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Abstract

Mixture of Experts (MoE), with its distinctive sparse struc-
ture, enables the scaling of language models up to trillions of
parameters without significantly increasing computational
costs. However, the substantial parameter size presents a
challenge for inference, as the expansion in GPU memory
cannot keep pace with the growth in parameters. Although
offloading techniques utilise memory from the CPU and disk
and parallelise the I/O and computation for efficiency, the
computation for each expert in MoE models is often less than
the I/O, resulting in numerous bubbles in the pipeline.
Therefore, we propose KLoTsk1, an efficient MoE inference
engine that significantly reduces pipeline bubbles through a
novel expert-aware multi-batch pipeline paradigm. The pro-
posed paradigm uses batch processing to extend the compu-
tation time of the current layer to overlap with the loading
time of the next layer. Although this idea has been effec-
tively applied to dense models, more batches may activate
more experts in the MoE, leading to longer loading times
and more bubbles. Thus, unlike traditional approaches, we
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balance computation and I/O time and minimise bubbles
by orchestrating their inference orders based on their het-
erogeneous computation and I/O requirements and activa-
tion patterns under different batch numbers. Moreover, to
adapt to different hardware environments and models, we
design a constraint-sensitive I/O-compute planner and a
correlation-aware expert prefetcher for a schedule that min-
imises pipeline bubbles. Experimental results demonstrate
that Krotskr achieves a superior throughput-latency trade-
off compared to state-of-the-art techniques, with throughput
improvements of up to 85.12x.
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1 Introduction

Owing to the rapid advancement of deep learning, large lan-
guage models (LLMs) have demonstrated remarkable efficacy
across various domains [4, 7, 46]. To facilitate model scalabil-
ity without escalating the costs associated with training and
inference, recent research has introduced sparsely activated
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Mixture-of-Experts (MoE) models [10, 33]. MoE models typi-
cally replace the Feed-Forward Network (FFN) layers with
MoE layers. For each input, only a subset of the parameters
(i-e., experts) are sparsely activated for computation, rather
than all parameters, significantly reducing computational
cost. Current research has demonstrated the superiority of
the MoE architecture through extensive experiments [15, 30].

However, due to the skew between model parameter sizes
and advances in hardware, MoE-based models, with their
massive parameter counts, face more severe memory bot-
tlenecks during inference than other LLMs. For example,
DeepSeek-V2 [6], with 236 billion parameters, requires at
least seven state-of-the-art (SOTA) GPUs (H100, with 80GB
of memory each) for inference. Furthermore, the high cost
of memory often makes it difficult to use such large models
in more common environments such as personal comput-
ers and small servers, limiting the wider adoption of large
models [8, 25, 40]. This raises the question of how to deploy
MoE models in resource-constrained environments where
there is a significant gap between available GPU memory
and model parameter sizes.

Offloading is one of the current mainstream solutions for
addressing memory optimization during the inference of
LLMs [9, 20, 32, 34]. It significantly reduces GPU memory
requirements for LLM inference by offloading tensors not
needed for the current computation. Applying offloading to
MoE models is effective because the experts are sparsely acti-
vated, resulting in more parameters that can be offloaded dur-
ing inference. Recent efforts [9, 43] have proposed offloading
strategies tailored for MoE models. Figure 1(a) illustrates the
basic paradigm of these methods: prefetching the next layer
while computing the current layer to achieve partial overlap
of I/O and computation. However, due to the sparse activa-
tion of experts, these methods often rely on the accuracy of
expert prefetching. For instance, MoE-Infinity [43] performs
activation-aware expert prefetching and caching based on
expert activation traces. SiDA [8] trains an offline expert
predictor in a data-aware manner, achieving a prefetching
accuracy of over 90%.

However, significant inter-layer and intra-layer bubbles
(GPU stalls) degrade performance due to the computation
and I/O imbalance. Inter-layer bubbles occur because of the
imbalance between the attention and expert layers. The large
size of experts prevents the computation of the attention
layer from sufficiently overlapping with the I/O of the expert
layer. In Mixtral-8x7B [19], using an NVIDIA 3090 to process
a batch size of 16, the average attention computation is about
2.6 ms, while the single expert transmission time is about 21
ms. Furthermore, when the number of experts selected by the
gate exceeds one (as in Mixtral-8X7B and DeepSeekMoE [5],
etc.), the I/O overhead for expert transmission multiplies,
causing the GPU to wait more frequently. Intra-layer bub-
bles, on the other hand, result from an imbalance between
computation and I/O within the expert layer. In the inference
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Figure 1. Comparison of three kinds of pipeline. We use
multiple computations of the current layer to overlap the I/O
of the next layer to reduce inter-layer bubbles and adjust the
experts’ computation order to reduce intra-layer bubbles.

of dense models, the loaded FFN processes all sequences in
the batch. However, in MoE models, each activated expert
processes only a portion of the sequences in the batch but
consume time to transfer multiple FFNs (each expert is an
FFN). For instance, processing a token with a single expert in
Mixtral-8x7B takes less than 1 ms, which is much less than
the transmission delays. This leads to substantial intra-layer
bubbles between the computations of multiple experts.
Inspired by related work on dense models [34, 41], a straight-
forward approach is to consider the computations of multiple
batches simultaneously. This increases the total computation
time, thereby allowing for the overlap of the I/O time for the
next layer. Specifically, after loading the weights of a layer,
they are shared across multiple batches, allowing consecu-
tive computations within the current layer. This provides
sufficient time for loading the weights of the subsequent
layer, thereby significantly reducing inter-layer bubbles.
Despite this, considering the computations of multiple
batches simultaneously also means increasing the diversity
of the inputs to the MoE layer. Given the sensitivity of the gat-
ing mechanism to data variability [24, 42], the total number
of activated experts may increase. As shown in Figure 1(b),
in addition to the experts activated in Figure 1(a), experts 5
and 3 are also activated. Although multiple computations in
the attention layer can overlap the I/O of some experts, more
experts are activated, resulting in more intra-layer bubbles
in the pipeline, due to the long I/O time for these experts.
To tackle this challenge, we propose an expert-aware multi-
batch pipeline paradigm. Specifically, based on current ob-
servations [23, 42], there is a phenomenon in MoE inference
where a few experts handle the majority of tokens, referred
to as hot experts. Correspondingly, other experts are termed



cold experts. Considering a large number of tokens across
multiple batches, hot experts exhibit high computational de-
mand and low I/O demand, while cold experts exhibit the
opposite. By leveraging this complementary relationship, we
can overlap the high I/O demand of cold experts with the
high computational demand of hot experts, effectively mini-
mizing intra-layer bubbles between experts. As illustrated in
Figure 1(c), we prefetch only the hot experts 2 and 4 and par-
tition the computations of multiple batches by experts rather
than by batches. Furthermore, we adjust the computation
order of the experts, prioritizing the substantial computa-
tions of hot experts 2 and 4, providing more ample time for
the transmission of cold experts 5, 3, and 1. This effectively
compresses the intra-layer bubbles.

In this paper, based on the above paradigm, we propose
Krotski, an MoE-oriented inference engine that can perform
high-throughput inference in resource-constrained environ-
ments, achieving inference pipeline with near-zero bubble, as
shown in Figure 1(c). To summarize, we make the following
contributions:

e We propose an expert-aware multi-batch pipeline par-
adigm that leverages the high computational demand
and low I/O demand of hot experts to orchestrate multi-
batch computations, aiming to minimize both inter-
layer and intra-layer bubbles.

e We design a constraint-sensitive I0-compute planner
to formulate execution plans for this paradigm in vari-
ous environments.

e We propose adaptive tensor placement and a correlation-
aware expert prefetcher, enabling appropriate offload-
ing and prefetching when dealing with different stor-
age resources and MoE models.

e We implement the above strategies in KLoTsk1, an
MoE-oriented inference engine, which enables high-
throughput inference of MoE with offloading.

e To evaluate KLoTsk1, we compare it with Acceler-
ate [13], Deepspeed-FastGen [16], FlexGen [34], MoE-
Infinity [43], and Fiddler [20]. The experimental results
demonstrate that KLoTsk1 can make inference of MoE
more efficiently, and achieve 85.12x, 15.45X%, 2.23X,
19.06%, and 9.53x throughput improvement than that
of the three aforementioned works, respectively.

2 Background and Related Work
2.1 MOoE Architecture & Inference

Since GShard [22] introduced MoE structure into Trans-
former models, its potential to enhance the performance of
large language models has been evident. MoE has gradually
become one of the mainstream structures of large language
models. Prominent models like GPT-4 [1], Gemini 1.5 [35],
and Mixtral-8x7B all incorporate the MoE structure.

The MoE architecture consists of multiple MoE blocks,
each containing an attention layer, an MoE layer, and two
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Figure 2. Architecture and inference process of MoE models.

normalization layers, as illustrated in Figure 2. The MoE
layer comprises a gating network and multiple experts. The
gating network is the key feature of the MoE architecture.
It uses a softmax function to calculate the routing weights
and activates the top-k experts. Existing research [23, 24, 43,
44] indicates that the expert activation path of each token
can reveal its characteristics, facilitating the prediction of
future expert selections. Each expert is an FFN, and experts
are sparsely activated, making MoE a feasible approach to
training larger models. For each token, the final output of the
MoE layer is a weighted sum of the selected experts’ outputs.

The MoE inference process, like other LLMs, follows an
autoregressive approach [36], generating each new token
based on the previous ones, as illustrated in Figure 2. This
process comprises two stages: prefill and decoding. In the
prefill stage, the model processes the entire prompt simul-
taneously, which often leads to the activation of multiple
experts. During the decoding stage, the model uses the pre-
vious token generated as input, iteratively generating new
tokens until it generates the end-of-sequence (<EOS>) token
or the maximum output length limit is reached.

Some recent literature [15, 23, 30, 45] has focused on the
optimization of MoE. DeepSpeed-MoE [30] introduces a spe-
cialized MoE architecture called Pyramid-Residual MoE and
employs staged knowledge distillation to obtain the Mixture-
of-Students. This approach not only accelerates MoE train-
ing but also reduces inference latency and cost. Lina [23],
an extension of DeepSpeed-MoE, prioritizes all-to-all com-
munication during training to enhance bandwidth and uses
resource scheduling based on hot experts during inference
to balance workload. However, these MoE systems primarily
focus on latency-sensitive scenarios and place emphasis on
MoE training. Klotski contributed to the memory optimiza-
tion of MoE and is orthogonal to many of these works.

2.2 Offloading in LLM Inference

LLMs often have a large number of parameters, causing se-
vere GPU memory bottlenecks during inference. Common
memory optimisation techniques include quantization [12,
21,38], pruning [11, 26], sparse attention [39, 47], etc. Among
these, offloading is a particularly effective strategy in resource-
constrained environments. As shown in Figure 3, DRAM and
disk often have at least dozens of times more memory than
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Figure 3. Illustration of offloading an LLM in a multi-level
storage system. Only a few layers of parameters can be placed
in VRAM, and the rest are placed in DRAM and disk. param.
refers to parameters.

VRAM. When it is difficult to store all model parameters
in VRAM (as in the red line), offloading strategies offload
tensors not currently involved in computation to DRAM or
disk, freeing up a significant amount of VRAM (as in the
black lines). Consequently, offloading strategies allow LLM
inference to be performed with extremely small memory
footprints. However, because the I/O speed between VRAM
and DRAM is slower than the GPU’s computing speed, fre-
quent I/O will cause large delays in inference.

Early works [17, 29] proposed leveraging swapping dur-
ing the training of Deep Neural Networks (DNNs) to re-
duce GPU memory demands. ZeRO-Offload [32] applied
the offloading to the training of Transformer-based LLMs.
ZeRO-Infinity [31] extended this approach by incorporat-
ing disk as an additional offloading destination. DeepSpeed-
Inference [2], which includes the ZeRO-Inference compo-
nent, applies offloading techniques to the inference, enabling
LLM inference in resource-constrained environments. Flex-
Gen [34] significantly improves inference throughput by
solving linear programming problems within the computa-
tional graph. HeteGen [41] leverages heterogeneous parallel
computing between CPU and GPU, reducing the need for pa-
rameter I/O and achieving better resource allocation. STI [14]
maximizes IO/compute resource utilization through model
sharding and elastic pipeline planning.

However, most offloading systems mentioned above are
designed for dense models and are thus inadequate for sup-
porting MoE inference. Mixtral-offloading [9] identified this
limitation earlier and utilized LRU cache and quantization to
load a subset of experts, enabling the inference of Mixtral-
8x7B on consumer-grade hardware. Fiddler [20] designed
CPU-GPU orchestration for MoE models, leveraging the
computational power of CPUs to minimize data movement.
MoE-Infinity [43] reduced the latency overhead through
activation-aware expert prefetching and caching. Even if
these works design accurate prefetch strategies or use the
CPU to accelerate the inference of MoE, it is still difficult to
balance the gap between computation and I/O, resulting in
lots of bubbles in the pipeline. In contrast, KLoTSKI minimizes
the bubbles in the pipeline by simultaneously arranging the
computations of multiple batches and making full use of the
computing resources of the GPU.

Fang et al.

Table 1. A comparison of the throughput (token/s) improve-
ments when applying the I/O overlap strategy, designed for
dense models, to a dense model (OPT) and an MoE model
(Switch Transformers, decoder only). The compared results
are shown in the same color block. The batch size is 4, and
the sequence length is 512.

Dense model MoE model
Model
OPT-1.3B OPT-6.7B switch-base-16 switch-base-128
Model Size 2.6 GB 13.3 GB about 2.2 GB about 14 GB
Original 14.3 33 13.63 2.52
Thoughput  + Strategy 43.09 12.15 28.79 731
Improvement ~ 201.33% 268.18% 111.23% 190.08%

3 Motivation
3.1 Shortcomings of Existing Work

While MoE brings numerous advantages, it also faces signif-
icant challenges related to GPU memory usage due to the
large number of experts. According to existing work, the
percentage of experts’ parameters in Switch Transformers
can reach up to 99% [8]. At the same time, these experts are
sparsely activated. There is no need to keep them resident
in expensive GPU memory. Therefore, the sparse activation
feature of MoE makes offloading a highly suitable strategy
to address its memory challenges. However, offloading is not
a comprehensive solution, and will introduce new issues.

Many existing approaches for MoE focus on improving the
accuracy of expert prefetching [8, 9, 18, 20]. However, due
to the physical limitation that computation speed generally
exceeds I/O speed [14, 34], the I/O time for a single expert
is longer than the computation time. Thus, even with 100%
accurate prefetching, there would still be substantial pipeline
bubbles due to the extended I/O time for experts.

In offloading strategies for dense models, efforts have been
made to overlap I/O with computation [14, 34, 41]. One ef-
fective method for achieving high-throughput inference is
to overlap the I/O of the next layer with multiple computa-
tions of the current layer, keeping the GPU almost always
in the computation state [34]. We applied this method to
the inference of a dense model (OPT) and an MoE model
(Switch Transformers) of similar model size, with results
shown in Table 1. The results show that the improvement of
using this strategy for dense models is significantly higher
than for MoE models. This is because it uniformly prefetches
the next layer during the computations of the current layer,
without considering the special I/O resource demands of the
MOoE layer, which contains multiple FFNs. Other strategies
designed for dense models are the same. Thus, direct applica-
tion of the existing SOTA method, designed for dense models,
to MoE models often results in a loss of performance.

From the above, we know that existing offloading strate-
gies are insufficient for MoE models. There is still a need for



b Towl Toul” | B O

Attention MoE Expert Gate

(a) Part of computation graph
with a single batch

LA |
AW A ] [+
Am Al LM A e

(b) Part of computational graph
with the multi-batch

> > >

G A
G A
G A

A

[m ][z L]

(c) Part of computational graph
after splitting MoE layer

Figure 4. Construction process of strawman offloading strat-
egy designed for MoE Models. Each row represents a batch.

an efficient offloading strategy that can extremely compress
the bubbles in the pipeline for MoE inference.

3.2 A Strawman Offloading Strategy for MoE Models

To better adapt the aforementioned I/O overlapping strat-
egy for MoE inference, we propose a strawman offloading
strategy, the outline of whose construction process is shown
in Figure 4. Two normalization layers are incorporated into
the attention and MoE layers, respectively. Then we explain
it incrementally from a simple offloading strategy as follows.

Firstly, as shown in Figure 4(a), a simple offloading strat-
egy is executing computations sequentially following the
architecture of the MoE model, prefetching parameters of
the next layer while computing the current layer. However,
due to the slower I/O speed compared to computation speed,
eliminating bubbles in the pipeline of a single batch is un-
feasible, leading to low inference efficiency.

Consequently, inspired by FlexGen [34], we opted to ex-
pand the computational graph to multiple batches, as illus-
trated in Figure 4(b). After loading the weights of a certain
layer, the strawman strategy executes computations of mul-
tiple batches while loading the weights of the next layer in
parallel, thereby achieving more overlap. Nevertheless, it
also presents challenges: the MoE layer, consisting of a gate
and several experts, is large, resulting in a long wait for the
I/O of the entire layer. Moreover, not all experts are involved
in the computation, resulting in unnecessary I/O.

Furthermore, to solve the problem, we partitioned the
MoE layer into a gate layer and an expert layer, as depicted
in Figure 4(c). During the computations of the attention layer,
the strawman strategy only prefetches the weights of the
gate and a subset of experts, effectively reducing inter-layer
bubbles. Then, after the computations of each gate, we check
whether the selected expert has already been selected. If not,
we initiate the transfer of the expert. However, we still face
two problems: (1) how to determine which and how many ex-
perts to prefetch, (2) as illustrated in Figure 7(c), assuming E,
has already been prefetched during the computations of the
attention layer, while E; is still undergoing transfer. The or-
der of computations (E; — E; — E) may stall in the second
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step, while E; in the third step could have been computed
directly, resulting in unnecessary intra-layer bubbles.

For the problem (1), during MoE inference, there is a phe-
nomenon of hot experts, where a few experts handle the ma-
jority of tokens [23, 24]. As shown in Figure 5, we recorded
the expert selections for Switch Transformers and Mixtral-
8x7B. It is evident that, with a high probability, tokens will
be routed to hot experts. Furthermore, K (K equals k in top-k)
experts usually cover most of the inputs. For example, dur-
ing inference with Mixtral-8x7B, which uses the top-2 gate,
tokens tend to select experts 1 and 3 in layer 14, with a total
ratio of 53.7%. Similar situations can be clearly observed in
other layers. Therefore, while performing multiple compu-
tations of the attention layer, we prefetch the gate and K
experts as hot to reduce inter-layer bubbles.

For the problem (2), the strawman strategy adjusts the
computation order of experts, overlaps the I/O of cold ex-
perts with the computations of hot experts. Since hot experts
handle the majority of tokens across multiple batches, their
computation time can provide more time for the transfer of
subsequent experts.

Challenges. While the strawman strategy provides a com-
prehensive offloading approach tailored for MoE models, we
encountered several challenges in its practical application.
First, experts are data-sensitive [45], meaning that the hot
experts may change when the input tokens vary; thus, it is
challenging to dynamically identify hot experts. Second, in
the actual inference process, the number of experts involved
in computations is significantly higher than depicted in Fig-
ure 4(c); thus, it is challenging to orchestrate multi-batch
expert computations. Third, the hardware environment for
model inference is very diverse; thus, it is challenging to pro-
vide efficient inference in uncertain hardware environments.

4 Overview

To solve the above challenges, we propose KLoTsk1, an infer-
ence engine designed for MoE that enables high-throughput
MOoE inference in resource-constrained environments. We
show the system overview of KroTskI in Figure 6.
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line in the pipeline indicates that the computations within
the curly brackets belong to the expert.

Firstly, during the offline phase, we aggregate heteroge-
neous memory from GPU, CPU, and disk for model deploy-
ment. We adaptively sense the memory limits in the current
environment and allocate the MoE model tensors across
the heterogeneous memory (@) accordingly. In the online
phase, when request batches are inputted (@), the constraint-
sensitive I/O-compute planner formulates a pipeline plan
based on the current hardware constraints (®). If the MoE
model is performed for the first time, the correlation-aware
expert prefetcher generates an expert correlation table dur-
ing the warm-up process to guide expert prefetching.

According to the settings in the pipeline plan, KLOTSKI ex-
ecutes computations following the expert-aware multi-batch
pipeline paradigm to achieve an execution pipeline with min-
imal bubbles (@). During inference, the I/O thread dynami-
cally manages the transfer of tensors across heterogeneous
memory (@). The inference thread reads the corresponding
tensors from VRAM for computations (®). Additionally, the
inference thread continuously updates the expert correlation
table to further capture the data tendencies of the task.

5 Expert-aware Multi-batch Pipeline
Paradigm

We aim to develop a pipeline that minimizes all bubbles to
maximize GPU utilization. To achieve this, we propose an
expert-aware multi-batch pipeline paradigm, which is de-
signed based on zig-zag block schedule [34]. By considering
the computations of multiple batches simultaneously, this
paradigm enables weight sharing and orchestrates the multi-
batch computational graph around the experts to reduce
bubbles. A partial computational graph is illustrated in Fig-
ure 7, where each row corresponds to the computations of
one batch, and the multiple batches are considered together

Fang et al.

as a batch group. Ultimately, this results in a nearly bubble-
free pipeline, as shown in Figure 9. In the following, we
will detail this paradigm from two perspectives: minimizing
inter-layer bubbles and minimizing intra-layer bubbles.

First, minimizing inter-layer bubbles. Inter-layer bubbles
primarily occur between the attention layer and the MoE
layer. During the computations of multiple batches in the
attention layer, KLoTsk1 prefetches only the weights of the
gate and the hot experts, rather than the entire MoE layer.
Because overlapping the I/O for the entire MoE layer is chal-
lenging, and Equation 1 must be satisfied.

n*le A 2 lrj0_MoE 1)

Here, n represents the number of batches in a batch group,
t._a denotes the computation time of an attention layer for
a batch, and #;/0_mok is the time required to transfer the
entire MoE layer. Equation 1 clearly necessitates a large n to
hold true, which would introduce a significant amount of KV
cache. What’s more, due to the nature of sparse activation,
some experts may not be activated, even when multiple
batches are being processed at the same time. Loading them
all into VRAM not only wastes resources but also increases
latency. In contrast, only overlapping the I/O for the gate
and hot experts is easier and more effective, which just needs
to satisfy Equation 2.

nkte a2 tI/OfG + K = tI/OfE (2)

Here, t;/0 ¢ and t7/o g represent the transfer times for the
gate and a single expert, respectively. K equals k, the number
of experts selected by the top-k gate, usually 1 or 2. Hot ex-
perts are chosen because they are likely engaged in most of
the computations (see Figure 5), which provides an opportu-
nity to minimize intra-layer bubbles subsequently. Addition-
ally, during the computations of the gate, no prefetching is
done. Instead, it is determined whether each gate-selected ex-
pert is a hot expert or one that has already been transferred.
If not, the transfer of that expert is initiated immediately.
Second, minimizing intra-layer bubbles. As illustrated in
the left panel of Figure 7(a), the sequence of experts shows
that hot experts 2 and 4 have already been prefetched, while
experts 5 and 3 are still undergoing transfer. Thus, the se-
quence of computations [2523424...] would result in the
GPU stalling at positions 5 and 3, due to the incomplete
transfer of data at these locations. However, computations
involving experts 2 and 4 could proceed immediately. To
reduce such unnecessary delays, we further adjust the order
of expert computations across multiple batches, allowing
computations involving the same experts to run continu-
ously and prioritizing computations of hot experts. Since hot
experts are transferred to GPU memory first and engaged
in more computations, this adjustment allows more time
for the transfer of experts still being loaded. After the com-
putations for hot experts, the remaining experts compute
in the order they are transferred. Additionally, experts that
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Figure 7. Expert-aware multi-batch computational graph.

Algorithm 1: Schedule Algorithm of the Paradigm.

Init:Generate length [, number of layers n_Ilayer,
number of batches n_batch, hidden state h, KV
cache c. The indices i, j, k indicate that the it is
processing the i-th token, performing
computations at the j-th layer for the k-th batch.

fori <ldo

1
2 for j < n_layer do
3 if layers[j] is not Gate then
4 L load(layers[j +1])
5 if layers|j] is Expert_Layer then
6 load(c[i][j+ 1][0])
> Experts process all tokens across batches.
7 compute(layers[j])
8 store(h[i][j])
9 load(h[i][j + 1][0])
10 else
11 > Non-expert process each batch vertically.
12 for k < n_batch do
13 sync(load_cache_stream)
14 load(h[i][j]1[k + 11, c[i][jl[k + 1])
15 compute(layers[j][k])
16 sync(store_cache_stream)
17 store(h[i][j1[k], c[i][j][k])
18 | sync(load_weight_stream)

have completed all computations are offloaded immediately,
rather than waiting for the entire layer’s computations to
finish, to reduce peak GPU memory usage.

Finally, KLoTsKI executes computations according to the
computational graph shown in Figure 7(b), sharing the loaded
weights across multiple batches. This approach not only re-
duces the number of I/O operations to approximately 1/n of
the original but also overlaps the time for each I/O, resulting
in an almost bubble-free pipeline as illustrated in Figure 9

and significantly improving throughput. The algorithm de-
tails of this paradigm are formulated in algorithm 1. First,
since hot experts are already prefetched during the attention
layer, we do not perform prefetching in the gate layer (line
3), instead, the real-time transfer of experts is based on its re-
sults. Second, experts process all tokens across batches (line
5), since the computations of the expert layer are divided by
experts rather than by batches. Third, the non-expert layer
processes each batch sequentially (line 11), prefetching the
necessary activations, key-value caches, etc., for the corre-
sponding batch. Additionally, we synchronize the transfers
of various streams using the sync() function.

6 Tensor Management
6.1 Adaptive Tensor Placement

KroTskr constructs a multi-level heterogeneous memory
space consisting of VRAM, DRAM, and disk to meet the
storage demands of MoE models in resource-constrained en-
vironments. Then, we propose an adaptive tensor placement,
which intelligently allocates tensors based on the available
memory resources in the current environment, thereby en-
hancing the utilization of existing resources.

Firstly, the GPU memory is primarily used to store neces-
sary tensors required for current computations and prefetched
tensors. When there is ample free GPU memory available, it
can be further utilized to reduce some I/O operations. Specif-
ically, we can choose storage locations for different types of
tensors such as expert, gate, attention, KV cache, and activa-
tion. Furthermore, support is provided for layer granularity
distribution. For example, placing the experts of the first
three layers in VRAM, the experts of the next twenty layers
in DRAM, and the remaining in disk.

Secondly, inactive tensors can be offloaded to either CPU
memory or disk. We prioritize allocating CPU memory to
experts. This is because the MoE layer faces the challenge
that the experts requested by the gating function cannot be
accurately predicted in advance. Therefore, when handling
tasks with large batch sizes, it is highly likely that immediate
transfers of experts will be needed, necessitating the rapid
transfer of the required expert to GPU memory. Considering
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the faster transfer bandwidth of CPU memory, which pro-
vides quicker response times, we prioritize placing expert
parts in CPU memory.

Additionally, when sufficient CPU memory is available,
we use pin_memory to achieve faster CPU-GPU communi-
cation. When CPU memory is insufficient and disk usage
is necessary, to reduce the GPU getting tensors from disk,
which is slow, we dynamically maintain tensors in the CPU
memory. Specifically, we dynamically manage tensors for a
fixed number of layers L within the limited CPU memory.
As the computation proceeds to layer i, the GPU prefetches
tensors for layer i + 1 from CPU memory, while the CPU
prefetches tensors for layer i + L from the disk and removes
tensors for layer i. This strategy effectively utilizes the idle
CPU-disk bandwidth, thereby reducing the interaction be-
tween GPU and disk.

6.2 Correlation-aware Expert Prefetcher

For dense models, the offloading strategies can directly prefetch
the next layer. However, it is different for MoE models. Only
after completing the computation of the gate can the acti-
vated experts be determined, making it challenging to design

a unified prefetching strategy.

To address this, KLoTsk1I design a correlation-aware expert
prefetcher. In § 5, the prefetched experts need to engage in
most computations across multiple batches to reduce intra-
layer bubbles effectively. As illustrated in Figure 5, there are
hot experts in the inference of MoE, where a few experts
cover the majority of computations. Therefore, the prefetch-
ing targets for the MoE layer are the gate and hot experts.
Since MoE is data-sensitive and hot experts may vary with
different inputs, we establish a data-aware expert correlation
table to identify the hot experts that tokens in the current
multi-batch tend to select. Specifically, we record the correla-
tions (i.e., frequency relationships) between experts activated
by tokens at different layers through pre-run, resulting in a
table. During inference, we use this table to determine each
token’s expert tendency in the current layer based on its
selections in the previous [ layers. The larger the value of [,
the more accurate the prefetching. This process is illustrated
in Figure 8, where each layer has four experts, the gate se-
lects the top-1 expert, and [ = 1. For the expert activation
path of each token in the multi-batch, we look up the table
to determine their expert tendencies in the current layer. We
then aggregate the tendencies of all tokens across multiple
batches and select the top-K experts for prefetching. K is by
default equal to k in top-k because, based on the observation
in § 3.2, K experts will generally cover the majority of the
token computations.

In addition, the expert correlation table is updated during
the inference so that expert prefetching can become more
and more accurate, as the table is continuously updated to
understand the tasks at hand. To prevent the prefetching
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Figure 8. An example of the expert correlation table. Each
expert layer has four experts. The gate selects the top-1
expert. The correlation path length [ is 1.

tendencies of other tasks from influencing current tasks, we
refrain from saving the updates to the file.

On the other hand, for non-expert tensors, we adopt a
prefetching strategy similar to that used for dense models,
where we prefetch the tensor during the computations of
the previous layer. This is because non-expert tensors are
involved in computation only once during a forward pass
and remain inactive at other times.

7 Constraint-Sensitive I/O-Compute
Planner

Planning Goal: To minimize the total time T required to
complete tasks under existing resource constraints, achieving
an almost bubble-free pipeline as illustrated in Figure 9.

min T=T.+T,
s.t. Muysage < Mgpu + Mcpu + Maisk, (3)

Mpeak_cpu < Mgpu

The total time T is primarily composed of two parts: T,
and Ty, representing the total computation time and the total
time occupied by bubbles, respectively. T, mainly depends on
hardware conditions. Our objective is to minimize T, under
the constraints of available memory, making it approach
zero, as shown in Equation 3. In our system, the reduction of
Ty is primarily influenced by two factors: (1) the placement of
the tensors and (2) the batch size and the number of batches
included in the batch group, denoted as n. Effective model
placement can maximize the utilization of existing storage
resources, thereby reducing some of the I/O demands, as
considered in § 6.1. The batch size is typically a multiple of 4,
leaving limited options for selection. However, determining
the value of n is crucial. If n is too large, it will introduce a
significant KV cache. Conversely, if n is too small, the total
computation time for n batches may not overlap effectively
with the I/O time of the next layer.
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Figure 9. Multi-batch pipeline of KLoTsk1

To investigate the value of n, our primary focus lies on
the inter-layer and intra-layer overlap in each MoE block.
In Figure 9, we insert several arrows indicating the points
where a specific tensor needs to start computing. These are
interpreted as follows: (I) indicates the point where gate com-
putations will begin, (II) marks the start of the computations
for hot experts, (I) signifies the beginning of the compu-
tations for cold experts, and (IV) denotes the initiation of
the next attention layer’s computations. These arrows col-
lectively suggest that the corresponding tensor I/O must be
completed before these points to ensure that I/O and com-
putation are overlapped. We list the four key positions with
the respective inequalities that must be satisfied as follows.

nxte. A 210G (4)
nx(tc a+tcc)2tyoc+K*tyo kg (5)
nx(te a+teg)+te ho— = trjo g + (K+ Dtyjo g (6)

Qo
n (fea+1e.G)+tehot-5+ ) te g,

i€Q

trjo_c + (K +len(Q)trjo £ +trjo.a (7)

where K denotes the number of prefetched hot experts, t. 4,
te G te_topk—Es tc_E;» denote the time to compute attention,
gate, hot experts and expert i, respectively, t;/0 a, trjo 6,
trjo k., denote the time to transfer attention weights, gate
weights and weights of a single expert, respectively. The I/O
times and computation times vary with hardware, model,
and batch size. Additionally, the length of the queue Q of
activated experts per layer is not fixed. We determine the
length of each layer of Q based on statistical data.

In response to this, our planner operates primarily in two
stages: (1) Measurement of the current hardware capability.
Before the inference with an MoE model, KLOTSKI measures
the computation times and transmission durations of the
model’s various layers based on their shapes, data types,
and other relevant information in the current environment.
These results are cached locally. (2) Constraint solving. KLot-
SKI applies the measured data to the constraints from the
inequality group to determine the optimal value of n. As-
suming the final result is n > x, then n = [x]. At this point,
n ensures a pipeline without bubbles. Further increasing n
might improve throughput, but the increase will be marginal
because the pipeline is already near bubble-free. However,
this would introduce a significant burden of massive KV
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caches on storage. Therefore, n should be set to the small-
est integer that satisfies the inequality group. Additionally,
if n becomes excessively large, manual adjustments to the
strategy may be necessary. Since n is a positive integer, this
process is not challenging.

Subsequently, we examine the potential outcomes of this
strategy, considering both the most favorable and the least
favorable scenarios. In the optimal scenario, all tokens select
hot experts, thereby eliminating the need to consider inequal-
ities (4) and (5). On the other hand, the worst-case scenario
emerges when all tokens select cold experts, encompassing
all other experts. In such instances, the value of t; por—f is
equal to zero, rendering the prefetching strategy ineffective.
Inadequate n may lead to a few intra-layer bubbles. However,
intuitively, the probability of encountering such a worst-case
scenario is very low.

Compression In particular, quantization and sparse at-
tention are particularly well-suited for our work because
they not only further reduce memory requirements but also
decrease the amount of data transferred between heteroge-
neous memory, aiding in bubble reduction. Therefore, we
incorporated two effective methods as options.

(1) Quantization. Existing knowledge indicates that the
experts are highly robust to quantization [21]. They can be
quantized to 3 bits without additional training or calibration
data. Since the majority of weights in MoE models belong
to experts, quantizing the experts can significantly reduce
memory requirements and I/O delays with minimal precision
loss. Before computation, we dequantize the tensors back to
their original precision, further mitigating precision loss.

More specifically, we employ Half-Quadratic Quantization
(HQOQ) [3]- Quantization and dequantization are primarily
achieved using the Equation 8.

Qzs(W) = Wy = round(W /s +2z), Q;;(Wq) =s(Wy—2) (8)

among them, the zero point z and the scale s are quanti-
zation parameters, which are determined through a robust
optimization formula like Equation 9.

argmin (W — QZ_S1 (Qzs(W)) 9)

In our study, to strike a balance between accuracy and
transmission speed, we opt to preset that quantize both ex-
pert and attention tensors to 4 bits, using a group size of 64
and a zero scale group size of 128.

(2) Sparse Attention. In this work, processing multiple
batches requires storing a large amount of KV cache. Sparse
attention reduces the KV cache size and the cost of transfer-
ring it across heterogeneous memory. We incorporate the
attention mechanism from StreamingLLM [39], which fo-
cuses only on the initial sink tokens and neighboring tokens
to achieve effective inference. Additionally, this is optional as
there are many models that have sparse strategies natively.
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Table 2. Hardware environments for evaluation.

Environment 1 Environment 2
Hardware
Model Memory Model Memory
GPU NVIDIA RTX 3090 24 GB NVIDIA H800 80 GB
CPU Intel Xeon Gold 5318Y 256 GB | Intel Xeon Platinum 8470  800GB
Disk SSD 2T SSD 1T
PCle 4.0x 16 50x16
Disk Read 1 GB/s /

8 Implementation

We implement KLoTskI1 on top of PyTorch [28] and Hugging
Face Transformers [37] with over 3k LOC of Python. Expert-
aware multi-batch pipeline paradigm is implemented on top
of FlexGen [34].

Expert Correlation Table. We acquire input data by ran-
domly sampling from wikitext-2 [27]. Subsequently, we con-
duct inference with a batch size of 8 and a sequence length
of 512. Expert selections during the inference are recorded
and tabulated in JSON format. The choice of small batches is
deliberate to avoid excessively large statistical values, which
would render updates to the expert correlation table mean-
ingless. We set the activation path length [ = 1 because we
do not heavily rely on the accuracy of expert prefetching.
A larger number of batches in a batch group already allows
us to overlap communication and computation. Increasing /
would add dimension to path recording, which increases the
complexity of the table lookup and memory occupation.

Overlapping Computation and I/0. Klotski achieves

I/O-computation overlap by orchestrating four CUDA streams:

one for prefetching weights, another for transferring expert
weights based on gating network results, a third for prefetch-
ing KV cache, and the last for storing new KV cache. Each
stream operates asynchronously, executing its designated
task independently. When certain data is needed, the corre-
sponding stream will be synchronized.

9 Evaluation
9.1 Experimental Setup

Hardware. We evaluate KLoTskI in two different environ-
ments, as shown in the Table 2. We don’t care about the
speed of disk reading in environment 2, because there is
enough CPU memory.

Models and Datasets. We evaluate KLoTsKI using the
open-source MoE models: Mixtral-8x7B and Mixtral-8x22B.
They have 46.7B and 141B parameters in bfloat16 precision
respectively. We use Mixtral-8X7B and Mixtral-8x22B in en-
vironment 1 and use Mixtral-8x22B in environment 2 only.
This is because Environment 2 is not considered a resource-
constrained environment for Mixtral-8x7B. The inputs are
randomly sampled from wikitext-103 [27], which has rich
text from various fields. We use batch sizes from 4 to 64, with
a sequence input length of 512 and an output sequence length
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of 32. We use throughput (generated tokens/generation time)
as the metric, where generation time is the total time spent
in the prefill and decode phases. We mainly evaluate the
throughput of Krotski for different sizes of inputs and com-
pare it with the baselines. The experimental results shown
are the average results from multiple trials.

Baselines. We use the following five offloading studies
as baselines for comparison experiments. Among them, the
first three works are designed for the dense model, and the
last two works are designed for the MoE model.

e Hugging Face Accelerate [13]: Accelerate supports
offloading weights of some layers based on the device
map. It’s easy to use as a library on Hugging Face
Transformers. Hereinafter referred to as Accelerate.
DeepSpeed-FastGen [16]: It is a version of DeepSpeed
ZeRO-Inference after many updates. Hereinafter re-
ferred to as FastGen.

e FlexGen [34]: FlexGen is an efficient offloading work
for inference of LLM. It’s the first to propose that tra-
verse the computational graph column-by-column.

e Fiddler [20]: In addition to utilizing CPU resources,

Fiddler uses CPU computing power for inference, min-

imizing data movement between the CPU and GPU.

MoE-Infinity [43]: MoE-Infinity reduces the latency

overhead associated with offloading experts through

activation-aware expert prefetching and caching.

Additionally, FlexGen only supports dense models with
the same structure as OPT, while the others natively support
Mixtral. We adapt FlexGen to the Mixtral series of MoE
models without changing its primary strategies.

9.2 End-to-End Throughput

We first evaluate the end-to-end throughput of Klotski and
compare it with the baselines, as shown in Figure 10.

We use the maximum n (= 15) from Figure 14 to show
a better result than the default computed n. And we use
n = 10 for Mixtral-8x22B in Environment 1 because the
computed n is large, which causes out-of-memory (OOM).
We set FlexGen to use the same n as us. Across various sce-
narios, KLOTSKI consistently outperforms other methods in
enhancing MoE inference throughput. Compared to Accel-
erate, FastGen, FlexGen, MoE-Infinity, and Fiddler, KLoTskI1
improves the inference throughput by up to 85.12X%, 15.45X,
2.23%, 19.06%, and 9.53X, respectively.

On Mixtral-8x7B, as batch size increases, the time dif-
ference between computation and I/O gradually narrows,
allowing Accelerate and FastGen to perform well. However,
on Mixtral-8x22B, the significantly increased weight transfer
leads to a larger time difference between computation and
I/O. This ultimately results in throughput that is far inferior
to FlexGen and KLoTskI.

Although FlexGen considers multiple batches and max-
imizes the use of GPU and CPU memory through tensor
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Figure 10. Throughput comparison between KLoTskI and baselines in different scenarios. (q) means that quantization and

dequantization are used.
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Figure 11. Throughput latency trade-off comparison between KroTsk1 and baselines. The curve closer to the lower right is

better. (q) means that quantization and dequantization are used.

slicing, it prefetches the entire MoE layer, requiring a large n
to fully overlap computation and I/O. In contrast, KLOTSKI's
approach to expert prefetching is more flexible, not only com-
pressing inter-layer bubbles but also avoiding additional I/O.
Moreover, KLoTsk1 further compresses intra-layer bubbles
by rearranging the order of expert computations. Addition-
ally, KLoTskI considers maximizing both memory utilization
and transmission speed. Furthermore, even if we increase
the batch size to 128, Klotski can still achieve a 15% (%
throughput improvement over FlexGen.

On the other hand, both Fiddler and MoE-Infinity achieve
high throughput in Environment 1. Specifically, Fiddler de-
termines that, in Environment 1, performing certain com-
putations on the CPU can be faster than loading and exe-
cuting them on the GPU. MoE-Infinity, through its effective
prefetching, minimizes unnecessary I/O, further optimizing
performance. In contrast, KLoTski attain higher throughput
by effectively overlapping substantial I/O through multiple
computations. This underscores that I/O is a critical factor
influencing inference latency in offloading-based inference

systems. Moreover, when running inference in Environment
2, both systems show reduced performance as the increased
GPU memory and faster I/O diminish their advantages. In
contrast, KLoTsKI orchestrates multi-batch computations
to utilize the GPU more efficiently. Additionally, when per-
forming Mixtral-8x22B inference on a single 3090, Fiddler
and MoE-Infinity are limited to a maximum batch size of
16, as they only offload experts. Consequently, the exten-
sive KV cache may result in OOM errors when the batch is
large. While KroTsk1 supports more parts of the model to
be offloaded, making it more widely applicable.

9.3 Throughput-Latency Trade-off

We plotted Figure 11 based on the throughput-related ex-
perimental results. It demonstrates that KroTsk1 offers a
better throughput-latency trade-off for completing the same
workload. Under the same time budget constraint, KLoTsk1
can achieve more than three times the throughput of Flex-
Gen (right plot, where latency equals 2°) and outperforms
Accelerate, FastGen, MoE-Infinity, and Fiddler.
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Figure 12. GPU memory usage over the prefill. Each step
represents one computation of a layer or an expert, i.e. a
block in the computation graph as shown in Figure 7.

Furthermore, as observed in both Figure 10 and Figure 11,
quantization has a minimal impact on maximum through-
put. However, it enables a more optimal throughput-latency
trade-off curve. This improvement is due to the reduced data
required for transfer between heterogeneous memory after
tensor quantization, resulting in shorter I/O times. Conse-
quently, a smaller n can achieve full overlap between com-
putation and I/O. This also prevents the dramatic increase
in KV cache size as n grows.

9.4 Memory Usage

In Figure 12, we illustrate the GPU memory usage of KLoTsk1
during the prefill. The red line represents the minimum mem-
ory required for inference, while the orange line indicates
the current GPU memory limitation. The blue line shows the
memory usage after offloading all tensors, demonstrating
that KLoTsk1 requires minimal GPU memory to perform MoE
inference, reducing memory usage by over 94.1%. However,
there is still a significant amount of expensive GPU mem-
ory left unused. Thus, we can further utilize these memory
resources, as shown by the green line, achieving a memory
reduction of 74.5% while maintaining a throughput of ap-
proximately 40 tokens/s for Mixtral-8x22B on a single H800.
The changes during the decoding phase are essentially a
repetition of the prefill phase, so for clarity, we only depict
the prefill phase in the figure.

9.5 Ablation Study

We use that prefetching the entire MoE layer while comput-
ing the current layer in the single batch pipeline as a simple
pipeline. Building upon this, we achieve our methodology in
three steps, comparing the throughput improvements at each
step, as shown in Table 3. Clearly, considering multi-batch
computations provides the most significant enhancement,
as it shares weights across multiple batches, significantly
reducing inter-layer bubbles. At the same time, adjusting
the computation order of experts leads to reducing intra-
layer bubbles, for two main reasons. First, KLoTsKI transfers
only hot experts and gate-activated experts, thus avoiding
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Table 3. Ablation study of KroTsk1. The data in the table
are throughput (token/s).

Environment 1 Environment 2

Model
Mixtral-8x7B  Mixtral-8x22B Mixtral-8x22B
Simple Pipeline 5.721 0.01 1.149
+ Multi batches 18.24 0.97 34.07
+ Only prefetch hot experts 19.074 1.127 44.17
KvroTskiI (+ adjust order) 22.414 1.325 52.85
KroTsKiI (q) 22.604 1.366 53.125

unnecessary expert transfers. Second, this adjustment priori-
tises the computation of highly requested experts, thereby
allowing more time for cold expert transfers, which takes
advantage of the high computational demand of hot experts.
Quantization does not significantly impact the maximum
throughput, as its primary function is to reduce I/O over-
head, enabling the throughput curve to plateau quickly and
reducing the need for larger n values.

9.6 Prefetch Accuracy

To evaluate the effectiveness of the correlation-aware expert
prefetcher, we calculated the accuracy of the prefetched hot
experts at each layer, as shown in Figure 13. The green line
shows the percentage of prefetched hot experts at each layer
that were actually involved in the computations. This result
remained consistently at 100%, demonstrating that KLoTsK1
does not transfer experts who are not involved in the compu-
tations, thus avoiding unnecessary I/O. In contrast, we also
evaluated the average accuracy of prefetching experts for a
single sequence, which was found to be 42.24%. This compar-
ison shows that processing multiple batches simultaneously
can effectively reduce I/O waste. In addition, the blue line
represents the accuracy of the selected hot experts, which
varies with the data, giving an average accuracy of 58.89%.
This suggests that we can accurately predict hot experts in
most cases. Furthermore, one of KLoTskr’s advantages is
that Krotskr does not rely solely on the accuracy of expert
prefetching to overlap I/O. Specifically, KLoTsk1 takes a more
fine-grained approach to overlap computation and I/O be-
tween experts, ensuring that even if a prediction is incorrect,
it won’t have a big impact.

9.7 Impacts of n and Batch Size

We present detailed end-to-end throughput data, as shown
in Figure 14, to simulate different scenarios and analyze
the impacts of n and batch size on throughput. Due to the
large number of GPU hours required to complete all n X bs
combinations using Mixtral-8x22B in Environment 1, we
have not included it here.

From Figure 14, we observed that when n is small, the
throughput is low because the I/O time is much longer than
the computation time, causing high latency. At this stage,
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Figure 14. The impacts of n and batch size on throughput.

increasing n primarily achieves more overlap between com-
putation and I/O. As n increases, larger batch sizes lead to a
faster increase in throughput since each batch brings mul-
tiple sequences into the computations, further facilitating
the overlap. When n reaches a sufficiently large value, the
slope of the corresponding point on the curve gradually
approaches zero, indicating that most of the inter- and intra-
layer bubbles have been eliminated. At this stage, increasing
n mainly serves to share the weights among more batches
to reduce the number of I/O operations further.

9.8 Bubble Reduction

As shown in Figure 15, we proportionally make a detailed in-
ference pipeline of an MoE block, based on the data from the
profiler tool. Figure 15(a) presents the inference pipeline
of a single batch using methods designed for dense mod-
els. These methods load the entire MoE layer, resulting in
significant inter-layer bubbles. In addition, the number of ac-
tive experts often falls below eight, causing unnecessary I/O
overhead for inactive experts. In contrast, as shown in Fig-
ure 15(b), KLoTsKI eliminates inter-layer gaps between the
attention and MoE layers. After gate computation, the hot
expert computation starts immediately. However, due to the
gap between computation and I/O, it remains challenging to
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Attention || Gate [ | MoE Layer | | Bubble Active 5~8
Experts
10 | Transfer the entire MoE layer (8 experts) ]
Comp. ‘ Waited approx. 223.96 ms
' 50 100 150 200 Time (ms)

(a) Execution timeline of a single batch with the simple overlap. Batch size = 64.

1o | [ I I [ [ J
Comp. | 1710 O 1 0
! 50 100 150 200 Time (ms)
(b) Execution timeline of multiple batches with Klotski. Batch size = 64, and n = 10.

Figure 15. Compare the actual pipelines of different methods
for performing inference in Environment 1 with Mixtral-
8x7B. Simple overlap means prefetching the next layer when
executing the current layer. Comp. means computation.

eliminate intra-expert bubbles, even at n = 10. By orchestrat-
ing expert computations, KLoTsk1 overlaps the computation
and the I/O between experts, reducing latency. For an iden-
tical workload (batch size = 64, number of batches = 10),
Krotski completes inference in about 215 ms, compared to
approximately 2367 ms using a simple overlap method.

By further increasing n, KLoTskI can achieve the elimina-
tion of intra-expert bubbles within the MoE layer, such as
n =15 in § 9.2. However, the massively growing KV cache
introduces additional load costs, resulting in new bubbles
within multi-batch attention layer computations. We aim
to address this in future work by developing a generalized
and efficient sparse KV cache strategy for KLoTski, which
will further improve efficiency and achieve a bubble-free
multi-batch inference pipeline.

10 Conclusion

We present KLoTsk, an inference engine designed for MoE
models that can perform high-throughput inference in resource-
constrained environments. Leveraging the proposed expert-
aware multi-batch pipeline paradigm, KLoTskI can signifi-
cantly reduce the bubbles in the inference pipeline. Exten-
sive experiments demonstrate that KLotskr offers a superior
throughput-latency trade-off. For instance, running Mixtral-
8x22B inference on a single NVIDIA 3090 achieves a through-
put of over 1.3 token/s. Across all experimental scenarios,
Krotskr’s throughput can be up to 85.12X greater than that
of the existing state-of-the-art.
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