
1 
 

The Supplementary Materials file includes： 

 

S1. Result analysis of single task-driven SSL on drug warm start predictions ............. 2 

S2. Result analysis of two-task combinations in warm start scenarios.......................... 2 

S3. Performance analysis of multi-task combinations in warm start scenarios ............. 3 

S4. Performance verification of MSSL2drug in cold start scenarios............................. 3 

S5. Performance validation on the external dataset ....................................................... 4 

S6. Performance comparisons and analysis ................................................................... 5 

S7. Drug repositioning for COVID-19 .......................................................................... 8 

S8. Impact of key components on SSL tasks ............................................................... 10 

S9. Contributions of key components in multi-task learning ...................................... 12 

S10. High-quality representations ................................................................................ 13 

S11. Test set contamination studies ............................................................................. 13 

S12. Comparisons of run-time and parameter sizes..................................................... 14 

S13. Small world property of biological networks ...................................................... 14 

S14. Basic self-supervised tasks on BioHNs ............................................................... 15 

S14.1 Clustering coefficient regression (ClusterPre) ............................................ 15 

S14.2 Pairwise distance classifications (PairDistance) ......................................... 15 

S14.3 Edge type masked predictions (EdgeMask) ............................................... 16 

S14.4 Bio-meta path classifications (PathClass) .................................................. 16 

S14.5 Node similarity regression (SimReg) ......................................................... 17 

S15. Hyperparameter setting ........................................................................................ 18 

S16. Baselines .............................................................................................................. 19 

Supplementary Figures ................................................................................................ 21 

Supplementary Tables .................................................................................................. 31 

References .................................................................................................................... 45 

 

  



2 
 

S1. Result analysis of single task-driven SSL on drug warm start predictions 

PathClass attains approximately 10-15% improvements over EdgeMask in terms of 

AUROC and AUPR scores for DDI and DTI predictions. Another aspect to note is that 

SimCon is superior to SimReg, with approximately 12.5% average improvements for 

DDI predictions. To further investigate the difference among various methods, we 

provide a Student's t-test on the DTI and DDI results, respectively. Here, we assume 

that there is significant difference between two methods when the p-value is below 0.05. 

In Table S1, we summarize the p-value among single task-driven self-supervised 

representation learning (SSL) models for DDI and DTI predictions. We find that there 

is significant difference among most of methods. In particularly, all of the p-value 

between local information- and global information-based SSL models are below 0.05, 

as shown in the yellow shaded areas. Analogously, there is significant difference 

between attribute strong constraint- and weak constraint-based SSL models, as shown 

in the green shaded areas. These results further suggest that the global information (or 

attribute weak constraint)-driven SSL approaches significantly outperform the local 

information (or attribute strong constraint)-based SSL tasks. 

 

S2. Result analysis of two-task combinations in warm start scenarios 

The results obtained by SSL on warm start drug predictions are shown in Table S2. 

Although PairDistance and SimCon generate great results, we find that PairDistance-

SimCon shows the unsatisfactory performance (DDI-AUROC=0.880, and DTI-

AUROC=0.942). In contrast, EdgeMask-PairDistance (DDI-AUROC=0.917, DTI-

AUROC=0.958) and ClusterPre-PathClass (DDI-AUROC=0.915, DTI-AUROC= 

0.956) produce relatively high results, with 2.0-5.9% higher AUROC and 2.8%-7.6% 

higher AUPR than other task combinations for DDI predictions. Concurrently, 

ClusterPre-PairDistance and EdgeMask-PathClass also produce promising results on 

DTI and DDI predictions. More interestingly, we find that EdgeMask-PairDistance, 

ClusterPre-PathClass, ClusterPre-PairDistance, and EdgeMask-PathClass are the 

combinations of global and local SSL tasks. In addition, PairDistance-SimCon (DDI-

AUPR=0.860, DTI-AUPR=0.935) is superior to PairDistance-SimReg (DDI-AUPR= 

0.847, DTI-AUPR=0.924). Similar situations are observed in comparison between 

SimCon and SimReg. Correspondingly, in Table S3, we summarize that the p-value 

among 11 double-modality combination models for DTI predictions. We observe that 9 

out of 55 t-test experiments obtain p-value > 0.05. However, as shown in blue shaded 

area, there is significant difference among local-global combination models (i.e., 

EdgeMask-PairDistance, ClusterPre-PathClass, ClusterPre-PairDistance, and 

EdgeMask-PathClass) and other random combination models when there are the same 

number of modalities. We find a similar phenomenon in t-test experiments based on 

DDI results, as shown in Table S4. These results further suggest that the joint training 

of local and global SSL tasks tends to obtain higher performance than random two-task 

combinations when there are the same number of modalities. 
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S3. Performance analysis of multi-task combinations in warm start scenarios 

Although ClusterPre-PairDistance and EdgeMask-PathClass are local-global 

combination SSL models, as shown in Table S3 and Table S4, there is no significant 

difference (p-value>0.05) between them and other four combination models (i.e., 

PairDistance-PathClass, PathClass-SimCon, PairDistance-SimCon, and EdgeMask-

SimReg). This may be attributed to the fact that EdgeMask-PathClass includes only 

single type of modality information (i.e., structures). However, PairDistance-PathClass 

and PathClass-SimCon capture two modalities of information (i.e., the structures and 

semantics of BioHNs). These results seem to indicate that we should consider the effect 

of different modalities. Therefore, we further design four combination models of 

multimodal tasks that refer to the structures, semantics and attributes of BioHNs. 

We find that the top two combination models are ClusterPre-PathClass-SimReg 

and PairDistance-EdgeMask-SimCon in Table S2. Interestingly, they include three 

modalities of information, i.e., structure, semantic and attribute knowledge. Although 

EdgeMask-PathClass and EdgeMask-PairDistance belong to the local-global task 

combinations, EdgeMask-PairDistance is superior to EdgeMask-PathClass, with DDI-

AUROC and DDI-AUPR improvements of approximately 3.5% and 4.3%, respectively. 

Similar phenomena is observed in comparison between ClusterPre-PathClass (DDI-

AUROC=0.915, DDI-AUPR=0.910) and ClusterPre-PairDistance (DDI-AUROC= 

0.895, DDI-AUPR=0.882). In other words, the combinations of double-modality tasks 

(e.g., EdgeMask-PairDistance and ClusterPre-PathClass) generate better results than 

the combinations of single-modality tasks (e.g., EdgeMask-PathClass and ClusterPre-

PairDistance). More interestingly, we notice that PairDistance-SimReg-SimCon has 

one more task than PairDistance-SimReg. However, its DTI prediction performance 

exhibits no significant improvement. In contrast, for DDI predictions, PairDistance-

SimReg-SimCon leads to a slight reduction compared to PairDistance-SimReg. This 

may be because PairDistance-SimReg-SimCon, in which the three tasks have only 

double-modality views (i.e., structure and semantic information), fails to increase the 

number of modalities over that used by PairDistance-SimReg and generates some noise. 

Similarly, ClusterPre-PairDistance-PathClass and ClusterPre-PathClass exhibit the 

same trend and phenomena. To further investigate the difference among 10 models, we 

conduct Student's t-test on the mixed results of DDI and DTI predictions. As shown in 

Table S5, there is significant difference (p-value <0.05) across various methods which 

include different modality information. The multi-task SSL models with multimodal 

information (e.g., PairDistance-EdgeMask-SimCon and ClusterPre-PathClass-SimReg) 

achieve greater results than other combination models. These results further suggest 

that combinations of multimodal tasks can achieve best performance for drug discovery. 

 

S4. Performance verification of MSSL2drug in cold start scenarios 

For cold start scenarios, the results of single-task SSL models are shown in Fig. S1. 

PairDistance and PathClass yield better results than ClusterPre and EdgeMask. In 

particular, PathClass outperforms EdgeMask with 8.4% and 11.2% improvements in 
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terms of AUROC and AUPR for DDI predictions, respectively. These results are 

straightforward and effective demonstrations that global information-based SSL can 

achieve better performance than local information-based SSL. Similarly, SimCon is 

superior to SimReg further suggesting that the attribute weak constraint-based SSL 

models outperform the strong constraint-based models. 

In the two-task combination scenarios, as shown in Fig. S2 and Table S6, we 

observe the same phenomena as those exhibited in the warm start drug scenarios: the 

top three models are the local-global SSL tasks, that is, ClusterPre-PathClass (DDI-

AUROC=0.890, DTI-AUROC=0.923), EdgeMask-PairDistance (DDI-AUROC=0.889, 

DTI-AUROC=0.927), and ClusterPre-PairDistance (DDI-AUROC=0.871, DTI-

AUROC=0.911). These results further certify that the local and global SSL tasks jointly 

guide GNNs to generate superior drug discovery predictions when there are the same 

number of modalities.  

In addition, the results of the multimodal tasks are shown in Fig. S3. We find that 

the SSL task combinations containing three modalities of information, such as 

ClusterPre-PathClass-SimReg (DDI-AUROC=0.909, DTI-AUROC=0.948) and 

PairDistance-EdgeMask-SimCon (DDI-AUROC=0.909, DTI-AUROC=0.940), are 

superior to the task combinations capturing double-modality knowledge, such as 

ClusterPre-PairDistance-PathClass (DDI-AUROC=0.894, DTI-AUROC=0.924), and 

PairDistance-SimReg-SimCon (DDI-AUROC=0.863, DTI-AUROC=0.918). 

Concurrently, the double-modality SSL task combinations outperform the one-

modality SSL task combinations. In other words, as the number of modalities increases, 

the performance of cold start predictions is improved. These results further verify the 

multimodal combination strategy, that is, combinations of multimodal SSL tasks can 

achieve state-of-the-art the prediction performance of drug discovery. 

 

S5. Performance validation on the external dataset 

MSSL2drug is used for Luo’s dataset [1] and evaluated by warm and cold start 

predictions with different splitting ratios. The Luo’s dataset is a biomedical 

heterogeneous network integrating four types of nodes and six types of edges. However, 

in this experiment, we only choose two types of nodes (i.e., drugs and proteins) and 

three types of edges (i.e., drug-drug interactions, drug-target interactions, protein-

protein interactions) because of the limitations of our hardware (NVIDIA Tesla V100 

GPU, Memory16G). Subsequently, we filter out isolated nodes. The information of 

final biomedical heterogeneous network is shown in Table S7. 

In warm start predictions, all the known interactions are positive samples, and an 

equal number of negative samples are randomly selected from unknown interactions. 

To evaluate the robustness of MSSL2drug, the positive and negative samples are 

divided into training and test set by two ratios that include 9:1 and 5:5, respectively. 

These splitting ratios can respectively simulate the situations that there are large and 

small sample labels. For warm start predictions, as shown in Fig. S4, we observe that 

the local-global combination models (i.e., EdgeMask-PairDistance, ClusterPre-

PathClass, ClusterPre-PairDistance, and EdgeMask-PathClass) achieve better 
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prediction performance than other two-task combinations when there are the same 

number of modalities. Nevertheless, we find that PairDistance-EdgeMask-SimCon 

(DDI-AUROC=0.951, and DTI-AUROC=0.956) generates the best performance, as 

shown in Table S8. This could probably be attributed to that PairDistance-EdgeMask-

SimCon integrates multimodal information including structures, semantics, and 

attributes in BioHN. Surprisingly, EdgeMask-PairDistance (DDI-AUROC=0.938, 

DDI-AUPR= 0.931) seems to be slightly higher than ClusterPre-PathClass-SimReg 

(DDI-AUROC= 0.932, DDI-AUPR=0.925). A possible explanation for this result is 

that ClusterPre-PathClass achieves a large margin improvement compared to 

EdgeMask-PairDistance. Even if SimReg is added into EdgeMask-PairDistance (i.e., 

ClusterPre-PathClass-SimReg) cannot outperform ClusterPre-PathClass. As shown in 

Fig. S5, these results suggest that the multimodal and local-global combination 

strategies still conducive to improving the performance of drug discovery on Luo’s 

dataset. 

The performance of all models on small training data (training set:test set = 5:5) 

is reduced when compared to warm start predictions with 9:1 ratios, as shown in Table 

S9. For EdgeMask-PairDistance, the performance is reduced by 1.8% and 2.3% in term 

of DDI-AUROC and DDI-AUPR, respectively. All of methods do not perform as well 

because the volume of training set is reduced. However, we find the same performance 

distribution, that is, multimodal combination models consistently achieve the best 

performance compared to other multi-task joint strategies. Furthermore, the 

combinations of local and global SSL tasks outperform random task combinations when 

there are the same number of modalities. 

For cold start predictions, we randomly select 5% (or 10%) drugs and their 

interactions (i.e., DDIs and DTIs) to construct test sets. The rest of DDI and DTI 

samples are treated as training set. For 5% drugs cold start predictions, as shown in 

Table S10, we observe that the top three models are still PairDistance-EdgeMask-

SimCon (DDI-AUROC=0.939, DTI-AUROC=0.957), EdgeMask-PairDistance (DDI-

AUROC=0.927, DTI-AUROC= 0.941), and ClusterPre-PathClass-SimReg (DDI-

AUROC=0.913, DTI-AUROC= 0.933). A similar phenomenon can also be observed in 

cold start predictions of 10% drugs, as shown in Table S11. These results further 

suggest that the multimodal and local-global combination strategies contribute to 

generating better representations on Luo’s dataset, thus improving the performance of 

DDI and DTI predictions. In addition, these results on different splitting ratios 

demonstrate that MSSL2drug has the great robustness and generalization. 

 

S6. Performance comparisons and analysis 

MSSL2drug is compared with six state-of-the-art methods, including DTINet [1], 

deepDTnet [2], MoleculeNet [3], KGE_NFM [4], DDIMDL [5], and DeepR2cov [6]. 

This is mainly attributed to two reasons. (1) Similar to MSSL2drug, these methods use 

multiple biomedicine networks to predict DDIs or DTIs. (2) These methods have 

achieved great results on various drug discovery datasets. In this experiment, we only 

select PairDistance-EdgeMask-SimCon to compare with baseline methods, because it 
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achieves best performance. 

For warm start predictions on the constructed biomedical network data, 

PairDistance-EdgeMask-SimCon outperforms other existing methods. In particularly, 

PairDistance-EdgeMask-SimCon generates 2.5%~6.8% AUROC and 1.9~7.9% AUPR 

improvements than baselines for DDI predictions. For the cold start scenarios, we 

observe that MSSL2drug consistently achieves higher performance. Interestingly, 

KGE_NFM, that is the third best method in warm start scenarios, is reduced by 18% 

and 19.3% in term of AUROC and AUPR for DDI predictions in cold start scenarios, 

respectively. However, results of MSSL2drug slightly drop compared to warm start 

scenarios. Interestingly, although MoleculeNet generates poor results for warm start 

prediction scenarios, it becomes the third best method for cold start predictions. It is 

worth noting that both MoleculeNet and PairDistance-EdgeMask-SimCon are based on 

graph neural network. However, PairDistance-EdgeMask-SimCon attains over 5% and 

3% improvement compared to MoleculeNet in term of DDI-AUROC and DTI-AUROC, 

respectively. This is mainly because PairDistance-EdgeMask-SimCon integrates 

multimodal and local-global features in biomedical heterogeneous networks. 

The results of all methods on Luo dataset are shown in Table S12. For warm start 

prediction scenarios, we find that PairDistance-EdgeMask-SimCon still outperforms 

other existing methods, with 4.03% higher DDI-AUROC and 3.92% higher DTI-

AUROC than the average performance of six baselines. For the cold start scenarios, we 

observe that MSSL2drug consistently achieves higher performance than baselines, with 

7.79% higher DDI-AUROC and 7.03% higher DTI-AUROC than the average 

performance of six baselines. In particular, in DDI cold start predictions, KGE_NFM 

is reduced by 17.3% and 19.8% in term of AUROC and AUPR compared to warm start 

scenarios, respectively. However, for cold start predictions, results of PairDistance-

EdgeMask-SimCon slightly drop compared to warm start scenarios. These results 

suggest that MSSL2drug can achieve higher performance on different datasets and 

scenarios, and is an effective self-supervised representation learning method for drug 

discovery predictions. 

MSSL2drug and six baselines are evaluated under different splitting ratios 

between training and test sets, as shown in Fig. S6. We observe that the performance 

of all methods are reduced when there are only few training samples. However, the 

performance of MSSL2drug is without much fluctuation, and superior to baselines for 

different volume of training sets. In particularly, when the ratio of training:test sets is 

3:7, KGE_NFM, DDIMDL, and DeepR2cov achieve poor results below 0.9 in terms of 

AUROC and AUPR for DDI and DTI predictions whereas PairDistance-EdgeMask-

SimCon shows consistently the excellent performance with results close to 0.94. An 

interesting finding is that there are margin changes of PairDistance-EdgeMask-SimCon, 

ClusterPre-PathClass-SimReg, DTINet and DeepR2cov for DDI predictions when the 

splitting ratios is changed from 30:70 to 90:10. A possible explanation for this 

phenomenon is that PairDistance-EdgeMask-SimCon, ClusterPre-PathClass-SimReg, 

DeepR2cov, and DTINet integrate self-supervised representation learning technologies, 

thus relieving the dependence on the size of DDI and DTI training samples. In other 

words, these approaches may reach convergence point under small-scale DDI and DTI 
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training samples. However, there are relatively large-scale DDI samples that include 

66,384 positive samples and the same number of negative samples. Therefore, even 

training set:test set=3:7 (i.e., the number of training samples is approximately 

66,384*2*0.3=39,830), it is enough to make models reach saturation and convergence 

points. Surprisingly, although MoleculeNet achieves relatively lower performance, it 

shows high robustness. The main reasons behind this are that MoleculeNet has the 

small-scale parameters, thus it is easy to saturate. These results suggest that most 

existing methods are prone to be influenced when applying to a small dataset, while 

MSSL2drug can partly overcome this limitation. 

In addition, we conduct the comparison between MSSL2drug with traditional 

graph embedding or matrix factorization, including Laplacian Eigenmaps (LE) [7], 

Graph Factorization (GF) [8] and DeepWalk [9]. The LE and GF use matrix 

factorization technique to learning representation of node. DeepWalk is a classic graph 

embedding approach and achieve great performance. Their hyperparameters is set as 

the default value. The results of MSSL2drug, LE, GF and DeepWalk are shown in Table 

S13. We find that PairDistance-EdgeMask-SimCon from MSSL2drug achieves the best 

performance compared to LE, GF and DeepWalk. Especially, MSSL2drug significantly 

improves the performance of DTI predictions which include more less label data, with 

3~12.4% in term of AUROC and 3.1~11.8% in term of AUPR compared to traditional 

graph embedding or matrix factorization models. We also notice that DeepWalk is 

superior to LE and GF. These results suggest that MSSL2drug outperforms the 

traditional graph embedding and matrix factorization for DDI and DTI predictions in 

sparse networks.  

We compare the performance of MF2A [10] and MSSL2drug on two datasets in 

this work. As shown in Table S14, we observe that PairDistance-EdgeMask-SimCon 

from MSSL2drug outperforms MF2A. More interestingly, MSSL2drug achieves 62.1% 

and 50.6% improvement in term of AUPR on different datasets. This phenomenon is 

also consistent with the results in original paper of MF2A. However, there is no the 

significant difference between AUROC and AUPR values of MSSL2drug. In addition, 

we find that the results (AUROC=0.915, AUPR=0.441) of MF2A is less than results 

(AUROC=0.981, AUPR=0.653) in original paper. This is mainly because the Luo’s 

dataset in MSSL2drug is smaller and include less biomedical networks than the original 

dataset in [R40]. These results suggest that MSSL2drug achieves better performance 

on all evaluation criterias. 

Finally, we test the performance of MIRACLE [11] on our dataset and Luo’s small 

dataset, as shown in Table S15. We find that PairDistance-EdgeMask-SimCon from 

MSSL2drug outperforms MIRACLE on two datasets. In particularly, on Luo’s dataset, 

PairDistance-EdgeMask-SimCon achieves 9.3% and 13.1% over MIRACLE in terms 

of AUROC and AUPR scores, respectively. Similar to the original study of MIRACLE, 

we observed that its AUPR score is less than AUROC values. However, there is no the 

significant difference between AUROC and AUPR values of MSSL2drug. The 

previous works [12-13] have suggested that AUPR can provide a better assessment 

compared to AUROC that is likely to be an overoptimistic metric. These results suggest 

that MSSL2drug achieves better performance for DDI predictions. 
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S7. Drug repositioning for COVID-19 

Recently, the coronavirus disease 2019 (COVID-19) has posed a global health threat. 

The COVID-19 patients tend to be accompanied by an excessive inflammatory 

response that is a main factor of death and indicates a poor prognosis in COVID-19 

[14]. Subsequently, a large number of clinical data has suggested that interleukin (IL)-

6 plays key roles in the inflammatory storms. Based on this intuition, some studies 

found that the inhibitors targeting IL-6 are likely to become promising agents for the 

treatment of COVID-19 patients [15-16]. Therefore, PairDistance-EdgeMask-SimCon, 

which achieves the best performance in MSSL2drug, is applied to drug repositioning 

for COVID-19, which aims to discover agents related to IL-6 for blocking the excessive 

inflammatory response in patients. To be specific, we predict the confidence score of 

interaction between each drug and IL-6 by multilayer perceptron, and then top-10 drugs 

with the highest scores are selected as potential anti-inflammatory agents for COVID-

19 patients. Finally, we utilize the knowledge from PubMed publications and clinical 

reports to explain the anti-inflammatory effects of candidate drugs. It is noted that in 

the construed BioHN, there is no interaction between IL-6 and all drugs. In other words, 

there is no the known drugs interacting with IL-6. Therefore, top-10 drugs are novel 

predictions for IL-6. Concurrently, the top-10 drug-IL-6 interactions are not used in 

training the PairDistance-EdgeMask-SimCon representation. 

Based on PubMed publications and clinical studies, we find that nine out of ten 

drugs predicted by MSSL2drug can inhibit the release of IL-6 and reduce inflammatory 

response, as shown in column 4 in Table S16. Triclosan inhibits the release of IL-6 by 

decreasing mRNA levels. Tazarotene decreases the expression of IL-6 to exert the anti-

inflammatory effects. Bosutinib inhibits the production of IL-6 and tumor necrosis 

factor (TNF)-α induced by Lipopolysaccharide stimulation. Vandetanib significantly 

inhibits the levels of IL-6, IL-10, and TNF-α, and reduces inflammatory cell infiltrates 

in the lungs of a COVID-19 infection mouses. Pazopanib can relieve the negative 

prognostic effect of high IL-6. More importantly, we find that ruxolitinib 

(ClinicalTrials.gov ID: NCT04414098, and NCT04377620) and chlorhexidine 

(NCT04941131) have been determined in clinical test against COVID-19. Therefore, 

these drugs can inhibit inflammatory responses and should be taken into consideration 

in clinical studies against COVID-19.  

On the other hand, we conduct molecular docking [17], molecular dynamics (MD) 

simulations [18-19], and surface plasmon resonance (SPR) [20] to explore physical 

interactions between the predicted drugs and IL-6. 

 Molecular docking: The docking program AutoDock4.2 [17] was used to model 

the molecular interactions between IL-6 and each drug. The three-dimensional 

structure of IL-6 are extracted from the Protein Data Bank (PDB ID: 4CNI). The 

grid box is a cubed with 12 Å sides centered on selected amino acid residues. 

Others parameters are set as default values. During docking process, the final 

docking conformations are selected by using cluster algorithms based on energy 

and the root mean square deviation (RMSD) values. To be specific, for a given 
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drug-IL-6 pair, at least 50 docking poses are obtained for position clustering. These 

docking poses are clustered by position differentiation at 0.5Å RMSD. First, all 

conformations are sorted by docked energy and the conformation with lowest 

energy is treated as the center of the first cluster. Second, the second conformation 

is compared to the first. If its RMSD value is below 0.5Å, it is added to the first 

cluster. Otherwise, it becomes the first member of a new cluster. This process is 

repeated until each conformation are divided into a group in which members are 

most similar to it. Finally, the center conformation within the biggest position 

cluster is selected as the final conformation. 

The docking affinity in Fig. S7(a) suggest that there is the good binding ability 

between 10 small molecules and IL-6. In addition, we find that the protein binding 

pocket are located at hydrophobic regions that contain more hydrophobic amino acids, 

as shown in Fig. S7(b). These amino acids containing relatively many functional groups 

tend to form the hydrophobic interaction with small molecules. In particular, vandetanib, 

pazopanib, and chlorhexidine may have stronger binding interactions compared to other 

drugs, because of corresponding to relatively lower energies. However, chlorhexidine 

corresponds to lowest confidence score predicted by multilayer perceptron. Therefore, 

vandetanib and pazopanib are conducted molecular dynamics simulations to further 

explore physical interactions between them and IL-6. 

 Molecular dynamics simulations: In this experiment, we use AMBER16 [18-19] 

to conduct molecular dynamics simulations. The results from molecular docking 

are set as the initial structure. Each complex is placed into a box that is delimited 

by at least 10 Å from any heavy atom of the protein. The protein-ligand complex 

is then filled with TIP3P water molecules, and Na+ ions are added to neutralize net 

charge of systems. Finally, one 100ns MD simulation is run for each complex, the 

binding free energy is computed for each snapshot and averaged using the MM-

GBSA module.  

To evaluate the fluctuation equilibrium and structural stability of the protein, we 

monitor the root mean square deviation (RMSD) of the backbone atoms relative to the 

initial structure during MD simulations, as shown in Fig. S8. We find that the 

pazopanib-IL-6 system and vandetanib-IL-6 system reach stability after 20ns and 40ns, 

respectively. Interestingly, RMSD of pazopanib-IL-6 system and vandetanib-IL-6 

system stabilize at 4.6~4.8Å and 4.8~5Å, respectively. These results indicate that two 

complex systems are stable and their fluctuations is similar. 

For the pazopanib-IL-6 complex model in Fig. S9(a), the binding is mediated by 

direct hydrogen bonds from Leu151 to pazopanib. The same atoms in pazopanib form 

hydrogen bond with Leu147 of IL-6. The corresponding binding free energy values are 

-9.61 kcal/mol for pazopanib. Fig. S9(b) shows that vandetanib mainly binds to Asn63 

and Tyr97 in IL-6 through two hydrogen bonds. The corresponding binding free energy 

values are -11.81 kcal/mol for vandetanib. These results suggest that pazopanib and 

vandetanib may be able to form physical interactions with IL-6. 

 Surface plasmon resonance (SPR): We further validate physical interactions 

between these two molecules (i.e., vandetanib and pazopanib) and interleukin (IL)-

6 through surface plasmon resonance (SPR) [20] which has been used for detecting 
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protein-ligand interactions. SPR is conducted via Nicoya system. The mixture of 

400 mM EDC and 100 mM NHS are used for activating COOH chip. The 

recombinant human IL-6 protein are diluted to 40 μg/mL through immobilization 

buffer (Sodium Acetate, pH5.0) and then these diluted proteins are injected to the 

chip at a flow rate of 20 μL/min. The chip is deactivated by injecting 1M 

Ethanolamine hydrochloride at a flow rate of 20 μL/min for 240s. Analogously, the 

micromolecule is diluted to the different concentrations by the same running buffer, 

as shown in Fig. S10. The fixed concentrations of micromolecule is injected into a 

channel flow cell at a flow rate of 20 μL/min and keep an association of 240s, 

followed by 360s dissociation. Note that the association and dissociation process 

are performed in the Running Buffer PBS (pH7.4). Glycine-HCl as regeneration 

buffer is injected on sensor chip surface at a flow rate of 150 μL/min to remove 

any bound analyte. We repeat perform the above dilution, association, dissociation 

and regeneration procedures according to analyte concentrations in ascending order.  

The different concentrations of vandetanib and pazopanib are injected on the chip 

surface, resulting in five response curves as shown in Fig. S10. According to the 

obtained association and dissociation rates, we achieve the equilibrium dissociation 

constants (KD) of the selected drugs and recombinant human IL-6. We find that 

vandetanib (KD=28.6μM) and pazopanib (KD=20.7μM) can bind to Recombinant 

Human IL-6 with high affinity. In comparison, the affinity of pazopanib and 

recombinant human IL-6 is stronger than that of vandetanib. These results demonstrate 

that MSSL2drug can identify new physical drug-target interactions. 

In this work, it is noted that the drug-protein interaction (DTI) networks are 

collected from the DrugBank [21], PharmGKB [22], and Therapeutic Target database 

(TTD) [23] where there may be DTI samples in which drugs indirectly interact with 

proteins by regulate the related pathways. Unfortunately, it is different to completely 

eliminate these noises. In other words, there may be the indirect relationships between 

drugs and proteins in training samples. These samples with indirect relationships are 

treated as drug-target physical interactions by deep learning models. Naturally, drug-

target interactions predicted by deep learning may include some indirect relationships 

between drugs and proteins. Therefore, these predicted drugs may exert inhibitory 

action on IL-6 by regulating down-stream pathway. However, it is important and 

interesting to validate whether the predicted drugs physically bind to IL-6. These results 

and analyses further emphasis that it is important and interesting to validate whether 

there are the indirect relationship or physical interactions between these drugs and IL-

6 by standard and systematic experiments. In addition, all predicted drugs must be 

validated in preclinical models experiments and randomized clinical trials before being 

used in COVID-19 patients. 

 

S8. Impact of key components on SSL tasks 

S8.1 Selection of centrality measurements in ClusterPre 

It is interesting and important to discuss the impact of centrality measurements on 

MSSL2drug. There are popular centrality measurements, including degree centrality, 

javascript:;
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eigenvector centrality [24], clustering coefficient [25], closeness centrality [26], and 

betweenness centrality [27]. Nevertheless, the closeness and betweenness centrality are 

calculated by shortest paths between target node and all of the other nodes in networks. 

Time complexity of the closeness and betweenness centrality is very high, and it is not 

easy to obtain the closeness and betweenness centrality for the large real networks. 

Therefore, we use graph attention network (GAT) models to predict the each node 

degree centrality (DegreePre) and eigenvector centrality (EigenvectorPre) for 

extracting representations that preserve the local structure information in BioHNs and 

are applied to drug discovery.  

As shown in Table S17, we observe that DegreePre (AUPR=0.651) and 

EigenvectorPre (AUPR=0.596) generate the poor prediction results for DDI predictions. 

For DTI predictions, ClusterPre outperforms DegreePre and EigenvectorPre, with 8.35% 

higher AUROC and 12% higher AUPR average values. A possible explanation for these 

results is that the degree and eigenvector centralities only consider the importance and 

distribution of neighboring nodes. However, the degree and eigenvector centralities fail 

to capture the triangle (loops of order 3) structures in networks, i.e., if node i is 

connected to nodes j and k, there is a high probability of nodes j and k being connected 

[28]. Nevertheless, the clustering coefficients are not only extract the distribution of 

neighboring nodes, but also the triangle (loops of order 3) structures in networks.  

 

S8.2 Division of “major” class in PairDistance 

Recently, S2GRL [29] suggests that the distinctions between node pairs with long 

distance (dij>4) are relatively vague, and divided into one “major” class. In S2GRL, it 

can be found that clearly distinguishing 1-hop, 2-hop, and 3-hop nodes into three classes 

is beneficial to improving the quality of representations, while further differentiating 4-

hop and higher-hop node pairs would degrade the performance. Therefore, in pairwise 

distance classification (PairDistance), we also divide 4-hop and higher-hop node pairs 

into a “major” class. In addition, according to your opinions, we have added the 

experiments to investigate the effect of “major” class selection on the prediction 

performance of PairDistance. As shown in Table S18, we find a similar phenomenon in 

S2GRL, that is, dividing 4-hop and higher-hop node pairs into a “major” class achieves 

better performance compared to 3-hop and 5-hop. These results indicate that the 

distance of “major” class should be set to 4 to optimize the perfection performance of 

drug discovery. 

 

S8.3 Lengths of meta path in PathClass 

The length selection of meta path is an interesting and important question. Fortunately, 

previous studies have suggested that the long meta-paths may reduce the quality, while 

short meta paths contributes to link predictions [30-31]. Therefore, we further 

investigate the effect of meta path length on the performance of PathClass. As shown 

in Table S19, we summarize the predictive results of PairDistance with meta path of 

different lengths for warm start drug discovery. We find that meta path with lengths 4 

achieve best performance, with approximately 1% higher the average DDI-AUPR and 

6% higher the average DTI-AUPR than other length meta path for warm-start 
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predictions. Meta paths with lengths 5 increase the time complexity, while it generates 

lower performance. These results suggest that selecting meta paths with lengths 4 is 

contribute to the performance of PathClass compared to other length paths. 

 

S8.4 Selection of similarity measurement in SimCon 

In the task of similarity contrast (SimCon), cosine similarity is used to measure the 

similarity between two embedding representations. Therefore, we replace cosine 

similarity by Euclidean Distance (termed SimCon-ED) to verify the influence of 

different similarity measurements on SimCon. Table S20 summarizes the results of 

SimCon and SimCon-ED for warm start predictions. We observed that SimCon-ED 

(DDI-AUPR=0.805) achieves higher performance than SimCon (DDI-AUPR=0.783). 

In contrast, SimCon obtains 1% higher AUROC and 1.6% AUPR than SimCon-ED for 

DTI predictions. These results indicate that the different similarity measurements bring 

the marginal improvements or reductions to SimCon. A possible explanation for this 

result is that cosine function and Euclidean Distance have the same level of ability to 

measure the similarity distributions among different nodes. Concurrently, SimCon only 

requires to distinguish the similarity distributions between node pairs, and reduces the 

dependence on similarity measurements. 

 

S8.5 Ablation result analysis of PairDistance-EdgeMask-SimCon 

We conduct ablation analysis for PairDistance-EdgeMask-SimCon. To be specific, 

PairDistance-EdgeMask-SimCon is transformed into EdgeMask-PairDistance, 

PairDistance-SimCon, and EdgeMask-SimCon by removing different tasks, 

respectively. The results of ablation experiment related to PairDistance-EdgeMask-

SimCon are shown in Table S21. We find that EdgeMask-PairDistance achieves higher 

results than PairDistance-SimCon and EdgeMask-SimCon for both warm start 

predictions and cold start predictions. A possible explanation for these results is that 

EdgeMask-PairDistance captures local and global feature in BioHNs. Interestingly, 

EdgeMask-SimCon (AUROC=0.878, AUPR=0.871) outperforms PairDistance-

SimCon (AUROC=0.858, AUPR=0.837) for cold start DDI predictions. In contrast, 

EdgeMask-SimCon is lower than PairDistance-SimCon for cold start DTI predictions. 

More importantly, we find that PairDistance-EdgeMask-SimCon achieves best 

performance compared to EdgeMask-PairDistance, PairDistance-SimCon, and 

EdgeMask-SimCon. These results suggest that PairDistance-EdgeMask-SimCon 

integrating multimodal and local-global task is beneficial to improve performance of 

drug discovery, in which the contribution of SimCon is relatively lower than EdgeMask 

and PairDistance to some extent. 

 

S9. Contributions of key components in multi-task learning  

MSSL2drug integrates adversarial training- and orthogonality constraint-based multi-

task learning mechanism for improving representation quality. Therefore, we have 

added the experiments to evaluate the contribution of the adversarial training strategy 

and orthogonality constraint mechanism to MSSL2drug, respectively. In this 
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experiment, MSSL2drug is transformed into ADL and ORC patterns. To be specific, 

ADL pattern denotes that MSSL2drug only uses adversarial training-based multi-task 

framework to learning representation vectors of nodes, as shown in Fig. S11. In contrast, 

ORC pattern denotes that MSSL2drug only uses an orthogonality constraint-based 

multi-task learning strategy, as shown in Fig. S12.  

In this experiment, we select ClusterPre-PathClass and PairDistance-EdgeMask-

SimCon to conduct this experiment because they achieve best performance in two-task 

and multi-task combinations, respectively. Therefore, ClusterPre-PathClass is 

transformed into ADL and ORC patterns, termed CP-ADL and CP-ORC. Analogously, 

PairDistance-EdgeMask-SimCon is transformed into PES-ADL and PES-ORC. The 

results of all models for warm start predictions are shown in Table S22. An interesting 

finding is that CP-ADL obtains the slight improvement compared to CP-ORC for DTI 

predictions, while CP-ORC (DDI-AUROC=0.915) is superior to CP-ADL (DDI-

AUROC=0.879) by a large margin. A similar phenomenon can also be observed in PES-

ADL and PES-ORC. More importantly, we find that MSS2drug achieves best 

performance compared to ADL and ORC models. These results suggest that MSS2drug 

integrating ADL and ORC is beneficial to improve performance, in which the 

contribution of ORC is higher than ADL to some extent. 

 

S10. High-quality representations 

If the representations perfectly keep the characteristic of networks, the traditional 

machine learning models can generate great results. To further demonstrate the 

performance of MSSL2drug, the representations are fed into Random forest (RF) [32] 

and support vector machine (SVM) [33] for DDI and DTI predictions. In this 

experiment, we only select PairDistance-EdgeMask-SimCon, because it achieves best 

performance in 15 multi-task combinations. The representations from PairDistance-

EdgeMask-SimCon are fed into SVM and RF for drug discovery, termed PES-SVM 

and PES-RF, respectively. As shown in Table S23, we observe that there is no 

significant difference between PES-SVM and PairDistance-EdgeMask-SimCon for 

DDI and DTI predictions. However, an interesting finding is that PES-RF (AUROC= 

0.987) achieves the higher results than PairDistance-EdgeMask-SimCon (AUROC= 

0.939) for DDI predictions. These results suggest that MSSL2drug can generate the 

high-quality representations that can keep the inherent nature of biomedical 

heterogeneous networks, thus improving the performance of drug discovery. 

 

S11. Test set contamination studies 

In this experiment, PairDistance-EdgeMask-SimCon (PES) is transformed into 

PESReM through four key steps. (1) We extract 10% of DTIs as the positive samples 

of test set and remove them from BioHNs while ensuring no node is isolated. 

Concurrently, all DTIs in the residual network are treated as positive samples of training 

set. (2) An equal number of negative samples are selected randomly and added into 

training set and test set, respectively. (3) The residual network is used for self-
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supervised learning to obtain low-dimension representations. (4) All drug 

representations as features are fed into multilayer perceptron for DTI predictions.  

As shown in Fig. S13, we find that the performance of PESReM is not changed 

much compared to PairDistance-EdgeMask-SimCon (PES). Interestingly, although the 

AUROC score of PESReM is 1% worse than that of PairDistance-EdgeMask-SimCon, 

PESReM achieves approximately 1% improvement in term of AUPR for cold start 

predictions. More importantly, recent studies also made a similar finding [34-35]. These 

results would suggest that the data contamination in SSL does not cause significant 

change for the performance of MSSL2drug. This is mainly attributed to two reasons. 

On the one hand, the DTIs in test set are only used for GNN message passing rather 

than the label of self-supervised learning. For example, in reading comprehension task, 

GNNs only see the passage during self-supervised training but not see the questions 

and answers, this does not constitute cheating and bring an advantage. In contrast, 

previous studies have suggested that removing all test data in downstream tasks maybe 

lead to overly punishment for false positive samples [34]. On the other hand, a large 

amount of GNN models uniformly sample a part of neighbors for each node during 

training instead of using full neighborhood sets, in order to keep the high precision and 

computational efficiency [36-38]. These studies further indicate that there is no 

significant influence on drug discovery when removing a certain number of edges. In 

summary, MSSL2drug is relatively insensitive to data contamination. However, in the 

future, we will more synthetically analyze the data contamination on the performance 

of downstream tasks.  

S12. Comparisons of run-time and parameter sizes 

We compared the run-time and parameter sizes of PairDistance-EdgeMask-SimCon 

with baselines. All methods are run on NVIDIA Tesla V100 GPU (Memory16G). As 

shown in Table S24, the parameter sizes of MSSL2drug (i.e., PairDistance-EdgeMask-

SimCon) is smallest compared to most of baselines. However, the run-time of 

MSSL2drug is relatively higher than DDIMDL, DTINet, MoleculeNet, and deepDTnet. 

This is mainly because MSSL2drug integrates multiple GATs that are trained by large-

scale samples with pretext labels. A similar issue can also be observed in DeepR2cov 

that is a SSL technique. 

 

S13. Small world property of biological networks 

Here, we use the statistical analysis to evidence that the constructed biological network 

is a small-world network. In Table S25, we list the shortest path length and the number 

of node pairs. We find that there are only 170 node pairs in which the shortest path 

length is over 5. In addition, we observe the fat-tailed degree distributions 

(https://en.wikipedia.org/wiki/Fat-tailed_distribution) in Fig. S14, and average degree 

with 73. This phenomenon is consistent with the other biological networks in [39-40]. 

These results suggest that the biological network has the small world property. 
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S14. Basic self-supervised tasks on BioHNs 

S14.1 Clustering coefficient regression (ClusterPre) 

In this work, we firstly design ClusterPre to develop the self-supervised representation 

learning (SSL) for drug discovery. In this pretext task, we aim to predict the clustering 

coefficient of each node to capture the local structure information in BioHNs. Formally, 

we adopt the mean squared error as the loss function of ClusterPre:  

  
2

1

1
( ) ( )

i

n

c ci
L f i Y

n
 


                   (1) 

where   is the parameter of a graph neural network model ( )f  , n  represents the 

number of nodes, ( )f i  denotes the representations of node i , ( )   is a Sigmoid 

function, and 
icY , which is the clustering coefficient for a given node i , can be 

calculated as follows: 
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where ideg  is the degree of node i , and il  is the number of links between the ideg  

neighbors of node (i.e., the number of triangles that go through node i ). 

Generally, the clustering coefficients of nodes are larger when they have denser 

connections to other nodes. The closeness centrality can reflect the local structures in 

BioHNs to a large extent. The goal of ClusterPre is to ultimately learn the low-

dimension representations that preserve the local structure information in BioHNs. 

 

S14.2 Pairwise distance classifications (PairDistance) 

The PairDistance self-supervised task is not limited to a node itself and its local 

neighborhoods; it also takes a global view of BioHNs. Three key steps as follows form 

the PairDistance task. 

Step1: Randomly select a certain number of node pairs ( , )i j  for which there is 

a path between nodes i  and j , and calculate the shortest path length ,i jd  for each 

node pair. This is mainly because calculating the shortest path lengths of all node pairs 

would be computationally expensive, and might be full of challenges for large-scale 

networks. 

Step2: Divide all path lengths ,i jd  into four categories, that is, , ,1, 2,i j i jd d   

, 3i jd   and , 4i jd  . Formally, we let 
, , , ,{ | 1,2,3,and 4}

i jd i j i j i jY d d d    denote the 

distance categories of node pairs. 

Step3: Utilize GATs to predict the distance category of each node pair. 



16 
 

As described in Step3, PairDistance can be treated as a multiclass classification 

problem in which the objective function is formulated as follows: 
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where ,   is an operation that concatenates two vectors,  ,   represents the cross 

entropy loss function, and ( )   represents the Softmax function. S  and | |S  denote 

the selected set of node pairs ( , )i j  and the number of node pairs ( , )i j , respectively. 

 

S14.3 Edge type masked predictions (EdgeMask) 

In this task, the edge representations, which are obtained by concatenating the 

representations of its two end-nodes, are fed into the Softmax function to predict the 

type of the masked edges. EdgeMask can be treated as the four classification problems. 

Similar to PairDistance, we also adopt the cross entropy loss function in EdgeMask. In 

the construed BioHN, there are five types of edges (e.g., drug-drug interactions, drug-

protein interactions, drug-disease associations, protein-protein interactions, and 

protein-disease associations). However, previous studies [31, 41-42] have suggested 

the schema of BioHNs as shown in Fig.S15, where both drug-drug relationships and 

protein-protein relationships are treated as ‘interaction’. Concurrently, drug-drug 

networks and protein-protein networks are homogeneous networks. Inspired by these 

works, in MSSL2drug, drug-drug relationships and protein-protein relationships are 

treated as the same types of semantic. 

  

S14.4 Bio-meta path classifications (PathClass) 

For a given heterogeneous network, a meta path is defined as a sequence in the form of 

1 2

1 2 1
lRR R

lA A A    , which describes a composite relations between 1A  

and 1lA  , where lA  is node types, and lR  represents edge type between nodes. In this 

work, the length of a meta path is defined as the total number of nodes in current meta 

path. A meta path integrates the semantic relationships in BioHNs. For example, 

“ protein disease drug  ” describes the situation in which a protein causes a disease 

that is treated by a drug. Given a meta path, we can sample many path instances that 

have the same semantics, and belong to the same path type. Inspired by the multi-hub 

characteristics [41, 43] within BioHNs, we design 16 types of meta paths as shown in 

Table S26, where the first and last objects are drugs and proteins, respectively. This is 

mainly because drugs and proteins are interconnected with other entities by more edges, 

as shown in Table S28. Note that all the meta paths include only four nodes mainly 
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because meta paths longer than four nodes may reduce the quality of the associated 

semantic meanings.  

In addition, we generate false path instances by randomly replacing some nodes in 

true path instances. There are three key points in the false path generation, as shown in 

Fig. S16, (1) For a given true path instance, it has 6.25% (i.e., 1/16) chance being 

generated a false path instance to avoid the label imbalance questions. (2) There is no 

relationship between the permutation nodes and the context nodes in current paths. (3) 

The number of replaced nodes is less than four that is the length of meta paths. In other 

words, there are at most two true edges in a false path. Therefore, these false paths can 

improve the generalization and robustness of PathClass when compared to the false 

paths with two true edges or one true edge. Nevertheless, it is interesting and important 

to verify what happens if the false paths have two true edges or one true edge. 

 

S14.5 Node similarity regression (SimReg) 

During the GNNs learning process, we perform node message propagation by 

aggregating local neighborhoods. Concurrently, we also wish to somewhat maintain the 

similarity attributes in the original feature space. Therefore, we develop SimReg, which 

requires GNNs to fit the similarity values of node pairs in the original feature space. 

Formally, the objective function employs the mean squared error and is given as follows: 
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where   is the parameters of a graph neural network ( )f  , ( )f i  and ( )f j denote 

the embeddings of node i  and j . ,   is an operation that concatenates two nodes, 

 ,    represents the mean square error (MSE) loss function, and ( )   represents the 

Sigmoid function. 
,i jsimY  is the similarity value between two nodes in the original 

feature space. S  and | |S  denote the selected set of node pairs ( , )i j  and the total 

number of node pairs ( , )i j , respectively.  

In this work, we use different property similarity measurements according to 

various types of nodes. Chemical similarities among drug pairs: The simplified 

molecular input line entry system (SMILES) of each drug is extracted from DrugBank. 

For a given drug, we transform its SMILES sequence into an MACCS fingerprint by 

using Open Babel v2.3.1 (http://openbabel.org/wiki/Main_Page). Based on these 

MACCS fingerprints, we calculate the Tanimoto coefficient [44] of each drug-drug pair 

as its chemical similarity score. The Tanimoto coefficient offers a value in the range of 

zero to one and is widely used for drug discovery.  

Protein sequence similarity: We download the protein sequences from the 

Uniprot database (http://www.uniprot.org/). We leverage the Smith-Waterman model 



18 
 

[45] to calculate the sequence similarity scores of protein pairs. The Smith-Waterman 

algorithm performs local sequence alignment by comparing segments of all possible 

lengths and optimizing the similarity measure for determining similar regions between 

two strings of protein sequences. 

Disease similarity based on protein-protein interaction (PPI) networks: The 

disease module theory [46] suggests that diseases with overlapping modules in gene-

gene networks show significant symptom similarity and comorbidity. We calculate the 

disease similarity scores by using the ModuleSim algorithm [47-48], which is an 

extension of disease module theory. 
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where 1 11 12 1{ , , , }mG g g g  denotes a disease module, which contains m  genes for 

disease 1dis . 2G  is another disease module with a similar definition.  1 2,SIM G G  

is calculated as follows: 
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where 
1 ,zg gd  is the length of the shortest path between 1zg  and g  in a PPI network. 

 
1 2G rF g  is also calculated according to similar definitions. 

 

S15. Hyperparameter setting 

In SSL stage, we empirically consider the selections of optimization algorithm, weight 

initialization, and activation functions. The number of hidden layers, hidden units, head 

attentions, and batch size is selected according to the limitations of hardware (NVIDIA 

Tesla V100 GPU, Memory16G). The selections L2 regularization, learning rate, and 

epoch size are slightly tuning according to the performance of single tasks. Finally, we 

adopt the Glorot initialization [49], the Adam optimizer [50] with a learning rate [1e-

5,1e-2], L2 regularization 5e-4, 8 hidden units and 8 head attentions. The number of 

epoch is set to 30. In supervised drug discovery, an MLP with three fully connected 

layers (including an input layer, a hidden layer and an output layer) is used to decode 

the embedding vectors. The size of the input layer depends on the dimensionality of the 
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input feature, and the size of the hidden layer is set to 64. We also use the Adam 

optimizer to train the MLP for 30 epochs with batch size 128. For the learning rate, we 

select 10 points that are equidistant from the interval [5e-4, 5e-1].  

The representation dimension can directly affect the performance and time 

efficiency of self-supervised representation learning approaches. Therefore, several 

researchers have investigated the influence of different embedding dimensions in 

various SSL methods [51-55]. These studies found that the performance first increases 

when the embedding dimensionality increases. However, the performance tends to 

saturate or reduce when the dimension reaches to a threshold that is often close to 100. 

This is intuitive since higher dimensionality can encode more useful information, while 

too large value may lead to over-fitting phenomenon and excessive time complexity. In 

addition, the algorithm models with too large-scale parameters cannot run due to the 

limitations of hardware implementation. Therefore, the representation dimension of 

each private or shared GAT models is set to 64 (i.e., 8 hidden units × 8 head attentions) 

that is largest values under our hardware.  

 

S16. Baselines 

In this work, we compare MSSL2drug with six state-of-the-art methods, including 

deepDTnet [2], MoleculeNet [3], KGE_NFM [4], DTINet [1], DDIMDL [5], and 

DeepR2cov [6], Laplacian Eigenmaps (LE) [7], Graph Factorization (GF) [8] and 

DeepWalk [9], MF2A [10], and MIRACLE [11]. We only select PairDistance-

EdgeMask-SimCon to compare with baseline methods, because it achieves best 

performance in 15 multi-task combinations. The hyperparameters of all baseline 

methods are set according to the guidelines in [1-6], in which use Adam as the 

optimization algorithm and cross entropy as loss function to train the deep learning 

networks.  

 deepDTnet: it proposes a deep neural network to learn low-dimensional graph 

representations for both drugs and targets. In addition, these representation vectors 

are fed into Positive-Unlabeled-matrix completion models for target identification 

among known drugs. In deepDTnet, we set the number of random walk steps T= 3, 

the biased value 𝛼=0.5 and regulation parameter 𝜆=0.1. 

 MoleculeNet: this is a benchmark for molecular machine learning which includes 

multiple methods. Here, we select a graph convolutional model to compare with 

MSSL2drug, which is specifically designed for network (graph) structure data and 

is widely applied to drug discovery. The graph convolutional models consist of a 

graph convolutional layer, a batch normalization layer, followed by a fully-

connected dense layer to predict DDIs or DTIs. The number of units in graph 

convolutional layers and fully-connected layers are set to 64 and 128, respectively. 

 KGE_NFM: This model firstly learns a low-dimensional representations based on 

the knowledge graphs, and then integrates the multimodal information via a neural 

factorization machine for DTI predictions. In KGE_NFM, we set weight of 

regularization loss as 1e-5, regularizer norm as 3, the layer number and units in 

each layer of deep net as 128, L2 Regularizer strength applied to DNN as 1e-5. 
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 DTINet: It applies a diffusion component analysis algorithm to learning the low-

dimensional vectors, which capture the topological properties in biomedical 

heterogeneous networks. Based on these representations, DTINet makes DTI 

predictions via an inductive matrix completion model [56]. In DTINet, we set 

restart probability to 0.8, dimensionality of drug and protein representations to 100 

and 400, respectively.  

 DDIMDL: It is a multimodal deep learning framework for DDI predictions. 

DDIMDL firstly constructs deep neural network sub-models based on diverse drug 

features, and then combines all sub-models to learn cross-modality representations 

for predicting DDIs. In sub-models of DDIMDL, we adopt three hidden layers, 

numbers of whose nodes are 512, 256 and 1, and set the dropout rate to 0.3.  

 DeepR2cov: This study proposes a meta path-based deep representation model to 

learn low-dimensional embedding vectors. DeepR2cov also uses inductive matrix 

completion model [43] for bio-link predictions including disease-gene associations, 

DTIs and drug-side effect associations. More importantly, DeepR2cov predicts 22 

agents to accelerate treatment of the inflammatory responses in COVID-19 patients. 

In DeepR2cov, the number of Transformer blocks, the hidden sizes, the number of 

self-attention heads, and batch size are set to 12, 768, 12, and 256, respectively. 

 Laplacian Eigenmaps: This is a graph Laplacian-based geometrically motivated 

algorithm for representing the high-dimensional graph data.  

 Graph Factorization: It is a streaming graph embedding that factorizes a graph so 

as to minimize the number of neighboring vertices rather than all possible edges. 

 DeepWalk: The node sequences from random walks in graphs are treated as 

sentences and fed into SkipGram model [57] to learning node representations. The 

length of random walk is set to 32. The window size is 10. 

 MF2A: This model use matrix factorization to optimize AUPR and AUROC for 

drug-target prediction. MF2A adopt a local interaction consistency to incorporate 

drug and target similarity information. The hyperparameters of MF2A is set as the 

default value in [10].  

 MIRACLE: this is a multi-view graph contrastive representation learning for drug-

drug interaction prediction. MIRACLE is able to capture inter-view molecule 

structure intra-view interactions between molecules. The number of the hidden 

states and GCN layers are set to 256 and 3, respectively. The ratio of dropout is 0.3. 
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Supplementary Figures  
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Figure S1. The results of single SSL tasks for cold start predictions where mean and std values 

denote average and standard deviation values that are calculated across ten results. 
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Figure S2. Heatmap of two-task combinations for cold start predictions where the results are 

normalized to [0,1] along the x-axis by Min-Max normalization technique. The redder (bluer) 

squares denote the greater (smaller) value. The shaded area denotes the combinations of global and 

local SSL tasks. 
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Figure S3. The results obtained with multimodal SSL tasks for cold start drug discovery, where ‘T’ 

and ‘M’ denote the total number of tasks and modalities in each multi-task combination, respectively. 
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Figure S4. Heatmap of two-task combinations on Luo’s dataset for warm start predictions where 

the results are normalized to [0,1] along the x-axis by Min-Max normalization technique. The redder 

(bluer) squares denote the greater (smaller) value. The shaded area denotes the combinations of 

global and local SSL tasks. 
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Figure S5. The results obtained with multimodal SSL tasks on Luo’s dataset for warm start drug 

discovery, where ‘T’ and ‘M’ denote the total number of tasks and modalities in each multi-task 

combination, respectively. 
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Figure S6. Performance of all methods on different splitting ratios, where the x-axis represents the 

ratios between training sets and test sets. The mean and std values denote average and standard 

deviation values that are calculated across ten results. 
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Figure S7. Molecular docking results for small molecules binding to IL-6. (a) Docking affinity 

between 10 small molecules and IL-6. (b) Protein surface colored according to the interpolated 

atomic charge. The hydrophilic and hydrophobic regions are denoted by blue and red color, 

respectively. The different colors ball-and-sticks denote the different small molecules. (c) Two small 

molecules with in protein binding pocket surrounding some residues where the yellow and light 

grey ball-and-sticks denote vandetanib and pazopanib, respectively. 

 

 

 

 

 

 

Figure S8. Root mean square deviation (RMSD) of the protein in two complex system as the 100 

function of simulation time. 
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(a) Pazopanib-IL-6 

 

(b) Vandetanib-IL-6 

Figure S9. Molecular dynamics simulation results for small molecules binding to IL-6 where 

the black dotted line represent hydrogen bonds. 

 

 

 

 

 

 

 

  
Figure S10. SPR sensorgrams and binding affinity between two molecules and IL-6. 
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Figure S11. Adversarial training-based multi-task learning framework. 
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Figure S12. Orthogonality constraint-based multi-task training framework. 
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Figure S13. Performance comparison of PESReM and PairDistance-EdgeMask-SimCon for DTI 

predictions where PSE denotes PairDistance-EdgeMask-SimCon; PESReM denotes the variant of 

PairDistance-EdgeMask-SimCon when test data is removed from SSL. 
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Figure S14. The distribution of node degree. 
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Figure S15. Schema of the BioHN. 
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Figure S16. The procedure of negative path generation. 
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Figure S17. The frameworks of graph attention-based two-task learning. 
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Figure S18. An example of features initialization process. 
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Supplementary Tables  

Table S1. The p-value among single task-driven SSL models for DTI and DDI predictions where we used the two-

sided Student's t-test with a significance threshold of 0.05. No adjustments were made for multiple comparisons. 

 Method ClusterPre EdgeMask PairDistance PathClass SimReg SimCon 

DTI  

ClusterPre / 0.112 2.38E-8 7.23E-5 5.41E-4 1.63E-5 

EdgeMask 0.112 / 1.84E-3 4.66E-3 6.08E-7 3.30E-6 

PairDistance 2.38E-8 1.84E-3 / 2.62E-3 0.815 5.17E-3 

PathClass 7.23E-5 4.66 E-3 2.62E-3 / 1.59E-2 1.80E-5 

SimReg 5.41E-4 6.08E-7 0.815 1.59E-2 / 3.58E-3 

SimCon 1.63E-5 3.30E-6 5.17E-3 1.80E-5 3.58E-3 / 

DDI 

ClusterPre / 1.50E-6 3.3E-4 2.68E-8 1.20E-5 1.54E-11 

EdgeMask 1.50E-6 / 7.49E-9 3.50E-14 2.87E-12 3.75E-16 

PairDistance 3.3E-4 7.49E-9 / 1.29E-6 0.121 9.35E-12 

PathClass 2.68E-8 3.50E-14 1.29E-6 / 3.86E-8 2.84E-12 

SimReg 1.20E-5 2.87E-12 0.121 3.86E-8 / 1.35E-15 

SimCon 1.54E-11 3.75E-16 9.35E-12 2.84E-12 1.35E-15 / 

a. The yellow shaded areas denote the p-value between local information- and global information-based SSL models. 

b. The green shaded areas denote the p-value between attribute strong and weak constraint-based SSL models. 

c. The p-value among SSL models higher than 0.05 are marked in red. 
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Table S2. The results obtained with fifteen SSL combinations in warm start predictions 

No. Self-supervised tasks 
Modal 

size 

DDI  DTI 

AUROC±Std AUPR±Std AUROC±Std AUPR±Std 

1 EdgeMask-PairDistance 2 0.917±0.003 0.912±0.005 0.958±0.007 0.951±0.009 

2 ClusterPre-PathClass 2 0.915±0.001 0.910±0.003 0.956±0.007 0.956±0.007 

3 ClusterPre-PairDistance 1 0.895±0.002 0.882±0.004 0.945±0.006 0.936±0.011 

4 EdgeMask-PathClass 1 0.882±0.009 0.869±0.011 0.946±0.005 0.933±0.007 

5 PairDistance-PathClass 2 0.887±0.004 0.871±0.005 0.943±0.006 0.937±0.007 

6 PathClass-SimCon 2 0.883±0.004 0.867±0.006 0.947±0.009 0.945±0.010 

7 PairDistance-SimCon 2 0.880±0.006 0.860±0.012 0.942±0.007 0.935±0.008 

8 EdgeMask-SimReg 2 0.875±0.004 0.856±0.009 0.946±0.006 0.932±0.011 

9 PairDistance-SimReg 2 0.873±0.004 0.847±0.010 0.936±0.005 0.924±0.008 

10 ClusterPre-EdgeMask 2 0.863±0.003 0.839±0.007 0.938±0.007 0.928±0.012 

11 SimReg-SimCon 1 0.858±0.002 0.836±0.003 0.916±0.010 0.915±0.013 

12 ClusterPre-PairDistance-PathClass 2 0.914±0.003 0.909±0.003 0.958±0.008 0.955±0.013 

13 ClusterPre-PathClass-SimReg 3 0.926±0.004 0.923±0.005 0.968±0.016 0.966±0.018 

14 PairDistance-SimReg-SimCon 2 0.879±0.008 0.858±0.016 0.944±0.007 0.938±0.010 

15 PairDistance-EdgeMask-SimCon 3 0.939±0.002 0.937±0.002 0.969±0.006 0.968±0.007 

a. ‘std’ denotes the standard deviation value calculated across ten results. 

b. The best results are marked in boldface. 
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Table S3. The p-value among 11 two-task combination models for DTI predictions where we used the two-sided 

Student's t-test with a significance threshold of 0.05. No adjustments were made for multiple comparisons. 
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3.22

E-5 

4.11 

E-4 
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E-5 

2.17

E-3 

1.53

E-6 

5.63 

E-6 

1.30 

E-8 

ClusterPre-PairDistance 
1.05
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1.56 

E-4 
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7.51
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EdgeMask-PathClass 
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8.62

E-6 

5.87 

E-4 

5.25

E-6 

PairDistance-PathClass 
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a. The blue shaded areas represent the p-value between local-global combination models and other models. 

b. The p-value among SSL models higher than 0.05 are marked in red. 
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Table S4. The p-value among 11 two-task combination SSL models for DDI predictions where we used the two-

sided Student's t-test with a significance threshold of 0.05. No adjustments were made for multiple comparisons. 
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0.304 / 0.056 

4.12 

E-3 

2.87

E-5 

7.13

E-6 

2.53 

E-8 

8.86

E-9 

PathClass-SimCon 
1.70

E-9 

2.90

E-9 

5.96

E-5 
0.813 0.056 / 0.062 

2.38 

E-4 

1.64 

E-4 

2.19 

E-7 

3.03

E-8 

PairDistance-SimCon 
1.46

E-10 

4.22

E-12 

5.33

E-8 
0.418 

4.12 

E-3 
0.062 / 

9.02 

E-3 

2.03 

E-3 

9.54 

E-9 

2.57

E-9 

EdgeMask-SimReg 
3.71

E-12 

4.72

E-10 

1.90

E-7 
0.025 

2.87

E-5 

2.38 

E-4 

9.02 

E-3 
/ 0.014 

4.19 

E-6 

4.33

E-8 

PairDistance-SimReg 
4.26

E-12 

3.85

E-10 

9.92

E-8 
0.011 

7.13

E-6 

1.64 

E-4 

2.03

E-3 
0.014 / 

1.98 

E-5 

1.05

E-7 

ClusterPre-EdgeMask 
7.77

E-14 

9.97

E-15 

6.40

E-12 

5.59

E-5 

2.53

E-8 

2.19

E-7 

9.54

E-9 

4.19

E-6 

1.98

E-5 
/ 

1.21 

E-3 

SimReg-SimCon 
7.79

E-14 

4.27

E-13 

5.18

E-12 

5.86

E-6 

8.86

E-9 

3.03

E-8 

2.57

E-9 

4.33

E-8 

1.05

E-7 

1.21 

E-3 
/ 

a. The blue shaded areas represent the p-value between local-global combination models and other models. 

b. The p-value among SSL models higher than 0.05 are marked in red. 
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Table S5. The p-value among 10 SSL models based on the mixed results of DDI and DTI predictions where we used 

the two-sided Student's t-test with a significance threshold of 0.05. No adjustments were made for multiple comparisons. 
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ClusterPre-PathClass / 0.145 
2.67

E-10 

1.43

E-6 

4.22

E-12 

4.27

E-13 

1.26

E-7 

1.99

E-12 
0.061 

8.62

E-7 

EdgeMask-PairDistance 0.145 / 
1.53

E-9 

3.80

E-7 

1.46

E-10 

7.79

E-14 

4.94

E-8 

2.42

E-9 
0.017 

5.87

E-5 

ClusterPre-PairDistance 
2.67

E-10 

1.53

E-9 
/ 0.002 

5.33

E-8 

5.18

E-12 

2.15

E-4 

1.66

E-12 

1.67

E-7 

3.22

E-11 

EdgeMask-PathClass 
1.43

E-6 

3.80

E-7 
0.002 / 0.418 

5.86

E-6 
0.263 

8.79

E-9 

3.04

E-6 

4.18

E-7 

PairDistance-SimCon 
4.22

E-12 

1.46

E-10 

5.33

E-8 
0.418 / 

2.57

E-9 
0.451 

2.63

E-14 

1.39

E-10 

1.20

E-10 

SimReg-SimCon 
4.27

E-13 

7.79

E-14 

5.18

E-12 

5.86

E-6 

2.57

E-9 
/ 

7.45

E-6 

4.34

E-15 

2.33

E-12 

1.28

E-12 

PairDistance-SimReg-SimCon 
1.26

E-7 

4.94

E-8 

2.15

E-4 
0.263 0.451 

7.45

E-6 
/ 

1.00

E-9 

5.33

E-8 

1.19

E-7 

PairDistance-EdgeMask-SimCon 
1.99

E-12 

2.42

E-9 

1.66

E-12 

8.79

E-9 

2.63

E-14 

4.34

E-15 

1.00

E-9 
/ 

2.16

E-10 

7.00

E-7 

ClusterPre-PairDistance-PathClass 0.061 0.017 
1.67

E-7 

3.04

E-6 

1.39

E-10 

2.33

E-12 

5.33

E-8 

2.16

E-10 
/ 

1.55

E-5 

ClusterPre-PathClass-SimReg 
8.62

E-7 

5.87

E-5 

3.22

E-11 

4.18

E-7 

1.20

E-10 

1.28

E-12 

1.19

E-7 

7.00

E-7 

1.55

E-5 
/ 

a. The gray shaded areas represent the p-value between multimodal combinations and other models. 

b. The p-value among SSL models higher than 0.05 are marked in red. 
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Table S6. The results obtained with fifteen SSL combinations in cold start predictions 

No. Self-supervised tasks 
Modal 

size 

DDI  DTI 

AUROC±Std AUPR±Std AUROC±Std AUPR±Std 

1 ClusterPre-PathClass 2 0.890±0.017 0.873±0.024 0.923±0.028 0.902±0.054 

2 EdgeMask-PairDistance 2 0.889±0.014 0.852±0.017 0.927±0.030 0.890±0.077 

3 ClusterPre-PairDistance 1 0.871±0.018 0.845±0.026 0.911±0.027 0.864±0.074 

4 EdgeMask-PathClass 1 0.862±0.018 0.833±0.025 0.912±0.024 0.861±0.057 

5 PairDistance-PathClass 2 0.862±0.021 0.825±0.028 0.912±0.028 0.864±0.067 

6 PairDistance-SimCon 2 0.858±0.016 0.837±0.020 0.903±0.037 0.878±0.065 

7 EdgeMask-SimReg 2 0.848±0.022 0.814±0.026 0.913±0.029 0.867±0.072 

8 PathClass-SimCon 2 0.850±0.020 0.801±0.035 0.909±0.032 0.866±0.079 

9 ClusterPre-EdgeMask 2 0.837±0.021 0.792±0.029 0.910±0.026 0.875±0.058 

10 PairDistance-SimReg 2 0.822±0.054 0.774±0.070 0.912±0.029 0.860±0.073 

11 SimReg-SimCon 1 0.843±0.019 0.813±0.026 0.905±0.028 0.876±0.085 

12 ClusterPre-PairDistance-PathClass 2 0.894±0.017 0.878±0.027 0.924±0.027 0.897±0.061 

13 ClusterPre-PathClass-SimReg 3 0.909±0.013 0.898±0.016 0.948±0.022 0.939±0.052 

14 PairDistance-SimReg-SimCon 2 0.863±0.021 0.825±0.024 0.918±0.024 0.880±0.060 

15 PairDistance-EdgeMask-SimCon 3 0.909±0.008 0.895±0.011 0.940±0.020 0.915±0.048 

The best results are marked in boldface. 

 

 

 

 

 

Table S7. The numbers of nodes and edges in Luo’s dataset 

Type of node Count Type of edge Count 

Drug 660 Drug-drug interactions 10,036 

Protein 1,324 Drug-protein interactions 1,923 

/ / Protein-protein interactions 7,363 

Total 1,984 Total 19,322 
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Table S8. The results of multi-task models on Luo’s dataset for warm start predictions (training set:test set = 9:1) 

No. Self-supervised tasks 
Modal 

size 

DDI  DTI 

AUROC±std AUPR±std AUROC±Std AUPR±Std 

1 EdgeMask-PairDistance 2 0.938±0.005 0.931±0.011 0.946±0.008 0.929±0.019 

2 ClusterPre-PathClass 2 0.925±0.008 0.916±0.015 0.931±0.011 0.915±0.016 

3 ClusterPre-PairDistance 1 0.918±0.005 0.904±0.012 0.927±0.008 0.911±0.012 

4 EdgeMask-PathClass 1 0.924±0.003 0.911±0.008 0.922±0.013 0.894±0.022 

5 PairDistance-PathClass 2 0.916±0.004 0.899±0.009 0.910±0.016 0.873±0.027 

6 PathClass-SimCon 2 0.916±0.008 0.905±0.014 0.887±0.021 0.845±0.037 

7 PairDistance-SimCon 2 0.917±0.006 0.903±0.012 0.900±0.017 0.864±0.030 

8 EdgeMask-SimReg 2 0.908±0.009 0.888±0.020 0.901±0.016 0.861±0.030 

9 PairDistance-SimReg 2 0.907±0.009 0.888±0.020 0.905±0.017 0.870±0.031 

10 ClusterPre-EdgeMask 2 0.893±0.009 0.872±0.019 0.909±0.016 0.885±0.022 

11 SimReg-SimCon 1 0.891±0.011 0.876±0.020 0.860±0.012 0.837±0.029 

12 ClusterPre-PairDistance-PathClass 2 0.930±0.006 0.920±0.011 0.930±0.017 0.912±0.029 

13 ClusterPre-PathClass-SimReg 3 0.932±0.004 0.925±0.007 0.937±0.010 0.916±0.017 

14 PairDistance-SimReg-SimCon 2 0.915±0.009 0.899±0.015 0.899±0.017 0.862±0.032 

15 PairDistance-EdgeMask-SimCon 3 0.951±0.004 0.944±0.011 0.956±0.008 0.947±0.014 

The best results are marked in boldface. 

 

 

 

 

Table S9. The results of multi-task models on Luo’s dataset for warm start predictions (training set:test set = 5:5) 

No. Self-supervised tasks 
Modal 

size 

DDI  DTI 

AUROC±std AUPR±std AUROC±Std AUPR±Std 

1 EdgeMask-PairDistance 2 0.920±0.006 0.908±0.009 0.931±0.005 0.908±0.008 

2 ClusterPre-PathClass 2 0.908±0.004 0.896±0.008 0.913±0.005 0.892±0.008 

3 ClusterPre-PairDistance 1 0.900±0.005 0.884±0.006 0.910±0.006 0.885±0.011 

4 EdgeMask-PathClass 1 0.909±0.004 0.894±0.004 0.908±0.005 0.863±0.011 

5 PairDistance-PathClass 2 0.896±0.006 0.881±0.007 0.899±0.006 0.855±0.013 

6 PathClass-SimCon 2 0.884±0.007 0.873±0.011 0.871±0.009 0.817±0.018 

7 PairDistance-SimCon 2 0.895±0.009 0.877±0.012 0.886±0.006 0.844±0.011 

8 EdgeMask-SimReg 2 0.881±0.010 0.8600.016 0.887±0.006 0.843±0.011 

9 PairDistance-SimReg 2 0.894±0.006 0.877±0.009 0.892±0.006 0.854±0.010 

10 ClusterPre-EdgeMask 2 0.872±0.006 0.846±0.011 0.894±0.005 0.864±0.008 

11 SimReg-SimCon 1 0.841±0.011 0.813±0.017 0.854±0.009 0.828±0.015 

12 ClusterPre-PairDistance-PathClass 2 0.900±0.005 0.886±0.005 0.918±0.007 0.896±0.011 

13 ClusterPre-PathClass-SimReg 3 0.912±0.004 0.902±0.007 0.910±0.004 0.886±0.010 

14 PairDistance-SimReg-SimCon 2 0.900±0.006 0.883±0.008 0.885±0.007 0.842±0.012 

15 PairDistance-EdgeMask-SimCon 3 0.932±0.004 0.922±0.006 0.946±0.004 0.933±0.005 

The best results are marked in boldface. 
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Table S10. The results of multi-task models on Luo’s dataset for 5% drugs cold start predictions 

No. Self-supervised tasks 
Modal 

size 

DDI  DTI 

AUROC±std AUPR±std AUROC±Std AUPR±Std 

1 EdgeMask-PairDistance 2 0.927±0.013 0.912±0.026 0.941±0.019 0.923±0.024 

2 ClusterPre-PathClass 2 0.904±0.015 0.884±0.026 0.928±0.023 0.908±0.033 

3 ClusterPre-PairDistance 1 0.902±0.012 0.878±0.023 0.924±0.023 0.897±0.046 

4 EdgeMask-PathClass 1 0.918±0.012 0.898±0.022 0.921±0.033 0.877±0.039 

5 PairDistance-PathClass 2 0.905±0.019 0.883±0.035 0.909±0.029 0.856±0.047 

6 PathClass-SimCon 2 0.905±0.012 0.887±0.028 0.891±0.034 0.832±0.062 

7 PairDistance-SimCon 2 0.907±0.014 0.884±0.029 0.899±0.030 0.843±0.051 

8 EdgeMask-SimReg 2 0.898±0.015 0.875±0.038 0.902±0.027 0.845±0.049 

9 PairDistance-SimReg 2 0.897±0.012 0.868±0.024 0.904±0.029 0.853±0.050 

10 ClusterPre-EdgeMask 2 0.872±0.017 0.842±0.046 0.904±0.028 0.865±0.042 

11 SimReg-SimCon 1 0.865±0.016 0.833±0.045 0.863±0.037 0.824±0.052 

12 ClusterPre-PairDistance-PathClass 2 0.906±0.013 0.888±0.029 0.930±0.021 0.909±0.041 

13 ClusterPre-PathClass-SimReg 3 0.913±0.013 0.898±0.024 0.933±0.026 0.918±0.038 

14 PairDistance-SimReg-SimCon 2 0.906±0.015 0.886±0.031 0.899±0.029 0.843±0.051 

15 PairDistance-EdgeMask-SimCon 3 0.939±0.012 0.930±0.017 0.957±0.015 0.944±0.020 

The best results are marked in boldface. 

 

 

 

 

Table S11. The results of multi-task models on Luo’s dataset for 10% drugs cold start predictions 

No. Self-supervised tasks 
Modal 

size 

DDI  DTI 

AUROC±std AUPR±std AUROC±Std AUPR±Std 

1 EdgeMask-PairDistance 2 0.928±0.008 0.912±0.017 0.940±0.014 0.922±0.016 

2 ClusterPre-PathClass 2 0.907±0.013 0.890±0.020 0.922±0.015 0.900±0.025 

3 ClusterPre-PairDistance 1 0.901±0.012 0.877±0.023 0.921±0.015 0.899±0.025 

4 EdgeMask-PathClass 1 0.916±0.009 0.895±0.019 0.915±0.013 0.872±0.024 

5 PairDistance-PathClass 2 0.905±0.013 0.881±0.028 0.903±0.012 0.850±0.031 

6 PathClass-SimCon 2 0.902±0.012 0.885±0.019 0.883±0.013 0.823±0.032 

7 PairDistance-SimCon 2 0.904±0.011 0.879±0.024 0.892±0.012 0.840±0.029 

8 EdgeMask-SimReg 2 0.894±0.010 0.868±0.021 0.896±0.014 0.844±0.025 

9 PairDistance-SimReg 2 0.895±0.009 0.866±0.025 0.898±0.011 0.845±0.028 

10 ClusterPre-EdgeMask 2 0.870±0.015 0.834±0.030 0.901±0.013 0.862±0.027 

11 SimReg-SimCon 1 0.858±0.016 0.824±0.022 0.853±0.020 0.815±0.028 

12 ClusterPre-PairDistance-PathClass 2 0.904±0.013 0.884±0.023 0.926±0.017 0.902±0.026 

13 ClusterPre-PathClass-SimReg 3 0.912±0.012 0.897±0.018 0.923±0.018 0.900±0.021 

14 PairDistance-SimReg-SimCon 2 0.904±0.012 0.877±0.025 0.891±0.012 0.836±0.029 

15 PairDistance-EdgeMask-SimCon 3 0.939±0.008 0.928±0.014 0.953±0.013 0.941±0.017 

The best results are marked in boldface. 
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Table S12. Results of all methods on Luo dataset 

Scenarios Methods 
DDI  DTI 

AUROC±std AUPR±std AUROC±std AUPR±std 

Warm start 

DeepR2cov 0.931±0.009 0.912±0.012 0.922±0.011 0.910±0.016 

DDIMDL 0.913±0.009 0.905±0.014 0.914±0.009 0.915±0.009 

DTINet 0.929±0.006 0.927±0.009 0.922±0.007 0.924±0.008 

KGE_NFM 0.916±0.008 0.907±0.010 0.879±0.008 0.892±0.007 

MoleculeNet 0.912±0.007 0.899±0.013 0.905±0.016 0.905±0.021 

deepDTnet 0.923±0.008 0.921±0.010 0.911±0.006 0.901±0.012 

PairDistance-EdgeMask-SimCon 0.951±0.004 0.944±0.011 0.956±0.008 0.947±0.014 

Cold start 

DeepR2cov 0.909±0.012 0.875±0.031 0.920±0.035 0.901±0.044 

DDIMDL 0.852±0.007 0.855±0.007 0.898±0.026 0.908±0.025 

DTINet 0.918±0.017 0.913±0.029 0.910±0.023 0.911±0.026 

KGE_NFM 0.743±0.034 0.709±0.034 0.782±0.003 0.793±0.005 

MoleculeNet 0.905±0.019 0.878±0.039 0.898±0.045 0.905±0.031 

deepDTnet 0.913±0.014 0.904±0.025 0.888±0.028 0.892±0.044 

PairDistance-EdgeMask-SimCon 0.939±0.008 0.928±0.014 0.953±0.013 0.941±0.017 

The best results are marked in boldface. 

 

 

 

 

Table S13. Performance of MSSL2drug, LE, GF and DeepWalk for drug discovery 

Methods 
DDI  DTI 

AUROC±std AUPR±std AUROC±std AUPR±std 

LE 0.795±0.001 0.763±0.001 0.845±0.001 0.850±0.001 

GF 0.921±0.005 0.919±0.006 0.858±0.017 0.867±0.014 

DeepWalk 0.922±0.004 0.917±0.005 0.939±0.003 0.937±0.003 

PairDistance-EdgeMask-SimCon 0.939±0.002 0.937±0.002 0.969±0.006 0.968±0.007 

The best results are marked in boldface. 

 

 

 

 

Table S14. Performance of MSSL2drug and MF2A for DTI predictions 

Methods 
Our dataset  Luo’s dataset 

AUROC±std AUPR±std AUROC±std AUPR±std 

MF2A 0.942±0.008 0.347±0.008 0.915±0.001 0.441±0.007 

PairDistance-EdgeMask-SimCon 0.969±0.006 0.968±0.007 0.956±0.008 0.947±0.014 

The best results are marked in boldface. 
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Table S15. Performance of MSSL2drug and MIRACLE for DDI predictions 

Methods 
Our dataset  Luo’s dataset 

AUROC±Std AUPR±Std AUROC±Std AUPR±Std 

MIRACLE 0.898±0.048 0.871±0.048 0.858±0.009 0.813±0.009 

PairDistance-EdgeMask-SimCon 0.939±0.002 0.937±0.002 0.951±0.004 0.944±0.011 

The best results are marked in boldface. 

 

 

 

 

 

 

Table S16. Anti-inflammatory candidate agents for COVID-19 patients 

No. DrugBank ID: Name Confidence score PMID 

1 DB08604:Triclosan 0.800 29568771, 29067681 

2 DB00756:Hexachlorophene 0.772 NA 

3 DB08877:Ruxolitinib* 0.737 32789663, 32679107 

4 DB00799:Tazarotene 0.728 7512583, 30134735 

5 DB06616:Bosutinib 0.713 25351958, 33685634 

6 DB05294:Vandetanib 0.709 34981062 

7 DB01268:Sunitinib 0.651 31039345, 23867310, 33191180 

8 DB00530:Erlotinib 0.650 32566018 

9 DB06589:Pazopanib 0.643 22759480, 28683470 

10 DB00878:Chlorhexidine* 0.594 32581176 

a. ‘NA’ represents that there has been no study proving that the drug can inhibit IL-6 release. 

b. Drugs with ‘*’ have been determined in clinical studies against COVID-19. 

 

 

 

 

 

 

Table S17. Results of SSL based on different centralities for warm start predictions 

Methods 
DDI  DTI 

AUROC±std AUPR±std AUROC±std AUPR±std 

DegreePre 0.721±0.045 0.651±0.062 0.838±0.022 0.792±0.038 

EigenvectorPre 0.673±0.052 0.596±0.051 0.837±0.023 0.793±0.041 

ClusterPre 0.793±0.009 0.745±0.014 0.922±0.017 0.913±0.020 

The best results are marked in boldface. 
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Table S18. Results of PairDistance with different “major” classes for warm start predictions 

Classes 
DDI  DTI 

AUROC±std AUPR±std AUROC±std AUPR±std 

3 0.816±0.008 0.769±0.016 0.899±0.014 0.866±0.027 

4 0.818±0.007 0.779±0.017 0.945±0.015 0.933±0.016 

5 0.820±0.003 0.779±0.008 0.911±0.009 0.894±0.019 

The best results are marked in boldface. 

 

 

 

 

 

 

Table S19. Results of PathClass with meta path of different lengths for warm start predictions 

Path lengths 
DDI  DTI 

AUROC±std AUPR±std AUROC±std AUPR±std 

3 0.845±0.009 0.831±0.013 0.893±0.010 0.865±0.023 

4 0.850±0.004 0.841±0.006 0.938±0.019 0.931±0.013 

5 0.845±0.006 0.832±0.010 0.900±0.009 0.869±0.022 

The best results are marked in boldface. 

 

 

 

 

 

 

Table S20. Results of SimCon with different similarity measurements for warm start predictions 

Path lengths 
DDI  DTI 

AUROC±std AUPR±std AUROC±std AUPR±std 

SimCon-ED 0.821±0.008 0.805±0.011 0.936±0.006 0.923±0.013 

SimCon 0.821±0.003 0.783±0.007 0.946±0.008 0.939±0.010 

The best results are marked in boldface. 
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Table S21. Results of different combinations in PairDistance-EdgeMask-SimCon 

Scenarios Methods 
DDI  DTI 

AUROC±std AUPR±std AUROC±std AUPR±std 

Warm start 

EdgeMask-PairDistance 0.917±0.003 0.912±0.005 0.958±0.007 0.951±0.009 

PairDistance-SimCon 0.880±0.006 0.860±0.012 0.942±0.007 0.935±0.008 

EdgeMask-SimCon 0.885±0.005 0.881±0.006 0.946±0.006 0.936±0.012 

PairDistance-EdgeMask-SimCon 0.939±0.002 0.937±0.002 0.969±0.006 0.968±0.007 

Cold start 

EdgeMask-PairDistance 0.889±0.014 0.852±0.017 0.927±0.030 0.890±0.077 

PairDistance-SimCon 0.858±0.016 0.837±0.020 0.903±0.037 0.878±0.065 

EdgeMask-SimCon 0.878±0.019 0.871±0.022 0.901±0.034 0.855±0.080 

PairDistance-EdgeMask-SimCon 0.909±0.008 0.895±0.011 0.940±0.020 0.915±0.048 

The best results are marked in boldface. 

 

 

 

 

 

Table S22. Results of ClusterPre-PathClass and PairDistance-EdgeMask-SimCon under ADL and 

ORC learning patterns for warm start predictions 

Methods 
DDI  DTI 

AUROC±std AUPR±std AUROC±std AUPR±std 

CP-ADL 0.879±0.006 0.877±0.006 0.927±0.008 0.897±0.018 

CP-ORC 0.915±0.003 0.913±0.004 0.915±0.008 0.895±0.017 

ClusterPre-PathClass 0.915±0.001 0.910±0.003 0.956±0.007 0.956±0.007 

PES-ADL 0.901±0.005 0.899±0.005 0.940±0.007 0.921±0.016 

PES-ORC 0.932±0.002 0.930±0.003 0.930±0.007 0.912±0.016 

PairDistance-EdgeMask-SimCon 0.939±0.002 0.937±0.002 0.969±0.006 0.968±0.007 

The best results are marked in boldface. 

 

 

 

 

 

 

Table S23. Results of PairDistance-EdgeMask-SimCon under SVM and RF for warm start predictions 

Methods 
DDI  DTI 

AUROC±std AUPR±std AUROC±std AUPR±std 

PES-SVM 0.933±0.003 0.926±0.004 0.962±0.004 0.963±0.005 

PES-RF 0.987±0.001 0.987±0.005 0.963±0.007 0.961±0.006 

PairDistance-EdgeMask-SimCon 0.939±0.002 0.937±0.002 0.969±0.006 0.968±0.007 

The best results are marked in boldface. 
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Table S24. The comparisons of run-time and parameter sizes 

Methods Run-time (s) Parameters (M) 

DeepR2cov 11,556 354.421 

DDIMDL 176 11.234 

DTINet 382 1.523 

MoleculeNet 135 0.172 

deepDTnet 569 9.676 

PairDistance-EdgeMask-SimCon 8,115 0.628 

The best results are marked in boldface. 

 

 

 

 

 

Table S25. The shortest path length and number of node pairs 

The shortest path length between node pairs The number of node pairs 

1 221,140 

2 3,359,298 

3 5,042,652 

4 582,024 

5 15,048 

>=6 170 

Total 4,177,680 

 

 

 

 

 

Table S26. The numbers of nodes and edges in the constructed BioHN 

Type of node Count Type of edge Count 

Drug 721 Drug-Drug interactions 66,384 

Protein 1,894 Drug-protein interactions 4,978 

Disease 431 Drug-disease associations 1,201 

/ / Protein-protein interactions 16,133 

/ / Disease-protein associations 23,080 

Total 3046 Total 111,776 
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Table S27. The types of meta paths 

NO. Meta path 

1 drug-drug-drug-protein 

2 drug-drug-protein-protein 

3 drug-drug-disease-protein 

4 drug-protein-drug-protein 

5 drug-protein-protein-protein 

6 drug-protein-disease-protein 

7 drug-disease-drug-protein 

8 drug-disease-protein-protein 

9 protein-drug-drug-drug 

10 protein-protein-drug-drug 

11 protein-disease-drug-drug 

12 protein-drug-protein-drug 

13 protein-protein-protein-drug 

14 protein-disease-protein-drug 

15 protein-drug-disease-drug 

16 protein-protein-disease-drug 

 

 

 

 

 

Table S28. The total number of edges connected to drugs, proteins, and diseases, respectively. 

Node types Drugs Proteins Diseases 

The total number of edges 72,563 44,191 24,281 

 

 

 

 

 

 

Table S29 The examples of multi-task combinations with different modalities 

Modal size  Multi-task combinations with different modalities 

1 SimReg-SimCon ClusterPre-PairDistance 

2 PairDistance-SimCon ClusterPre-PathClass 

2 PairDistance-SimReg-SimCon ClusterPre-PairDistance-PathClass 

3 PairDistance-EdgeMask-SimCon ClusterPre-PathClass-SimReg 
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