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ABSTRACT
Masked video modeling has shown remarkable performance in
downstream tasks by predicting masked video tokens from visi-
ble ones. However, training models from scratch on large-scale
unlabeled data remains computationally challenging and time-
consuming. Moreover, the commonly used random-based sam-
pling techniques may lead to the selection of redundant or low-
information regions, hindering the model from learning discrimina-
tive representations within the limited training epochs. To achieve
efficient pre-training, we propose MaskAgain, an efficient feature-
based knowledge distillation framework for masked video pre-
training that facilitates knowledge transfer from a pre-trained
teachermodel to a studentmodel. In contrast to previous approaches
that align all visible token features with the teacher model at output
layers, MaskAgain adopts a selective approach by masking visible
tokens again at both the hidden and output layers of the trans-
former block. Attention mechanisms are utilized for informative
feature selection. Extensive experimental results show that MaskA-
gain achieves comparable or even better performance than existing
methods on benchmark datasets with much fewer training epochs
and much less memory, which demonstrates that MaskAgain al-
lows for efficient pre-training of accurate video models, reducing
computational resources and training time significantly. Code is
released at https://github.com/xiaojieli0903/MaskAgain.

CCS CONCEPTS
• Computing methodologies → Activity recognition and un-
derstanding.
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1 INTRODUCTION
Vision Transformers (ViTs) [10, 34, 35] achieve remarkable perfor-
mance in computer vision tasks, especially on large-scale datasets
with self-supervised learning. Masked visual modeling trains trans-
formers for robust visual representations by predicting masked
content. MAE [21] shows promise by randomly masking patches
of input images and reconstructing missing pixels with a light-
weight decoder. Similar ideas have extended to spatiotemporal
representation learning for videos, resulting in VideoMAE [56]
and ST-MAE [13], which utilize high masking ratios for memory-
efficient training. Efficient masked visual modeling paradigms based
on knowledge distillation have emerged to address the challenges
of efficiency and scalability in training large-scale models on ex-
tensive unlabeled data. DMAE [2] aligns intermediate features and
optimizes pixel reconstruction loss on masked inputs. MaskAlign
[65] removes the pixel reconstruction module and aligns visible
tokens with the teacher’s features. In the video domain, MVD [60]
additionally leverages pre-trained MIM models for masked feature
prediction, effectively enhancing video model performance.

Previous studies have commonly relied on random-based sam-
pling techniques, such as random[13], tube[56], and frame [62]
masking, which assume a uniform probability distribution for se-
lecting visible patches. However, these random-based strategies
may lead to the selection of redundant or low-information regions.
As depicted in Figure 1 (a) and Figure 1 (b), through at high mask
rates, the subject of the action occupies only a small portion of
the visible patches, while background tokens occupy a larger pro-
portion. To enable efficient pre-training, we presentMaskAgain,
an efficient masked knowledge distillation framework for masked
videomodeling. MaskAgain employs a selective approach that helps
to focus on informative regions, enabling the student model to learn
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(a) (b) (c) (d)

Figure 1: Attention Mechanisms in MaskAgain: (a) Original frames. (b) Masked frames using random-based masking. (c) Hidden
level attention maps with red boxes denoting selected tokens with Top-5 attention values, showing a higher focus on tokens
belonging to the same object, e.g., soccer. (d) Output level attention maps with green boxes denoting selected tokens with Top-5
attention values, highlighting tokens mostly concentrated on the action subject or distinctive elements, like the bent leg.

semantically rich knowledge from the teacher model. Moreover,
MaskAgain conducts knowledge distillation at both the hidden and
output layers of the transformer block, guided by attention mecha-
nisms. This allows for learning discriminative feature representa-
tions efficiently which mitigates the reliance on long pre-training
epochs.

At the hidden layer, MaskAgain utilizes attention maps from
the transformer’s multi-head attention structure to select informa-
tive token features at both temporally-global and temporally-local
levels. These selected features are aggregated using a weighted sum-
mation function for generating a compact representation focused
on crucial information for feature transfer. Two types of knowledge,
temporally-global knowledge (MAGlobal) and temporally-local
knowledge (MALocal), are defined to capture temporal changes
throughout the entire video and transfer fine-grained frame-level
knowledge. At the output layer, token-level activation-based at-
tention maps are generated using visible tokens from the teacher
network’s encoder. Two knowledge transfer methods, feature hint
alignment (MAHint) and relationship consistency transfer (MARel),
are explored. MAHint aligns selected token features between the
teacher and student, enabling the student to learn from the teacher’s
semantic features. MARel transfers valuable token-level relation-
ship knowledge within a mini-batch, enhancing the student net-
work’s performance while reducing computational costs. The effec-
tiveness of attention mechanisms is demonstrated through Figure 1
(c) and Figure 1 (d), showing the selective focus on informative to-
kens and the significance of token-level relationships in facilitating
efficient knowledge transfer.

We demonstrate the efficacy of the MaskAgain framework on
Kinetics-400, UCF101, and HMDB51 datasets, achieving impressive
accuracies on various datasets comparable to or even surpassing
models trained for longer epochs. Applying it to the ViT-B/16 model
with just 400 epochs of distillation results in impressive Top-1 accu-
racies of 81.0% on Kinetics-400, 70.3 % on Something-Something-v2,
96.3% on UCF101, and 77.1% on HMDB51. These achievements are
comparable to, or even surpass, the performance of the ViT-B/16
teacher model trained for 1600 epochs. MaskAgain enables efficient
pre-training of highly accurate video models, significantly reducing
computational resources and training time.

2 RELATEDWORK
2.1 Masked Video Modeling
Video representation learning has seen significant progress in cap-
turing spatial-temporal representations for video understanding
tasks. Various learning approaches have been explored, includ-
ing supervised methods [1, 11, 14, 32, 36, 58], semi-supervised ap-
proaches [50, 63] and self-supervised learning (SSL) methods [9,
13, 16, 19, 40, 56]. Among SSL methods, masked visual modeling
has shown great promise due to its ability to learn discriminative
video features without relying on high-quality labels. Various works
have been proposed in this area, including MAE [21], BEiT [3], and
MaskFeat [62]. MAE employs an end-to-end masked autoencoder
to predict original pixels from masked image patches, reducing
computational costs significantly. BEiT reconstructs visual tokens
extracted by the tokenizer of DALL-E [47] instead of predicting pix-
els. MaskFeat directly predicts HOG features of masked contents for
effective visual representation learning. In the video domain, Video-
MAE [56] and ST-MAE [13] extend the MAE approach to videos
and achieve impressive results using the tube or random masking
strategies. These techniques leverage higher masking ratios, around
90%, compared to techniques used in the image domain, which typ-
ically employ around 60% masking [64] or 75% masking [21]. By
effectively capturing spatial and temporal dynamics in unsuper-
vised video streams, they have shown promising performance in
video representation learning. Our proposed method builds upon
the tube mask strategy utilized in VideoMAE, focusing on impor-
tant feature learning through the selection of attention mechanisms
and discovering that the attention mechanisms in different layers
of the transformer block possess distinct properties, making them
complementary to each other.

2.2 Knowledge Distillation
Knowledge distillation is a widely used model compression tech-
nique that transfers knowledge from a large teacher model to a
smaller student model. It can be categorized into three main direc-
tions: response-based [22, 48, 67], feature-based [2, 27, 49, 52, 57,
60, 61], and relation-based methods [31, 33, 44, 55].

Feature-based distillation has received considerable attention,
especially in masked visual modeling where labeled data is limited.
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DMAE [2] demonstrates impressive results on ImageNet by incor-
porating feature distillation into the MAE structure. MaskAlign
[65] introduces an asymmetric mask mechanism to align student
and teacher features. G2SD [26] transfers task-agnostic and task-
specific knowledge by aligning student predictions with hidden
teacher features at visible and masked patches. In the video domain,
MVD [60] leverages both image and video teachers to guide stu-
dent feature reconstruction. Attention maps within transformer
blocks have been identified as valuable intermediate features for
knowledge distillation, and prior approaches like MobileBERT [52],
TinyBERT [27], and MINILM [61] explore various methods to trans-
fer attention maps.

Relation-based distillation complements feature distillation
by preserving consistent relationships between instances in teacher
and student models. CCKD [44] and LKD [31] transfer correlations
among global or local views of the instances in the embedded space.
Additionally, RKD [42] leverages distance-wise and angle-wise dis-
tillation losses that penalize structural differences in relations. In
this work, we introduce a selective knowledge distillation approach
with attention-guided masking at both hidden and output layers. In-
stead of directly transferring attention maps, we employ a weighted
sum aggregation of important token features using masked atten-
tion maps. Additionally, we employ token-level relationship knowl-
edge distillation, operating on informative tokens selected using
activation maps at the output layer, which enhances the student’s
understanding of intra-sample and inter-sample relationships.

3 APPROACH
In this section, we first provide an overview of the existing masked
videomodeling framework. Thenwe introduceMAGlobal andMAL-
ocal, which selectively transfer knowledge using hidden level at-
tention maps in transformer blocks to capture temporally-global
and temporally-local knowledge, respectively. Next, we present
MAHint and MARel, which utilize output level activation-based
attention maps to select important tokens and facilitate feature
alignment and relationship transfer. Finally, we present the overall
loss function, and the overall pipeline is shown in Figure 2.

3.1 Preliminary
Given an input video clip 𝑋 ∈ R𝑇×3×𝐻×𝑊 , with temporal length𝑇
and spatial resolution𝐻×𝑊 , we divide the clip into non-overlapping
3D patches of size 𝑡 × 𝑃ℎ × 𝑃𝑤 . This division results in 𝑁 = 𝑇

𝑡 ×
𝐻
𝑃ℎ

× 𝑊
𝑃𝑤

patches. These patches are then linearly projected into one-
dimensional token embeddings z ∈ R𝐵×𝑁×𝑑 , where 𝐵 is the batch
size and 𝑑 is the dimension of the token embedding. Following the
tube masking strategy employed in VideoMAE [56], we apply tube
masking to retain only a small portion of tokens, we mask a subset
of tokens with a high masking ratio 𝑟 (e.g., 90%) while retaining
only a small portion of tokens for further computation within the
transformer blocks of the ViT encoder.

Within each multi-head self-attention (MHA) head of the trans-
former block, the visible tokens z′

𝑣𝑖𝑠
∈ R𝐵×𝑁𝑣𝑖𝑠×𝑑 are linearly pro-

jected into queries, keys, and values𝑄,𝐾,𝑉 ∈ R𝐵×ℎ×𝑁𝑣𝑖𝑠×𝑑𝑘 using
parameter matrices𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈ R𝑑×𝑑𝑘 , respectively. Here, ℎ
represents the number of heads, 𝑁𝑣𝑖𝑠 = (1−𝑟 ) ×𝑁 is the number of
visible patches, and 𝑑𝑘 = 𝑑

ℎ
is the dimension of the query, key, and

value features. The attention distributions 𝐴 ∈ R𝐵×ℎ×𝑁𝑣𝑖𝑠×𝑁𝑣𝑖𝑠 ,
capturing high-level semantic relationships between tokens, are
computed using the scaled dot-product of queries and keys, normal-
ized by

√︁
𝑑𝑘 and passed through the softmax function. The output

features z𝑣𝑖𝑠 ∈ R𝐵×𝑁𝑣𝑖𝑠×𝑑 are generated by aggregating the value
features 𝑉 through a weighted sum operation, allowing each token
to incorporate information from other tokens.

3.2 Hidden Level Masked Knowledge Transfer
In this subsection, we utilize attention maps to guide selecting and
aggregating informative token features, allowing us to capture both
temporally-global and temporally-local knowledge.
3.2.1 MAGlobal: Temporally-Global Knowledge Transfer.
Figure 1 (c) visualizes the attention distribution of a visible token
(e.g., soccer) using the teachermodel’s multi-head attention. The red
boxes highlight the Top-5 tokens with the highest attention values,
indicating a higher focus on tokens with token-category-specific
features. However, the existing attention mechanism aggregates all
visible token features using a weighted sum operation without dis-
tinguishing between token-class-specific and non-specific tokens,
which may not be optimal for knowledge distillation. To address
this limitation and encourage the student model to focus on token-
class-specific important knowledge, we propose a temporally-global
Top-𝑘 selection process, denoted as F𝑔𝑙𝑜𝑏𝑎𝑙 . This process involves
calculating a corresponding attention map using the key features
for each query, selecting the Top-𝑘 attention values in 𝐴, and then
using the positions corresponding to these Top-𝑘 attention values to
choose the corresponding value features in𝑉 . The mask generation
function F𝑔𝑙𝑜𝑏𝑎𝑙 is defined as:

F𝑔𝑙𝑜𝑏𝑎𝑙 : R𝐵×ℎ×𝑁𝑣𝑖𝑠×𝑁𝑣𝑖𝑠 → R𝐵×ℎ×𝑁𝑣𝑖𝑠×𝑁𝑣𝑖𝑠 . (1)

It sets the Top-𝑘 values along the last dimension of the attention
map to 1, while the rest 𝑁𝑣𝑖𝑠 − 𝑘 are set to 0. We then apply the
mask generation function F𝑔𝑙𝑜𝑏𝑎𝑙 to these attention maps to obtain
the filtered attention maps𝑀𝑠

𝑎𝑡𝑡−𝑔 and𝑀
𝑡
𝑎𝑡𝑡−𝑔 :

𝑀𝑠
𝑎𝑡𝑡−𝑔 = F𝑔𝑙𝑜𝑏𝑎𝑙 (𝐴𝑠 ), 𝑀𝑡

𝑎𝑡𝑡−𝑔 = F𝑔𝑙𝑜𝑏𝑎𝑙 (𝐴𝑡 ), (2)

where 𝐴𝑠 ∈ R𝐵×ℎ𝑠×𝑁𝑣𝑖𝑠×𝑁𝑣𝑖𝑠 and 𝐴𝑡 ∈ R𝐵×ℎ𝑡×𝑁𝑣𝑖𝑠×𝑁𝑣𝑖𝑠 are the
attention maps generated by the student and teacher networks
with ℎ𝑠 and ℎ𝑡 heads, respectively. The filtered attention maps
retain only the Top-𝑘 values for each query, allowing the student
model to focus on the most relevant token-class-specific knowledge
associated with each query. The generated masks are applied to the
original attention maps for temporally-global feature aggregation:

𝑧𝑠𝑎𝑡𝑡−𝑔 = (𝑀𝑠
𝑎𝑡𝑡−𝑔 ⊙ 𝐴𝑠 )𝑉 𝑠 , 𝑧𝑡𝑎𝑡𝑡−𝑔 = (𝑀𝑡

𝑎𝑡𝑡−𝑔 ⊙ 𝐴𝑡 )𝑉 𝑡 , (3)

where𝑉 𝑠 and𝑉 𝑡 are the value features from the student and teacher
networks, respectively. To optimize knowledge transfer, a global
attention loss function is defined as:

L𝑔𝑙𝑜𝑏𝑎𝑙 =
1

𝑁𝑔𝑙𝑜𝑏𝑎𝑙

𝑁𝑔𝑙𝑜𝑏𝑎𝑙∑︁
𝑖=1

∥𝜙𝑠 (𝑧𝑠𝑎𝑡𝑡−𝑔) (𝑖 ) − 𝜙𝑡 (𝑧𝑡𝑎𝑡𝑡−𝑔) (𝑖 ) ∥22 , (4)

where 𝜙𝑠 (·) and 𝜙𝑡 (·) are mapping functions to align the features
from the student and teacher networks to a common dimension
𝑑𝑝𝑟𝑜 𝑗 . And 𝑁𝑔𝑙𝑜𝑏𝑎𝑙 = 𝐵 × 𝑁𝑣𝑖𝑠 × 𝑑𝑝𝑟𝑜 𝑗 .
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Figure 2: Overview of the MaskAgain model architecture: In the distillation stage, the teacher model remains fixed, and the
student model is trained from scratch to match the teacher-encoded hidden level and output level knowledge, allowing for
efficient pre-training without employing decoders in both models. Two attention-guided knowledge aggregation methods,
F𝑔𝑙𝑜𝑏𝑎𝑙 and F𝑙𝑜𝑐𝑎𝑙 , are utilized for temporally-global and temporally-local feature alignment withL𝑔𝑙𝑜𝑏𝑎𝑙 andL𝑙𝑜𝑐𝑎𝑙 at the hidden
layer of the Transformer blocks. At the output layer of the Transformer block, an activation-based knowledge selection method,
F𝑎𝑐𝑡 , is employed to propagate important token features, supervised by Lℎ𝑖𝑛𝑡 , as well as their inter-sample and intra-sample
relationships, supervised by L𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 .

3.2.2 MALocal: Temporally-Local Knowledge Transfer.
To enable fine-grained temporally-local knowledge transfer and
avoid global attention concentration on specific segments in the
temporal dimension, we refine the temporally-global knowledge to
the frame level by generating frame-level attention. This involves
reshaping the attention maps to𝐴𝑓 ∈ R𝐵×ℎ×𝑁𝑣𝑖𝑠×𝐹×𝑁𝑖𝑚𝑔 , where 𝐹
is the temporal dimension of the input tokens, and 𝑁𝑖𝑚𝑔 = 𝑁𝑣𝑖𝑠/𝐹
represents the number of visible patches per frame. We split the
attention map for each query into 𝐹 groups and perform knowledge
selection on each frame using the attention map of that frame. The
selection function F𝑙𝑜𝑐𝑎𝑙 is defined as:

F𝑙𝑜𝑐𝑎𝑙 : R𝐵×ℎ×𝑁𝑣𝑖𝑠×𝐹×𝑁𝑖𝑚𝑔 → R𝐵×ℎ×𝑁𝑣𝑖𝑠×𝐹×𝑁𝑖𝑚𝑔 . (5)

It sets the Top-𝑘 attention values along the last dimension of each
frame’s attention map to 1, while the rest 𝑁𝑖𝑚𝑔 − 𝑘 values are set
to 0. This selection process allows us to retain only the most rele-
vant information within each frame, which is then independently
aggregated in the temporal dimension. The filtered attention maps
𝑀𝑠
𝑎𝑡𝑡−𝑙 and𝑀

𝑡
𝑎𝑡𝑡−𝑙 are obtained as follows:

𝑀𝑠
𝑎𝑡𝑡−𝑙 = F𝑙𝑜𝑐𝑎𝑙 (𝐴𝑠𝑓 ), 𝑀

𝑡
𝑎𝑡𝑡−𝑙 = F𝑙𝑜𝑐𝑎𝑙 (𝐴𝑡𝑓 ), (6)

where 𝐴𝑠
𝑓
∈ R𝐵×ℎ𝑠×𝑁𝑣𝑖𝑠×𝐹×𝑁𝑖𝑚𝑔 and 𝐴𝑡

𝑓
∈ R𝐵×ℎ𝑡×𝑁𝑣𝑖𝑠×𝐹×𝑁𝑖𝑚𝑔

are the reshaped attention maps for the student and teacher net-
works, respectively. The filtered attentionmaps capture fine-grained
knowledge within each frame.

Finally, the filtered attention maps are applied to the reshaped
attention maps for temporally-local feature aggregation:

𝑧𝑠
𝑎𝑡𝑡−𝑙 = (𝑀𝑠

𝑎𝑡𝑡−𝑙 ⊙ 𝐴
𝑠
𝑓
)𝑉 𝑠
𝑓
, 𝑧𝑡
𝑎𝑡𝑡−𝑙 = (𝑀𝑡

𝑎𝑡𝑡−𝑙 ⊙ 𝐴
𝑡
𝑓
)𝑉 𝑡
𝑓
, (7)

where𝑉 𝑠
𝑓
∈ R𝐵×ℎ𝑠×𝑁𝑖𝑚𝑔×𝐹×𝑑𝑘 and𝑉 𝑡

𝑓
∈ R𝐵×ℎ𝑡×𝑁𝑖𝑚𝑔×𝐹×𝑑𝑘 are ob-

tained by reshaping the value features from the student and teacher
networks, respectively. This operation allows for temporally-local
feature aggregation, enabling the student model to effectively in-
corporate fine-grained information from each frame to enhance its
knowledge transfer and improve the overall performance.

To optimize temporally-local knowledge transfer, we define a
local attention loss function as follows:

L𝑙𝑜𝑐𝑎𝑙 =
1

𝑁𝑙𝑜𝑐𝑎𝑙

𝑁𝑙𝑜𝑐𝑎𝑙∑︁
𝑖=1

∥𝜙 ′𝑠 (𝑧𝑠𝑎𝑡𝑡−𝑙 )
(𝑖 ) − 𝜙 ′𝑡 (𝑧𝑡𝑎𝑡𝑡−𝑙 )

(𝑖 ) ∥22 , (8)
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where 𝑁𝑙𝑜𝑐𝑎𝑙 = 𝐵 × 𝑁𝑣𝑖𝑠 × 𝐹 × 𝑑′
𝑝𝑟𝑜 𝑗

, where 𝜙 ′𝑠 (·) and 𝜙 ′𝑡 (·) are
mapping functions that align the features from the student and
teacher networks to a common dimension 𝑑′

𝑝𝑟𝑜 𝑗
. When the hidden

layer dimensions are the same, the mappings are identical. If the
dimensions differ, simple fully connected layers (FC) are used for
mapping, ensuring effective knowledge transfer and alignment
during training.

In our study, we combine both loss functions for knowledge
distillation in the hidden layers:

Lℎ𝑖𝑑𝑑𝑒𝑛 = 𝛼L𝑔𝑙𝑜𝑏𝑎𝑙 + 𝛽L𝑙𝑜𝑐𝑎𝑙 , (9)

where 𝛼 and 𝛽 are weighting factors that balance the contributions
of the global attention loss L𝑔𝑙𝑜𝑏𝑎𝑙 and the local attention loss
L𝑙𝑜𝑐𝑎𝑙 . By optimizing this combined loss, our approach effectively
transfers both global and fine-grained local knowledge, leading to
improved generalization of learned representations in the student
model.

3.3 Output Level Masked Knowledge Transfer
Motivated by the importance of token-level information and the
potential redundancy in output level features as shown in Figure 1
(d), we propose a method for knowledge distillation based on the
output layer of the Transformer encoder, 𝑧𝐿 , where we denote the
number of blocks (i.e., Transformer encoders) as L. We aim to iden-
tify and transfer essential token-level knowledge while avoiding
the convergence difficulties that students may face when learning
redundant information.
3.3.1 MAHint: Feature Alignment of Important Tokens.
In this section, we generate an activation-based attention map for
the final output layer 𝑧𝐿 ∈ R𝐵×𝑁𝑣𝑖𝑠×𝑑 , inspired by the attention
map generation method used in convolutional neural networks [68].
The attention map, denoted as 𝐴𝑎𝑐𝑡 , is generated by computing
the sum of absolute values along the last dimension of the output
features 𝑧𝐿 :

𝐴𝑎𝑐𝑡 =

𝑑∑︁
𝑖=1

|𝑧𝐿 [:, :, 𝑖] |, (10)

where 𝑧𝐿 [:, :, 𝑖] represents the 𝑖-th channel of the tensor 𝑧𝐿 , and
𝑑 is the number of channels in 𝑧𝐿 . The resulting tensor 𝐴𝑎𝑐𝑡 has
dimensions𝐵×𝑁vis, where each element indicates the importance of
the corresponding token based on the sum of its absolute activation
values.

We define the selection function F𝑎𝑐𝑡 to select the Top-𝑘 tokens
using the activation-based attention map 𝐴𝑡𝑎𝑐𝑡 generated by the
teacher. The function F𝑎𝑐𝑡 masks out all but the Top-𝑘 visible tokens
of each sample (the rest 𝑁𝑣𝑖𝑠 − 𝑘 tokens are set to 0):

F𝑎𝑐𝑡 : R𝐵×𝑁𝑣𝑖𝑠 → R𝐵×𝑁𝑣𝑖𝑠 . (11)

We then apply F𝑎𝑐𝑡 to the output features from the teacher
network, resulting in the generated masks𝑀𝑡

𝑎𝑐𝑡 :

𝑀𝑡
𝑎𝑐𝑡 = F𝑎𝑐𝑡 (𝐴𝑡𝑎𝑐𝑡 ) . (12)

Next, we use these masks to filter the output features from both
the teacher and the student network. The masks are used as an
indexing operation 𝜑 on the output features, retaining only the
Top-𝑘 tokens for further knowledge transfer:

𝑧𝑠𝑎𝑐𝑡 = 𝜑 (𝑧𝑠𝐿, 𝑀
𝑡
𝑎𝑐𝑡 ), 𝑧𝑡𝑎𝑐𝑡 = 𝜑 (𝑧𝑡𝐿, 𝑀

𝑡
𝑎𝑐𝑡 ), (13)

where 𝑧𝑎𝑐𝑡 ∈ R𝐾×𝑑 and 𝐾 = 𝐵 × 𝑘 .
To optimize the knowledge transfer, we define an activation

loss function Lℎ𝑖𝑛𝑡 . This loss function measures the discrepancy
between the filtered output features of the student and teacher
networks:

Lℎ𝑖𝑛𝑡 =
1

𝑁𝑎𝑐𝑡

𝑁𝑎𝑐𝑡∑︁
𝑖=1

∥𝜙 ′′𝑠 (𝑧𝑠𝑎𝑐𝑡 ) (𝑖 ) − (𝑧𝑡𝑎𝑐𝑡 ) (𝑖 ) ∥22, (14)

where 𝑁𝑎𝑐𝑡 = 𝐾 × 𝑑 , and 𝜙 ′′𝑠 (·) represents a mapping of the output
layer features from the student model to the teacher model to a
common dimension 𝑑 . This process ensures that only the crucial
knowledge is transferred, avoiding convergence difficulties that
may arise from redundant information.
3.3.2 MARel: Relationship Transfer of Important Tokens.
We propose MARel to maintain correlation consistency between
the teacher and student networks. It transfers the correlation be-
tween informative tokens within a mini-batch, providing valuable
token-level relationship knowledge to improve the student’s perfor-
mance. The relationship measurement is based on cosine similarity
𝑠𝑖𝑚(·), and self-comparisons are avoided by setting the relationship
value to -1000 for each token with itself. For both the teacher and
student networks, we compute probability matrices P𝑡 ∈ R𝐾×𝐾

and P𝑠 ∈ R𝐾×𝐾 using softmax over the cosine similarities between
selected important token features respectively, where 𝐾 represents
the number of selected important output features. The temperature
parameters 𝜏𝑡 and 𝜏𝑠 are used independently for the teacher and
student, respectively:

P𝑡𝑖, 𝑗 =
exp(𝑠𝑖𝑚(z𝑡

𝑖
, z𝑡
𝑗
)/𝜏𝑡 )∑𝐾

𝑚=1
∑𝐾
𝑛=1 exp(𝑠𝑖𝑚(z𝑡𝑚, z𝑡𝑛)/𝜏𝑡 )

. (15)

P𝑠𝑖, 𝑗 =
exp(𝑠𝑖𝑚(z𝑠

𝑖
, z𝑠
𝑗
)/𝜏𝑠 )∑𝐾

𝑚=1
∑𝐾
𝑛=1 exp(𝑠𝑖𝑚(z𝑠𝑚, z𝑠𝑛)/𝜏𝑠 )

. (16)

To optimize knowledge transfer, weminimize the Kullback–Leibler
divergence between the probability distributions of the teacher and
student, defined as:

L𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = 𝐾𝐿(P𝑡 | |P𝑠 ) . (17)

In the final stage of knowledge distillation at the output layers,
we combine the relationship loss L𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 with the activation loss
Lℎ𝑖𝑛𝑡 . The combined output loss function is formulated as:

L𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜆L𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 + 𝛾Lℎ𝑖𝑛𝑡 , (18)

where 𝜆 and 𝛾 are weighting factors that control the influence of
each loss term during optimization. This integrated loss function
effectively leverages relationship knowledge and activation-based
filtering to facilitate knowledge transfer, resulting in improved gen-
eralization of the learned representations in the student network.

3.4 Overall Objective
The overall objective of the training process is to minimize the total
loss, which is the sum of the individual loss functions. The total
loss function L𝑡𝑜𝑡𝑎𝑙 is given by:

L𝑡𝑜𝑡𝑎𝑙 = Lℎ𝑖𝑑𝑑𝑒𝑛 + L𝑜𝑢𝑡𝑝𝑢𝑡 . (19)

In this process, the student model learns to effectively match the
teacher model’s hidden level and output level knowledge, leading
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to a more efficient and accurate student model. The MaskAgain
algorithm is presented in Appendix B.

4 EXPERIMENTS
4.1 Implementation Details
Weevaluate our approach on three video action recognition datasets:
Kinetics-400 [28], UCF-101 [51], and HMDB-51 [29]. Kinetics-400
is a large-scale dataset with 240K video clips, covering 400 hu-
man action classes. UCF-101 and HMDB-51 are relatively smaller
datasets, each containing approximately 9.5K/3.5K train/validation
videos and 3.5K/1.5K train/validation videos, respectively, across
101 and 51 action classes. For self-supervised pre-training, we uti-
lize the training set of either UCF-101 or Kinetics-400. During the
evaluation, we follow the same split 1 as in [56] for UCF-101 and
HMDB-51.

MaskAgain is applied to regular ViT models with different ca-
pacities, including ViT-S and ViT-B. On UCF101, the ViT-B teacher
model is pre-trained on the UCF101 dataset for 3200 epochs. The
ViT-B teacher model is pre-trained on K400 for 1600 epochs. In the
distillation phase, the student model is pre-trained from scratch
on the K400 dataset for 400 epochs. Subsequently, the pre-trained
student model is fine-tuned on downstream video tasks. Both the
pre-training and fine-tuning video clips have a length of 16 frames.
The K400 experiments are conducted on 8 NVIDIA V100 GPUs,
while the UCF101 experiments are conducted on 4 NVIDIA V100
GPUs. Moreover, we assign values of 𝑑𝑝𝑟𝑜 𝑗 = 𝑑′𝑝𝑟𝑜 𝑗 = 𝑑 = 768 and
utilize a Top-k approach with a threshold of Top-10. In the context
of MaskAgain-B, we designate 𝛼 as 3, 𝛽 as 1, 𝜆 as 0.1, and 𝛾 as 0.2.
For MaskAgain-S, we adjust 𝛽 to 0.1, 𝛾 to 0.1 and we employ an
MLP to project the student’s output layer onto the teacher’s feature
space directly, using FC layers to map both the teacher and the
student to the same feature space in the hidden layer, respectively.
More comprehensive details can be found in the supplementary
materials.

4.2 Comparison with state-of-the-art methods
We present a comprehensive comparison of MaskAgain with previ-
ous methods on three video recognition tasks. Table 1 shows that
MaskAgain outperforms most self-supervised methods in terms
of performance, while also being computationally efficient. Even
when compared to video transformers pre-trained on ImageNet-
21K, MaskAgain achieves competitive results. For instance, ViViT-L,
with similar performance, incurs 4.4 times higher computational
costs than MaskAgain. Additionally, MaskAgain-B achieves com-
parable performance to the teacher model, requiring only a quarter
of the training epochs on the Kinetics-400 dataset.

We further evaluate MaskAgain’s transfer learning capability on
UCF101 and HMDB51 datasets. As shown in Table 2, MaskAgain-B
outperforms previous works that rely on carefully designed con-
trastive learning and masked modeling methods. Compared to the
teacher network, MaskAgain learns more transferable representa-
tions, achieving higher accuracies on both UCF101 (96.3% compared
with 96.1%) and HMDB51 (77.1% compared with 73.3%). This result
indicates that our approach learns more transferable representa-
tions without using pixel-level reconstruction.

Table 1: Comparison with existing works on Kinetics-400.
MaskAgain-S denotes that the student is ViT-S and the
teacher is ViT-B. The compute cost of a single view × the
number of views (temporal clips with spatial crops) repre-
sents the inference cost (GFLOPs).

Method Extra Data Top-1 Top-5 GFLOPs Param

SlowFast R101+NL [14] - 79.8 93.9 234×30 60
X3D-XL [12] - 79.1 93.9 48×30 11
MViTv1-B [11] - 80.2 94.4 170×5 37
TSM-8 [32] IN-1K 74.1 91.2 43×30 24
LGD [46] IN-1K 79.4 94.4 N/A N/A
VideoSwin-B [35] IN-1K 80.6 94.6 282×12 88
Uniformer-S [30] IN-1K 79.8 93.4 110×12 21
ViT-VTN [39] IN-21K 78.6 93.7 4218×1 11
TimeSformer [4] IN-21K 80.7 94.7 2380×3 121
Mformer-B [43] IN-21K 79.7 94.2 370×30 109
Mformer-L [43] IN-21K 80.2 94.8 1185×30 382
X-ViT [5] IN-21K 80.2 94.7 N/A×3 N/A
ViViT-L FE [1] IN-21K 81.7 93.8 3980×3 N/A
BEVT Swin-B [59] IN-1K 80.6 N/A 282×12 88
OmniMAE ViT-B [17] IN-1K 80.8 N/A 180×15 87
ST-MAE ViT-B [13] - 81.3 94.9 180×21 87
VideoMAE ViT-S [56] - 79.0 93.8 57×15 22
VideoMAE ViT-B [56] - 81.5 95.1 180×15 87
MaskAgain-S - 78.7 93.6 57×15 22
MaskAgain-B - 81.0 94.6 180×15 87

Table 2: Comparison with previous methods on UCF101 and
HMDB51.
Method Extra Data Param UCF101 HMDB51
VideoMoCo R2+1D [41] K400 15 78.7 49.2
MemDPC R2D3D [20] K400 32 86.1 54.5
Vi2CLR S3D [8] K400 9 89.1 55.7
CORP Slow-R50 [24] K400 32 93.5 68.0
CVRL Slow-R50 [45] K400 32 92.9 67.9
CVRL Slow-R152 [45] K600 328 94.4 70.6
𝜌BYOL Slow-R50 [15] K400 32 94.2 72.1
VIMPAC ViT-L [54] HowTo100M 307 92.7 65.9
VideoMAE ViT-B [56] K400 87 96.1 73.3
MaskAgain-S K400 22 92.9 72.0
MaskAgain-B K400 87 96.3 77.1

The consistent performance across datasets, as demonstrated
in Tables 1 and 2, highlights the robustness of MaskAgain with-
out requiring any modifications. Additionally, experimental results
on Something-Something V2 (SSV2) [18] show that MaskAgain
exhibits stronger temporal modeling capabilities. For more experi-
mental details regarding SSV2, please refer to Appendix A.3.

4.3 Ablation Experiments
We conduct ablation experiments to analyze the impact of different
components in MaskAgain. The models are pre-trained on the UCF-
101 dataset for 100 epochs, with ViT-B as the encoder. The batch
sizes used for pre-training and fine-tuning are 24 and 16, respec-
tively, for a duration of 50 epochs. For the experiments reported in
Table 3 and 6, the models are trained for 400 epochs of pre-training
on the UCF-101 dataset, followed by 100 epochs of fine-tuning.
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Table 3: Effect of individual components in MaskAgain.
Hint MAHint MAGlobal MALocal MARel UCF101
✓ 88.1

✓ 88.5
✓ ✓ 88.7
✓ ✓ 89.2
✓ ✓ 89.6
✓ ✓ ✓ 89.6
✓ ✓ ✓ 89.7
✓ ✓ ✓ 89.7
✓ ✓ ✓ ✓ 89.8

Influence of Individual Components. We conduct ablation ex-
periments to analyze the impact of different components in MaskA-
gain for video action recognition. The experiments are performed
on the UCF-101 dataset using the ViT-B model as the encoder. We
present the results in Table 3.

Comparison with Hint: We compare MAHint with the baseline
method Hint, which employs per-token alignment without selec-
tion on the output level of the model. MAHint, which incorporates
important token selection before knowledge distillation, outper-
forms Hint, showcasing its effectiveness.

Effect of Individual Components: We evaluate the contributions
of MAGlobal, MALocal, and MARel, the individual components in
MaskAgain. Combining these components leads to performance
improvements, demonstrating their complementary nature in en-
hancing knowledge distillation.

Efficiency and Scalability: MaskAgain exhibits efficiency and scal-
ability advantages. Despite only 400 epochs of training, it achieves
performance comparable to a teacher model pre-trained for 3200
epochs and fine-tuned under the same conditions (achieves 91.3%
on UCF101 dataset reported in VideoMAE [56]), emphasizing its
practicality and effectiveness.

In conclusion, our ablation experiments validate the efficiency
and effectiveness of MaskAgain in video representation learning.

Comparison of Different Knowledge Distillation Methods in
the Hidden Level. We compare different methods for knowledge
distillation in the hidden level of the transformer block, focusing on
their effectiveness in transferring attention maps and value features.
The evaluated methods include: (1) Attention Transfer: Directly
aligning attention maps. (2) Value Transfer: Directly aligning value
features. (3) Weighted Value Transfer: Aggregating value features
using attention maps without selection. (4) MMGlobal: Aggregat-
ing value features using masked attention maps with knowledge
selection.

Table 4 provides a comprehensive analysis of these methods on
the UCF101 dataset, considering the loss functions used, the layer
index for knowledge transfer, and the temperature parameter (𝜏𝑎𝑡𝑡 )
applied to the attention distributions. From the results, it is evident
that MMGlobal stands out as the most effective method, achieving a
Top-1 accuracy of 62.2% on the UCF101 dataset, which surpasses the
performance of other knowledge distillation methods. MMGlobal’s
ability to aggregate essential information through weighted value
transfer based on masked attention maps showcases its efficacy in
knowledge transfer within the transformer block.
Influence of Top-𝑘 Selection Strategy. We investigate the im-
pact of the "Top-𝑘" selection strategy on the Top-1 accuracy for the

Table 4: Comparison of different methods for knowledge
distillation in the hidden level of the transformer block. The
model is pre-trained with both pixel reconstruction loss and
knowledge distillation loss as supervision, except for the
baseline in the first row.

Method Loss Function Layer Index 𝜏𝑎𝑡𝑡 UCF101

VideoMAE MSELoss 16 1 39.9
Attention Transfer KL-div 12 4 57.6
Attention Transfer KL-div 12 1 57.0
Attention Transfer MSELoss 12 1 57.3
Attention Transfer MSELoss 8 1 53.3
Value Transfer MSELoss 12 1 59.3
Weighted Value Transfer MSELoss 12 4 50.5
Weighted Value Transfer MSELoss 12 1 58.0
Weighted Value Transfer MSELoss 12 0.1 59.9
MAGlobal MSELoss 12 1 62.2
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Figure 3: Influence of 𝑘: The horizontal axis of each subplot
represents the 𝑘 values, indicating the number of selected
attention values on the attention maps for knowledge aggre-
gation and transfer. The vertical axis represents the Top-1
accuracy on the UCF101 dataset.

Table 5: Influence of Position Selection Strategies.

Selection Strategy UCF101
Selected by the teacher 63.7
Selected separately 64.2

UCF101 dataset, considering different components of MaskAgain.
From the results presented in Figure 3, we observe the following
trends for different components: (1) MAHint with "Top-𝑘" selection
achieves higher accuracy compared to transferring token features
without selection (58.3%) and MAHint with a single selected token.
For example, MAHint-k with 10 selected tokens achieves a Top-1
accuracy of 64.2%. (2) MAGlobal with 10 selected tokens outper-
forms MAHint with 1 selected token, achieving a Top-1 accuracy
of 61.3%. However, increasing the number of selected tokens to
80 results in a slight drop in accuracy to 60.0%. (3) MALocal with
10 selected tokens achieves the highest Top-1 accuracy of 63.8%.
Increasing or decreasing the number of selected tokens from this
value results in a decline in performance. These findings show that
appropriate 𝑘 values contribute to the performance improvement
of each component.

Influence of Position Selection Strategies. We investigate dif-
ferent knowledge selection strategies in the MAGlobal loss of the
middle-level MaskAgain. Two strategies are evaluated: "Selected
by the teacher," where the teacher alone chooses positions, and the
student model uses the selected positions to mask attention maps
and aggregate value features; "Selected separately," where both the
teacher and student independently select positions. Table 5 shows
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Table 6: Influence of Temperature Coefficients.

Temperature UCF101
𝜏𝑠 𝜏𝑡

0.1 0.1 89.0
0.05 0.05 88.8
0.1 0.05 89.8

the impact of these strategies on UCF101 accuracy. Selecting posi-
tions separately leads to the highest accuracy of 64.2%, enabling
dynamic knowledge selection. When positions are solely selected
by the teacher, the accuracy slightly decreases to 63.7%.

Influence of Temperature Coefficient. We investigate the influ-
ence of temperature coefficients 𝜏𝑠 and 𝜏𝑡 on knowledge distillation.
Table 6 shows that when 𝜏𝑡 is smaller than 𝜏𝑠 , we achieve an im-
pressive accuracy of 89.8% on UCF101. This improvement may be
attributed to the fact that a smaller 𝜏𝑡 produces a sharper target
relationship distribution compared to the student’s distribution.
The sharpness emphasizes confident token relationships, leading
to more effective knowledge transfer by focusing on important and
relevant information while reducing the transfer of less relevant
ones.

4.4 Visualization Analysis
We visualize the attention maps of two action classes for three
types of masked attentions defined in our method: temporally-local
attention (𝑀𝑎𝑡𝑡−𝑙 ) used in MALocal, temporally-global attention
(𝑀𝑎𝑡𝑡−𝑔) used in MAGlobal, and activation-based attention (𝑀𝑎𝑐𝑡 )
generated by MAHint. As shown in Fig. 4, each attention method
exhibits different patterns of token selection, emphasizing distinct
visual cues for action recognition.
𝑀𝑎𝑡𝑡−𝑙 focuses on frame-level token selection, capturing fine-

grained temporal changes and visual patterns within each frame.
This enables the student model to understand localized motion
patterns and distinguish between different actions.
𝑀𝑎𝑡𝑡−𝑔 performs global-level token selection, considering the

entire video sequence to capture consistent context information
across frames. It attends to tokens representing recurring visual
patterns for a broader understanding of the video context.
𝑀𝑎𝑐𝑡 employs activation-based token selection, prioritizing to-

kens based on their significance in depicting the action subject or
any discernible elements within the scene. It highlights tokens that
carry significant semantic information associated with the visual
cues of the action.

By leveraging these attention mechanisms for token selection,
our MaskAgain framework effectively emphasizes informative to-
kens while filtering out less relevant scene information. This se-
lective token attention enhances knowledge distillation efficiency
and contributes to the improved performance of our masked video
modeling approach. The visualization of masked attention maps
offers insights into how each method guides the selection of im-
portant tokens, enriching the learned feature representations and
leading to accurate action recognition.

(a) Temporally-Local masked attention maps (𝑀𝑎𝑡𝑡−𝑙 ).

(b) Temporally-Global masked attention maps (𝑀𝑎𝑡𝑡−𝑙 ).

(c) Activation-Based masked attention maps (𝑀𝑎𝑐𝑡 ).

Figure 4: Visualization of masked attentionmaps from differ-
ent components of MaskAgain. The attention mechanisms
guide token selection to emphasize essential visual cues rel-
evant to action recognition while filtering out less relevant
scene information.

5 CONCLUSION
In conclusion, we have introduced MaskAgain, an efficient masked
knowledge distillation framework tailored for masked video mod-
eling. By addressing the challenges of memory consumption and
effective knowledge transfer in transformer models with large-scale
unlabeled data, MaskAgain offers a robust solution for pre-training
video models. In the hidden layer, MaskAgain leverages attention
maps to select crucial token features at both temporally-global and
temporally-local levels, enabling more efficient and meaningful
feature representations. At the output layer, token-level activation-
based attention is utilized for knowledge transfer, with twomethods,
MAHint and MARel, explored to align features and maintain corre-
lation consistency between teacher and student networks. The ex-
perimental results on Kinetics-400, UCF101, and HMDB51 datasets
showcase the effectiveness of MaskAgain, achieving impressive ac-
curacies comparable to or even surpassingmodels trained for longer
epochs. This highlights the efficiency and efficacy of our approach
in pre-training highly accurate video models while optimizing com-
putational resources and training time. The integration of attention
mechanisms in selective knowledge distillation paves the way for
further advancements in computer vision tasks. Future research can
explore leveraging attention-based selective distillation for other
tasks and modalities, as well as investigating heterogeneous distilla-
tion between transformer and convolution models using activation
value consistency.
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Algorithm 1 Pseudocode of MaskAgain in PyTorch style.

# global_att: the attention map (𝐴) of the last encoder
# global_value: the value (𝑉 )of the last encoder
# local_att: the reshaped global_att (𝐴𝑓 )
# local_value: the reshaped global_value (𝑉𝑓 )
# feature: the output of the L-th encoder (𝑧ℓ)
# *_s: from the student model
# *_t: from the teacher model

# Generate global_masks and select topk global_attentions
respectively

global_bool_topk_pos_t = topk(softmax(global_att_t))
global_bool_topk_pos_s = topk(softmax(global_att_s))
global_att_s = att_s * global_bool_topk_pos_s
global_att_t = att_t * global_bool_topk_pos_t

# Compute global loss
𝐿𝑔𝑙𝑜𝑏𝑎𝑙 = mseloss((global_att_s @ global_value_s), (global_att_t

@ global_value_t) )

# Generate local_masks and select topk local_attentions
respectively

local_bool_topk_pos_t = topk(softmax(local_att_t))
local_bool_topk_pos_s = topk(softmax(local_att_s))
local_att_s = local_att_s * local_bool_topk_pos_s
local_att_t = local_att_t * local_bool_topk_pos_t

# Compute local loss
𝐿𝑙𝑜𝑐𝑎𝑙 = mseloss((local_att_s @ local_value_s), (local_att_t @

local_value_t))

# Compute hidden loss
𝐿ℎ𝑖𝑑𝑑𝑒𝑛 = 𝛼 ∗ 𝐿𝑔𝑙𝑜𝑏𝑎𝑙 + 𝛽 ∗ 𝐿𝑙𝑜𝑐𝑎𝑙

# Generate the activation-based attention
activation_t = abs(feature_t).sum(-1)

# Generate masks and select topk activation-based attentions
respectively

bool_topk_pos = topk(activation_t)
sd = feature_s[bool_topk_pos]
td = featuret_t[bool_topk_pos]

# Compute hint loss
𝐿ℎ𝑖𝑛𝑡= mseloss(sd, td)

#Calculate the relation of the topk token
relation_s = einsum(sd,sd)
relation_t = einsum(td,td)

# Calculate relation loss
𝐿𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = kl_div(relation_s, relation_t)

#Calculate output loss
𝐿𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜆 ∗ 𝐿𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 + 𝛾 ∗ 𝐿ℎ𝑖𝑛𝑡

#Calculate total loss
𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿ℎ𝑖𝑑𝑑𝑒𝑛 + 𝐿𝑜𝑢𝑡𝑝𝑢𝑡

A IMPLEMENTATION DETAILS
A.1 Pre-training setting
The pre-training experiments involve training theMaskAgainmodel
on both the Kinetics-400 and UCF101 datasets. The pre-training
settings for each dataset are provided in Table 7.

Table 7: Pre-training setting.

config Kinetics-400 UCF101
optimizer AdamW [38]
base learning rate 1.5e-4 3e-4
weight decay 0.05
optimizer momentum 𝛽1,𝛽2=0.9,0.95 [6]
batch size 512 256
mask ratio 90% 75%
learning rate schedule cosine decay [37]
warmup epochs 40
augmentation MultiScaleCro
drop path 0.1 0
short edge 256 240

A.2 Fine-tuning setting
The fine-tuning experiments are performed on four datasets: Kinetics-
400, UCF101, HMDB51, and Something-Something V2. The fine-
tuning settings for each dataset are provided in Table 8.

A.3 Results on Something-Something V2
Something-Something V2 is a challenging video dataset with di-
verse human-object interaction actions, making it valuable for
evaluating temporal modeling capabilities. We fine-tuned the pre-
trainedMaskAgain studentmodel fromK400 on Something-Something
V2. The performance comparisonwith previousworks on Something-
Something V2 is shown in Table 9. Despite having a smaller batch
size and lower video resolution compared to SOTAmethods, MaskA-
gain outperforms all supervised and self-supervised methods listed
in the table.

Compared to VideoMAE (ViT-S), MaskAgain-S achieves a +0.3%
Top-1 accuracy gain on Something-Something V2 with limited
computational resources. Furthermore, MaskAgain-B outperforms
the teacher model (pre-trained on K400 for 1600 epochs) by +0.6%
using only 1/4 of the fine-tuning batch size. This indicates that
MaskAgain has a stronger temporal modeling capability even with
limited computational resources, making it effective for tasks that
require better temporal information, such as Something-Something
V2.

B THE PSEUDO-CODE OF MASKAGAIN
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Table 8: Fine-tuning setting of MaskAgain.

config Kinetics-400 UCF101 HMDB51 Something-Something V2
optimizer AdamW
base learning rate 1e-3 5e-4 1e-3 1e-3 (S), 5e-4 (B)
weight decay 0.05
optimizer momentum 𝛽1, 𝛽2=0.9, 0.999
batch size 256 128 128 256 (S), 128 (B)
temporal stride 4
warmup lr 1e-6 1e-8 1e-6 1e-8
min lr 1e-5
inference protocol 5 clips × 3 crops 5 clips × 3 crops 5 clips × 3 crops 2 clips × 3 crops
learning rate schedule cosine decay
warmup epochs 5
training epochs 150 (S), 75 (B) 100 50 40
short edge 256 240 320 240
repeated augmentation 2
flip augmentation yes yes yes no
RandAug [7] (9, 0.5)
label smoothing [53] 0.1
mixup [69] 0.8
cutmix [66] 1.0
drop path [25] 0.1 0.2 0.2 0.1
dropout [23] 0 0.5 0.5 0.5
layer-wise lr decay [3] 0.75 0.7 0.7 0.7 (S),0.75 (B)

Table 9: Comparison with previous works on Something-Something V2.

method extra data Top-1 GFLOPs Param
supervised
SlowFast R101 [14] K400 63.1 106×3 53
TSM-RGB R50 [32] IN-1K 63.3 62×6 24
TAM R50 [36] IN-1K 66.0 99×6 51
TDN R101 [58] IN-1K 69.6 198×3 88
MViTv1-B [11] - 67.7 455×3 37
TimeSformer-HR [4] IN-21K 62.5 1703×3 121
ViViT-L FE [1] IN-21K+K400 65.9 995×12 N/A
Mformer-B [43] IN-21K+K400 66.5 370×3 109
Mformer-L [43] IN-21K+K400 68.1 1185×3 382
VideoSwin-B [35] IN-21K+K400 69.6 321×3 88
self-supervised
VIMPAC ViT-L [54] HowTo100M 68.1 N/A×30 307
VideoMAE ViT-S [56] K400 66.4 57×6 22
VideoMAE ViT-B [56] K400 69.7 180×6 87
OmniMAE ViT-B [17] IN-1K 69.5 180×6 87
OmniMAE ViT-B [17] IN-1K+K400 69.0 180×6 87
MaskAgain-S K400 66.7 57×6 22
MaskAgain-B K400 70.3 180×6 87
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