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ABSTRACT
Self-supervised learning methods have shown significant promise
in acquiring robust spatiotemporal representations from unlabeled
videos. In this work, we address three critical limitations in exist-
ing self-supervised video representation learning: 1) insufficient
utilization of contextual information and lifelong memory, 2) lack
of fine-grained visual concept alignment, and 3) neglect of the
feature distribution gap between encoders. To overcome these
limitations, we propose a novel memory-enhanced predictor that
leverages key-value memory networks with separate memories
for the online and target encoders. This design enables the effec-
tive storage and retrieval of contextual knowledge, facilitating in-
formed predictions and enhancing overall performance. Addition-
ally, we introduce a visual concept alignment module that ensures
fine-grained alignment of shared semantic information across seg-
ments of the same video. By employing coupled dictionary learn-
ing, we effectively decouple visual concepts, enriching the seman-
tic representation stored in the memory networks. Our proposed
approach is extensively evaluated on widely recognized bench-
marks for action recognition and retrieval tasks, demonstrating
its superiority in learning generalized video representations with
significantly improved performance compared to existing state-
of-the-art self-supervised learning methods. Code is released at
https://github.com/xiaojieli0903/FGKVMemPred_video.
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1 INTRODUCTION
In recent years, self-supervised learning (SSL) has gained consider-
able interest as a promising approach for learning spatiotemporal
representations from large-scale unlabeled videos, thereby reduc-
ing the reliance on laborious manual annotation. State-of-the-art
SSL frameworks, such as contrastive learning [2, 4, 5, 23, 62] and
non-contrastive learning [3, 6, 16], have been successfully adapted
for spatiotemporal representation learning in videos, achieving im-
pressive performance across various downstream tasks [20, 42, 70].
However, these methods exhibit several limitations:
(1) Insufficient Utilization of Contextual Information and
Long-term Knowledge. Videos contain valuable contextual cues,
rich visual patterns, and temporal dynamics, which can enhance
video representation learning and predictive capabilities. Existing
SSL methods tend to neglect the significance of leveraging con-
textual information and relevant knowledge accumulated over the
entire training process. Unlike humans who naturally integrate
contextual cues and long-term memories to make informed pre-
dictions, current approaches lack mechanisms to effectively utilize
this contextual knowledge in the learning process.

https://github.com/xiaojieli0903/FGKVMemPred_video
https://doi.org/10.1145/3581783.3612131
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Figure 1: Illustration of our proposed method. The fine-
grained key-value memory-enhanced predictor aggregates
knowledge from paired key-value memory slots, while the
visual concept alignment module aligns fine-grained visual
concept distributions across clips from the same video.

(2) Lack of Fine-Grained Visual Concept Alignment.While ex-
isting contrastive learning methods align global high-level semantic
information, they often neglect the importance of fine-grained vi-
sual concept alignment between different views of the same video.
Overcoming this limitation is essential to capture intricate visual
relationships and promote semantic consistency within the video
representation [14].
(3) Disregard for Feature Distribution Gap between Encoders.
Self-supervised learning methods, particularly those employing
momentum encoders, aim to minimize the discrepancy between
student (online encoder) and teacher (momentum-updated encoder)
feature spaces. However, directly aligning features from encoders
with different parameters may not effectively narrow the feature
distribution gap, limiting the overall predictive capability [17, 47].

To address these limitations, we propose a novel approach that
combines a key-value memory enhanced Predictor and a visual
concept alignment module. The proposed predictor leverages a
key-value memory network, incorporating separate key and value
memories to store the learned knowledge throughout the entire
training process (as depicted in Fig.1). Memory slots act as a com-
prehensive knowledge repository, enabling the model to access
pertinent knowledge for prediction, leveraging a wide range of
information from the entire dataset and facilitating knowledge
transfer across different instances.

Moreover, to tackle the feature distribution gap between the on-
line and target encoder, we utilize separate external memories. The
key memory captures knowledge from the online encoder, while
the value memory stores information from the momentum-updated
encoder. By querying the key memory with features from the online
encoder, we generate a knowledge relevance vector, which serves
as a bridge to associate encoder-specific memories. The prediction
features are generated by combining value memory slots using a
weighted sum. Since the value memory slots are supervised by fea-
tures from the target encoder, they have similar distributions to the
target encoder, resulting in improved predictions with a reduced
feature distribution gap.

In addition, our visual concept alignment module creates vi-
sual concept dictionaries for the online and momentum-updated
encoders, encoding visual concept codes for temporally different
clips. By minimizing the KL divergence between the coefficients

encoded by the encoders, the alignment module promotes fine-
grained semantic consistency within the video, aligning shared
visual concepts between different views of the same video, such as
the woman, lawn, and dog shown in Fig.1. The alignment of visual
concepts also enhances the semantic richness of the knowledge
stored in the memory networks, capturing intricate relationships
and video-specific visual patterns.

In summary, our proposed approach makes significant advance-
ments in self-supervised video representation learning by effec-
tively addressing key limitations of existing methods. By leverag-
ing contextual information, fine-grained visual concept alignment,
and reducing the feature distribution gap between encoders, our
method empowers video representation learningwith improved pre-
dictive capabilities. Through extensive experiments on benchmark
datasets, including Kinetics, UCF101, andHMDB51, we demonstrate
the superiority of our approach over state-of-the-art methods in
action recognition and retrieval tasks, showcasing its effectiveness
in learning generalized video representations.

2 RELATEDWORK
Self-Supervised Learning. Self-supervised image representation
learning has witnessed remarkable progress in generating robust
visual representations from unlabeled data. Among the promi-
nent approaches, contrastive SSL methods like SimCLR [4] and
MoCo [23] achieve robust feature representations by enforcing sim-
ilarity between representations of the same instance from different
views (positive pairs) while separating representations of differ-
ent instances (negative pairs). On the other hand, non-contrastive
SSL methods, including BYOL [16], DINO [3], SimSiam [6], and
SwAV [2], eliminate the need for negative samples and instead fo-
cus on learning invariant features by matching positive samples,
achieving comparable performance to contrastive learning meth-
ods. Momentum encoders, commonly known as slowly moving
average networks, play a pivotal role in many SSL models. For
instance, MoCo [23] employs momentum encoders to ensure con-
sistent representations of a large number of negative pairs stored in
thememory bank, allowing the key encoder to learn from the slowly
progressing momentum encoder. Similarly, BYOL [16] predicts the
output of a momentum-updated target encoder using the online
encoder, while DINO [3] aligns the distribution of pseudo-classes
between an online encoder and a momentum target encoder.

Compared to images, videos inherently provide richer supervi-
sion signals, such as motion changes, deformations, occlusions, and
lighting variations. Various pretext tasks have been proposed to
build robust spatiotemporal representations [18, 19, 29, 32, 37, 40,
65]. Contrastive SSL methods for videos have achieved remarkable
success by leveraging the spatiotemporal structure of videos to gen-
erate diverse positive and negative samples [8–10, 14, 28, 35, 37, 44,
46, 49–51, 60, 68]. For example, DPC [18] extends the contrastive
predictive coding framework [43] to videos by predicting dense
feature representations in the future using spatiotemporal con-
trastive loss. MemDPC [19] introduces a memory-enhanced dense
predictive coding model to handle multiple future hypotheses in the
learning process. Additionally, non-contrastive SSL methods, such
as 𝜌BYOL, have also been explored in the video domain, extending
the BYOL framework [16] to videos by incorporating a temporally
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persistent objective and leveraging the temporal persistence of vi-
sual concepts. In this paper, we adopt a similar training paradigm to
𝜌BYOL, eliminating the use of negatives, and introduce key-value
memory networks to enhance the MLP predictor.

Memory Networks. Memory networks, introduced in [55, 61],
have proven to be a powerful approach for enhancing neural net-
works by addressing the limitations of internal memory [7, 25] in
handling long-term dependencies and retaining information over
time. They have demonstrated success in various tasks, including
few-shot learning [30, 63], object segmentation [38], and anomaly
detection [45, 69]. These networks utilize memory slots as a persis-
tent storage mechanism that can be updated and queried, enabling
the network to retain crucial information throughout the training
process.

The key-value memory network [41] has proven valuable for
question-answering tasks, effectively retrieving relevant memories
from the key memory based on a given query and returning corre-
sponding values from the value memory. Building on this concept,
prior studies [33, 34] have also utilized key-value networks for
cross-modal data, storing source modality features in the key mem-
ory and target modality features in the value memory. In this work,
we adopt the key-value memory structure to capture and retain
crucial information from videos, allowing our model to access per-
tinent knowledge from the past and enhance video representation
learning.

Dictionary Learning. Dictionary Learning (DL) is a widely-used
technique for representation learning applied in various domains,
including image modeling and multi-modal representation learning
[1, 11, 71]. Coupled dictionary learning has been proposed for joint
representation learning in tasks involving multiple related tasks or
modalities, enabling the capture of shared and specific information
[26, 66]. Recent work has established connections between autoen-
coders (AEs) and dictionary learning, treating sparse coding and
dictionary learning as neural networks [15, 54, 57]. Qian et al. [48]
jointly learned visual concept dictionaries for the original video,
static frame, and frame difference, with a focus on concept align-
ment and decoupling static and dynamic properties. In contrast, our
paper adopts coupled dictionary learning to achieve fine-grained
semantic alignment by aligning shared visual concepts across dif-
ferent views of the same video.

3 APPROACH
We provide an overview of existing non-contrastive self-supervised
spatiotemporal representation methods (Section 3.1). Our proposed
key-value memory enhanced predictor efficiently retrieves knowl-
edge from long-term memory and addresses feature distribution
gaps between the online and target encoders (Section 3.2). Addi-
tionally, the visual concept alignment module aligns shared visual
concepts across video views, improving knowledge storage and
prediction performance. We optimize the proposed components
using an overall loss function (Fig. 2).

3.1 Problem Formulation
Non-contrastive spatiotemporal representation learning methods
aim to train encoders that generate persistent spatiotemporal rep-
resentations for different clips of the same video. The framework

comprises an online encoder and a momentum-updated target en-
coder. The online encoder, denoted by the backbone 𝑓𝜃 and the
projector 𝑔𝜃 , and the target encoder, denoted by the backbone 𝑓𝜃𝑚
and the projector 𝑔𝜃𝑚 , are depicted in the upper and lower parts of
Fig. 2(a), respectively. The target encoder is an exponential moving
average of the online encoder, updated as 𝜃𝑚 ← 𝜆𝜃𝑚 + (1 − 𝜆)𝜃 ,
where 𝜆 ∈ [0, 1) is a momentum coefficient. Only the parameters 𝜃
are updated through back-propagation during pre-training.

For our approach, we sample two different views, the source clip
𝑥src ∈ R𝐶×𝑇×𝐻×𝑊 and the target clip 𝑥tgt ∈ R𝐶×𝑇×𝐻×𝑊 , from
the same video at different timestamps. After temporal-consistent
augmentation to preserve motion information, the clips are fed into
the online and target encoders for feature extraction. The online
encoder generates the representation 𝑦src = 𝑓𝜃 (𝑥src) ∈ R𝑑 and
the projection 𝑧src = 𝑔𝜃 (𝑦src) ∈ R𝑑proj for the source clip, while
the target encoder produces 𝑦tgt = 𝑓𝜃𝑚 (𝑥tgt) ∈ R𝑑 and 𝑧tgt =

𝑔𝜃𝑚 (𝑦tgt) ∈ R
𝑑proj for the target clip. Here, 𝑑 and 𝑑proj represent

the dimensions of the feature vectors. An MLP prediction head is
added on top of 𝑔𝜃 to transform the source clip features and align
them with the target clip features. The negative cosine similarity is
then minimized to achieve the alignment as follows:

Lpred = −
𝑀𝐿𝑃 (𝑧src) · 𝑧tgt
∥𝑀𝐿𝑃 (𝑧src)∥ · ∥𝑧tgt∥

. (1)

In this paper, we propose a novel approach to enhance the MLP
predictor utilized in existing prediction-based SSL methods for
videos. We augment the MLP predictor with the ability to retrieve
and integrate valuable knowledge learned throughout the entire
training process. Additionally, we introduce a fine-grained visual
concepts alignment mechanism to align semantic information be-
tween different clips of the same video, further improving the
performance. The overall architecture of our proposed method
is illustrated in Fig. 2. In Fig. 2(a), we present the pipeline of our
fine-grained key-value memory enhanced predictor. In Fig. 2(b),
the visual concept alignment module is illustrated. The details of
our proposed method are described in the following sections.

3.2 Key-Value Memory Enhanced Predictor
We utilize a key-value memory-enhanced predictor to store valu-
able knowledge during pre-training and retrieve relevant knowl-
edge through the key-value addressing mechanism before making
predictions. Specifically, the proposed predictor consists of two
encoder-specific memory networks, as depicted in Fig. 2, compris-
ing the key memory 𝑴src ∈ R𝑁×𝑑mem for the online encoder and
the value memory 𝑴tgt ∈ R𝑁×𝑑mem for the target encoder. Here,
𝑁 represents the number of memory slots, and 𝑑mem represents
the dimension of the memory slots. Each memory network stores
generic representations of its respective encoder.

During the prediction phase, the encoded feature of the source
clip 𝑧src is used to query the entire key memory slots, yielding the
knowledge relevance vector 𝐴src = [𝛼1, 𝛼2, . . . , 𝛼𝑁 ]. Specifically,
given 𝑧src as the query, we first project it to match the dimension
of the key memory slots 𝑑mem using 𝑝src = 𝜙 (𝑧src), where 𝜙 (·)
represents the projection function. Subsequently, the knowledge
relevance score for the 𝑖-th memory slot of the key memory 𝑴𝑖

src
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Figure 2: The overall architecture of our proposed method. (a) Pipeline of the fine-grained key-value memory enhanced
predictor. The online encoder extracts features 𝑧src, which are used to retrieve knowledge from the key memory 𝑴src and
generate the knowledge relevance vector 𝐴src. The final predictions are obtained by aggregating the memory slots in the value
memory 𝑴tgt through weighted summation based on 𝐴src, supervised by the target feature 𝑧tgt using the Lmempred loss. (b)
Visual concept alignment module. Two visual concept dictionaries 𝑫src and 𝑫tgt are learned to reconstruct the features 𝑦src and
𝑦tgt encoded by the backbone of each encoder, supervised by the feature reconstruction losses Lsrc

recon and Ltgt
recon. The alignment

loss Lalign is employed to align the visual concept codes 𝑞src and 𝑞tgt across different views of the same video.

is calculated as follows:

𝛼𝑖 =
exp (𝑟 · 𝑠𝑖𝑚(𝑴𝑖

src, 𝑝src))∑𝑁
𝑗=1 exp (𝑟 · 𝑠𝑖𝑚(𝑴

𝑗
src, 𝑝src))

, (2)

where sim(·) is a cosine similarity metric and 𝑟 is a scaling factor.
Next, we use 𝐴src to address the corresponding value memory

slots 𝑴tgt and integrate the addressed value memory slots using a
weighted sum function to get a predicted target representation 𝑧′tgt
as follows,

𝑧′tgt = 𝐴src ·𝑴tgt . (3)
To train the proposed predictor, we minimize the negative co-

sine similarity between the predicted target representation and the
target representation 𝑧tgt as shown as follows:

Lmempred = −
𝑧′tgt · 𝑧tgt
∥𝑧′tgt∥ · ∥𝑧tgt∥

. (4)

By minimizing the prediction loss, the learnable parameters of
the key-value memory networks are updated to store representative
features. The knowledge relevance addressing mechanism ensures
that each pair of key-value memory slots𝑴src𝑖 and𝑴tgt𝑖 captures
knowledge with the same semantic information.

3.3 Fine-Grained Visual Concept Alignment
We introduce the visual concept alignment module as a key compo-
nent of our proposed method, which is based on coupled dictionary
learning and aims to align shared visual concepts across different
views of the same video, thereby enhancing the quality of knowl-
edge stored in memory slots for improved prediction. To achieve

this, we employs two fully connected layers,𝑊src for the source
encoder and𝑊tgt for the target encoder, to generate latent concept
codes for the source and target clips, respectively. The calculations
are defined as:

𝑞𝑘src = 𝑤
𝑘
src · 𝑧src, 𝑞𝑘tgt = 𝑤𝑘tgt · 𝑧tgt, (5)

where 𝑤𝑘* denotes the 𝑘-th column of the fully connected layer.
Each code generator has a dimension of 𝑑dict, and we set a large
number for the number of visual concepts, such as 4096, to enable an
enhanced representation of the data and capture low-dimensional
structures effectively.

We supervise the training of the code generators by reconstruct-
ing the original features using visual concept codes passed through
dictionaries. Specifically, the generated codes, 𝑞src and 𝑞tgt, passed
through two distinct dictionaries, 𝑫src and 𝑫tgt, to reconstruct the
encoded features 𝑦src and 𝑦tgt obtained from the backbones. We
use a two-layer MLP structure for the dictionaries. Subsequently,
we utilize the L2 loss for optimization and apply a stop gradi-
ent to the original features, as illustrated in Eq. 6. By minimizing
the reconstruction loss between the original features and the re-
constructed features obtained from the visual concept codes, the
concept prototypes [𝑤1

src,𝑤
2
src, . . . ,𝑤

𝐾
src] and [𝑤1

tgt,𝑤
2
tgt, . . . ,𝑤

𝐾
tgt],

shown in Fig. 2, captures important information within the video.

Lrecon = Lsrc
recon + L

tgt
recon

= ∥𝑫src (𝑞src) − 𝑦src∥22 +


𝑫tgt (𝑞tgt) − 𝑦tgt



2
2 .

(6)
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To align the visual concepts across different video clips that share
the same visual attributes, we adopt a knowledge distillation para-
digm proposed in [3] by treating the online encoder as the student
network and the momentum-updated target encoder as the teacher
network. The concept codes generated by the teacher network are
used to guide the training of the online encoder. To prevent collapse
during aligning, we apply centering and sharpening techniques to
the momentum teacher outputs, as proposed in [3]. This involves
introducing a bias term 𝑐 and adding it to the concept codes gen-
erated by the momentum teacher encoder. The modified concept
codes, denoted as 𝑞tgt, are computed as 𝑞tgt = 𝑞tgt +𝑐 . The bias term
𝑐 is updated using an exponential moving average function with a
parameter𝑚 ∈ [0, 1) and batch size 𝐵. The update equation for 𝑐 is
given by 𝑐 ←𝑚𝑐 + (1 −𝑚) 1

𝐵

∑𝐵
𝑖=1 𝑞tgt. We set𝑚 = 0.9 by default.

Next, we compute concept distributions over 𝐾 dimensions, rep-
resented by 𝑃𝑠 and 𝑃𝑡 , using the softmax function. These distribu-
tions are controlled by temperature parameters 𝜏𝑠 > 0 and 𝜏𝑡 > 0,
which control the sharpness of the output distribution and enable
the inputs to be described by a small number of dominant con-
cepts. These distributions capture the importance of each concept
in representing the visual features of the source and target clips,
respectively. By default, we set 𝜏𝑠 = 𝜏𝑡 = 0.05. Specifically, for 𝑘-th
concept feature, we calculate 𝑃𝑘𝑠 and 𝑃𝑘𝑡 as follows:

𝑃𝑘𝑠 =
exp(𝑞𝑘src/𝜏𝑠 )∑𝐾
𝑖=1 exp(𝑞𝑖src/𝜏𝑠 )

, 𝑃𝑘𝑡 =
exp(𝑞𝑘tgt/𝜏𝑡 )∑𝐾
𝑖=1 exp(𝑞𝑖tgt/𝜏𝑡 )

. (7)

Finally, we calculate the cross-entropy loss between the visual
concept distributions to train the online encoder. The loss is defined
as:

Lalign = −
𝐾∑︁
𝑘=1

stopgrad(𝑃𝑘𝑡 ) log 𝑃𝑘𝑠 , (8)

where the stop-gradient operator is applied to the target encoder’s
concept distributions to prevent gradient propagation through the
target encoder.

By minimizing Lalign, we align the concept distributions of tem-
porally different segments within the same video, and jointly opti-
mize the feature representations and concept descriptions across
a large set of video samples. Additionally, as depicted in Fig. 2(b),
we employ encoder-specific code generators and concept dictio-
naries for the online and target encoders. This approach allows for
simultaneous learning of the encoders’ representations and concept
descriptions, eliminating the need to address feature distribution
gaps between the encoders. We illustrate the feature distribution
gaps between encoders in Appendix A.

We combine both the reconstruction and the alignment loss
functions for fine-graied visual concept alignment:

Lconcept = 𝛼Lrecon + 𝛽Lalign, (9)

where 𝛼 and 𝛽 are weighting factors that balance the contributions
of the global attention lossLrecon and the local attention lossLalign.
We also analyze the connection and difference between memories
and dictionaries in Appendix B

3.4 Overall Objective
By replacing the original MLP predictor with our proposed key-
value memory-enhanced predictor and utilizing the visual concept

alignmentmodule to align fine-grained semantic information across
temporally different clips from the same video, the overall training
objective of our fine-grained key-valuememory-enhanced predictor
is given by:

Ltotal = Lmempred + Lconcept . (10)

4 EXPERIMENTS
4.1 Experimental Settings
Datasets. We evaluate our methodology on three widely-used
video datasets: UCF101 [53], HMDB51 [36], and Kinetics-400 [31]
(K400). UCF101 contains 1.3k videos with 101 action categories,
HMDB51 includes 7k videos covering 51 categories, and K400 is a
large-scale dataset with over 24k videos spanning 400 categories.
For pre-training, we use either the UCF101 or K400 training set and
evaluate on split 1 of UCF101 and HMDB51.

During data preprocessing, we randomly sample two clips of
size 𝑇 × 𝑠 frames from each video. Each input clip consists of 𝑇
frames sampled from the raw clip with a stride of 𝑠 . For pre-training,
we apply a cropping procedure described in [14, 56] to augment
the data, which involves random adjustments of the input area’s
scale and aspect ratio. For downstream tasks, we resize the shorter
spatial side of the video within the range [256, 320] pixels for a
random crop of size 2242, or within the range [128, 160] pixels for
a random crop of size 1122.
Architecture. The encoder in our model comprises spatiotempo-
ral convolutional neural networks with three different backbones:
3D-ResNet-18 [21, 22] (R3D-18, 31.8M parameters), R(2+1)D-18 [59]
(R(2+1)D, 14.4M parameters), and Slow-R18 [13, 14] (20.2M param-
eters), which uses an R-18, 8×8 Slow pathway. To improve the
temporal resolution of features, we modify R3D-18 by setting the
temporal stride of the conv4 layer to 1 and the dilation factor to
2, following TCLR [8]. For the projection head and the baseline
MLP prediction head, we employ batch normalization [27] and
ReLU activations, with a two-layer MLP structure in the hidden
layer, having a dimension of 4096. The default experiments utilize
𝑑 = 𝑑proj = 𝑑mem = 𝑑dict = 256. The scaling factor 𝑟 in Equ. 2 is set
to 64. in The projection function 𝜙 used in our memory-enhanced
predictor is a two-layer MLP with a hidden layer dimension of 256.
Synchronized batch normalization is employed in the backbone, as
described in [4, 14].
Self-Supervised Learning. We conduct training for 100 epochs
on the Kinetics-400 dataset, employing a total mini-batch size of
256 and utilizing 8 Tesla V100 GPUs. For the UCF101 dataset, we
perform training for 400 epochs with a total mini-batch size of 64,
using 8 GeForce GTX 1080 Ti GPUs. We use a half-period cosine
schedule with a base learning rate of 𝜂 = 1.2 for UCF101 and 𝜂 = 2.4
for Kinetics-400. LARS [67] is employed, except for bias and BN
parameters, with an SGD weight decay of 10−4. We utilize a cosine
schedule from 0.996 to 1 for the momentum coefficient 𝜆 during
pre-training. The balancing hyperparameters are set to 𝛼 = 0.01
and 𝛽 = 0.01 by default.
Action Recognition. Action recognition serves as a downstream
task to evaluate the effectiveness of our method. We initialize
our models using pre-trained parameters, excluding the last fully-
connected layer. We employ two established evaluation protocols:
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(1) Fine-tuning the entire network: We fine-tune the entire network
using action labels. The training process consists of 200 epochs
with a batch size of 64. A new fully connected layer is added at the
end of the pre-trained backbone for classification. Before this newly
attached layer, a dropout probability of 0.5 is applied. The initial
learning rate is set to 0.2, following a cosine annealing scheduler
without warmup. We utilize the SGD optimizer with a momentum
of 0.9 and no weight decay.
(2) Linear probe: We freeze the backbone and solely train the last
linear classifier. Training is conducted for 100 epochs without using
dropout. The remaining training strategies align with those in the
fine-tuning protocol.

During inference, we follow the evaluation protocol used in [13,
14]. Specifically, we sample 10 temporal clips with 3 different spatial
crops to cover the entire video. The predictions from these 30 clips
are averaged, and the resulting Top-1 accuracies on the UCF101
and HMDB51 datasets are reported.
Video Retrieval. To evaluate the quality of the spatiotemporal
features, we utilize the extracted pre-trained encoder representa-
tions without additional training. Following prior work [39, 64],
we perform k-nearest neighbors (k-NN) search in the training set
using video clips from the test set as queries. A global representa-
tion is obtained by averaging 10 uniformly sampled clips. A hit is
counted if the category of the testing clip is present in the k-nearest
neighbors. We report the Top-k recall R@k for evaluation purposes.

4.2 Comparison with State-of-the-art Methods
In this section, we evaluate the performance of our proposedmethod
on action recognition and video retrieval tasks and compare it with
state-of-the-art approaches. We use different input sizes for each
backbone: 8 × 2242 with a temporal sampling stride of 8 for Slow-
R18, following the settings in [14], and 16 × 1122 with a temporal
sampling stride of 4 for R3D-18 and R(2+1)D.
ActionRecognition. Tab. 1 presents the action recognition results
for our method and several comparable works on the UCF101 and
HMDB51 datasets, reporting Top-1 accuracy in both the linear
probe and fine-tune settings. The table also provides information
about the network architecture, pre-training dataset, input sizes,
and evaluation protocol used in each method.
Linear probe setting: Our method outperforms the other methods
across different backbones, achieving the highest Top-1 accuracy
on both UCF101 and HMDB51. For instance, with the Slow-R18
backbone, our method achieves a Top-1 accuracy of 79.59% on
UCF101 and 47.89% on HMDB51, surpassing other methods in this
setting.
Fine-tune setting: Our method consistently achieves best perfor-
mance when pre-trained on the K400 dataset. For instance, with
the R(2+1)D backbone, our method achieves a Top-1 accuracy of
89.00% on UCF101 and 61.12% on HMDB51, which are the high-
est scores among all methods. When pre-trained on the UCF101
dataset, our method still outperforms the other methods, achieving
a Top-1 accuracy of 84.32% on UCF101 and 54.21% on HMDB51 with
the R3D-18 backbone. The results demonstrate the effectiveness of
our method in both the linear probe and fine-tune settings across
different backbone architectures and pre-training datasets.
Video Retrieval. We present the video retrieval performance of
our method on the UCF101 and HMDB51 datasets, with Recall@k

Table 1: Action recognition performance on UCF101 and
HMDB51. Finetune!indicates that the entire networks are
fine-tuned end-to-end, while%indicates that the backbone
network is fixed and only the linear classifier is updated.

pre-train Dataset: K400, Finetune:%
Method Backbone Input size UCF101 HMDB51

MemDPC [19] R3D-34 40 × 2242 54.1 30.5
CoCLR [20] S3D 32 × 1282 74.5 46.1
FAME [9] R(2+1)D 16 × 1122 72.2 42.2
DCLR [10] R(2+1)D 16 × 1122 72.3 46.4
VCL [48] S3D 16 × 1282 75.1 47.4
Ours R(2+1)D 16 × 1122 78.19 47.57
Ours R3D-18 16 × 1122 79.46 46.05
Ours Slow-R18 8 × 2242 79.59 47.89

pre-train Dataset: UCF101, Finetune:!
Method Backbone Input size UCF101 HMDB51

CoCLR [20] S3D 32 × 1282 81.4 52.1
VCL [48] R(2+1)D 16 × 1122 82.1 49.7
TCLR [8] R(2+1)D 16 × 1122 82.8 53.6
DCLR [10] R(2+1)D 16 × 1122 82.3 50.1

Ours R(2+1)D 16 × 1122 84.32 53.03
Ours R3D-18 16 × 1122 84.14 54.21

pre-train Dataset: K400, Finetune:!
Method Backbone Input size UCF101 HMDB51

MemDPC [19] R3D-34 40 × 2242 78.1 41.2
CoCLR [20] S3D 32 × 1282 87.9 54.6

VideoMoCo [44] R(2+1)D 32 × 1122 78.7 49.2
𝜌MOCO [14] Slow-R18 8 × 2242 87.1 -
DCLR [10] R(2+1)D 16 × 1122 83.3 52.7
TCLR [8] R(2+1)D 16 × 1122 84.3 54.2
FAME [9] R(2+1)D 16 × 1122 84.8 53.5
VCL [48] R(2+1)D 16 × 1122 86.1 54.8
Ours R(2+1)D 16 × 1122 89.00 61.12
Ours R3D-18 16 × 1122 88.29 57.43
Ours Slow-R18 8 × 2242 87.50 57.11

Table 2: Results on UCF101 for video retrieval task.

Method Backbone R@1 R@5 R@10 R@20

MemDPC [19] S3D 20.2 40.4 52.4 64.7
CoCLR [20] S3D 53.3 69.4 76.6 82.0

TransRank [12] R3D-18 53.3 69.4 76.6 82.0
VCLR [35] R2D-50 46.8 61.8 70.4 79.0
DCLR [10] R(2+1)D 54.8 68.3 75.9 82.8
VCL [48] R(2+1)D 55.6 70.1 77.4 83.1
TCLR [8] R3D-18 56.2 72.2 79.0 85.3
Ours R3D-18 53.77 72.98 80.39 87.23
Ours R(2+1)D 53.00 72.06 79.12 86.07

(R@k) for k = 1, 5, 10, and 20 reported in Tables 2 and 3. When com-
pared with other state-of-the-art methods such as TCLR [8], which
employs short and long clips to attend to fine-grained temporal
features, VideoMoCo, which improves MoCo’s temporal feature
representations by introducing a generator to drop out frames and
using temporal decay to model key attenuation in the memory
queue, VCL [48] and DCLR [10], which utilize complementary in-
formation between RGB and frame difference (FD), our proposed
method consistently outperforms these methods on all datasets,
particularly for R@5, R@10, and R@20.
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Table 3: Results on HMDB51 for video retrieval task.

Method Backbone R@1 R@5 R@10 R@20

MemDPC [19] S3D 7.7 25.7 40.6 57.7
CoCLR [20] S3D 23.3 43.2 53.5 65.5

TransRank [12] R3D-18 23.3 43.2 53.5 65.5
VCLR [35] R2D-50 17.6 38.6 51.1 67.6
DCLR [10] R(2+1)D 24.1 44.5 53.7 64.5
VCL [48] R(2+1)D 24.4 45.1 54.5 66.4
TCLR [8] R3D-18 22.8 45.4 57.8 73.1
Ours R3D-18 23.62 50.13 61.32 73.95
Ours R(2+1)D 20.66 46.78 59.61 73.68

Specifically, on the UCF101 dataset, our method using R3D-18
as the backbone achieves R@5, R@10, and R@20 values of 72.98%,
80.39%, and 87.23%, respectively, outperforming all other methods.
Similarly, on the HMDB51 dataset, our method with the R3D-18
backbone achieves R@5, R@10, and R@20 values of 50.13%, 61.32%,
and 73.95%, respectively, surpassing other methods as well. How-
ever, our method does not always achieve the highest R@1, sug-
gesting there might still be room for improvement in the model’s
ability to precisely retrieve the most relevant video.

4.3 Ablation Study
To evaluate different designs of our framework and validate the
influence of different hyperparameters, we conducted an ablation
study using the R3D-18 or R(2+1)D backbone pre-trained on the
UCF101 dataset. We trained all models for 400 epochs with an input
resolution of 16 × 1122.
Influence of Individual Components. In this ablation study,
we compare three predictor structures: MLP predictor (Lpred), key-
value memory enhanced predictor (KVMemPred) (Lmempred), and
fine-grained key-value memory enhanced predictor (FGKVMem-
Pred) (Lmempred + Lconcept). The models are evaluated using both
the fine-tune and linear probe evaluation protocols.

Results in Tab. 4 show that the key-value memory enhanced
predictor consistently outperforms the baseline MLP predictor,
showcasing the benefits of incorporating key-value memory mech-
anisms. Furthermore, FGKVMemPred achieves superior perfor-
mance in most cases, underscoring the advantages of our proposed
method. Specifically, on the UCF101 dataset, the MLP predictor
achieves a baseline fine-tuning accuracy of 82.13% with R(2+1)D
and 82.53% with R3D-18. In contrast, our KVMemPred significantly
improves the accuracy to 83.61% with R(2+1)D and 83.35% with
R3D-18. By further aligning fine-grained semantic concepts using
coupled dictionary learning, our FGKVMemPred achieves an accu-
racy of 84.32% with R(2+1)D and 84.14% with R3D-18. We present
ablation studies about 𝑎𝑙𝑝ℎ𝑎 and 𝑏𝑒𝑡𝑎 in Eq. 9 in Appendix C.
Influence of Hyper-parameters. Fig. 3 investigates the influence
of various hyperparameters on our method’s performance, focusing
on the number of memory slots (𝑁 ), the size of the visual concept
dictionaries (𝐾), and the temperature (𝜏𝑠 and 𝜏𝑡 ). All experiments
are conducted using the R3D-18 backbone. The key observations
from the table are:
(1) The optimal number of memory slots is 4096. Increasing it to
8192 does not enhance the performance, possibly due to the intro-
duction of more parameters the need more training iterations or
the need to adjust the scale factor 𝑟 in Eq. 2. (2) The best perfor-
mance is achieved with 4096 coupled visual concept dictionaries.

Table 4: Comparisons of three predictor structures, including
the MLP, KVMemPred, and the FGKVMemPred predictor
supervised by different loss functions.

Supervision Backbone Finetune UCF101 HMDB51

Lpred R(2+1)D % 55.11 21.71
Lmempred R(2+1)D % 63.67 34.14
Lmempred + Lconcept R(2+1)D % 66.19 36.32
Lpred R3D-18 % 58.60 29.28
Lmempred R3D-18 % 67.04 33.75
Lmempred + Lconcept R3D-18 % 68.89 36.45

Lpred R(2+1)D ! 82.13 52.50
Lmempred R(2+1)D ! 83.61 54.34
Lmempred + Lconcept R(2+1)D ! 84.32 53.03
Lpred R3D-18 ! 82.53 53.68
Lmempred R3D-18 ! 83.35 55.00
Lmempred + Lconcept R3D-18 ! 84.14 54.21
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Figure 3: Effect of hyperparameters 𝑁 , 𝐾 , 𝜏𝑠 , and 𝜏𝑡 . The val-
ues for each hyperparameter are plotted on the X-axis of the
corresponding table, while the Y-axis represents the Top1
and Top5 accuracies on UCF101.

Additional dictionaries do not significantly improve performance,
potentially due to the lack of adjusting the temperature coefficient
or the need for longer training iterations due to the introduction of
more parameters in the dictionaries. 𝐾 = 0 means that the visual
concept alignment module is not used. (3) The optimal performance
is obtained when both 𝜏𝑠 and 𝜏𝑡 are set to 0.05. Smaller temperature
parameters make the visual concept distributions sharper, high-
lighting important visual concepts for alignment while reducing
the alignment of unimportant ones.

In summary, the results in Fig. 3 show that our method achieves
optimal performance with 4096 memory slots, 4096 coupled visual
concept dictionaries, and temperature parameters of 0.05 for both
𝜏𝑠 and 𝜏𝑡 . The experiments demonstrate the effectiveness of our
method under various hyperparameter settings.

4.4 Qualitative Analysis
In this section, we conduct a visualization analysis to examine the
effectiveness of the key-value memory enhanced predictor and the
visual concept alignment module. We utilize the pre-trained R3D-
18 backbone as the feature extractor for this analysis. To evaluate
the model’s performance in discriminating between similar action
categories, we select three pairs of easily confused action categories
from the UCF101 dataset: cricket bowling and cricket shooting,
playing the flute and playing the violin, and pull-ups and jumping
jacks. To generate visualizations, we perform a center crop on the
middle segment of each video clip before feeding it into the pre-
trained model.
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KV-MemPred FGKV-MemPred

Figure 4: Conditional probability matrices illustrating
𝑷 (action|memslot). The Y-axis of each matrix represents the
action label, while the X-axis represents the indices of the
top 50 most frequently activated memory slots.

Analysis of the Memory Slots. The proposed methodology in-
corporates a key-value memory-enhanced predictor that produces
a knowledge relevance vector for each video clip. This vector con-
tains scores representing the semantic similarity between the clip’s
feature and each key memory slot. We aggregate the indices of
the top 20 memory slots with the highest scores for each video
and associate them with the corresponding video labels. We fur-
ther select the 50 most frequently occurring slots and compute the
conditional probability distribution of action categories given the
memory slots, denoted as 𝑷 (action|memslot). Specifically, we ag-
gregate action labels for each memory slot across all selected videos,
allowing us to compute the conditional probability of each action
given any memory slot. The resulting probabilities are depicted in
Fig. 4, which reveal insightful information, including:
(1) It is observed from the distributions that easily confused cate-
gories, such as cricket bowling and cricket shooting, tend to activate
the same memory slots due to the similarity in their actions and
backgrounds. Furthermore, memory slots can learn shared seman-
tic knowledge across categories, allowing the encoder to leverage
closely related knowledge acquired from the entire dataset when
predicting features. Notably, despite sharing many memory slots,
cricket bowling, and cricket shooting still exhibit a few unique
memory slots, indicating that memory slots learn category-specific
semantic information to distinguish confusing categories during
prediction. Similar observations can be made for other pairs of
confusing categories.
(2) The comparison between KVMemPred and FGKVMemPred
demonstrates the effectiveness of the visual concept alignment
module. Specifically, easily confused categories like cricket bowling
and cricket batting demonstrate fewer co-occurring slots and more
category-specific slots. This suggests that our visual concept align-
ment module assists memory slots in capturing and storing more
fine-grained visual concept features, thereby enhancing the ability
to distinguish confusing categories. Additionally, each category ac-
tivates a greater number of memory slots, indicating the proposed
module enables a category to be described by more fine-grained
visual concepts.

Analysis of the Visual Concepts. To analyze the learned dic-
tionary, we examine the top three samples that had the highest
response to the three most frequently activated visual concepts
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Figure 5: Visualization of the top-3 most frequently activated
visual concepts in our learned dictionaries using the UCF101
testing videos.

from the test set. Fig. 5 illustrates that each visual concept is associ-
ated with a specific action or scene. For example, the concept in the
first row represents the action of holding a bar-shaped object with
both hands, such as a barbell or oar. The concept in the second row
corresponds to horse racing. The concept in the third row indicates
the action of jumping. These observations confirm that each visual
concept can effectively identify specific fine-grained visual con-
cepts across diverse backgrounds and variations in human subjects,
thereby validating the effectiveness of our joint dictionary learning
approach.

5 CONCLUSION
In this paper, we introduce a novel self-supervised video repre-
sentation learning approach that leverages the key-value memory
enhanced predictor and the visual concept alignment module. By
incorporating the memory enhanced predictor, our method effi-
ciently retrieves relevant knowledge from long-term memory and
effectively mitigates feature distribution gaps between encoders,
thus enhancing the predictive capabilities of video representations.
Additionally, the concept alignment module aligns shared visual
concepts across different video views, leading to improved knowl-
edge storage and better prediction performance. Extensive experi-
ments demonstrate the superiority of our approach over state-of-
the-art methods in action recognition and retrieval tasks on various
datasets, validating the effectiveness of our method in learning gen-
eralized video representations. This research opens up exciting pos-
sibilities for exploring advanced memory-enhanced self-supervised
learning techniques and innovative ways of aligning visual con-
cepts across videos. Future work may also investigate combining
different self-supervised learning paradigms to further boost video
representation learning performance.
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A ILLUSTRATION OF THE FEATURE
DISTRIBUTION GAP

Similar to BYOL [16] and DINO [3], which view self-supervised
learning as a form of knowledge distillation [17, 24, 47], our ap-
proach aims to minimize the discrepancy between student and
teacher feature spaces. However, instead of mimicking interme-
diate layer features as in traditional distillation methods [52], we

introduce key-value memory networks to enhance the encoder’s
prediction capability.

To validate the effectiveness of our fine-grained key-value mem-
ory enhanced predictor (FGKVMemPred) in narrowing the distri-
bution gap, we compute the negative cosine similarity between
features from the online encoder (𝑦src) and the target encoder
(𝑦tgt) and visualize the similarity distributions in Fig. 6. The re-
sults demonstrate that FGKVMemPred significantly reduces the
feature distribution gap compared to the baseline model using the
MLP predictor. This reduction in the distribution gap indicates
the improved alignment of features between the online and tar-
get encoders, further validating the effectiveness of our proposed
method.

B CONNECTION AND DIFFERENCE BETWEEN
MEMORIES AND DICTIONARIES

Memory slots and dictionaries in our framework share certain
similarities while exhibiting distinct characteristics:

Similarities
• Both operate in a QKV transformer-style manner, employing
representations from different network levels as queries.
• They function as lifelong memories, accumulating knowl-
edge throughout the training process.

Differences
• Functionality: Memory slots serve as a comprehensive
knowledge repository, enabling the model to access relevant
knowledge from all slots for prediction. This facilitates lever-
aging a wide range of stored information from the entire
dataset. Dictionaries, on the other hand, are designed to
align fine-grained semantic information, enhancing the rich-
ness of knowledge stored in memory slots, particularly in
the context of videos. Their role is critical in aligning visual
concepts across diverse views and temporal segments.
• Structure: Memory slots are an integral part of the key-
value memory network and represent stored knowledge or
high-level concepts derived from the entire video dataset.
They capture essential information learned from various
video clips, facilitating knowledge transfer across different
instances. Dictionaries consist of collections of visual con-
cepts associated with each encoder. Their main purpose is to
support the alignment of fine-grained semantic information
within the same video, capturing nuanced relationships and
video-specific visual patterns.
• Supervision: Memory slots are supervised by the predic-
tion loss, utilizing input features from the online encoder and
the prediction targets from the target encoder. This supervi-
sion enables the model to predict features from temporally
different video clips, incorporating both the input context
features and the retrieved stored knowledge from the entire
dataset. Dictionaries follow a coupled dictionary learning
[26] design. Each dictionary functions as an autoencoder-
decoder [54], utilizing input features and reconstruction tar-
gets from the same encoder. Through the reconstruction of
input features using coding vectors, dictionaries facilitate
the alignment of fine-grained visual concepts across differ-
ent views within the same video. The joint optimization of
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Figure 6: Visualization of Feature Distribution Gaps.

the reconstruction loss and alignment loss further enhances
the model’s ability to capture and align relevant visual infor-
mation.

The contributions of the memories and dictionaries are presented
in Tab. 4 and Fig. 4 of our paper, which also illustrate their distinct
functionalities.

C ABLATION STUDY OF 𝛼 AND 𝛽 IN EQ. 9
We conducted an ablation study to examine the impact of different 𝛼
and 𝛽 values on the model’s performance. The summarized results
are presented in the following tables. In these experiments, the
R3D-18 backbone is employed, and the training and evaluation
settings correspond to those outlined in Table 4.

Table 5: Effect of Different 𝛼 Values with 𝛽 = 0.01

𝛼 0 0.002 0.01 0.05
UCF101 67.29 67.33 68.89 68.94
HMDB51 36.05 34.67 36.45 36.45

Table 6: Effect of Different 𝛽 Values with 𝛼 = 0.01

𝛽 0 0.002 0.01 0.05
UCF101 68.91 69.81 68.89 68.36
HMDB51 36.91 37.96 36.45 36.97

Setting 𝛼 to 0 results in reduced performance, highlighting the
significance of the Lrecon loss. Slightly increasing 𝛼 improves per-
formance, indicating its positive impact. Setting 𝛽 to 0 does not lead
to a significant performance drop, indicating that the reconstruction
supervision can enhance the online encoder’s performance [58].
Additionally, increasing 𝛽 results in a notable performance increase,
underscoring the importance of Lalign.

These findings underscore the crucial roles played by both losses.
Properly balancing 𝛼 and 𝛽 enhances the model’s performance. For
the UCF101 and HMDB51 datasets, optimal values are 𝛼 = 0.01 and
𝛽 = 0.002. These ablation experiments will be incorporated into the
paper.
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