
MulCS: Towards a Unified Deep Representation for
Multilingual Code Search

Yingwei Ma, Yue Yu∗, Shanshan Li∗, Zhouyang Jia, Jun Ma, Rulin Xu, Wei Dong, Xiangke Liao
College of Computer Science

National University of Defense Technology
Changsha, China

{myw, yuyue, shanshanli, jiazhouyang, majun, runlin xu, dongwei, xkliao}@nudt.edu.cn

Abstract—Code search aims to search for relevant code snip-
pets through queries, which has become an essential require-
ment to assist programmers in software development. With the
availability of large and rapidly growing source code repositories
covering various languages, multilingual code search can leverage
more training data to learn complementary information across
languages. Contrastive learning can naturally understand the
similarity between functionally equivalent code across different
languages by narrowing the distance between objects with the
same function while keeping dissimilar objects further apart.
Some works exist addressing monolingual code search problems
with contrastive learning, however, they mainly exploit every
specific programming language’s textual semantics or syntactic
structures for code representation. Due to the high diversity of
different languages in terms of syntax, format, and structure,
these methods limit the performance of contrastive learning in
multilingual training. To bridge this gap, we propose a unified
semantic graph representation approach toward multilingual
code search called MulCS. Specifically, we first design a general
semantic graph construction strategy across different languages
by Intermediate Representation (IR). Furthermore, we introduce
the contrastive learning module integrated into a gated graph
neural network (GGNN) to enhance query-multilingual code
matching. The extensive experiments on three representative
languages illustrate that our method outperforms state-of-the-
art models by 10.7% to 77.5% in terms of MRR on average.

Index Terms—Code search, multi-language, contrastive learn-
ing, intermediate representation

I. INTRODUCTION

Code search aims to search for relevant code snippets by
performing natural language queries on a large corpus, and
many code search methods have been proposed in recent
years [1]–[7]. With the availability of immense and rapidly
growing source code repositories such as GitHub and Stack
Overflow, learning-based code search models [4], [5], [8], [9]
have achieved promising results by leveraging large amounts
of training data. There are hundreds of programming lan-
guages in widespread use [10], each with its complexities
and idiosyncrasies in practice [11] (e.g., C is powerful for
system kernel development, while JavaScript is preferred
for web applications), and each with different data sizes.
Therefore, developing multilingual code search models with
shared parameters can leverage larger-scale multilingual code
data and learn complementary information across languages

*Corresponding author

compared to monolingual models. At the same time, the model
can handle different programming languages without training
multiple times, which can effectively reduce the cost of model
deployment and maintenance.

Contrastive learning has emerged as a new paradigm that
learns object representations through comparing pairs or col-
lections of similar and dissimilar items [12], which enforces
similar object representations to be closer while dissimilar
object representations are further apart. This capability can
naturally understand the similarity between functionally equiv-
alent code in multilingual code search task. Inspired by this,
we try to explore applying contrastive learning to multilingual
code search. There exist some works addressing monolin-
gual code search problem [13]–[15] with contrastive learning,
however, they mainly focus on language-specific information,
which leads to some difficulties in multilingual scenarios due
to textual (i.e., token) and syntactic (e.g., AST) differences
between multilingual code. In one hand, textual features are
unreliable [16], [17] generated from the informal, noisy infor-
mation latent in variable names, comments or coding styles,
and also cannot represent the structural logic of source code. In
the other hand, code implementations of the same functionality
may be quite different, especially for cross-language (e.g.,
both Java and Python have if-related flow control statements,
but in Python, else-if is written as elif, and there is no
switch statement in Python). It is much less likely to build
a unified and effective represent model by only using lexical
and syntactic analysis (e.g., AST-based approaches [18], [19]),
due to the high diversity of programming languages in terms
of the grammar, format and structure.

The aforementioned issues inspire us to find a new way
to bridge the code representation gap across multiple pro-
gramming languages. Semantic information, representing the
exact computational meaning to the execution platform, can
eliminate differences across languages at a more fundamen-
tal level. Semantic information can be represented by data-
and control-flow accurately extracted from the intermediate
representation (IR). Thus, the IR of source code enables the
unification of semantically equivalent language constructs, and
it is promising to eliminate the enormous differences brought
by code implementation, especially for cross-languages.

To derive a unified semantic graph representation based on

IR, however, several challenges need to be addressed. First,
generating IR requires compilable code. It is hard to compile
the code base automatically, since different code snipptes
require various dependencies. Second, for source code with
the same functionality written in different languages, there
may exist non-negligible differences in the form of initial
IRs directly transformed by different compilers (e.g., The
IR of Python code use the stack-based structure rather than
the three-address structure). Third, how to utilize a unified
representation to effectively capture the semantic relations
of multilingual code snippets during model training is un-
doubtedly essential, while it has not been well studied by
previous work. Therefore, some general rules need to be
applied to make the semantic graph representation with the
same functionality similar across different languages.

In this paper, we propose a contrastive learning framework
towards Multilingual Code Search, called MulCS, which trains
neural networks from a large number of multilingual query-
code snippets. Firstly, we obtain intermediate representation in
multiple programming languages based on the corresponding
IR tools. To improve the availability, we design a snippet
wrapper by simulating the presence of missing surrounding
code to make the incomplete source code without third-party
libraries compilable. We further design a general semantic
graph construction strategy to unify the intermediate repre-
sentation across different languages. Our strategy presents a
general solution for multi-language to mitigate the differences
brought by syntactical structures and grammars of different
IRs. Finally, we integrate the contrastive learning into the
improved gated graph neural network to model our semantic
graphs, which significantly enhances the mutual reinforcement
among multilingual code corpus.

We evaluate the effectiveness of our proposed method
on the large-scale dataset of three representative program-
ming languages (i.e., C, Java and Python). We argue that
the semantic knowledge emphasized in this paper show a
promising prospect for deep code representation, especially
for further combining with large-scale pre-trained models (e.g.,
expanding token or AST with IR merging into CodeBERT [20]
and SynCoBERT [21]) during multilingual training [22]. In
summary, our key contributions are:

• We propose a contrastive learning framework to perform
code retrieval tasks in multiple programming languages
scenarios. We integrate contrastive learning into the im-
proved gated graph neural network, where the GGNN
model can take advantage of graph-structured inputs, and
the contrastive learning module can enhance differenti-
ation among multilingual samples. All data and source
code can be found in our repository. 1

• We exploit semantic information to unify multilingual
code representation. We design a general semantic graph
construction approach based on the IRs transformed by
different compilers, which can eliminate the enormous
differences brought by the programming language. An

1https://github.com/yingweima2022/MulCS

effective snippet wrapper has been designed accordingly
to make incomplete code fragments compilable.

• We conducted extensive experiments to evaluate our
approach on a large-scale multilingual dataset, compared
to the typical code search models. The results show that
MulCS can achieve significant improvements from 10.7%
to 77.5% of MRR on average over the corresponding
baseline models. Furthermore, when our method is com-
bined with CodeBERT and CodeT5 pre-trained models,
the two pre-trained models improve by 21.1% and 18.3%.

II. UNIFIED SEMANTIC GRAPH CONSTRUCTION

In this section, we first describe a motivating example to
understand semantic graphs and then introduce the common
and unique features of IRs in C, Java, and Python. Finally, we
present the principles and rules of semantic graph construction.

A. A Motivating Example

About multi-language code search, we need a unified model
to eliminate differences between languages. Intermediate rep-
resentation (IR) is a natural abstraction of code functionality
because it represents code semantics through control flow and
data flow between operands, opcode and labels. Currently,
most languages have their intermediate representation. For
example, in Figure 1, we list C, Java and Python code snippets
of ”count the number of positive integers” along with their
ASTs and IRs.

Tokens focus on the textual semantics of code, while the
textual differences between languages are enormous, even
though they are functionally identical. For example, as shown
in Figure 1, C, Python and Java use different identifiers to
represent arrays (C token a, Python token arr and Java token
number), which may be treated as different features during
training. Another reason is that the effectiveness of the token-
based approach is highly dependent on the quality of the code,
such as naming conventions. Oversimplified variable naming
can hinder the effectiveness of training models.

ASTs focus not only on textual semantics but also syntactic
structures of the code. ASTs and tokens have the same prob-
lem that different syntactic structures can achieve the same
functionality within a language or across other languages. As
shown in Figure 1, C, Python and Java use different ways to
traverse arrays, which results in a completely different syntax
structure in AST, even though they are semantically identical.

On the other hand, IRs show some similarities across
different languages. IR consists of instructions, and one or
more instructions compose labels, which can be seen as basic
blocks. In these IRs, we label the corresponding opcode,
operands, and labels with the same color. We find that all
the IRs have similar data flow and control flow.

For data flow, the same operands have similar operations.
For instance, each of these IRs has an instruction that makes
the variable self-increment by one (the yellow dashed box
in the last label in Figure 1). For control flow, labels (basic
blocks) have similar jump addresses. For example, in Figure 1,
the green label (basic block surrounded by a solid green box)

while(1){
 if(i>=len){break;}
 if(a[i]>0){
 s++;
 }i++;}

for i in arr:
 if i<= 0:
 continue
 cnt+=1

label0:
 %cmp = cmp ge i, len
 br %cmp, label1, label4
label1:
 %idx = i
 %1 = getelementptr a, %idx
 %cmp1 = cmp gt %1, 0
 br i1 %cmp1, label2, label3
label2:
 s = add s, 1
 br label3
label3:
 i = add i, 1
 br label0

label0:
 %1 = arr
 br %1, label1, label3
label1:
 i = %1
 %2 = cmp le i, 0
 br %2, label2, label0_1
label2:
 %4 = add cnt, 1
 cnt = %4
 br label0_1
label0_1:
 arr = iter arr
 br label0_0

int limit = 0;
for(int a : number){
 if(a>limit){
 cnt = cnt + 1;}
}

 len = lenthof number;
 %1 = 0;
label1:
 if %1 >= len goto label3;
label_false1:
 a = number[%1];
 if a<=0 goto label2;
label_false2:
 $stack9 = <Foo: int cnt>;
 $stack10 = $stack9 + 1;
 <Foo: int cnt> = $stack10;
label2:
 %1 = %1 + 1;
 goto label1;

while

1 compound

if if ++

>= break > ++ i

i len array 0 s

ia

for

i arr

if

body

<= continue

+=

i

n 1

0

body

var for

control bodylimit 0

a number if

>= =

limita cnt +

cnt 1

Code

AST

IR

C Python Java

Fig. 1: Code snippets, ASTs and IRs of C, Java and Python

always has an instruction that jumps to the blue label and the
yellow label. Therefore, we believe that IR will be a better
candidate for semantic sources to unify different languages.

B. IRs Among Different Languages

Although current IR provides the abstraction for code
representation regardless of specific grammar, there remain
differences between IRs among different languages. In this
section, we shed light on the common and unique features
of IRs of C, Java and Python. We study these features and
find opportunities for extracting data and control flow among
different IRs. Accordingly, we set up a set of unified rules
for semantic graph construction. As a result, code snippets
with similar semantics (similar data and control flow) can be
expressed as similar graphs.

We choose C, Java and Python which are three typical pro-
gramming languages and represent structural, object-oriented
and just-in-time languages. Moreover, their IRs have been
widely used for over 20 years. IRs discussed in this section
are from LLVM 2 (C), Soot 3 (Java) and Dis 4 (Python).

1) Common Features: According to the function of instruc-
tion, most instructions can be classified into data- and control-
related instructions. Data-related instructions usually involve
data operations. For example, all IRs include binary instruction
(add, sub) and assignment instruction, etc. These data-related
instructions can construct the data flow inside the IR.

Control-related instructions usually control the execution
order of instructions. Specifically, control-related instructions

2https://github.com/llvm/llvm-project
3https://github.com/soot-oss/soot
4https://pypi.org/project/dis/

decide which label the instruction will jump to. These control-
related instructions can construct the control flow inside IR.

Some other instructions are weak semantic-related. For
example, the monitor instructions (exception handling instruc-
tion, etc.) are used to monitor the data status. We ignore these
kinds of instructions, including alloca, atomicrmw, etc.

2) Unique Features: There remain unique features among
C, Java and Python IRs. First, the grammar of IRs might be
different. For example, IR of Python is stack-based bytecode,
the flow-related instruction in bytecode is stack-related oper-
ation. In these instructions, operands, labels are hidden, so
it is inconvenient to observe the data and control flow. On
the other side, C and Java use a three-address structure, in
which we can easily obtain data and control flow from opcode,
operands, and labels. Second, due to the features of languages,
the naming of opcode in different IRs may be inconsistent, but
the functionality is similar. For example, some data-related
instructions, such as adding two numbers, are represented as
BINARY ADD in python, add in c, and + in java.

In conclusion, while these features have little influence on
data and control flow, some transformations (e.g., syntactic
unification) are necessary to eliminate these differences.

C. Semantic Graph Construction

Semantic graph construction is inspired by DeGraphCS
[23], we set up a set of unified rules for different languages in
Figure 2. In a semantic graph, its nodes represent the operands,
opcode and labels in IR. Its edges represent the data depen-
dencies and control dependencies, where data dependencies
are from data-related instructions, and control dependencies
are from control-related instructions.

0

SETUP_LOOP
LOAD_FAST arr
GET_ITER None
FOR_ITER
STORE_FAST i
LOAD_FAST i
LOAD_CONST
COMPARE_OP <=
POP_JUMP_IF_FALSE
JUMP_ABSOLUTE
LOAD_FAST cnt
LOAD_CONST
INPLACE_ADD None
STORE_FAST cnt
JUMP_ABSOLUTE
POP_BLOCK None

0

label0:
 %1 = iter arr
 br %1, label1,label3
label1:
 i = %1
 %2 = cmp le i, 0
 br %2, label0, label2
label2:
 %4 = add cnt, 1
 cnt = %4
 br label0

label0

arr

iter

label1

i0

le

label2 1

add

cnt

Fig. 2: Example of semantic graph construction

The principles used to construct semantic graphs are as
follows. First, we need to unify IR’s grammar since their
structures might be different. Although most IRs use a three-
address structure, some IRs like Python use a stack-based
structure which is hard to extract data and control flow directly.
Thus, we need to unify IR’s grammar according to Algorithm
1 at first. Second, for each instruction, we build nodes and
edges in the semantic graph according to the rules in Table I.

Algorithm 1 transform bytecode into three-address structure
Input: python bytecode
Output: three-address data structure
1: for inst in instruction of bytecode do
2: if inst is data related instruction then
3: if inst is stack operation on data then
4: push/pop variable.
5: else
6: pop variable.
7: combine variable with opcode.
8: generate a temporary variable.
9: assign combined variables to temporary variable.

10: push temporary variable into stack.
11: end if
12: else if inst is control related instruction then
13: create two labels which similar the label in LLVM-IR.
14: put label before instructions which control related instruction point to.
15: transform into ’br’ which is similar to LLVM-IR.
16: else
17: abandon related instructions.
18: end if
19: end for

1) Grammar Unification: We transform all the bytecode
IRs into a three-address structure based on algorithm 1.
Generally, we first determine whether the instruction is data-
or control-related. If the instruction is stack operation, we
pop variable from stack or push variable into the stack. If
the instruction is operation on data, we should transform the
operation and related data into a three-address-formed state-
ment. For example, the INPLACE ADD operation in Figure 2
adds the variable cnt with a constant and keeps the sum into
the stack. Thus we introduce a temporary variable to keep
the sum, and transform the instruction into %4 = add cnt,
constant. If the instruction is control-related, we first find the
instruction which the current instruction has a dependency and
add a control label at the front of the instructions. As shown in
Figure 2, the instruction POP JUMP IF FALSE determines
the next instruction that needs to be executed, we find the
jumped instruction is LOAD FAST arr or LOAD FAST cnt,
thus we add a label label0 and a label label2 at the front of the

TABLE I: Rules for constructing nodes and edges of
semantic graph

Opcode Edge type Return Oprands Nodes&Edges

br control % %cmp,%label true,%label false %cmp→%label true,%cmp→%label false
switch control % %cond,%label 1,...,%label n %cond→%label 1,...,%cond→%label n

call/invoke data ! %name,%param 1,...,%param n %param 1→name,...,%param n→name,name→return
ret data % %1 %1→ret

cmp data ! %1,%2 %1→cmp, %2→cmp, cmp→return
neg data ! %1 %1→neg, neg→return
add data ! %1,%2 %1→add, %2→add, add→return
sub data ! %1,%2 %1→sub, %2→sub, sub→return
mul data ! %1,%2 %1→mul, %2→mul, mul→return
div data ! %1,%2 %1→div, %2→div, div→return
rem data ! %1,%2 %1→rem, %2→rem, rem→return
load data ! %1 %1→return
store data % %1,%2 %1→%2

1 The explanation of the column name is as follows. Opcode is the name of this instruction. Edge Type determines
the instruction is about data or control dependency. Return means whether return value exists. Operand shows the
operandsused by the instruction. Nodes&Edges illustrate the rules to build nodes&edges in the semantic graph
where ”→” represents the edges while operands and return values arenodes.

two instructions. After obtaining the three-address code for all
languages, we note that the naming of opcode in different IRs
might be inconsistent but similar in function. In order to better
unify the multi-language representation, we make the opcode
names with the same function close to each other between all
languages by some simple mappings. For example, an opcode
for a function call is represented as CALL FUNCITION in
Python, call in C, and invoke in Java. After mapping, we use
the call to represent this opcode.

2) Data and Control Flow Extraction: After the grammar
is unified, we have transformed IRs of all languages into three-
address IRs, based on which we use all operands, opcode, and
labels as nodes of the semantic graph. For example in Figure
2, nodes are values arr, i, 0, 1, cnt, opcode iter, le, add and
labels label0, label1, label2. It should be noted that temporary
variables in IR will be removed and will not appear after graph
construction.

Intuitively, data and control dependency can be obtained
in each instruction. For instance, add instruction has two
arguments %1 and %2, and there are data dependencies like:
%1→add, %2→add and add→return. Similarly, we build
rules to extract dependencies for other instructions in Table I.
According to these rules, we can extract the data- and control-
dependency of each instruction and build nodes and edges
in the semantic graph. For each IR, we can aggregate these
dependencies to obtain the data and control flow. For instance
in Figure 2, blue arrows are about data dependencies and red
arrows are control dependencies. In label0, we can find that
value arr has data dependency with opcode iter. Similarly, in
label1, le has control dependency with label0 and label2.

III. MULTI-LANGUAGE CODE SEARCH MODEL

A. Overview

Since intermediate representation (IR) are more consistent
across multi-language code representation, we exploit the IR to
search code snippets in different programming languages. As
shown in Figure 3, the workflow consists of IR generation and
unification, semantic graph construction and multi-language
code contrastive learning module. IR generation and unifica-
tion module extract the IR of source code by the corresponding
compilers according to different programming languages. The
semantic graph construction module extracts the semantic

Source Code

Query in Natural Language

IR Generation and Unification

Snippet
wrapper

Soot

LLVM

Compiler

Instruction
Analysis

and
Unification

Java IR

C/C++ IR

Other IR

G
G
N
N

Dis Python IR

/

Other Language

C/C++ Code

Java Code

Static
Programming

Language

Python Code
Daynamic

Programming
Language

Unified IR

LSTM

Semantic Graph Construction

label0

arr

iter

i0

le

label2 1

add

cnt

label1

negative

Multi-Language Code
Contrastive Learning

Fig. 3: Workflow of multi-language code search

information from IRs across different languages. The semantic
graph and query are then fed into our multi-language code
search model to obtain the vector representation. MulCS learns
the relationship between the two representation through a
multi-language code contrastive learning module. It forces the
vector representation of the query and code snippet with the
same functionality to be similar and the pair with different
functionality to be different.

B. Code Representation

To build the unified semantic graph, we first need to pre-
process code snippets to make them compilable and generate
the corresponding IRs. Then we follow the principles in §
II-C to transform IRs into unified semantic graphs. Finally,
we model the semantic graph with GGNN to obtain code
representation. The details of implementation are described
as follows.

1) IR Generation: We can directly obtain the IR (i.e.,
bytecode) of Python code snippets by using the Dis module
since Python is a dynamic language. However, we cannot
directly extract IR from incomplete C or Java code snippet
because they are static languages and lack the necessary
surrounding code or third-party libraries to compile.

The existing work JCoffee [24] can convert the incomplete
code snippets to their compilable counterparts by simulating
the presence of missing surrounding code and unavailable
third-party libraries. However, JCoffee is unable to be directly
used in multilingual IR generation for two reasons. First,
JCoffee only supports Java, but we have C code in our corpus.
Second, JCoffee would modify the code snippet, which is
intrusive and might influence our experimental results.

To better make C and Java code snippets compilable and
generate corresponding IRs, we design a snippet wrapper
that leverages LLVM and Javac feedback to add missing
code. The snippet wrapper can be applied to both C and
Java code. Moreover, our snippet wrapper is non-intrusive,
i.e., it does not modify any code in the original snippet but
simulates missing surroundings in the global. Our snippet
wrapper mainly handles compilation errors according to the
rules in Table II. For instance, when LLVM reports error
messages like “unknown type name”, our snippet wrapper
can recognize these errors caused by an undefined struct

TABLE II: Rules used by our snippet wrapper

Compilation errors Language Rules to complement code snippet

Unknown type name C (LLVM) Adding the struct definition to the global.
Unknown Variable C (LLVM) Adding the variable declaration to the global.
Incompatible type C (LLVM) Correct the variable type declaration.

Unknown Variable Java (Javac) Adding the variable declaration to class
global variables.

Incompatible type Java (Javac) Correct class attribute type.

body. For an undefined struct, our snippet wrapper will add
the corresponding struct definition information to the global.
Similarly, for undefined variables, our snippet wrapper will
add the corresponding type declaration information to the
global. It should be noted that “Incompatible type” errors only
happen when the snippet wrapper adds the variable declaration
part. However, our declaration might be incorrect and cause
conflicts during compilation. In this case, our snippet wrapper
will further correct the variable type declaration.

We perform experiments on Java and C datasets. The
evaluation metric is the ratio of successfully compiled code
snippets among the uncompilable code snippets. Experimental
results show that our snippet wrapper improves JCoffee [24]
by 9.52% on the Java dataset, with a success rate of 69%.
The advantage can be attributed to the non-intrusive char-
acteristic of our snippet wrapper. In concrete, JCoffee deals
with “unknown variable” and “incompatible type” situations
by inserting the variable declaration and type casting parts,
which might modify the code snippet and introduce some
syntax errors because JCoffee can not precisely locate where
the surrounding code needs to be inserted. Our snippet wrapper
can effectively solve the problem by exploiting the global
variable mechanism. The type of the variables can be inferred
by the incompatible error messages reported by the compiler.
JCoffee can not be directly applied on the C dataset, while our
snippet wrapper achieves a success rate of 49%. The remaining
51% of unsolvable situations are mainly caused by the fact
that the error messages reported by the LLVM compiler are
not always indicated and thus not able to be utilized for our
wrapper.

2) Building Semantic Graph: To construct a unified se-
mantic graph, we also consider the following problems. First,
how to integrate dependencies in object-oriented languages.

Second, how to decrease the noises in semantic graphs and
improve the training efficiency.

Integrating Dependencies in Object-oriented Languages
Our semantic graph also supports dependencies remain in
object-oriented languages. We represent the relationships in
the object-oriented language in two methods. First, we treat
statements in the form of “a.b”, in which “a” is an instance
of a particular object, and “b” is the attribute of “a”. To
represent “b” belongs to “a”, we link “a” to “b”. Second,
we treat statement in the form of “a.method()”, in which
“a” is an instance of a particular object, “method” is an
interface of “A”, and “A” is the Class of the object “a”. We
link “A” to “method” since the “method” is more relevant
to Class. Significantly, in an object-oriented language, if a
method invocation does not have a return value, the method
invocation always changes the status of the object instance.
For example, “a.init()” is an initial interface to init object
“a”. Thus, we link the method to object instance to imply the
change of object instance.

Decreasing Noises. We adopt some rules to decrease the
noises of our semantic graph. In principle, we need to remove
the redundant information brought by IR without changing
the semantics. We follow the rules of [23] to optimize our
semantic graph. First, we remove opcode nodes that are too
trivial to reflect the semantics. For example, the conversion
opcode aims to convert the data type and is meaningless
for semantics. Second, we remove temporary variables nodes
since these variables are introduced for compilation and do
not appear in the source code. After that, we further delete
exception handling-related nodes in the initial graph since they
are always semantically irrelevant.

3) The Graph Neural Network Exploited in our Method:
We exploit an improved gated graph neural network (GGNN)
[25] with an attention mechanism to learn the vector represen-
tation of source code to model the directed graph with multiple
types of edges. In our graph G = (V,E), V represents a set of
nodes (v, lv), and E represents a set of edges (vi, vj , l(vi,vj)).
lv represents the label of node v which is composed of the
variables in IR instructions. l(vi,vj) represents the type of the
edge from vi to vj including data dependency and control
dependency.

GGNN learns the vector representation of G by message
passing mechanism as follows. First, each node v ∈ V
is initialized with a one-hot embedding vector (h0

v) based
on lv . Then, the embeddings of all nodes are trained by
multiple iterations. In iteration t, each node vi gets message
m

vj→vi
t from neighbour vj as: mvj→vi

t = Wl(vi,vj)
ht−1
vj . Here,

Wl(vi,vj)
represents the weight matrix of the edge type to map

neighbour vj to a shared space. Then, all messages of the
neighbours are aggregated to vi as follows:

mi
t = faggregate({m

vj→vi
t | vj → Neibour(vi)}) (1)

Then, GGNN uses GRU (Gated Recurrent Unit) [26] to update
the embedding of each node vi. GRU uses the aggregated
message and past state ht−1

vi to update the current state as
ht
vi = GRU(mi

t, h
t−1
vi). Finally, we exploit the attention

mechanism to calculate the importance of each node because
different nodes have different contributions to the semantics.
We first allocate weights for each node vi as:

αi = sigmoid(f(hvi) · uvfg) (2)

αi represents the weight of node vi, f(·) represents the
linear function, · represents the inner project function and uvfg

represents the semantic representation of the whole graph.
Then, we obtain the embedding of the whole graph hvfg by
the following equation:

hvfg =
∑
vi∈V

(αihvi) (3)

C. Query Representation

We apply LSTM [27] to learn the representation of queries.
The embedding hdes

i of each word in the query is calculated
as hdes

i = LSTM(hdes
i−1, w(di)), where i = 1, ..., |d|, |d|

represents the length of the query description, and w represents
the word embedding layer to embed each word into a vector.
We also exploit an attention mechanism [28] to capture the
fine-grained relevance between the hidden states and the final
query representation. In concrete, we apply an attention layer
to calculate the attention score αdes(i):

αdes(i) =
exp(f(hdes

i) · udes)∑n
k=1 exp(f(h

des
k) · udes)

(4)

where · denotes the inner project of hdes
i and udes, f(·)

denotes a linear layer and udes denotes the context vector of
the whole query. The context vector is randomly initialized and
jointly learned during training. Then, the final representation
of the query description Edes

|d| can be calculated as:

Edes
|d| =

|d|∑
i=1

αdes(i)hdes
i (5)

D. Multi-Language Code Contrastive Learning

How to effectively capture snippet-level semantic infor-
mation between different program languages during training
is certainly essential for multilingual code search models.
However, it has not been well studied by previous work.

After obtaining code representation (C) and query repre-
sentation (Q), we introduce a multi-language code contrastive
learning module to capture the relationship between the multi-
language code and query representation. Contrastive learning
enforces similar object representation to be closer while dis-
similar object representation are further apart. Actually, the
queries corresponding to programs with the same semantics
written in different languages are often similar. Conversely,
the different semantics programs written in other languages
often correspond to different queries. Many semantically sim-
ilar programs in our multilingual corpus, so the semantic
relationship between multilingual code can be effectively
bridged through their corresponding similar queries. At the
same time, how to effectively use multilingual data to capture
the relationship between programs with different semantics is

also crucial. Motivated by this, we propose a Multi-Language
Negative Sample Augmentation module (MNA) in this work,
as shown in Figure 3. Specifically, we randomly select N
samples of different languages as a mini-batch from large-scale
code snippets. For a given positive pair, the other N-1 code
snippets of different languages are treated as negative samples
and forced away by the models. At training time, MNA
can better close the semantic relationship between different
languages, making queries and multi-language code with the
same semantics closer in the representation space, while those
with different semantics are further apart.

Similar to [29], we use InfoNCE [30] as our contrastive
loss, which computes the probability of selecting the positive
(query and the associated correct code) by taking the softmax
of projected embedding similarities across a batch of multi-
language negatives examples obtained by MNA. Eq. (6) shows
InfoNCE is a function whose value is low when the query q
is similar to the matching code embedding c+ but not similar
to the unmatching code embedding c−. The temperature
hyperparameter [31] is indicated as t.

Lq,c+,c− = −log
exp(q · c+/t)

exp(q · c+/t) +
∑

c− exp(q · c−/t)
(6)

We use the dot product to measure the similarity between
two normalized vector representation (i.e., cosine similarity).
Intuitively, our multi-language code contrastive learning mod-
ule encourages the similarity between a query and its correct
code snippet to be larger and the similarity between a query
snippet and the incorrect code across multi-language to be
smaller.

IV. EXPERIMENT
On the effectiveness of our multi-language code search

model, we perform several experiments to explore the follow-
ing research questions:

RQ1: Does our proposed approach improve code search
performance than state-of-the-art methods?

To evaluate whether our semantic graph-based approach
can better unify representation across different programming
languages compared with state-of-the-art methods, we sepa-
rately train different baseline models in multiple languages
and analyze the effectiveness of different baseline models.

RQ2: Does our proposed approach improve the perfor-
mance of realistic queries across multi-languages?

To examine whether our semantic graph-based method can
unify the representation across different programming lan-
guages and achieve satisfied performance on realistic queries,
we perform a case study and a series of analyses.

RQ3: What is the effectiveness of the contrastive learn-
ing module in our approach?

Since the multi-language code contrastive learning module
is designed to use multi-language data better, we analyze
its effectiveness through a series of ablation and contrastive
experiments.

RQ4: What is the performance of our proposed ap-
proach when combined with existing pre-trained models?

Recently, many large-scale pre-trained code models have
been proposed for code representation. These models utilize
the Masked Language Model task to pre-train the Transformer,
and have achieved promising results on downstream code tasks
such as code search and code generation. To explore the
possibility of combining with the pre-training technique, we
combine our method with two typical pre-trained models, i.e.,
CodeBERT [20] and CodeT5 [32], and fine-tune those models
using our multi-language dataset.

A. Experiment Setup

1) Dataset: As described in § III, our model requires a large
dataset that consists of source code and the corresponding
queries. We first acquire Java and Python code snippets and
the corresponding queries from CodeSearchNet [33] released
by Github, the largest widely-used dataset for evaluating the
performance of code retrieval. Due to the absence of C query-
code dataset, we collect C dataset by ourselves. First, we
download high-stars (over 300) C projects from Github by
the rules in [33] to filter high-quality code snippets. For
each programming language, we obtain 39,000 code snippets,
queries and corresponding IR by exploiting tools described in
§ II-C.

2) Baseline Model: In this paper, we use the existing
state-of-the-art code search approaches as the baselines for
comparison.

• DeepCS [8]. DeepCS exploits function name, API se-
quence and other code tokens for learning the code
representation, through an RNN-based neural network,
to jointly embed input queries and code snippets into a
high-dimensional vector space.

• CodeSearchNet [33]. CodeSearchNet regards code as
tokens and uses different models to learn representation
of code tokens, i.e., Natural Bag of Words (NBoW), 1D
Convolutional Neural Network (1D-CNN), Bidirectional
RNN (biRNN) and Self-Attention (SelfAtten).

• TabCS [34]. TabCS exploits function name, API se-
quence, tokens, and AST for learning the code represen-
tation and embeds the code representation via a two-stage
attention network to learn the text features and structural
features of the code.

3) Evaluation Metrics: For automatic evaluation, we
choose two common metrics to measure the performance
of code search: SuccessRate@k, and Mean Reciprocal Rank
(MRR). The SuccessRate@k represents the percentage of
queries for which more than one correct snippet suc-
ceed to exist in the top k ranked snippets returned by a
search model, which is calculated as : SuccessRate@k =
(1
|Q|

∑Q
q=1 δ(Rankq ≤ k)), where Q denotes a set of queries,

Rankq denotes the highest rank of the hit snippets in the
returned snippet list for the query; δ(·) denotes an indicator
function that returns 1 if the Rank of the qth query (Rankq) is
smaller than k otherwise returns 0. SuccessRate@k is impor-
tant because a better code search engine should allow develop-
ers to find the desired snippet by inspecting fewer results. We

TABLE III: Comparison of the overall performance between
our model and baselines on MRR metrics (Best scores are in

boldface)

Model C Java Python Avg

DeepCS 0.556 0.362 0.315 0.411
MuLDeepCS 0.510(-8.2) 0.368(+1.7) 0.346(+9.4) 0.408 (0.7 ↓)

TabCS 0.676 0.516 0.583 0.592
MuLTabCS 0.646(-4.3) 0.505(-2.1) 0.562(-3.6) 0.571 (3.5 ↓)

1D-CNN 0.666 0.517 0.412 0.532
MuL1D-CNN 0.616(-7.5) 0.465(-10.1) 0.435(+5.6) 0.505 (5.1 ↓)

biRNN 0.606 0.508 0.378 0.497
MuLbiRNN 0.615(+1.5) 0.480(-5.5) 0.427(+13.0) 0.508 (2.0 ↑)

SelfAtten 0.702 0.590 0.593 0.628
MuLSelfAtten 0.645(-8.1) 0.535(+9.3) 0.559(-5.7) 0.580 (7.6 ↓)

NBoW 0.713 0.612 0.605 0.643
MuLNBoW 0.734(+2.9) 0.616(+0.7) 0.612(+1.2) 0.654 (1.7 ↑)

SingleMulCS 0.721 0.619 0.634 0.658
MulCS 0.786(+9.0) 0.667(+7.8) 0.719(+13.4) 0.724 (10.0 ↑)

evaluate SuccessRate@1, SuccessRate@3, SuccessRate@5 re-
spectively and a higher SuccessRate@k value implies a better
performance of the code search model. MRR is the average
of the reciprocal ranks of all queries Q. The reciprocal rank
is the inverse of the highest rank of hit code, i.e., Rank. The
computation of MRR is : MRR = 1

|Q|
∑|Q|

q=1
1

Rankq
, where Q

denotes the set of queries in the automatic evaluation; Rankq
denotes the rank of the ground-truth code corresponding to
the qth query. The higher the MRR value, the better the code
search performance is.

4) Implementation Details: In our implementation, we
build two separate vocabularies for queries and IR tokens and
limit their vocabulary sizes to 10,000 and 15,000, respectively.
We set the mini-batch size to 320. For each batch, queries are
padded with a special token “PAD” to the maximum length,
which is set to 30 in our experiments. All tokens in our dataset
are converted to lower case and parsed into a sequence of
tokens according to camel case and “ ” if exists. We set the
word embedding size to 300. For LSTM and GGNN units,
we set the hidden size to 512. Besides, we set 5 rounds of
iteration for GGNN. For the contrastive loss in § III-D, we set
the temperature parameter t to 0.05. We update the parameters
via AdamW optimizer [35] with the learning rate 0.001. All
the models in this paper are trained for 200 epochs. All the
experiments are conducted on a server with one Nvidia Tesla
V100 GPU, running on Ubuntu 18.04.

B. Experimental Results

RQ1: Effectiveness of multilingual model.
We investigate whether MulCS can better unify represen-

tation across different programming languages than state-of-
the-art methods. We train different baseline models using
monolingual and multilingual data respectively and analyze
the effectiveness of baseline models leveraging multilingual
data. The test sets for the three languages consist of 2,000
pairs of code snippets and corresponding queries, respectively.
This automatic evaluation treats each query as an input and the
corresponding code snippet as ground truth. The other 1,999

code snippets are distractor snippets for each input query. We
use the same test set to compare monolingual and multilingual
models.

Table III shows the overall performance of our model and
other baselines, measured in terms of MRR. The first line of
each model, such as DeepCS, TabCS and 1D-CNN, results
from training with monolingual data(SingleMulCS represents
the result of MulCS training on a single language), the second
line of each model, MuLDeepCS, MuLTabCS and so on are
the results of training with multilingual data. Numbers (%)
in parentheses indicate the performance improvement using
multi-language training over single-language training. The last
column Avg represents the average performance across three
languages. From this table, we can observe that in all settings
(C, Java and Python), the performances of our method are
better than the baseline methods. Furthermore, we can see
that our multilingual model achieves better improvements than
the monolingual model. It shows that MulCS can better unify
the representation of different programming languages and
better utilize multilingual data to improve model performance.
In addition, some token-based code representation models,
such as NBoW and biRNN in CodeSearchNet, also achieve
improvements in multilingual, similar to the results of [22].
The main reason is that there are some similar identifiers
in human-written code (which perform the same function)
in different languages. These similar identifiers enable token-
based models to utilize multilingual data better, but the results
are not significantly improved. Among them, the NBoW model
performs the best results among all baselines, which is similar
to the results in [22], [36], which shows that the bag of words
model is particularly good at keyword matching, which seems
to be a necessary facility in implementing search methods.
Finally, we find that the multilingual performance of the AST-
based model (i.e., TabCS) decreases, the main reason is the
differences in the syntactic structure of ASTs in different
languages, indicating that the AST-based structural informa-
tion cannot well unify the representation between different
languages.

RQ2: Case study on the queries across multi-languages.
In RQ2, we focus on comparing the effectiveness of these

methods on the same realistic query across multi-languages.
We construct the same queries across C, Java, and Python
since these languages use different training and testing corpus.
To achieve this, we need to collect the same queries across C,
Java and Python and corresponding multilingual code snippets
from CodeSearchNet [33] and our constructed C dataset.
Considering this process involves a lot of human effort, we
collect 15 widely-used pairs of queries and corresponding
multi-language code snippets. We add these 15 pairs to our
testing corpus as our case study benchmark. For each query,
we calculate the ranking score returned by our method and
other baselines(i.e., MuLNBoW and MuLTabCS, which are
token-based and AST-based multilingual models. Both models
achieve better performance on multilingual baselines).

As shown in the Table IV, the numbers represent the rank
of the correct code snippet corresponding to the query, and

TABLE IV: The ranking of the same queries returned by different methods

query MulCS MuLNBoW MuLTabCS
C Java Python Avg C Java Python Avg C Java Python Avg

1.parse command line arguments 1 1 1 1∗ 11 7 1 6 2 1 3 2
2.return the max value of a collection 1 1 1 1∗ 1 1 1 1∗ 1 2 1 2
3.compute the squared distance from a point to a line 1 2 1 2∗ 2 2 1 2∗ 2 1 12 5
4.matrix multiplication function 1 1 1 1∗ 3 1 1 2 1 2 2 2
5.sort the given range of items using quick sort 2 1 2 2∗ 1 1 2 2∗ 10 5 75 30
6.calculates the binary tree height 1 1 1 1∗ 1 19 1 7 1 1 1 1∗

7.create a new list 1 1 1 1∗ 13 1 1 5 1 1 1 1∗

8.parse the given json string 1 1 1 1∗ 1 1 160 54 1 1 2 2
9.find the levenshtein distance between two strings 2 1 1 2∗ 2 2 1 2∗ 7 1 1 3
10.extract an html tag 1 1 1 1∗ 1 22 31 18 1 145 1 49
11.gets a random number in the range min to max 1 3 2 2∗ 1 1 2 2∗ 1 54 8 21
12.algorithm for depth first searching the vertices of a graph 4 1 1 2 1 1 1 1∗ 3 1 3 2
13.return the full path of the database 1 1 21 8 1 1 2 2∗ 1 9 15 9
14.compute aes encryption 10 6 4 7 3 4 2 3∗ 4 1 2 3∗

15.find the longest common prefix 4 1 6 4∗ 1 39 18 19 4 21 1 8

1 Numbers represent the ranking of the correct code snippet corresponding to the query, and the marker ∗ indicates the best average performance
across three languages.

TABLE V: The performance on the same queries returned by
different methods

model R@1 R@3 R@5

MulCS 0.711 0.844 0.911
MuLNBoW 0.533 0.778 0.800
MuLTabCS 0.489 0.733 0.778

TABLE VI: Effects of contrastive learning

Method C Java Python Avg

MulCS 0.786 0.667 0.719 0.724
-w/o.CL 0.706 0.579 0.525 0.603

MuL1D-CNN-w.CL 0.708 0.590 0.570 0.623
MuLbiRNN-w.CL 0.702 0.610 0.570 0.629
MuLNBoW-w.CL 0.728 0.618 0.638 0.661
MuLSelfAtten-w.CL 0.760 0.653 0.708 0.707

the marker ∗ indicates the best average performance across
three languages. For example, the number 1 means that the
correct code snippet searched by the model ranks first among
all code snippets in the test set for a given query. We can
observe that MulCS outperforms other methods in most cases
(achieves the best average performance on 12 of the 15
queries). Furthermore, our approach is the most stable among
all methods. In concrete, the ranking scores returned by MulCS
only range from 1 to 21, while the ranks of MuLNBoW
range from 1 to 160 and MuLTabCS from 1 to 145. To more
comprehensively evaluate model performance, we compute
SuccessRate@k for 15 queries across three languages (i.e.,
45 queries per model) based on Table IV. As shown in the
Table V, the columns R@1, R@3 and R@5 show the results
of the average SuccessRate@k over all queries when k is 1,
3 and 5, respectively. These results indicate that our method
achieves satisfied and stable results on the widely-used queries.
In contrast, baseline methods retrieve the code based on the
textual features and syntactic features, making their results
unstable since they highly rely on whether the code snippet
contains the specific tokens and specific structure.

RQ3: Effectiveness of multilingual contrastive learning.
To demonstrate the effectiveness of multi-language code

contrastive learning, Table VI ablates the effect of the con-
trastive learning module, we replace the multilingual code con-
trastive learning module with the softmax loss used in Code-
SearchNet [33] for comparison. Overall, MulCS achieves the
best performance when contrastive learning is used, indicating
the usefulness of the designed module in our model. This
also confirms that the multi-language code contrastive learning
module can better learn a unified semantic representation and
close the semantic relationship between different languages.
Meanwhile, we further apply the contrastive learning module
using the same batch size on CodeSearchNet baselines (i.e.,
1D-CNN, NBoW, biRNN and SelfAtten) because NBoW
achieves better results than other baselines under multilingual
training, and biRNN has better multilingual performance gain
over different baselines. The results show that the CodeSearch-
Net models with contrastive learning do not perform as well as
our model. This also reflects that our model’s unified semantic
graph architecture is also significantly beneficial.

RQ4: Effectiveness of combined with existing pre-
trained models.

To combine our method with existing pre-trained models,
we use CodeBERT [20] and CodeT5 [32] models to obtain
vector embeddings of query and code. CodeBERT [20] and
CodeT5 [32] are obtained by self-supervised pre-training on
a large-scale corpus. To fuse our unified semantic map in the
fine-tuning stage, we transform the unified semantic map into
sequences via a depth-first search algorithm, which is used
as additional information for code representation. Specifically,
we use two pre-trained models, CodeBERT and CodeT5, as
encoders, respectively. When encoding the code, the input
of the original model is the token sequence of the code,
and the modified model uses the token sequence of the code
and the sequence obtained from the semantic graph as input.
The data used in the fine-tuning phase is the same as the
MulCS training data. The results are listed in Table VII.
Among them, MulCodeBERT and MulCodeT5 fine-tune the
pre-trained model on our data, +IRGraph add semantic graph
sequences as additional information input and +CL use multi-
language contrastive learning module in fine-tuning stage.

TABLE VII: combined with the pre-trained models

Model C Java Python Avg

MulCS 0.786 0.667 0.719 0.724

MuLCodeBERT 0.735 0.643 0.679 0.686
MuLCodeBERT+IRGraph 0.738 0.656 0.718 0.702
MuLCodeBERT+CL 0.859 0.750 0.813 0.807
CodeBERT MulCS(+CL+IRGraph) 0.867 0.756 0.869 0.831

MuLCodeT5 0.736 0.653 0.712 0.700
MuLCodeT5+IRGraph 0.749 0.653 0.732 0.711
MuLCodeT5+CL 0.858 0.754 0.828 0.813
CodeT5 MulCS(+CL+IRGraph) 0.864 0.757 0.864 0.828

Note that due to memory limit, batch size is set to 8 for
CodeT5 series models and 32 for CodeBERT series models.
The results show that combining our method with existing
pre-trained models (i.e., adding our multilingual contrastive
learning module and unified semantic graph representation in
the simply way during the fine-tuning stage) gains additional
enhancements. It would indicate a promising direction of
multi-language code representation by combining our unified
semantic representation model and pre-training techniques. We
leave a deep investigation in the future work.

V. DISCUSSION

A. Cost of Preprocessing

In order to obtain a unified representation of multilingual
code, we need to build a unified semantic graph. These pre-
processing steps can take some time, but can all be processed
offline before code search. Specifically, we first preprocess a
large amount of code to obtain semantic graphs and then input
them into the model to get their vector representation and store
them offline. When searching online, we only need to encode
the queries and then calculate the similarity with the candidate
code to obtain the search results. So the preprocessing involved
in this paper has little impact on the performance of the search.

B. Threats to validity

One threat to validity is the extensibility of our proposed
method. Our model uses different compilers to obtain the
IR of the corresponding language, and there may be non-
negligible differences in the form of the initial IRs directly
converted by different compilers. For the unification of IR, a
lot of work will be put into this step. To minimize this threat,
we choose C, Java, and Python, three typical programming
languages, and represent structural, object-oriented, and just-
in-time languages. Therefore, for adding a new language, we
can directly construct it according to the method in this paper.
For interpreted languages, if IR is a three-address structure,
then the semantic graph can be built using the construction
rules in the article. If it is in bytecode format, then the three-
address structure can be obtained using Algorithm 1. For
compiled languages, the wrapper can be constructed in the
same way as C/Java in Table 3.

VI. RELATED WORK
A. Code Search

Traditional code search methods mainly exploit information
retrieval and natural language processing technologies [1]–[3],
[37]–[41]. The methods utilize textual or syntactic structures
to model code. Bajracharya et al. [37] proposes a code search
engine Sourcerer that can extract fine-grained structural infor-
mation from source code. Lv et al. [3] proposes CodeHow,
a code search technique that measures APIs and the queries
based on text similarity, and applies an extended boolean
model to retrieve code. Recently, with the development of deep
learning technologies, plenty of works have been proposed to
precisely model the source code [4]–[9], [42]–[47]. CODEnn
[8] extracts tokens, filenames and API sequences of code,
and uses CNN and RNN to embed this information and
queries into a shared space. To utilize diverse features of
source code, Wan et al. [7] proposed MMAN which uses
a multi-modal (tokens, AST and CFG) to represent code.
DeGraphCS [23] uses variable-based DFG and CFG to learn
code semantics. However, for multilingual code search, graph-
based methods are not well utilized due to language-specific
syntactic structure, and we tackle this challenge with an IR-
based unified semantic graph.

B. Contrastive Learning for Code Representation

Contrastive learning approach learns code representations
by closing the distance between similar example (positive) rep-
resentations while maximizing the distance between different
example (negative) representations [48]. Inspired by this, some
works [12]–[14], [49] try to apply the contrastive learning
method to code representation learning. Bui et al. [12] and
Jain et al. [14] mainly use semantic-preserving program trans-
formations to generate functionally equivalent code snippets
and train the model with a contrastive learning technique to
identify semantically equivalent (positive examples) and non-
equivalent (negative examples) code snippets. Huang et al.
[13] proposed CoCLR, which incorporates code contrastive
learning into the CodeBERT. CoCLR obtains more artificially
generated training instances by rewriting query statements,
such as randomly deleting a word and randomly swapping.
However, for multilingual code search, contrastive learning-
based methods are not well utilized due to language-specific
syntactic structures, and we use a unified semantic graph
representation to address this challenge.

VII. CONCLUSIONS AND FUTURE WORK

We propose a contrastive learning framework for multi-
language code search named MulCS. MulCS integrate con-
trastive learning into the improved gated graph neural network
to learn the code representation. To learn more comprehensive
semantic information, MulCS extracts data flow and control
flow from intermediate representation of multilingual code.
We put forward a general semantic graph construction strategy
based on the characteristics of various typical programming
languages to narrow the gap between grammars of different
languages. Furthermore, to acquire the semantic information

of source code, we proposed a snippet wrapper to make the
incomplete code without third-party libraries compilable. Our
experimental study has shown that the proposed approach
can better unify representation across different programming
languages and outperforms state-of-the-art methods.

For future work, it would be interesting to investigate how
our unified semantic graph approach can be combined with
other orthogonal techniques like pre-training, and we have
initially demonstrated its effectiveness, which will facilitate
the utilization of larger-scale multilingual data. Moreover, we
might extend our method to solve other software engineering
problems, e.g., cross-language code clone detection.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments. This research was funded by
NSFC No. 61872373 and No. 62272473.

REFERENCES

[1] I. Keivanloo, J. Rilling, and Y. Zou, “Spotting working code examples,”
in Proceedings of the 36th International Conference on Software Engi-
neering, 2014, pp. 664–675.

[2] X. Li, Z. Wang, Q. Wang, S. Yan, T. Xie, and H. Mei, “Relationship-
aware code search for javascript frameworks,” in Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2016, pp. 690–701.

[3] F. Lv, H. Zhang, J.-g. Lou, S. Wang, D. Zhang, and J. Zhao, “Codehow:
Effective code search based on api understanding and extended boolean
model (e),” in 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2015, pp. 260–270.

[4] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep
learning met code search,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019, pp. 964–974.

[5] Q. Chen and M. Zhou, “A neural framework for retrieval and summariza-
tion of source code,” in 2018 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2018, pp. 826–831.

[6] D. DeFreez, A. V. Thakur, and C. Rubio-González, “Path-based function
embedding and its application to specification mining,” arXiv preprint
arXiv:1802.07779, 2018.

[7] Y. Wan, J. Shu, Y. Sui, G. Xu, Z. Zhao, J. Wu, and P. Yu, “Multi-
modal attention network learning for semantic source code retrieval,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 13–25.

[8] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE). IEEE,
2018, pp. 933–944.

[9] J. Shuai, L. Xu, C. Liu, M. Yan, X. Xia, and Y. Lei, “Improving code
search with co-attentive representation learning,” in Proceedings of the
28th International Conference on Program Comprehension, 2020, pp.
196–207.

[10] T. F. Bissyande, F. Thung, D. Lo, L. Jiang, and L. Reveillere, “Popularity,
interoperability, and impact of programming languages in 100,000 open
source projects,” in Computer Software and Applications Conference
(COMPSAC), 2013 IEEE 37th Annual, 2013.

[11] L. Prechelt, “An empirical comparison of seven programming lan-
guages,” Computer, vol. 33, no. 10, pp. 23–29, 2000.

[12] N. D. Bui, Y. Yu, and L. Jiang, “Self-supervised contrastive learning for
code retrieval and summarization via semantic-preserving transforma-
tions,” in Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, 2021, pp. 511–
521.

[13] J. Huang, D. Tang, L. Shou, M. Gong, K. Xu, D. Jiang, M. Zhou, and
N. Duan, “Cosqa: 20,000+ web queries for code search and question
answering,” arXiv preprint arXiv:2105.13239, 2021.

[14] P. Jain, A. Jain, T. Zhang, P. Abbeel, J. E. Gonzalez, and I. Stoica, “Con-
trastive code representation learning,” arXiv preprint arXiv:2007.04973,
2020.

[15] X. Li, Y. Gong, Y. Shen, X. Qiu, H. Zhang, B. Yao, W. Qi, D. Jiang,
W. Chen, and N. Duan, “Coderetriever: Unimodal and bimodal con-
trastive learning,” arXiv preprint arXiv:2201.10866, 2022.

[16] Z. Sun, L. Li, Y. Liu, and X. Du, “On the importance of building
high-quality training datasets for neural code search,” arXiv preprint
arXiv:2202.06649, 2022.

[17] P. S. Kochhar, D. Wijedasa, and D. Lo, “A large scale study of multiple
programming languages and code quality,” in 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1. IEEE, 2016, pp. 563–573.

[18] H. Wei and M. Li, “Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in
source code.” in IJCAI, 2017, pp. 3034–3040.

[19] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 783–794.

[20] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained
model for programming and natural languages,” in Findings of the
Association for Computational Linguistics: EMNLP 2020, Online Event,
16-20 November 2020, ser. Findings of ACL, T. Cohn, Y. He, and Y. Liu,
Eds., vol. EMNLP 2020. Association for Computational Linguistics,
2020, pp. 1536–1547.

[21] X. Wang, Y. Wang, F. Mi, P. Zhou, Y. Wan, X. Liu, L. Li, H. Wu,
J. Liu, and X. Jiang, “Syncobert: Syntax-guided multi-modal contrastive
pre-training for code representation,” arXiv preprint arXiv:2108.04556,
2021.

[22] T. Ahmed and P. Devanbu, “Multilingual training for software engineer-
ing,” arXiv preprint arXiv:2112.02043, 2021.

[23] C. Zeng, Y. Yu, S. Li, X. Xia, Z. Wang, M. Geng, B. Xiao, W. Dong, and
X. Liao, “degraphcs: Embedding variable-based flow graph for neural
code search,” arXiv preprint arXiv:2103.13020, 2021.

[24] P. Gupta, N. Mehrotra, and R. Purandare, “Jcoffee: Using compiler
feedback to make partial code snippets compilable,” in 2020 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2020, pp. 810–813.

[25] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” arXiv preprint arXiv:1511.05493, 2015.

[26] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[28] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[29] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 9729–9738.

[30] A. Van den Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv e-prints, pp. arXiv–1807, 2018.

[31] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning
via non-parametric instance discrimination,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 3733–
3742.

[32] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understand-
ing and generation,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November, 2021, M. Moens,
X. Huang, L. Specia, and S. W. Yih, Eds. Association for Computational
Linguistics, 2021, pp. 8696–8708.

[33] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code search,”
arXiv preprint arXiv:1909.09436, 2019.

[34] L. Xu, H. Yang, C. Liu, J. Shuai, M. Yan, Y. Lei, and Z. Xu, “Two-
stage attention-based model for code search with textual and structural
features,” in 2021 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2021, pp. 342–353.

[35] I. Loshchilov and F. Hutter, “Fixing weight decay regularization in
adam,” 2018.

[36] S. Liu, X. Xie, L. Ma, J. Siow, and Y. Liu, “Graphsearchnet: Enhancing
gnns via capturing global dependency for semantic code search,” arXiv
preprint arXiv:2111.02671, 2021.

[37] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes, “Sourcerer: a search engine for open source code supporting
structure-based search,” in Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and
applications, 2006, pp. 681–682.

[38] W.-K. Chan, H. Cheng, and D. Lo, “Searching connected api subgraph
via text phrases,” in Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering, 2012,
pp. 1–11.

[39] R. Holmes, R. Cottrell, R. J. Walker, and J. Denzinger, “The end-to-
end use of source code examples: An exploratory study,” in 2009 IEEE
International Conference on Software Maintenance. IEEE, 2009, pp.
555–558.

[40] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and
C. Cumby, “A search engine for finding highly relevant applications,”
in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1, 2010, pp. 475–484.

[41] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in Proceedings of
the 33rd International Conference on Software Engineering, 2011, pp.
111–120.

[42] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT international symposium
on foundations of software engineering, 2016, pp. 631–642.

[43] J. Henkel, S. K. Lahiri, B. Liblit, and T. Reps, “Code vectors: Un-
derstanding programs through embedded abstracted symbolic traces,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2018, pp. 163–174.

[44] Q. Huang, X. Xia, Z. Xing, D. Lo, and X. Wang, “Api method
recommendation without worrying about the task-api knowledge gap,” in
2018 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2018, pp. 293–304.

[45] S. Sachdev, H. Li, S. Luan, S. Kim, K. Sen, and S. Chandra, “Retrieval
on source code: a neural code search,” in Proceedings of the 2nd
ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages, 2018, pp. 31–41.

[46] D. Wang, Y. Yu, S. Li, W. Dong, J. Wang, and L. Qing, “Mulcode: A
multi-task learning approach for source code understanding,” in 2021
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2021, pp. 48–59.

[47] D. Wang, Z. Jia, S. Li, Y. Yu, Y. Xiong, W. Dong, and X. Liao,
“Bridging pre-trained models and downstream tasks for source code
understanding,” in Proceedings of the 44th International Conference on
Software Engineering, 2022, pp. 287–298.

[48] Y. Liu, X. Yang, S. Zhou, X. Liu, Z. Wang, K. Liang, W. Tu, L. Li,
J. Duan, and C. Chen, “Hard sample aware network for contrastive deep
graph clustering,” arXiv preprint arXiv:2212.08665, 2022.

[49] D. Peng, S. Zheng, Y. Li, G. Ke, D. He, and T.-Y. Liu, “How could
neural networks understand programs?” in International Conference on
Machine Learning. PMLR, 2021, pp. 8476–8486.

