F1 improvement
of +13% and +10.0% on Wiki-ZSL and FewRel,
respectively, with fewer parameters, under the set-
ting of m = 5. Such improvement from Rela-
tionPrompt indicates the effectiveness of model-
ing through pre-training tasks to limit excessive
changes in model parameters during task-tuning.

3.5 Inference Speed
In this section, we compare the model’s inference
speed on an V100 GPU with a batch size of 32.
Speed of ZSNER We conduct an evaluation
of the inference speed of BERT, SMXM, DLM,
DLM-Point, and DSP on the Ontonotes-ZS and
MedMentions-ZS datasets. The results are pre-
sented in Table 5, which indicate that our DSP-
ZSNER model achieved a higher F1-score and
faster inference speed than SMXM. Despite sacri-
ficing 1.2% and 0.7% F1-score on Ontonotes ZS



Model
F1

LM
Loss

Parameter
Variation

BERT - 5.5 -
BERT+FFN 19.5 38.0 2609.5
ELECTRA - 3.7 -

DSP-ZSNER 29.3 4.6 8.7
DSP(w/o PR ) 27.1 7.9 70.8

ElECTRA+FFN 23.9 12.1 163.2

Table 6: After ZSNER task-tuning, the language
model’s cross-entropy loss on the pre-training task (LM
Loss) and the variation of parameters compared with
the original pre-training model. BERT and ELECTRA
are the initial PLMs without task-tuning. BERT+FFN
refers to adding two full connection layers on the ba-
sis of BERT to realize ZSNER tasks. The parameter
variation is calculated using the L2 distance, and the
abbreviation “w/o PR” refers to without parameter regu-
larization.

and MedMentions-ZS, respectively, DSP-ZSNER
obtained 416x and 360x speedup compared to the
DLM model. Moreover, DSP-ZSNER achieved
a speedup of up to 138.7x and 120x compared to
MLM on the two datasets, with an F1-score in-
crease of +23% and +27.6%. These results indicate
that it is appropriate to utilize the soft prompts co-
reference strategy to identify entities is an effective
way to solve the problem of slow inference speed
in prompt methods.
Speed of ZSRC We compare our methods to
the best previous method, RelationPrompt. Ta-
ble 7 shows that the inference speed of our DSP-
ZSRC model is faster than RelationPrompt on both
datasets. RelationPrompt needs to be trained at
the inference stage using pseudo data generated
by the GPT-2, which reduces its inference effi-
ciency. Under the setting of an unseen label of
10, the DLM needs to run ten times to predict the
relation between entities. DSP-ZSRC with soft
prompts co-reference strategy can discriminate all
candidate relations in one run, obtaining a 5.9×
speedup on Ontonotes-ZS and a 6.5× speedup on
MedMentions-ZS. On the other hand, this strategy
only leads to a small performance drop and the F1-
score decreases by only 0.2% and 0.3% on the two
datasets.

3.6 Analysis of Parameter Variation and LM
Loss

To investigate the impact of retaining the knowl-
edge acquired during pre-training phase of the
PLMs on zero-shot tasks, we conduct a ZS-

Wiki-ZSL FewRel

F1
Speed
(sent/s) F1

Speed
(sent/s)Model

RelationPrompt 71.5 63.1 80.0 59.8
DLM 77.1 13.8 84.5 11.6

DSP-ZSRC 76.9 81.6 84.2 76.0

Table 7: Under the unseen label of 10 on the ZSRC task,
the comparison between our DSP model, and Relation-
Prompt, in F1-score and speed.

NER task-tuning experiment on the Ontonotes-ZS
dataset. BERT+FFN denotes the addition of two
fully connected layers based on BERT to perform
ZSNER tasks. Similarly, ElECTRA+FFN employs
the hidden vector output by the transformer as in-
put to a new fully connected layer for task tuning.
BERT+FFN refers to adding two full connection
layers based on BERT to implement ZSNER tasks.
We randomly select 1000 pieces of training data
and segregate them into 100 groups, each compris-
ing ten pieces of data. For BERT and BERT+FFN,
we replace words with [MASK] randomly with a
a probability of 10% in each data group, calculate
the loss value of the predicted [MASK] token, and
finally average the loss values of 100 groups to ob-
tain the LM loss. For models based on ELECTRA,
we scramble the text order, replace the phrases ran-
domly, and calculate the loss of whether the tokens
in the text should be replaced.

Table 6 illustrates that the performance of PLMs
on the pre-training task worsens as the parameters
change, suggesting that the model tends to forget
some of the general knowledge acquired during the
pre-training stage while learning new tasks. Addi-
tionally, Figure 4 shows that the LM Loss is 6.9x
larger than the initial BERT model, and we ob-
serve a decline in the F1-score of the model on the
ZSNER task with the increase of LM Loss. This
suggests that the knowledge acquired by PLMs dur-
ing the pre-training stage is beneficial for zero-shot
tasks.

4 Related Work

4.1 Zero-shot Entity and Relation Extraction
In recent years, zero-shot entity and relation extrac-
tion (Ma et al., 2016; Ye et al., 2022; Wang et al.,
2021a) has attracted great attention from academia.
Fine-tuning PLMs for ZSNER and ZSRE tasks
has achieved promising performance. SMXM (Aly
et al., 2021) achieves state-of-the-art results in ZS-
NER by incorporating entity-type description into



entity encoding. There are other works convert-
ing ZSNER to machine reading comprehension
framework (Li et al., 2020; Wang et al., 2021b).
ZS-BERT (Chen and Li, 2021) learns the inde-
pendent projection functions to predict relations
and obtains a good performance on ZSRE task.
However, ZS-BERT can only infer relations and
assumes that the ground-truth entity pairs are read-
ily available, which is unrealistic in real scenarios.
RelationPrompt (Chia et al., 2022) is the first ap-
proach to extract the whole relation triplet under the
zero-shot setting by modifying the BART (Lewis
et al., 2020) generation decoder to generate relation
triplets. Unlike them, DSP converts input sentences
into a discriminative language modeling problem,
which bridges the gap between pre-training and
fine-tuning.

4.2 Prompt-based Learning

Stemming from the GPT models (Radford et al.,
2018, 2019), the prompt-based learning has been
widely discussed. The core idea of cloze-style
prompt methods (Tam et al., 2021) is to transform
a classification problem into a cloze-style task with
textual templates, and then map label words to the
verbalizer. Schick and Schütze (2021) use manu-
ally defined templates and verbalizers for prompt-
ing text classification tasks. To alleviate manual ef-
forts, Jiang et al. (2020) propose a mining approach
for automatically searching for templates. Mean-
while, several approaches have explored the desig-
nation of verbalizers. Cui et al. (2022) train proto-
type vectors as verbalizers by contrastive learning.
Hu et al. (2021) expand the label word space of the
verbalizer using external knowledge, and refine the
verbalizer space with the training data. However,
there is no training data to refine the verbalizer
under the zero-shot setting, and it is still very dif-
ficult to map the label words to the verbalizer. In
addition, the cloze-style prompt methods can pre-
dict only one token label per template, which is
extremely slow for inference in token-level tasks,
such as ZSNER. To solve the above problems, we
propose DSP to formulate ZSNER and ZSRE tasks
into label discrimination tasks without build ver-
balizers, while all entities of the same type in a
sentence are extracted using only one inference.

5 Conclusion

This paper presents a novel Discriminative Soft
Prompts method for zero-shot entity and relation

extraction. Unlike the cloze-style prompt method
that converts a specific task into an MLM problem,
we reformulate ZSNER and ZSRC as a discrim-
inative language modeling problem, which takes
advantage of the prompt learning to strengthen the
transmission of general knowledge without having
to construct a verbalizer. Furthermore, we pro-
pose a soft prompt co-reference strategy, which
significantly improves the inference efficiency of
the discriminative prompt method. Experiments on
four datasets demonstrate the effectiveness of our
model in both ZSNER and ZSRE tasks. Also, the
inference speed of the DSP is up to 120 times faster
than the cloze-style prompt method on ZSNER.

Limitations

The main limitation of our work is that we can not
use a unified model to complete the zero-shot entity
and relationship extraction tasks. Specifically, our
method trains two models, DSP-ZSNER and DSP-
ZSRC, to extract the entities in the text first and
then classify the relation of each pair of entities.
This method needs to train and store two models,
which is troublesome to maintain in practical ap-
plications. In addition, although our method has
dramatically improved the inference speed of the
previous prompt method, the method still affects
the reasoning speed of the model. In the follow-
up works, we will be committed to solving this
problem.
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A DLM-Point Method For ZSNER

Replace the “work of  art” type entities in next sentence. Badaling Great  Wall  is  located…...   

DLM
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Figure 3: An example of our DLM-Point method for
ZSNER.

We try to combine sequence labeling with a dis-
criminative prompt method, and the template is

“Replace the ‘work of art’ type entities in next sen-
tence.”. The model outputs "replace" of the tokens
belonging to this entity type, and then decodes the
entity span based on the output. However, this
method does not recognize nested entities. For in-
stance Badaling Great Wall is a “work of art” entity
and Great Wall is also a “work of art” entity, but
model can not recognize it.
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Figure 4: After task-tuning, the changes in each layer’s
parameters are referenced to the initial model. Longi-
tudinal coordinates represent L2 values that calculate
parameter changes, and horizontal coordinates represent
the layers.

B Examples Of the Attention Mask
Matrixes

Figure 5 shows examples of the attention mask
matrixes of soft prompts co-reference. The token
marked with “1” in the matrix participates in the
attention calculation, and the token marked with
“0” is masked out and does not participate in the
calculation.
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(a) Attention Mask Matrix of Soft Prompts Co-reference For ZSNER (b) Attention Mask Matrix of Soft Prompts Co-reference For ZSRC

Figure 5: Examples of the attention mask matrixes of
soft prompts co-reference.

C Datasets

OntoNotes 5.0 (Pradhan et al., 2013) is a large
corpus comprising various genres of text (news,
conversational telephone speech, weblogs, news-
groups, broadcast, talk shows) with structural infor-
mation (syntax and predicate argument structure)
and shallow semantics (word sense linked to an
ontology and co-reference).
MedMentions (Mohan and Li, 2019) corpus con-
sists of 4,392 papers (titles and abstracts) randomly
selected from among papers released on PubMed
in 2016 that were in the biomedical field, published
in the English language, and had both a title and an
abstract.
FewRel (Han et al., 2018) was hand annotated for
few-shot relation extraction, and Chia et al. (2022)
made it suitable for the zero-shot setting after data
splitting into disjoint relation label sets for training,
validation and testing.
Wiki-ZSL (Chen and Li, 2021) is constructed
through distant supervision using Wikipedia arti-
cles and the Wikidata knowledge base.

D Evaluation metrics

We follow the standard evaluation protocol and use
F1-score as the evaluation metric. For ZSNER task,
the unbalanced number of samples per class neces-
sitates the use of evaluation metrics that focus on
per-class averaged scores to properly account for
the imbalance. Therefore, we use the macro aver-
age F1-score to evaluate our model. We evaluate
on ZSRC using the Macro F1-score to be consis-
tent with Chia et al. (2022). In the ZSRE task, the
model first identifies entities and then predicts the
relation between each pair of entities, resulting in
a large number of negative samples. Therefore, we
use the micro F1-score which is standard in struc-



Train PERSON, GPE, ORG, DATE

Biologic Function, Chemical, Healthcare
Activity, Anotomical Structure, Finding, Spatial
Concept, Intellectual Product, Research Activity,
Eukaryote, Population Group, Medical Device

Dev NORP, MONEY, ORDINAL, PERCENT,
EVENT, PRODUCT, LAW

Organization, Injury or Poisoning, Clinical
Attribute, Virus, Biomedical Occupation or
Discipline

Test CARDINAL, TIME, LOC, WORK OF ART,
FAC, QUANTITY, LANGUAGE

Bacterium, Professional or Occupational Group,
Food, Body Substance, Body System

Table 8: Zero-shot class splits and number of occurrences for OntoNotes-ZS and MedMentions-ZS.

tured prediction tasks (Zhong and Chen, 2020) and
report the precision (P.) and recall (R.).

E Hyperparameters Choice

We select the learning rate with the best valida-
tion accuracy by conducting a grid search from the
values of 1e-5, 2e-5, and 5e-5. The batch size is
chosen based on the available GPU VRAM. For the
weight λ in the regulation loss of Equation 10, we
conduct a grid search experiment to determine the
optimal value (λ = 0.1) from a set of values {10,
1, 0.1, 0.01}, based on the performance on the vali-
dation set for all models. For all other experiments,
we follow the default settings of the ELECTRA
(Clark et al., 2020).


