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Abstract

Learning Ordered Binary Decision Diagrams (OBDDs) from large-
scale datasets is an important topic of explainable artificial intelli-
gence. However, existing search-based methods are still limited in
scalability regarding dataset size, since they must explicitly encode
the satisfaction of all examples in a dataset. To tackle this challenge,
we introduce an OBDD encoding method to parameterize a neural
network. This method frees satisfaction encoding of all examples
in a dataset while leveraging mini-batch training techniques to
enhance learning efficiency. Our main theoretical contribution is
to prove that our approach enables the simulation of OBDD infer-
ence within a continuous space. Besides, we identify faithful OBDD
encoding to fulfill the properties required by OBDDs, allowing to
interpret an OBDD directly from the learned parameter assign-
ment. With faithful OBDD encoding, we present an end-to-end
neural model named OBDD-NET, being capable of coping with large-
scale datasets. Experimental results exhibit better scalability and
competitive prediction performance of 0BDD-NET compared to state-
of-the-art OBDD learners. Valuable insights about faithful OBDD
encoding are derived from the ablation study. The implementation
is available at: https://github.com/jmq-design/OBDD-NET.
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1 Introduction

Learning an interpretable model from large-scale data is a crucial
topic in eXplainable Artificial Intelligence (XAI). Compared to (Bi-
nary) Decision Tree (DT), Binary Decision Diagram (BDD) is a
more compact interpretable model due to the node sharing [5]. In
particular, Ordered BDD (OBDD) [4], a tractable subset of BDD, has
recently received increasing attention in XAI [5, 15, 23, 24, 33]. The
main attractions of the OBDD representation on XAI are twofold.
On the one hand, its compact graph structure (especially with small
size and depth) is commonly human-understandable [5, 15]. On the
other hand, the excellent tractability of OBDDs (e.g., supporting
polytime satisfiability and model counting check) is useful for de-
cision explanation and quantitative robustness analysis of complex
classifiers that are not easy to understand directly [7, 24, 33].

Informally, the ordering property imposed on an OBDD requires
that decision features appear in the same order on any path in the
Directed Acyclic Graph (DAG) representation of the BDD. It can
be view as a hierarchical DAG where all vertices at a specific non-
terminal level should be associated with the same unique feature.
The depth and size of an OBDD refer to the number of features
and vertices it contains, respectively. Figure 1(a) depicts an OBDD
involving three binary features, which compactly represents two
IF-THEN sentences: (1) if (NOT f;) AND f, then predict true; and
(2)if fi AND f; AND f3, then predict true.

In practice, learning OBDDs with limited depth H still turns out
to be quite challenging. Even for a fixed feature ordering, the search
space reaches at least double-exponential, due to the fact that there
are 22" (logically) distinguishing H-ary Boolean functions.

Existing studies for learning OBDDs with limited depth from
data consist of two categories. Classic heuristic approaches [19] rely
on mutual information heuristics, but often produce OBDDs with


https://github.com/jmq-design/OBDD-NET
https://doi.org/10.1145/3746252.3761195
https://doi.org/10.1145/3746252.3761195
https://doi.org/10.1145/3746252.3761195
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3746252.3761195&domain=pdf&date_stamp=2025-11-10

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

2 1le9
N T B MaxSAT-BDD
1 2 it
'1 S10 EEm Shati's approach
I\ 2
S I
S °o05
Vs \ ©
f;\ ; £ )0 J N - -
/ "u‘, w car  mushroom adult bank-market.weatherAUS
T v, 1 Vs 1728 8124 21647 38424 141970
#examples

(b)

Figure 1: (a) An OBDD of depth 3 and size 5. (b) Encoding size
for learning OBDDs in limited depth 6 for some datasets in
experiments.#x’ means the number of x.

poor prediction quality [15]. Recently, two exact methods: MaxSAT-
BDD [15] and Shati et al.’s approach[23], have been proposed for
learning optimal (reduced) OBDDs maximizing classification accu-
racy, where the learning problem is reduced to a Maximum Satisfia-
bility (MaxSAT) optimization problem. However, these approaches
face limitations in terms of scalability. They treat learning OBDDs
as a constraint programming problem in which the satisfaction
towards all examples in the entire dataset needs to be encoded at a
time. From Figure 1(b), the encoding size (i.e., the number of literals
of the encoded MaxSAT instance) of their approaches grows gradu-
ally with the dataset size. When applied to large-scale datasets, the
encoding size become extremely large (e.g., greater than 100 million
for both approaches when dataset size reaches 100 thousand), being
quite challenging to be solved by modern MaxSAT solvers.

In this paper, we address the challenge by treating the OBDD
learning problem as a gradient-based structure learning problem,
without needing to explicitly encode large-scale datasets to con-
strain programming instances. Our main contributions include:

(1) We introduce an OBDD encoding method to parameterize
a neural network and design a reachability-based procedure
for evaluating the satisfaction relation between an OBDD
encoding and an example. The reachability-based proce-
dure avoids explicit satisfaction encoding towards the whole
dataset by computing the satisfaction relation directly. We
prove that the reachability-based procedure enables the sim-
ulation of OBDD inference within a continuous space.

(2) We identify a subset of the OBDD encoding, named faith-

ful OBDD encoding, that fulfills the properties required by

OBDDs. It allows an OBDD to be directly interpreted from

the learned parameter assignment of the neural network.

With the faithful OBDD encoding, we develop an end-to-end

neural model named OBDD-NET, which enables the utilization

of gradient descent optimization and mini-batch training
techniques for efficient learning.

Experimental results on 10 small and 8 large datasets show

that OBDD-NET achieves better scalability than state-of-the-

art (SOTA) OBDD learners, scaling to million-size datasets,
while maintaining competitive predictive performance.

3

~

2 Related Work

Rule learning approaches can be categorized into three categories.
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Heuristic-based Approaches. These methods include some tra-
ditional algorithms for learning decision trees, such as C4.5 [22]
and CART [3], which employ some locally optimal strategies (e.g.,
information gain, Gini index) to iteratively construct tree. Besides,
there are also some approaches to learn OBDDs: top-down [18]
and bottom-up [19] learning algorithms !, which rely on mutual
information heuristics. An advantage of the latter is that the depth
of the built OBDD could be controlled as a preset parameter [14].
Constraint Solver-based Approaches. Several approaches have
been proposed for learning optimal (reduced) OBDDs. Hu et al. [15]
proposed a MaxSAT-based learning approach (MaxSAT-BDD) for
learning optimal OBDDs in limited depth to maximize the binary
classification accuracy. Further, Shati et al. [23] presented a lifted
MaxSAT-based encoding for a multi-terminal variant of OBDDs
(MTBDDs). Besides, Cabodi et al. [5, 6] developed an iterative SAT-
based approach for deriving optimal OBDDs with minimum size,
however focuses on correctly classifying all examples in the datasets.
Florio et al. [10] proposed an Mixed-Integer Linear Programming
based encoding for learning optimal decision diagrams (ODDs) with
pre-defined skeletons. However, their targeted decision diagrams
do not satisfy the ordering property, hence are not OBDDs.
Gradient-based Approaches. Recently, there has been a grow-
ing interest in leveraging the gradient-based structure learning
technique to mine logical rules, such as AND-OR rules [21, 28, 29],
first-order rules [11, 13, 30], circuits [27]. The main insight is to
conduct a continuous relaxation on the discrete architecture rep-
resentation, so as to leverage gradient descent techniques for an
efficient optimization of the architecture. However, this technique
has not yet been applied to the OBDD learning problem.
Different from these approaches, we apply the gradient-based
structure learning technique to the problem of learning OBDDs
with limited depth. Accordingly, we consider MaxSAT-BDD [15]
and Shati et al.’s approach[23] as the most suitable SOTA of exact
approaches, and OODG [19] as the SOTA of heuristic approaches.

3 Preliminaries

Throughout this paper, we use a lowercase (resp. uppercase) bold let-
ter for a vector (resp. matrix). (v); denotes the i-th element of a vec-
tor v, and (M); ; denotes the element of a matrix M at the i-th row
and the j-th column, with i and j starting from 1. (M); denotes the
i-th row of M. MT denotes the transpose of the matrix M, so is vl
Classification. In this paper, we consider binary classification
problems defined on a finite set # = {fi, - - -, fin} of binary features
fi € {0,1}, and a set K = {0,1} of binary classes. A classifier is
to compute a classification function mapping feature space F =
{0, 1}™ into the set of classes K. A literal on binary feature f; € F,
represented as f; or — f;, denotes that the feature takes Boolean value
1(T) or O(L), respectively. An example w is characterized by a pair
(w, c), where w € F and ¢ € K. For ease of description, we reuse
the term example to refer to w, leaving ¢ implicit; and represent
it as a sequence of literals over . A dataset (or examples) & =
{@1, -+, wp} is partitioned into positive examples E* and negative
ones &7, according to the ground truth label lab(w;) of each w;.

1 Another name, called Oblivious Read-Once Decision Graph (OODG), is used by them,
which is equivalent to OBDD in binary classification for binary datasets[15].
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3.1 Binary Decision Diagrams

A Binary Decision Diagram (BDD) [1] is a rooted DAG, denoted by
(V,T,&;,Er), where

o V is the set of vertices with each leaf in {T, L}; and each
internal vertex v associated to a Boolean decision variable
dV (v) € F and two children left(v), right(v);

o T CV X (F U{T,L}) is the set of vertex-tag pairs.

o §1,E €V XV are the set of all 1-edges (i.e., (v,left(v)))
and 0-edges (i.e., (v,right(v))), respectively.

DEFINITION 1. [[4].] Let 7 be a total variable ordering over F.
An Ordered Binary Decision Diagram (OBDD) respecting the or-
dering « is a BDD that satisfies the ordering property: for any in-
ternal vertex v, it holds that rank, (dV (v)) < rank, (dV (left(v)))
and rank; (dV (v)) < rank, (dV (right(v))), where rank(f;), also
written rank(f;), is the rank of the variable f; in the ordering .

Intuitively, the ordering property requires that decision variables
appear in the same order on any path. A Reduced OBDD (ROBDD)
is an OBDD that contains neither redundant internal vertex v with
left(v) = right(v), nor distinct vertices v1 and vz s.t the sub-graphs
rooted by them are isomorphic. For any OBDD, there is a unique
ROBDD representation, and the reduction can be done effectively in
polytime [4]. Note that, the reduction results in an OBDD logically
equivalent to the original one.

Let ¢ = (V,7,8E;,Er) be an OBDD over ¥. The size of ¢ is
the number of its vertices |V|. The depth of ¢ is the number of
variables appearing in ¢ (ie., [{fi € F | (v, fi) € T,v € V}|). Note
that an OBDD could have a depth greater than the length of the
longest path from the root to any leaf.

Given an example w = [lj, -+ ,l] and a BDD classifier ¢y =
(V,T,8E1,Er) over F, we say w satisfies , denoted by w = ¢, if
for some 1 < n < ||, there is a sequence of vertices q1, - - - , gn+1
such that g1 = 01, (qn+1, T) € 7, and for every 1 < i < n, if
(i fr) € T then either (1) (gi,qi+1) € &; and I = fi; or (2)
(qi»qi+1) € &, and Iy, = —f.. Intuitively, o | ¥ indicates that there
is a path x of length n of i from the root vertex v; to the leaf vertex
T such that x is in consistence with the example w. Given two
BDDs ¢ = (V/, T, 81’, &) and Y = (V,T,8;, &) over F, we say
¢ and ¢ are isomorphic, if there is a one-to-one correspondence
p between V” and V s.t. for any vlf,v} € V(1) (v),t) € T iff
(p(v)),t) € T, where t € (F U{T,L1}); and (2) (vlf,v;.) € 81’ iff
(p(v)), p(0})) € Ep; and (3) (v}, v}) € Epiff (p(0]), p(v})) € Ep.

Example 3.1 illustrates a (reduced) OBDD classifier that satisfied
by the example w = [ fi, f2, f3].

Example 3.1. Let ¥ = {fi,f2, 3} and 7 a variable ordering
[fi, f2, f3]- As shown in Figure 1(a) (solid (dotted) lines correspond
to 1-edges (0-edges)), consider an OBDD ¢ = (V,T,E;, &) re-
specting 7 of size 5 and depth 3 where V = {vy, - 05}, T =
{(o1, f1), (v2, f2), (03, 3), (v4, T), (05, L)}, & = {(01,02), (02,03),
(v3,04)} and &, = {(v1,v3), (v2,05), (v3,05)}. Given an example
w=[=f1, f2, f3]. Consider a path k =v1,v3,04 of length 2 in ¢. As
(v1,f1) € T, (v1,v3) € Erand Iy = = fi, (v3, f3) € T, (v3,04) € E;
and I3 = f3, we get that w |= ¢.

Learning OBDD Problem. We focus on the problem of learning
(reduced) OBDD in a limited depth. Given that the reduction of an
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Figure 2: (a) Illustration structure for inducing the parame-
ters of OBDD-NET. (b) Visualisations of the BDDs in Example
4.1 (the leftmost two graphs) and 4.3 (the rightmost graph).

OBDD can be done effectively[4], somewhat similar to previous
works[15, 23], we first learn a non-reduced OBDD then apply post-
processing to get the corresponding ROBDD.

P(&, H): Given a set of examples & for binary classification, the
goal is to find an OBDD ¢ of maximum depth H that maximizes
the accuracy of / on &.

4 OBDD Encoding and Inference

In this section, we first introduce the model structure of OBDD-NET
and present the definition of OBDD encoding, followed by an infer-
ence process of OBDD-NET on classification. Then, a faithful subset
of the OBDD encoding is provided and shown to have the equiva-
lent inference to the OBDD representation. In such case, an OBDD
with the same classification behavior as OBDD-NET can be interpret
directly from the learned parameter assignment.

4.1 Model Structure of OBDD-NET

Similarly to a binary classifier, OBDD-NET takes as input an exam-
ple and outputs an evaluation on the satisfaction relation between
OBDD-NET and the example. We start by the parameter structure
of OBDD-NET for inducing the definition of the parameter set. As
shown in Figure 2(a), it consists of a collection of nodes vy, - - - , o
partitioned into H + 1 distinct levels, where each level except the
root and terminal levels contains W = 2F~1 nodes. This allows to
cover the full search space of the learning problem P(&, H), due
to the fact that there are at most 271 vertices at the last internal
level of an OBDD of depth H.

In the rest of the paper, we use H to denote the depth (i.e., the
number of internal levels) of OBDD-NET. Accordingly, the size of
OBDD-NET (i.e., the number of the whole nodes), is N = 271 (H —
1) + 3. We denote lev(i) the level index of node v; in OBDD-NET, i.e.,
lev(i) = 1if i = 1 and lev(i) = (i — 2)/2H~1 + 2 otherwise.

As depicted in Figure 2(a), we treat the OBDD learning as a (la-
belled) leveled graph learning. In the final learned graph, each level
is expected to be assigned to a unique feature and each edge to be
categorized as 1-edge or 0-edge. To explore a compact OBDD, cross-
layer connections between nodes from top to bottom are permitted.
The trainable parameters of OBDD-NET are defined as follows.



CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

DEFINITION 2. Let # be a set of binary features. The parameter
set T of OBDD-NET 2 of depth H < |F]| is defined as T' = Tye. U
Deft U Tright, where Tgee ={(Tgec)ik € R [ 1< i< H 1<k < |F},
Deft={(Meft)ij ER|1<i < N=-2,i <j<N,lev(i) < lev(j)}and
Fright:{(l"right),-,j eR|1<i<N-=-2i<j<N,lev(i) <lev(j)}.

Note that, for brevity, we use the same symbol T to represent the
parameter set of OBDD-NET and an assignment of it interchangeably,
so does the symbol 6 introduced later.

To establish the relationship between OBDD-NET and the DAG
of an OBDD, we constrain the parameter assignment I' within
the range [0, 1]. In Definition 3, we formally define the restricted
parameter assignment as an OBDD encoding.

DEFINITION 3. Let T be a parameter set of OBDD-NET of depth
H. An OBDD encoding 0 of OBDD-NET of depth H is defined as
0={e € T|e € RI%11} | where RI®!] denotes the real value range
from 0 to 1. Ogec, Oleft and Orighe are defined as the counterparts of
Tdecs Neft and Tyjgpy, respectively.

An OBDD encoding is capable of representing an OBDD. For
any 1 < i < H, the parameter (f4e.);x indicates the degree of
probability that the level i is associated to a feature f;. € ¥ In this
way, O4e. allows to automatically select some important features
from the whole set ¥ (in the case where H < |¥) and enables
the feature ordering to be optimized in an end-to-end fashion. For
any pair of nodes v; and v; with v; precedes v; w.r.t. the level, the
parameter (6lef)i,j (resp. (Oright)i,j) determines the degree of prob-
ability that the left (resp. right) child of v; is v;. We illustrate an
OBDD encoding with Example 4.1.

Example 4.1. Let ¥ = {fi, f2} and 6 be an OBDD encoding of
depth H = 2 (and size N = 5) where (0gec)1,1 = 1, (Ogec)2,1 = 0.2,
(Bgec)2z = 0.8, (Oreft)1,5 = (Oreft)2,4 = (Oright)1,2 = (Oright)2s = 1
and the other parameters are assigned 0. As shown in Figure 2(b),
the BDD represented by 6 is most likely to be (V, 7T, &;, E,) where
V = {o1,02,04,05}, T = {(v1, fi), (02, f2), (04, T), (vs5, L)}, &
{(v1,05), (v2,04)} and &, = {(v1,v2), (v2,v5)}. While it may also to

be a slightly different BDD with 7~ = {(v1, f1), (v2, f1), (v4, T), (vs5, L) }.

4.2 Inference for the Satisfaction Relation

Definition 4 offers an inference process on satisfaction relation
between an OBDD encoding 6 of OBDD-NET and a given example .

Before giving the formal definition, we introduce some notations
as follows. We use the corresponding bold symbols 84, for the
matrix representation of the encoding parameter 04e.; and 0y and
Oright for the ones obtained from ey and Oyjgp by filling with 1s
the last two diagonal elements, and with 0s the other unused ele-
ments of Ojef; and Oyignt, respectively. For example, O is an N X N
matrix where (Oleft) N-1,N-1 = (Oleft) NN = 1, (Bleft)i,j = (Bleft)i,j
if (O1eft)i,j € Olefr> and (Oyegt)i,j = 0 otherwise. In this case, the 1-leaf
and 0-leaf have both outgoing 1-edge and 0-edge to themselves.
Hereafter, we define an N X N transition matrix M® (on the OBDD
encoding 0) under a given example w as follow:

o for 1<i<N -2, (M?); = pi - (Bert); + (1= pi) - (Bright) ;-
where p; = (0dec)lev(i) w indicates the probability of

?Note that, H is the (unique) hyper-parameter to define the network structure of
OBDD-NET, while neither W nor N is.

2433

Junming Qiu, Rongzhen Ye, Weilin Luo, Kunxun Qi, Hai Wan, and Yue Yu

choosing 1-edge at node v; under o, where w’ denotes the
transpose of the vector representation w of w.
o for N-1<i<N,(M?); = (Oep);-

Intuitively, (M®); ; indicates the transition probability from node
v; to vj via 1-edge or 0-edge.

DEFINITION 4. Let 6 be an OBDD encoding of OBDD-NET of depth
H. Given an example o over ¥ . O0BDD-NET recursively computes (k)-
reachability vector (r®) (%) of the root node v; under w as follows:

)M = (M?)y,

() ®) = o1 ((x2) k=1 . M@,k > 1, W

where 0p1(x) = max(0, min(1,x)). Then, OBDD-NET outputs the
evaluation of satisfaction relation between 6 and w, denoted by

ESat(6, »), as ((r?) ) n_1.

The vector (1<) () represents the probability that the root node
v1 can reach to other nodes through (exact) k-step transition. In
particular, as the OBDD encoding 6 has a loop at 1-leaf, ESat(6, )
(i.e., ((r‘*’)(H Nn—1) computes the summation of probability to the
k-reachability from root node v; to 1-leaf vy_; for 1 < k < H.In
this case, ESat(6, w) evaluates, within a continuous space, the satis-
faction relation between 6 and a given example w, by simulating the
inference of an OBDD on classification. A more specific connection
between the two inference process will be discussed later (Theorem
4.5). We illustrate the inference process ESat with Example 4.2.

Example 4.2. Consider again the OBDD encoding 6 in Exam-
ple 4.1. Its matrix representation is: 04e. = [ 01 9 08]’

2 0.
00 0 0 1 01 .0 0 0
00 0 1 0 00 0 0 1
O =0 0 0 0 0|,0ge=[0 0 0 0 0f.
00 0 1 0 00 0 1 0
00 0 0 1 00 0 0 1

Given an example w = [=fi, f2], its vector representation is
w = [0 1]. We have that p; = (8gec)1-W! =[10]-[01]T =0, p; =
p3 = (Ogec)2 - w! =1[0.20.8] - [01]T = 0.8. By Definition 4, we get
the transition matrix M® and reachability vector (r) (2) as follows.

001 0 0 0
0 0 0 08 02
M®=10 0 0 0 01,
00 0 1 0
0 0 0 1
off o 1 0 0o o 01"
1 00 0 08 02 0
)@ =g |l0] -l0 0 0 o off[=]o
of lo o 0 1 o 0.8
of o 0o o 1 0.2

Finally, OBDD-NET evaluates the satisfaction between 6 and w as
ESat(6, ) = ((r?))), = 0.8.

4.3 The Faithful Subclass of OBDD Encoding

Obviously, not any OBDD encoding corresponds to a valid OBDD.
To guarantee the correspondence between an OBDD encoding and
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OBDD, we hereafter define a faithful subset of OBDD encoding,
called faithful OBDD encoding.

DEFINITION 5. Let 6 be an OBDD encoding of 0BDD-NET of depth
H. We say 0 is faithful if it satisfies the following:

1. VeefO:e=0VvVe=1

2. Vie [LH] : ZLill (edec)i,k =1

3. Vie [LN - 2] : Zi<ici<Nlev(i)<lev(j) (Pleft)ij = 1
A 21§i<j§N,lev(i)<|ev(j)(gright)i,j =1

4. Vk € [LIF]] : 21, (Bgec)ife < 1

To begin with, constraint 1 restricts each parameter to be as-
signed a Boolean value 0 or 1. With this basic restriction, the rest of
the constraints can fulfill the whole properties imposed on OBDDs.
Specifically, constraint 2 ensures that every non-terminal level is
associated to exactly one feature. While condition 3 forces that
each non-terminal node has exactly one left and right child respec-
tively, and must has a node with greater level index as its child. The
last constraint requires each feature to appear at most once at the
non-terminal levels. In this case, the associated features of the non-
terminal levels form an order over ¥. This, together with the con-
straint 3, implies that any path obeys the same feature ordering. So,
the faithfulness fulfills the ordering property required by OBDDs.
Faithful OBDD Encoding vs OBDD. We claim that any arbitrary
OBDD can be represented as a faithful OBDD encoding of an equal
or greater depth. Given an arbitrary OBDD ¢ of depth H (i.e., with
H different features), a simple way is to construct an OBDD encod-
ing 0 of the same depth H and maintain the topology of i, where
some redundant nodes directing to the terminal nodes may appear
at the end of each level. Of course, this also applies to a faithful
OBDD encoding with greater depth.

Reversely, Definition 6 offers a decoding function mapping a
faithful OBDD encoding to an OBDD.

DEFINITION 6. Let 8 be a faithful OBDD encoding of OBDD-NET
of depth H. The decoding function decode(é) computes a 4-tuple
(V, T, &, &) defined below:

l.ojeV,andVje(1,N] : vjeV if thereis i<jst.v;€V and
either (Blef)i,j=1 or (Qright)i,j =1L

2. (oN-1,T) €T ifoy—1 € V;and (vn, L) € T ifoy € V.

3.Vie [LLN-2] : (v, fx) € T ifv; € V and (gdec)lev(i),k =1

4.Vie[I,N=-2] : (Z)i,l)j) € & ifv; €V and (Gleﬁ)i,j =1; and
(vi,vj) €&y ifv; €V and (eright)i,j =1

Lemma 1 states that decode guarantees to interpret a BDD satis-
fying the ordering property from a faithful OBDD encoding 6.

LEMMA 1. For any faithful OBDD encoding 0, decode(0) computes
an OBDD representation.

Moreover, Theorem 4.4 shows the existence of a faithful OBDD
encoding syntactically corresponding to an arbitrary OBDD (under
the decoding function decode). This means that the faithful OBDD
encoding is a complete encoding method for the OBDD representa-
tion. Therefore, it makes sense to apply the faithful OBDD encoding
in OBDD-NET to learn OBDDs. Example 4.2 shows an OBDD encod-
ing 6 faithful to the OBDD ¢ in Example 3.1 and the decoding result
decode(0).
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Algorithm 1: Interpreting OBDD Representation

Input: An OBDD encoding 6 of depth H

Output: A ROBDD (V7 7”*,8;‘, &;) interpreted from 6

reset the maximum of each (Ojeft )i (resp. (Orignt): to 1 and all other

values to 0s;
calculate V by the first operation of decode(8);
L« {lev(i) |vj € V,1<i<N}; F« 0
fori e [1,H] andi € Ldo
k* — argmaxyc(y ) akgr (Odec) ik
reset (Ogec); jr Of (Odec)i to 1, the others to 0s;
F «— FU{k*};

[

o W R » N

<

select an arbitrary unique k” ¢ F for remaining (0gec )i, and reset
(Bdec )ik’ to 1 and others to Os;

(V, T, &1, &) « decode(0);

(V.77 &}, 8) « reduce((V, T, &y, Er));

return (V, 7, &, Er);

©

©

10

-
jory

Example 4.3. Recall the OBDD ¢ shown in Example 3.1. A faith-
ful OBDD encoding 6 of depth H = 3 (and size N = 11) of
is as follows: (Ogec)1,1 = (Odec)22 = (Odec)33 = 15 (Blefi)12 =
(Oreft)2,6 = (Bleft)s,10 = 1; (Oright)1,6 = (Bright)2.11 = (Bright)s,11 = 1
(Orett)i,10 = (Orignt)i,in = 1foreachiin {3,4,5,7,8,9}; and the other
parameters are assigned 0. Reversely, by Definition 6, as shown
in Figure 2(b), decode(0) computes a 4-tuple (V, T, &}, &) where
V={v1,02,06, 010,011}, T ={(v1, f1), (02, f2), (ve, 3), (v10, T),

(011, L)}, E1={(v1,v2), (v2, 06), (v6,v10) } and Er = {(v1, v6), (v2, v11),
(v6,v11) }. Clearly, it represents an OBDD isomorphic to .

THEOREM 4.4. For any OBDD representation i/ of depth H’, there
exists a faithful OBDD encoding 0 of OBDD-NET of depth H > H’ such
that decode(0) and y are isomorphic.

PROOF SKETCH. Let V'’ = {vi, e UJ’V, }. Let ¢ be an OBDD (V’,
7',8,,&;) of depth H' respecting = [f, -+, fur] over F. Let
map : {L,---,N’} — {1,---,N}, where map(1) = 1, and for
1< i< N’, map(i) = N —1 (resp. map(i) = N)if (v;, T) € T (resp.
(v;, L) € T), otherwise map(i) = (k — 2) - 2571 + j + 1 when v; is
the j-th vertex of i s.t. rank(dV (v;)) = k. With the function map,
roughly as described at the beginning of this subsection, we can
construct a faithful OBDD encoding of depth H > H’ for i/, denoted
by 8y (f)- By Lemma 1, decode(8y (g)) is an OBDD representation.
Let ¢ = decode(0y ) = (V,T,E1,Er). Let p : V' — V defined
as:forany 1 < i < N’, p(0]) = 0map(s)- Then, by the construction of
0y (&) and Definition 6, we can prove that (1) the function p is a one-
to-one correspondence between V'’ and V; (2) forany 1 < i < N’,
(0f,t) € 7" iff (Omap(i)- 1) € T, where t€ (F U{T, 1}); (3) for any
1<i<j< N, (v}, 0;) 681’ iff (Omap(i)> Umap(j)) € €3 and (v}, u}) €
81’ iff (Vmap(i)> Ymap(j)) €E1- So, @ and ¢ are isomorphic. m]

4.4 Inference of OBDD-NET vs Inference of OBDD

We hereafter bridge the inference |= of OBDDs and the inference
ESat (in Definition 4) of OBDD-NET, by showing the consistency be-
tween them under condition of faithfulness. This allows to treat
the OBDD classifier learning problem as a joint optimization of
OBDD-NET in terms of maximizing the consistency with dataset and
the faithfulness to the OBDD representation.
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Lemma 2 states that the H-reachability evaluation ((r®) (H) IN-1 =

1 precisely when there is a path from v1 to vy _; within H length and
in consistence with w. Similar to the context of OBDDs, given an
example w = [I1,- -, ] and a faithful OBDD encoding 6 of depth
H, we say v; can reach vj in 1 < n < H step in consistence with
, if there is a sequence of nodes vs1," - -, Ug(41) (2 path of length
n in 0) such that vs1 = v;, vg(41) = vj, and for every 1 < i < n, if
(0dec)tev(si) k = 1 then either (1) (Ojeft)sis(i+1) = 1 and [ = fi; or
(2) (aright)si,s(iﬂ) =1land [ = ~f;.

LEmMA 2. Let 0 be a faithful OBDD encoding of depth H, and w an
example [11, -, L]. Then, vy can reachvn_1 inn step in consistence
with @ for somel < n <H ijf((r“’)(H))N_l =1.

Theorem 4.5 shows the equivalence of the inference on classifica-
tion of an OBDD  and that of a faithful OBDD encoding 6 whose de-
coding result decode(#) is isomorphic to . That is, for any arbitrary
OBDD y, there exists a well-trained faithful OBDD encoding 0 s.t.
the evaluation ESat(6, w) of the satisfaction relation between 0 and
o coincides with that between the example w and the OBDD. In this
case, an OBDD can be interpreted directly from the OBDD encoding
without any gap between them on classification performance.

THEOREM 4.5. Let ¢ be an OBDD of depth H’, and 0 be a faithful
OBDD encoding of depth H > H’ such that decode(6) and y are
isomorphic. Then, for any example © = [li,--- ,ly], it holds that
ESat(0, w) =1 ifw = ¢, and ESat(0, w) = 0 otherwise.

PROOF SKETCH. Let ¢ = ((V’,T’,SI’,S;). Let ¢ = decode(0) =
(V, 7,8, Er). We first prove that w = ¢ only if ESat(0, w) = 1.
Assume that o |= . There is a path x of length 1 < n < H’ from
the root v} of ¢ to the T-leaf such that « is in consistence with
w. Since i and ¢ are isomorphic, we get that the root v; of ¢ can
reach the T-leaf in n step in consistence with w. By Definition 6,
in 0, v1 can reach vy_; in n step in consistence with w. As O is a
faithful OBDD encoding and 1 < n < H, it follows from Lemma 2
that ((r©)H))x_; = 1 (ie., ESat(6, @) = 1).

We now prove that o = ¢ only if ESat(6, w) = 0 by contra-
position. Assume that ESat(6, w) # 0. Since 6 is a faithful OBDD
encoding, it can be verified that ESat(6, w) = 1. By Lemma 2 and
Definition 6, v1 can reach vn_; (T-leaf) in n step in consistence
with w for some 1 < n < H. Since 1 and ¢ are isomorphic, we get
that the root v} of i can reach T-leaf in n step in consistence with
w,le, 0 F. O

5 Learning OBDDs by OBDD Encoding

Exploiting the (faithful) OBDD encoding, a gradient-based OBDD
learning approach is developed.

We first build network structure of OBDD-NET parameterized by
an OBDD encoding 6 via a softmax operation as shown in Equation
(2) 3. It fulfills constraints 2 and 3 of the faithfulness defined in Def-
inition 5, which captures the basic structural properties of a BDD.

e(Tiett)ij e (Tright)ij e (Ttec) ik

(Orett)ij= s (Bright)i,j = ()

s (edec)i,k =T
(Uright)i (Ndec)i
3We remark that in our implement, a more complicate variant of the softmax operation,
named Gumbel Softmax function [16], is used to promote structural exploration.
Gumbel softmax allows to approximate a discrete categorical distribution. Its advantage
on gradient-based structure learning has been demonstrated in [27].

2435

Junming Qiu, Rongzhen Ye, Weilin Luo, Kunxun Qi, Hai Wan, and Yue Yu

where (Meg)i = X e(rleft)i,j,(might)i =y Ty,
1<i<j<N 1<iS)<N
lev(i)<lev(j) lev(i)<lev(j)
(Mgec)i= 2 eTdec) ik
1<k<|F]

Then, we train the parameterized neural network to jointly ex-
plore an assignment of the parameters approximately faithful to the
OBDD representation and optimize classification. The basic opti-
mization objective to maximize the consistency between the dataset
& and 0, is formulated as L. To overcome the vanishing gradi-
ent when training, we replace the function oy; used in ESat(6, w)
of Lo with its differentiable approximation ¢, defined as follow:
04, (x) = cox if x < 0, 6, (x) = cox + 1 — ¢ if x > 1, otherwise
a(’)l (x) = x, where co = 0.01 a small positive constant. Besides, the
remaining constraints 1 and 4 of the faithfulness are characterized
as regularization loss £; to £s.

Lo= é - S e (ESat(6, ) - lab(w))?,

£1= 37 Relu(SH (Bgec)ie — 1),

L= =31 S (Oueoi - og(Ouecdip +e)),
Ly=-3N12 Zfim((@left)i,j ~log((Bleft)i,j + c1)

+ (Oright)i,j - l0g((Oright)ij +c1)),

where ¢; = 1e-5 is a small positive constant bias.

The regularization loss £ is obtained from the condition 4 in
Definition 5 by replacing constraint like x < y with a differentiable
one Relu(x — y). The regularization loss £ and L3 are used to ap-
proximately fulfill the constraint 1 by bootstrapping binarization of
assignment of the involved parameters. The final joint optimization
objective for training OBDD-NET is: £ = Lo + Z?zl a;L;, where a;
is the regularization coefficient.

Finally, we interpret an OBDD from the trained model (which cor-
responds to an approximately faithful OBDD enconding). As shown
in Algorithm 1, we first convert it to a faithful one, and then an
OBDD representation can be acquired by calling the routine decode
defined in Definition 6. To achieve faithfulness, it is sufficient to re-
alize both the constraints 1 and 4 in Definition 5, that is, to binarize
the assignment of all the parameters in 6 while ensuring that there is
no 1 <k < || s.t. two different parameters (8gec)ik and (8gec) jk
are simultaneously assigned the value 1. This can be done by the fol-
lowing step: (1) reset the maximum in each (Olet)i and (Orignt)i to 1
and all other values to 0s, allowing to generate a BDD-style topolog-
ical DAG with root v1; (2) calculate the involved vertices V' and the
levels L; (3) iteratively assign a unique feature f. to each level of L
in turn, by selecting the one with maximal value (0ge.); i from the
available features (Lines 4 to 7). Similar operation for the remaining
levels is done by the following line. After decoding an OBDD rep-
resentation from 6 , the procedure reduce (Line 10) first applies the
dd package * to produce a preliminary ROBDD (but in a slightly
different OBDD form with complement edges), and then converts
it back to the simple form (without complement edges) adopted in
this paper. In this way, we obtain a final ROBDD classifier.

4https://github.com/tulip- control/dd/tree/main
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Table 1: The statistics of the datasets. |E| indicates the number
of examples; | 54| indicates the number of original features;
|| indicates the number of binarized features; |E*|/|E| indi-
cates the percentage of positive examples in the dataset.

Dataset |l [Forgl | |F1 | 1E71/18]
anneal 812 42 89 0.77
tic-tac-toe 958 9 27 0.65
car 1,728 6 21 0.30
splice-1 3,190 60 287 0.52
kr—vs—kp 3,196 36 73 0.52
hypothyroid 3,247 43 86 0.91
christine 5,418 1636 4031 0.50
musk2 6,174 166 1829 0.15
mushroom 8,124 21 112 0.52
heloc 9,488 23 87 0.46
magic04 10,167 10 79 0.50
adult 21,647 14 144 0.24
secondary mushroom | 22,037 20 157 0.55
bank marketing 38,424 20 125 0.12
higgs 97,276 28 93 0.53
weatherAUS 141,970 22 246 0.22
BNG (labor) 615,870 16 95 0.57
BNG (credit-g) 988,973 20 90 0.70

6 Experiments

Baselines. We compare OBDD-NET with three SOTA OBDD learn-
ers: OODG [19] for heuristic approach, and MaxSAT-BDD[15] and
Shati et al. [23]’s approach for exact ones. For OODG, as we did
not find the publicly available implementation of the authors, we
use its recent implementation > of [15] instead.

Datasets. We take 10 small and 8 large-scale public binary classi-
fication datasets from CP4IM®, UCI [9], Open-ML [25] and Kaggle
repository 7 .For small datasets, we follow those in [15] that contain
more than 800 examples, while including three additional datasets
from UCI and OpenML. Besides, as in [12], for assessing scalability
on large-scale classification problems, we also consider 8 signifi-
cantly larger datasets with increasing numbers of examples from
about 10,000 to 1,000,000. The features in the datasets are discretized
by entropy-based discretization and then binarized with the one-hot
encoding to get binary features. We perform these discretization
and binarization using the tool Orange [8], and then remove dupli-
cate examples. The statistics of these datasets is shown in Table 1.

6.1 Experimental Settings

All experiments were conducted on a Linux system equipped with
an Intel(R) Xeon(R) Gold 5218R CPU with 2.1 GHz and 64 GB
RAM and a NVIDIA RTX 3090 GPU. For MaxSAT-BDD and Shati
et al.’s approach, we follow their settings and apply the Loandra [2]
MaxSAT solver to solve their encoding instances. For our approach,
we use Adam [17] to optimize the parameters in our model. We per-
form grid search for the hyper-parameters tuning, the best setting
for them is as follows: the learning rate is set to 0.2, the number of
epochs is set to 3000 for small datasets and 800 for large datasets,

Shttps://gitlab.laas.fr/hhu/bddencoding
Shttps://dtai.cs. kuleuven.be/CP4IM/datasets/
"https://www.kaggle.com/datasets
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the batch size is set to 512, the regularization coeflicients a1, a2, a3
are set to 1, 1e-6, le-6, respectively.

The depth H of OBDD-NET and the baselines are all set to 6. For all
datasets, we split them uniformly and perform cross-validation eval-
uations of each classifier on the same split datasets. For all classifiers
including our approach, the time limit for training is 900 seconds
for each small dataset, and 1,800 seconds for each large dataset 8,

6.2 Performance Measurement

For each dataset, we perform 5-fold cross-validation and report the
average testing performance over the split 5 pairs of training-testing
sets. Specifically, we use (average) testing accuracy and macro-F1
score for classification performance evaluation, and (average) size
of the final produced ROBDD for rule-size evaluation. Note that, for
OODG which generates non-reduced OBDDs, we apply the post-
processing to produce ROBDDs as in our approach. In this way, the
final OBDDs we compared are all ROBDDs and in the same object.

6.3 Classification Performance and Rule Size

Comparison of 5-fold cross validated (average) testing accuracy (%),
macro-F1 score (%) and size among the generated ROBDDs on the
datasets is shown in Table 2. Our approach outperforms the SOTAs
on 14 out of 18 datasets on classification performance.

First, OBDD-NET achieves competitive testing accuracy and macro-
F1 on most small datasets compared to the two MaxSAT-based base-
lines, expect for the three smallest ones (containing fewer than 2000
examples). The underperformance of OBDD-NET on these very small
datasets aligns with the intuition that neural methods typically re-
quire more data while constraint programming solver-based meth-
ods are more efficient when search space is small. We can observe
that OBDD-NET outperforms them on datasets with more examples
and features. For OODG, as observed in [15], despite occasional
good performance, it usually produces classifiers with poor classifi-
cation performance. A timeout also occurs in OODG when solving
the christine and musk2 datasets, which have more than 1000 fea-
tures, due to the large exploration space for feature selection.

For the large datasets, OBDD-NET achieves significantly higher
prediction quality than the three SOTAs, with improvements more
than 3% on accuracy and 4% on macro-F1 in most cases. For the
rule-size, OODG performs best, followed by OBDD-NET and Shati’s
approach. However, OODG has significant poor prediction quality
on most of datasets. To sum up, OBDD-NET achieves competitive clas-
sification and rule-size performance w.r.t. the SOTA OBDD learners.

6.4 Scalability

From Table 2, we observe that the three SOTAs, especially OODG
and MaxSAT-BDD, have significantly lower classification perfor-
mance than OBDD-NET on the large datasets. In particular, they fail to
handle the last three datasets in the time limit, which contains hun-
dreds of thousands to a million of examples. For the two MaxSAT-
based SOTAs, they need to explicitly encode the satisfaction towards
the whole dataset, leading to the linear growth of encoding size
(i.e., the total number of literals in the encoded MaxSAT instance)

8The time limits for MaxSAT-BDD and Shati et al.’s approach were set by their APIs,
while for OODG with no relevant API was provided, we do that by setting the timeout
threshold for its execution.
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Table 2: Comparison of 5-fold cross validated (average) testing accuracy (%), macro-F1 score (%) and size among the generated
ROBDDs by 0BDD-NET and other OBDD learners. “OOT" abbreviates timeout. Numbers in bold means the best performing results.

Datasets # examples OBDD-NET MaxSAT-BDD Shati’s approach 00DG
X
P Acc. Macro-F1  Size Acc. Macro-F1  Size Acc. Macro-F1  Size Acc. Macro-F1  Size
anneal 812 83.37 70.23 8.4 84.85 75.98 15.2 83.25 74.18 9.8 81.4 60.57 7.2
tic-tac-toe 958 78.38 74.8 19.0 82.25 79.39 24.8 | 83.61 80.79 22.8 79.22 71.63 14.0
car 1,728 91.15 89.28 12.0 93.4 92.48 13.4 | 93.87 93.07 9.6 91.9 91.0 8.0
splice-1 3,190 93.76 93.76 11.4 67.81 65.86 13.4 75.8 75.63 13.4 63.39 56.19 11.0
kr-vs-kp 3,196 94.56 94.55 9.2 94.46 94.45 12.2 94.59 94.57 10.6 75.6 73.36 4.8
hypothyroid 3,247 98.15 94.38 8.2 98.09 94.18 13.6 | 98.06 94.08 10.8 | 91.35 49.05 6.8
christine 5,418 67.66 67.64 124 56.98 56.02 20.4 55.04 54.88 19.5 O0T 00T O0T
musk?2 6,174 90.51 77.71 104 || 82.22 65.44 154 | 61.76 50.55 12.0 | OOT O0T O0T
mushroom 8,124 99.8 99.8 12.8 98.77 98.77 16.4 99.63 99.63 12.0 99.61 99.61 10.2
heloc 9,488 71.54 71.19 11.8 56.26 54.45 19.8 65.2 64.58 16.2 46.26 31.68 3.2
magic04 10,167 73.98 73.91 11.2 53.39 42.56 17.2 72.96 72.51 10.0 50.25 33.44 3.8
adult 21,647 83.16 68.17 8.2 59.29 49.98 14.0 79.34 63.97 10.4 24.23 19.85 4.4
sec mushroom 22,037 75.83 75.28 16.4 56.96 55.98 18.2 64.3 63.18 14.4 56.74 40.37 9.0
bank marketing 38,424 89.97 70.63 9.0 74.99 53.71 14.2 88.81 60.37 18.4 11.97 10.7 8.0
higgs 97,276 61.03 60.14 8.4 Oo0T O0T OOT | 50.69 45.34 13.33 | 52.9 34.64 11.8
weatherAUS 141,970 82.05 65.03 7.0 Oo0T Oo0T OOT | 00T 00T OOT | O0T Oo0T Oo0T
BNG (labor) 615,870 88.2 87.87 10.8 || OOT O0T OO0T | 00T 00T OOT | OOT O0T O0T
BNG (credit-g) 988,973 72.29 62.73 6.6 Oo0T Oo0T OOT | OO0T 00T OOT | OO0T O0T O0T
# best 14 14 6 1 1 0 3 3 0 0 0 12
[a]
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Figure 3: (a) 5-fold cross-validated (average) testing accuracy of the generated ROBDDs by OBDD-NET and OBDD-NET(relaxed). (b)
Training accuracy of networks of OBDD-NET and that of the interpreted ROBDDs. (c) Testing accuracy of the generated ROBDDs
by OBDD-NET with different depths on the sec-mushroom dataset. (d) Testing accuracy and size of the generated ROBDDs by
0BDD-NET with different depths under fixed width on the sec-mushroom dataset.

w.r.t. dataset size. As shown in Figure 1(b) in Introduction, when
applied to large-scale datasets, the encoding size of them become
extremely large (e.g., greater than 100 million for both approaches
when dataset size reaches 100 thousand), being quite challenging
to be solved by modern MaxSAT solvers. For the heuristic-based
approach OODG, it relies on a lot of computation of mutual in-
formation on the dataset for feature selection and turns out to be
time consuming when handling the large-scale datasets. In contrast,
OBDD-NET does not suffer from these problems and is able to scale to
million-size datasets. These exhibit better scalability of OBDD-NET.

6.5 Ablation Study

To evaluate the effect of the faithfulness of the OBDD-NET on classifi-
cation performance, we build a relaxed model of OBDD-NET, namely
OBDD-NET(relaxed), by replacing the softmax operation in Equation

(2) with the sigmoid operation and setting all the regularization
coefficient ; to 0. It can be view as a neural network model with
much weaker faithfulness guarantee, since applying the sigmoid
operation on a parameter assignment commonly produces only a
trivial OBDD encoding far from fulfilling constraints 2 and 3 of the
faithfulness. We then conduct 5-fold cross-validation experiments
for OBDD-NET and OBDD-NET(relaxed) on all datasets as before. As
can be seen from Figure 3(a), OBDD-NET(relaxed) have significant
poorer classification performance than OBDD-NET.This confirms the
effectiveness of the faithfulness in OBDD-NET.

Besides, Figure 3(b) compares the training accuracy achieved
by the network and the interpreted ROBDD of OBDD-NET on the
90 runs (5 folds x 18 datasets). We can find that the performance
gap is small, which suggests that the trained network is most often
highly faithful to the OBDD representation.
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--- longterm-disability-assistance=yes

--- wage-increase-first-year<2.1217
--- education-allowance=yes
--- pension=none

--- contribution-to-dental-plan=none

Figure 4: A ROBDD learned on the BNG(labor) dataset.

6.6 Impact of depth

We conduct experiments with various depths H under different
time-limits on the sec-mushroom dataset. We use 80% of the ex-
amples for training and the left for testing. From Figure 3(c), as H
grows, the accuracy first increases generally then remains stable.
This is because higher H allows to build a complicate OBDD classi-
fier with more different features, but is usually harder to train due to
exponentially greater search space. The exponential growth of the
encoding size causes OBDD-NET fail to handle OBDD learning prob-
lems with large depth. Note that, the two competitive SOTAs also
face the challenge of exponential explosion [15, 23]. In practice, we
can alleviate the affect via taking a smaller width W <281 From
Figure 3(d), under W =32, OBDD-NET can handle a greater depth and
learn a more complicate ROBDD with better prediction quality.

6.7 Case study

In the BNG(labor) dataset, the classifier is to predict whether a
given labor contract is acceptable. Although ROBDD classifiers are
learned on binarized features, in practice we find that it is usually
interpretable enough due to the small depth (i.e., the number of used
features). Figure 4 shows an ROBDD classifier learned by OBDD-NET,
which has depth 6 and size 12. The feature ordering is [‘longterm-
disability-assistance=yes’, ‘contribution-to-health-plan=full’, ‘wage-
increase-first-year<2.1217’, ‘education-allowance=yes’, ‘pension
=none’, ‘contribution-to-dental-plan=none’]. There are 5 paths from
the root to the T-leaf. For instance, the second right-most path says
a contract that provides long-term disability assistance without full
contribution to health-plan, with a first-year wage increase below
2.1217%, but offers education allowance and pension, is acceptable.

From the classifier, an essential feature is ‘longterm-disability-
assistance=yes’. That is, all contracts to be acceptable should offer
long-term disability assistance. Consider now a contract that in-
cludes long-term disability benefits, partial health-plan coverage,
a first-year wage increase of at least 2.1217%, as well as education
allowance and pension provisions, which corresponds to a (par-
tial) example w: [fi, = f2, =f3, fa, =f5]. It can be verified that this
contract is acceptable by the classifier shown in Figure 4. One may
wonder why such an example triggers the positive decision of the
classifier. To this end, we can compute the complete reason and
the sufficient reason (aka. prime implicant explanation) behind this
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decision, where the former captures the necessary and sufficient
condition to trigger a decision [7]. The resulting complete reason is
AN=faA=fs A(=f3V f1), and we can get two sufficient reasons: (1)
fin-fan=fs A-fsand (2) fi A—fa A fg A—fs. In other words, any
contract that offers long-term disability assistance, partial health-
plan coverage, pensions, as well as at least one of the following: a
minimum wage increase of 2.1217% in the first year or an education
allowance, will be accepted by this classifier.

Note that the computation of the complete reason for a deci-
sion can be done in linear time for an OBDD classifier [7]. Recent
studies [7, 24, 32, 33] have fully demonstrated the effectiveness of
OBDD representations in facilitating the computation of decision
explanation (including complete reason analysis and prime impli-
cant explanations) as well as quantitative robustness analysis. We
will no longer illustrate them here. Please refer to them for details.

7 Discussions and Future Work

The limitations of the current design of OBDD-NET are two-fold. (1)
OBDD-NET is more suitable for learning OBDDs of small depth, sim-
ilar to other successful applications of gradient-based structure
learning techniques in mining succinct logical rules, e.g., Linear
Temporal Logic on finite traces (LTLf) formula [26] and Finite-State
Automata (FSA) [20]. In practice, it is usually effective enough, as
a relatively complex formula could possibly be simplified to a more
concise form. (2) OBDD-NET is limited to binary classification with
binarized features, relying on preprocessing with conventional fea-
ture binarization approaches. This also hinders the extension to
end-to-end learning more general decision diagrams, due to non-
differentiability of these binarization approaches. Future work will
extend our approach to suit classification with real-valued features
and Multi-valued Decision Diagrams (MDDs), by integrating some
advanced differentiable binarization techniques [31].

8 Conclusions

In this paper we have developed an end-to-end OBDD learning
neural model named OBDD-NET, which exploits an OBDD encoding
method to parameterize a neural network and allows the utilization
of gradient descent optimization for efficient learning. Experimental
results on 10 small and 8 large datasets show that OBDD-NET scales
better than existing OBDD learners with competitive performance.
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