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Abstract
Learning Ordered Binary Decision Diagrams (OBDDs) from large-

scale datasets is an important topic of explainable artificial intelli-

gence. However, existing search-based methods are still limited in

scalability regarding dataset size, since they must explicitly encode

the satisfaction of all examples in a dataset. To tackle this challenge,

we introduce an OBDD encoding method to parameterize a neural

network. This method frees satisfaction encoding of all examples

in a dataset while leveraging mini-batch training techniques to

enhance learning efficiency. Our main theoretical contribution is

to prove that our approach enables the simulation of OBDD infer-

ence within a continuous space. Besides, we identify faithful OBDD

encoding to fulfill the properties required by OBDDs, allowing to

interpret an OBDD directly from the learned parameter assign-

ment. With faithful OBDD encoding, we present an end-to-end

neural model named OBDD-NET, being capable of coping with large-

scale datasets. Experimental results exhibit better scalability and

competitive prediction performance of OBDD-NET compared to state-

of-the-art OBDD learners. Valuable insights about faithful OBDD

encoding are derived from the ablation study. The implementation

is available at: https://github.com/jmq-design/OBDD-NET.
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• Computing methodologies→ Rule learning.
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1 Introduction
Learning an interpretable model from large-scale data is a crucial

topic in eXplainable Artificial Intelligence (XAI). Compared to (Bi-

nary) Decision Tree (DT), Binary Decision Diagram (BDD) is a

more compact interpretable model due to the node sharing [5]. In

particular, Ordered BDD (OBDD) [4], a tractable subset of BDD, has

recently received increasing attention in XAI [5, 15, 23, 24, 33]. The

main attractions of the OBDD representation on XAI are twofold.

On the one hand, its compact graph structure (especially with small

size and depth) is commonly human-understandable [5, 15]. On the

other hand, the excellent tractability of OBDDs (e.g., supporting

polytime satisfiability and model counting check) is useful for de-

cision explanation and quantitative robustness analysis of complex

classifiers that are not easy to understand directly [7, 24, 33].

Informally, the ordering property imposed on an OBDD requires

that decision features appear in the same order on any path in the

Directed Acyclic Graph (DAG) representation of the BDD. It can

be view as a hierarchical DAG where all vertices at a specific non-

terminal level should be associated with the same unique feature.

The depth and size of an OBDD refer to the number of features

and vertices it contains, respectively. Figure 1(a) depicts an OBDD

involving three binary features, which compactly represents two

IF-THEN sentences: (1) if (NOT 𝑓1) AND 𝑓3, then predict true; and

(2) if 𝑓1 AND 𝑓2 AND 𝑓3, then predict true.

In practice, learning OBDDs with limited depth 𝐻 still turns out

to be quite challenging. Even for a fixed feature ordering, the search

space reaches at least double-exponential, due to the fact that there

are 2
2
𝐻
(logically) distinguishing 𝐻 -ary Boolean functions.

Existing studies for learning OBDDs with limited depth from

data consist of two categories. Classic heuristic approaches [19] rely

on mutual information heuristics, but often produce OBDDs with
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(a) (b)

Figure 1: (a) An OBDD of depth 3 and size 5. (b) Encoding size
for learning OBDDs in limited depth 6 for some datasets in
experiments.‘#x’ means the number of x.

poor prediction quality [15]. Recently, two exact methods: MaxSAT-

BDD [15] and Shati et al.’s approach[23], have been proposed for

learning optimal (reduced) OBDDs maximizing classification accu-

racy, where the learning problem is reduced to a Maximum Satisfia-

bility (MaxSAT) optimization problem. However, these approaches

face limitations in terms of scalability. They treat learning OBDDs

as a constraint programming problem in which the satisfaction

towards all examples in the entire dataset needs to be encoded at a

time. From Figure 1(b), the encoding size (i.e., the number of literals

of the encoded MaxSAT instance) of their approaches grows gradu-

ally with the dataset size. When applied to large-scale datasets, the

encoding size become extremely large (e.g., greater than 100 million

for both approaches when dataset size reaches 100 thousand), being

quite challenging to be solved by modern MaxSAT solvers.

In this paper, we address the challenge by treating the OBDD

learning problem as a gradient-based structure learning problem,

without needing to explicitly encode large-scale datasets to con-

strain programming instances. Our main contributions include:

(1) We introduce an OBDD encoding method to parameterize

a neural network and design a reachability-based procedure

for evaluating the satisfaction relation between an OBDD

encoding and an example. The reachability-based proce-

dure avoids explicit satisfaction encoding towards the whole

dataset by computing the satisfaction relation directly. We

prove that the reachability-based procedure enables the sim-

ulation of OBDD inference within a continuous space.

(2) We identify a subset of the OBDD encoding, named faith-

ful OBDD encoding, that fulfills the properties required by

OBDDs. It allows an OBDD to be directly interpreted from

the learned parameter assignment of the neural network.

With the faithful OBDD encoding, we develop an end-to-end

neural model named OBDD-NET, which enables the utilization

of gradient descent optimization and mini-batch training

techniques for efficient learning.

(3) Experimental results on 10 small and 8 large datasets show

that OBDD-NET achieves better scalability than state-of-the-

art (SOTA) OBDD learners, scaling to million-size datasets,

while maintaining competitive predictive performance.

2 Related Work
Rule learning approaches can be categorized into three categories.

Heuristic-based Approaches. These methods include some tra-

ditional algorithms for learning decision trees, such as C4.5 [22]

and CART [3], which employ some locally optimal strategies (e.g.,

information gain, Gini index) to iteratively construct tree. Besides,

there are also some approaches to learn OBDDs: top-down [18]

and bottom-up [19] learning algorithms
1
, which rely on mutual

information heuristics. An advantage of the latter is that the depth

of the built OBDD could be controlled as a preset parameter [14].

Constraint Solver-based Approaches. Several approaches have
been proposed for learning optimal (reduced) OBDDs. Hu et al. [15]

proposed a MaxSAT-based learning approach (MaxSAT-BDD) for

learning optimal OBDDs in limited depth to maximize the binary

classification accuracy. Further, Shati et al. [23] presented a lifted

MaxSAT-based encoding for a multi-terminal variant of OBDDs

(MTBDDs). Besides, Cabodi et al. [5, 6] developed an iterative SAT-

based approach for deriving optimal OBDDs with minimum size,

however focuses on correctly classifying all examples in the datasets.

Florio et al. [10] proposed an Mixed-Integer Linear Programming

based encoding for learning optimal decision diagrams (ODDs) with

pre-defined skeletons. However, their targeted decision diagrams

do not satisfy the ordering property, hence are not OBDDs.

Gradient-based Approaches. Recently, there has been a grow-

ing interest in leveraging the gradient-based structure learning

technique to mine logical rules, such as AND-OR rules [21, 28, 29],

first-order rules [11, 13, 30], circuits [27]. The main insight is to

conduct a continuous relaxation on the discrete architecture rep-

resentation, so as to leverage gradient descent techniques for an

efficient optimization of the architecture. However, this technique

has not yet been applied to the OBDD learning problem.

Different from these approaches, we apply the gradient-based

structure learning technique to the problem of learning OBDDs

with limited depth. Accordingly, we consider MaxSAT-BDD [15]

and Shati et al.’s approach[23] as the most suitable SOTA of exact

approaches, and OODG [19] as the SOTA of heuristic approaches.

3 Preliminaries
Throughout this paper, we use a lowercase (resp. uppercase) bold let-

ter for a vector (resp. matrix). (v)𝑖 denotes the 𝑖-th element of a vec-

tor v, and (M)𝑖, 𝑗 denotes the element of a matrix M at the 𝑖-th row

and the 𝑗-th column, with 𝑖 and 𝑗 starting from 1. (M)𝑖 denotes the
𝑖-th row of M. M𝑇

denotes the transpose of the matrix M, so is v𝑇 .
Classification. In this paper, we consider binary classification

problems defined on a finite set F = {𝑓1, · · · , 𝑓𝑚} of binary features
𝑓𝑖 ∈ {0, 1}, and a set K = {0, 1} of binary classes. A classifier is

to compute a classification function mapping feature space F =

{0, 1}𝑚 into the set of classes K . A literal on binary feature 𝑓𝑖 ∈ F ,
represented as 𝑓𝑖 or¬𝑓𝑖 , denotes that the feature takes Boolean value
1(⊤) or 0(⊥), respectively. An example 𝜔 is characterized by a pair

(w, 𝑐), where w ∈ F and 𝑐 ∈ K . For ease of description, we reuse
the term example to refer to w, leaving 𝑐 implicit; and represent

it as a sequence of literals over F . A dataset (or examples) E =

{𝜔1, · · · , 𝜔𝑀 } is partitioned into positive examples E+ and negative
ones E− , according to the ground truth label lab(𝜔𝑖 ) of each 𝜔𝑖 .

1
Another name, called Oblivious Read-Once Decision Graph (OODG), is used by them,

which is equivalent to OBDD in binary classification for binary datasets[15].
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3.1 Binary Decision Diagrams
A Binary Decision Diagram (BDD) [1] is a rooted DAG, denoted by

(V,T , E𝑙 , E𝑟 ), where
• V is the set of vertices with each leaf in {⊤,⊥}; and each

internal vertex 𝑣 associated to a Boolean decision variable
𝑑𝑉 (𝑣) ∈F and two children left(𝑣), right(𝑣);
• T ⊆ V × (F ∪ {⊤,⊥}) is the set of vertex-tag pairs.

• E𝑙 , E𝑟 ⊆ V × V are the set of all 1-edges (i.e., (𝑣,left(𝑣)))
and 0-edges (i.e., (𝑣,right(𝑣))), respectively.

Definition 1. [[4].] Let 𝜋 be a total variable ordering over F .
An Ordered Binary Decision Diagram (OBDD) respecting the or-

dering 𝜋 is a BDD that satisfies the ordering property: for any in-

ternal vertex 𝑣 , it holds that rank𝜋 (𝑑𝑉 (𝑣)) < rank𝜋 (𝑑𝑉 (left(𝑣)))
and rank𝜋 (𝑑𝑉 (𝑣)) < rank𝜋 (𝑑𝑉 (right(𝑣))), where rank𝜋 (𝑓𝑖 ), also
written rank(𝑓𝑖 ), is the rank of the variable 𝑓𝑖 in the ordering 𝜋 .

Intuitively, the ordering property requires that decision variables

appear in the same order on any path. A Reduced OBDD (ROBDD)

is an OBDD that contains neither redundant internal vertex 𝑣 with

left(𝑣) = right(𝑣), nor distinct vertices 𝑣1 and 𝑣2 s.t the sub-graphs
rooted by them are isomorphic. For any OBDD, there is a unique

ROBDD representation, and the reduction can be done effectively in

polytime [4]. Note that, the reduction results in an OBDD logically

equivalent to the original one.

Let 𝜓 = (V,T , E𝑙 , E𝑟 ) be an OBDD over F . The size of 𝜓 is

the number of its vertices |V|. The depth of 𝜓 is the number of

variables appearing in𝜓 (i.e., |{𝑓𝑖 ∈ F | (𝑣, 𝑓𝑖 ) ∈ T , 𝑣 ∈ V}|). Note
that an OBDD could have a depth greater than the length of the

longest path from the root to any leaf.

Given an example 𝜔 = [𝑙1, · · · , 𝑙𝑚] and a BDD classifier 𝜓 =

(V,T , E𝑙 , E𝑟 ) over F , we say 𝜔 satisfies 𝜓 , denoted by 𝜔 |= 𝜓 , if

for some 1 ≤ 𝑛 ≤ |F |, there is a sequence of vertices 𝑞1, · · · , 𝑞𝑛+1
such that 𝑞1 = 𝑣1, (𝑞𝑛+1,⊤) ∈ T , and for every 1 ≤ 𝑖 ≤ 𝑛, if

(𝑞𝑖 , 𝑓𝑘 ) ∈ T then either (1) (𝑞𝑖 , 𝑞𝑖+1) ∈ E𝑙 and 𝑙𝑘 = 𝑓𝑘 ; or (2)

(𝑞𝑖 , 𝑞𝑖+1) ∈ E𝑟 and 𝑙𝑘 = ¬𝑓𝑘 . Intuitively, 𝜔 |= 𝜓 indicates that there

is a path 𝜅 of length 𝑛 of𝜓 from the root vertex 𝑣1 to the leaf vertex

⊤ such that 𝜅 is in consistence with the example 𝜔 . Given two

BDDs 𝜑 = (V′,T ′, E′
𝑙
, E′𝑟 ) and𝜓 = (V,T , E𝑙 , E𝑟 ) over F , we say

𝜑 and 𝜓 are isomorphic, if there is a one-to-one correspondence

𝜌 between V′ and V s.t. for any 𝑣 ′
𝑖
, 𝑣 ′

𝑗
∈ V′: (1) (𝑣 ′

𝑖
, 𝑡) ∈ T ′ iff

(𝜌 (𝑣 ′
𝑖
), 𝑡) ∈ T , where 𝑡 ∈ (F ∪ {⊤,⊥}); and (2) (𝑣 ′

𝑖
, 𝑣 ′

𝑗
) ∈ E′

𝑙
iff

(𝜌 (𝑣 ′
𝑖
), 𝜌 (𝑣 ′

𝑗
)) ∈ E𝑙 ; and (3) (𝑣 ′

𝑖
, 𝑣 ′

𝑗
) ∈ E′𝑟 iff (𝜌 (𝑣 ′𝑖 ), 𝜌 (𝑣

′
𝑗
)) ∈ E𝑟 .

Example 3.1 illustrates a (reduced) OBDD classifier that satisfied

by the example 𝜔 = [¬𝑓1, 𝑓2, 𝑓3].

Example 3.1. Let F = {𝑓1, 𝑓2, 𝑓3} and 𝜋 a variable ordering

[𝑓1, 𝑓2, 𝑓3]. As shown in Figure 1(a) (solid (dotted) lines correspond

to 1-edges (0-edges)), consider an OBDD 𝜓 = (V,T , E𝑙 , E𝑟 ) re-
specting 𝜋 of size 5 and depth 3 where V = {𝑣1, · · · , 𝑣5}, T =

{(𝑣1, 𝑓1), (𝑣2, 𝑓2), (𝑣3, 𝑓3), (𝑣4,⊤), (𝑣5,⊥)}, E𝑙 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3),
(𝑣3, 𝑣4)} and E𝑟 = {(𝑣1, 𝑣3), (𝑣2, 𝑣5), (𝑣3, 𝑣5)}. Given an example

𝜔 = [¬𝑓1, 𝑓2, 𝑓3]. Consider a path 𝜅 = 𝑣1, 𝑣3, 𝑣4 of length 2 in 𝜓 . As

(𝑣1, 𝑓1) ∈ T , (𝑣1, 𝑣3) ∈ E𝑟 and 𝑙1 = ¬𝑓1, (𝑣3, 𝑓3) ∈ T , (𝑣3, 𝑣4) ∈ E𝑙
and 𝑙3 = 𝑓3, we get that 𝜔 |= 𝜓 .

Learning OBDD Problem.We focus on the problem of learning

(reduced) OBDD in a limited depth. Given that the reduction of an

(a) (b)

Figure 2: (a) Illustration structure for inducing the parame-
ters of OBDD-NET. (b) Visualisations of the BDDs in Example
4.1 (the leftmost two graphs) and 4.3 (the rightmost graph).

OBDD can be done effectively[4], somewhat similar to previous

works[15, 23], we first learn a non-reduced OBDD then apply post-

processing to get the corresponding ROBDD.

𝑃 (E, 𝐻 ): Given a set of examples E for binary classification, the

goal is to find an OBDD 𝜓 of maximum depth 𝐻 that maximizes

the accuracy of𝜓 on E.

4 OBDD Encoding and Inference
In this section, we first introduce the model structure of OBDD-NET
and present the definition of OBDD encoding, followed by an infer-

ence process of OBDD-NET on classification. Then, a faithful subset

of the OBDD encoding is provided and shown to have the equiva-

lent inference to the OBDD representation. In such case, an OBDD

with the same classification behavior as OBDD-NET can be interpret

directly from the learned parameter assignment.

4.1 Model Structure of OBDD-NET
Similarly to a binary classifier, OBDD-NET takes as input an exam-

ple and outputs an evaluation on the satisfaction relation between

OBDD-NET and the example. We start by the parameter structure

of OBDD-NET for inducing the definition of the parameter set. As

shown in Figure 2(a), it consists of a collection of nodes 𝑣1, · · · , 𝑣𝑁
partitioned into 𝐻 + 1 distinct levels, where each level except the

root and terminal levels contains𝑊 = 2
𝐻−1

nodes. This allows to

cover the full search space of the learning problem 𝑃 (E, 𝐻 ), due
to the fact that there are at most 2

𝐻−1
vertices at the last internal

level of an OBDD of depth 𝐻 .

In the rest of the paper, we use 𝐻 to denote the depth (i.e., the

number of internal levels) of OBDD-NET. Accordingly, the size of
OBDD-NET (i.e., the number of the whole nodes), is 𝑁 = 2

𝐻−1 · (𝐻 −
1) + 3. We denote lev(𝑖) the level index of node 𝑣𝑖 in OBDD-NET, i.e.,
lev(𝑖) = 1 if 𝑖 = 1 and lev(𝑖) = (𝑖 − 2)/2𝐻−1 + 2 otherwise.

As depicted in Figure 2(a), we treat the OBDD learning as a (la-

belled) leveled graph learning. In the final learned graph, each level

is expected to be assigned to a unique feature and each edge to be

categorized as 1-edge or 0-edge. To explore a compact OBDD, cross-

layer connections between nodes from top to bottom are permitted.

The trainable parameters of OBDD-NET are defined as follows.

2432



CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Junming Qiu, Rongzhen Ye, Weilin Luo, Kunxun Qi, Hai Wan, and Yue Yu

Definition 2. Let F be a set of binary features. The parameter
set Γ of OBDD-NET 2

of depth 𝐻 ≤ |F | is defined as Γ = Γ
dec
∪

Γ
left
∪ Γ

right
, where Γ

dec
= {(Γ

dec
)𝑖,𝑘 ∈ R | 1 ≤ 𝑖 ≤ 𝐻, 1 ≤ 𝑘 ≤ |F |},

Γ
left

= {(Γ
left
)𝑖, 𝑗 ∈ R | 1 ≤ 𝑖 ≤ 𝑁 −2, 𝑖 < 𝑗 ≤ 𝑁, lev(𝑖) < lev( 𝑗)} and

Γ
right

= {(Γ
right
)𝑖, 𝑗 ∈ R | 1 ≤ 𝑖 ≤ 𝑁 − 2, 𝑖 < 𝑗 ≤ 𝑁, lev(𝑖) < lev( 𝑗)}.

Note that, for brevity, we use the same symbol Γ to represent the

parameter set of OBDD-NET and an assignment of it interchangeably,

so does the symbol 𝜃 introduced later.

To establish the relationship between OBDD-NET and the DAG

of an OBDD, we constrain the parameter assignment Γ within

the range [0, 1]. In Definition 3, we formally define the restricted

parameter assignment as an OBDD encoding.

Definition 3. Let Γ be a parameter set of OBDD-NET of depth

𝐻 . An OBDD encoding 𝜃 of OBDD-NET of depth 𝐻 is defined as

𝜃 = {𝜀 ∈ Γ |𝜀 ∈ R[0,1] } , where R[0,1] denotes the real value range
from 0 to 1. 𝜃

dec
, 𝜃

left
and 𝜃

right
are defined as the counterparts of

Γ
dec

, Γ
left

and Γ
right

, respectively.

An OBDD encoding is capable of representing an OBDD. For

any 1 ≤ 𝑖 ≤ 𝐻 , the parameter (𝜃
dec
)𝑖,𝑘 indicates the degree of

probability that the level 𝑖 is associated to a feature 𝑓𝑘 ∈ F . In this

way, 𝜃
dec

allows to automatically select some important features

from the whole set F (in the case where 𝐻 < |F |) and enables

the feature ordering to be optimized in an end-to-end fashion. For

any pair of nodes 𝑣𝑖 and 𝑣 𝑗 with 𝑣𝑖 precedes 𝑣 𝑗 w.r.t. the level, the

parameter (𝜃
left
)𝑖, 𝑗 (resp. (𝜃right)𝑖, 𝑗 ) determines the degree of prob-

ability that the left (resp. right) child of 𝑣𝑖 is 𝑣 𝑗 . We illustrate an

OBDD encoding with Example 4.1.

Example 4.1. Let F = {𝑓1, 𝑓2} and 𝜃 be an OBDD encoding of

depth 𝐻 = 2 (and size 𝑁 = 5) where (𝜃
dec
)1,1 = 1, (𝜃

dec
)2,1 = 0.2,

(𝜃
dec
)2,2 = 0.8, (𝜃

left
)1,5 = (𝜃

left
)2,4 = (𝜃

right
)1,2 = (𝜃

right
)2,5 = 1

and the other parameters are assigned 0. As shown in Figure 2(b),

the BDD represented by 𝜃 is most likely to be (V,T , E𝑙 , E𝑟 ) where
V = {𝑣1, 𝑣2, 𝑣4, 𝑣5}, T = {(𝑣1, 𝑓1), (𝑣2, 𝑓2), (𝑣4,⊤), (𝑣5,⊥)}, E𝑙 =

{(𝑣1, 𝑣5), (𝑣2, 𝑣4)} and E𝑟 = {(𝑣1, 𝑣2), (𝑣2, 𝑣5)}. While it may also to

be a slightly different BDDwithT = {(𝑣1, 𝑓1), (𝑣2, 𝑓1), (𝑣4,⊤), (𝑣5,⊥)}.

4.2 Inference for the Satisfaction Relation
Definition 4 offers an inference process on satisfaction relation

between an OBDD encoding 𝜃 of OBDD-NET and a given example 𝜔 .

Before giving the formal definition, we introduce some notations

as follows. We use the corresponding bold symbols 𝜽
dec

for the

matrix representation of the encoding parameter 𝜃
dec

; and 𝜽
left

and

𝜽
right

for the ones obtained from 𝜃
left

and 𝜃
right

by filling with 1s

the last two diagonal elements, and with 0s the other unused ele-

ments of 𝜃
left

and 𝜃
right

, respectively. For example, 𝜽
left

is an 𝑁 ×𝑁
matrix where (𝜽

left
)𝑁−1,𝑁−1 = (𝜽 left)𝑁,𝑁 = 1, (𝜽

left
)𝑖, 𝑗 = (𝜃left)𝑖, 𝑗

if (𝜃
left
)𝑖, 𝑗 ∈ 𝜃left, and (𝜽 left)𝑖, 𝑗 = 0 otherwise. In this case, the 1-leaf

and 0-leaf have both outgoing 1-edge and 0-edge to themselves.

Hereafter, we define an 𝑁 ×𝑁 transition matrixM𝜔
(on the OBDD

encoding 𝜃 ) under a given example 𝜔 as follow:

• for 1≤ 𝑖 ≤𝑁 − 2, (M𝜔 )𝑖 = 𝑝𝑖 · (𝜽 left)𝑖 + (1 − 𝑝𝑖 ) · (𝜽 right)𝑖 ,
where 𝑝𝑖 = (𝜽

dec
)lev(𝑖 ) · w𝑇

indicates the probability of

2
Note that, 𝐻 is the (unique) hyper-parameter to define the network structure of

OBDD-NET, while neither𝑊 nor 𝑁 is.

choosing 1-edge at node 𝑣𝑖 under 𝜔 , where w𝑇
denotes the

transpose of the vector representation w of 𝜔 .

• for 𝑁 − 1 ≤ 𝑖 ≤ 𝑁 , (M𝜔 )𝑖 = (𝜽 left)𝑖 .
Intuitively, (M𝜔 )𝑖, 𝑗 indicates the transition probability from node

𝑣𝑖 to 𝑣 𝑗 via 1-edge or 0-edge.

Definition 4. Let 𝜃 be an OBDD encoding of OBDD-NET of depth
𝐻 . Given an example 𝜔 over F . OBDD-NET recursively computes (k)-

reachability vector (r𝜔 ) (𝑘 ) of the root node 𝑣1 under 𝜔 as follows:

(r𝜔 ) (1) = (M𝜔 )1,

(r𝜔 ) (𝑘 ) = 𝜎01 ((r𝜔 ) (𝑘−1) ·M𝜔 ), 𝑘 > 1,

(1)

where 𝜎01 (𝑥) = max(0,min(1, 𝑥)). Then, OBDD-NET outputs the

evaluation of satisfaction relation between 𝜃 and 𝜔 , denoted by

ESat(𝜃, 𝜔), as ((r𝜔 ) (𝐻 ) )𝑁−1.

The vector (r𝜔 ) (𝑘 ) represents the probability that the root node

𝑣1 can reach to other nodes through (exact) k-step transition. In

particular, as the OBDD encoding 𝜃 has a loop at 1-leaf, ESat(𝜃, 𝜔)
(i.e., ((r𝜔 ) (𝐻 ) )𝑁−1) computes the summation of probability to the

𝑘-reachability from root node 𝑣1 to 1-leaf 𝑣𝑁−1 for 1 ≤ 𝑘 ≤ 𝐻 . In

this case, ESat(𝜃, 𝜔) evaluates, within a continuous space, the satis-

faction relation between 𝜃 and a given example𝜔 , by simulating the

inference of an OBDD on classification. A more specific connection

between the two inference process will be discussed later (Theorem

4.5). We illustrate the inference process ESat with Example 4.2.

Example 4.2. Consider again the OBDD encoding 𝜃 in Exam-

ple 4.1. Its matrix representation is: 𝜽
dec

=

[
1 0

0.2 0.8

]
,

𝜽
left

=


0 0 0 0 1

0 0 0 1 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1


, 𝜽

right
=


0 1 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1


.

Given an example 𝜔 = [¬𝑓1, 𝑓2], its vector representation is

w = [0 1]. We have that 𝑝1 = (𝜽dec)1 ·w𝑇 = [1 0] · [0 1]𝑇 = 0, 𝑝2 =

𝑝3 = (𝜽dec)2 ·w𝑇 = [0.2 0.8] · [0 1]𝑇 = 0.8. By Definition 4, we get

the transition matrixM𝜔
and reachability vector (r𝜔 ) (2) as follows.

M𝜔 =


0 1 0 0 0

0 0 0 0.8 0.2

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1


,

(r𝜔 ) (2) = 𝜎01

©­­­­­­«


0

1

0

0

0



𝑇

·


0 1 0 0 0

0 0 0 0.8 0.2

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1


ª®®®®®®¬
=


0

0

0

0.8

0.2



𝑇

.

Finally, OBDD-NET evaluates the satisfaction between 𝜃 and 𝜔 as

ESat(𝜃, 𝜔) = ((r𝜔 ) (2) )4 = 0.8.

4.3 The Faithful Subclass of OBDD Encoding
Obviously, not any OBDD encoding corresponds to a valid OBDD.

To guarantee the correspondence between an OBDD encoding and
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OBDD, we hereafter define a faithful subset of OBDD encoding,

called faithful OBDD encoding.

Definition 5. Let 𝜃 be an OBDD encoding of OBDD-NET of depth
𝐻 . We say 𝜃 is faithful if it satisfies the following:

1. ∀𝜀 ∈ 𝜃 : 𝜀 = 0 ∨ 𝜀 = 1

2. ∀𝑖 ∈ [1, 𝐻 ] : ∑ | F |
𝑘=1
(𝜃

dec
)𝑖,𝑘 = 1

3. ∀𝑖 ∈ [1, 𝑁 − 2] : ∑
1≤𝑖< 𝑗≤𝑁,lev(𝑖 )<lev( 𝑗 ) (𝜃left)𝑖, 𝑗 = 1

∧∑
1≤𝑖< 𝑗≤𝑁,lev(𝑖 )<lev( 𝑗 ) (𝜃right)𝑖, 𝑗 = 1

4. ∀𝑘 ∈ [1, |F |] : ∑𝐻
𝑖=1 (𝜃dec)𝑖,𝑘 ≤ 1

To begin with, constraint 1 restricts each parameter to be as-

signed a Boolean value 0 or 1. With this basic restriction, the rest of

the constraints can fulfill the whole properties imposed on OBDDs.

Specifically, constraint 2 ensures that every non-terminal level is

associated to exactly one feature. While condition 3 forces that

each non-terminal node has exactly one left and right child respec-

tively, and must has a node with greater level index as its child. The

last constraint requires each feature to appear at most once at the

non-terminal levels. In this case, the associated features of the non-

terminal levels form an order over F . This, together with the con-

straint 3, implies that any path obeys the same feature ordering. So,

the faithfulness fulfills the ordering property required by OBDDs.

Faithful OBDD Encoding vs OBDD. We claim that any arbitrary

OBDD can be represented as a faithful OBDD encoding of an equal

or greater depth. Given an arbitrary OBDD𝜓 of depth 𝐻 (i.e., with

𝐻 different features), a simple way is to construct an OBDD encod-

ing 𝜃 of the same depth 𝐻 and maintain the topology of𝜓 , where

some redundant nodes directing to the terminal nodes may appear

at the end of each level. Of course, this also applies to a faithful

OBDD encoding with greater depth.

Reversely, Definition 6 offers a decoding function mapping a

faithful OBDD encoding to an OBDD.

Definition 6. Let 𝜃 be a faithful OBDD encoding of OBDD-NET
of depth 𝐻 . The decoding function decode(𝜃 ) computes a 4-tuple

(V,T , E𝑙 , E𝑟 ) defined below:

1. 𝑣1 ∈V , and ∀𝑗 ∈ (1, 𝑁 ] : 𝑣 𝑗 ∈V if there is 𝑖 < 𝑗 s.t. 𝑣𝑖 ∈V and

either (𝜃
left
)𝑖, 𝑗 =1 or (𝜃right)𝑖, 𝑗 =1.

2. (𝑣𝑁−1,⊤) ∈ T if 𝑣𝑁−1 ∈ V; and (𝑣𝑁 ,⊥) ∈ T if 𝑣𝑁 ∈ V .

3. ∀𝑖 ∈ [1, 𝑁 −2] : (𝑣𝑖 , 𝑓𝑘 ) ∈ T if 𝑣𝑖 ∈ V and (𝜃
dec
)lev(𝑖 ),𝑘 = 1.

4. ∀𝑖 ∈ [1, 𝑁 −2] : (𝑣𝑖 , 𝑣 𝑗 ) ∈ E𝑙 if 𝑣𝑖 ∈ V and (𝜃
left
)𝑖, 𝑗 = 1; and

(𝑣𝑖 , 𝑣 𝑗 ) ∈E𝑟 if 𝑣𝑖 ∈V and (𝜃
right
)𝑖, 𝑗 =1.

Lemma 1 states that decode guarantees to interpret a BDD satis-

fying the ordering property from a faithful OBDD encoding 𝜃 .

Lemma 1. For any faithful OBDD encoding 𝜃 , decode(𝜃 ) computes
an OBDD representation.

Moreover, Theorem 4.4 shows the existence of a faithful OBDD

encoding syntactically corresponding to an arbitrary OBDD (under

the decoding function decode). This means that the faithful OBDD

encoding is a complete encoding method for the OBDD representa-

tion. Therefore, it makes sense to apply the faithful OBDD encoding

in OBDD-NET to learn OBDDs. Example 4.2 shows an OBDD encod-

ing 𝜃 faithful to the OBDD𝜓 in Example 3.1 and the decoding result

decode(𝜃 ).

Algorithm 1: Interpreting OBDD Representation

Input: An OBDD encoding 𝜃 of depth 𝐻

Output: A ROBDD (V∗,T∗,E∗
𝑙
,E∗𝑟 ) interpreted from 𝜃

1 reset the maximum of each (𝜃
left
)𝑖 (resp. (𝜃right )𝑖 to 1 and all other

values to 0s;

2 calculate V by the first operation of decode(𝜃 ) ;
3 𝐿 ← {lev(𝑖 ) | 𝑣𝑖 ∈ V, 1 ≤ 𝑖 ≤ 𝑁 }; 𝐹 ← ∅;
4 for 𝑖 ∈ [1, 𝐻 ] and 𝑖 ∈ 𝐿 do
5 𝑘★ ← argmax𝑘∈ [1,|F| ]∧𝑘∉𝐹 (𝜃dec )𝑖,𝑘 ;
6 reset (𝜃

dec
)𝑖,𝑘★ of (𝜃

dec
)𝑖 to 1, the others to 0s;

7 𝐹 ← 𝐹 ∪ {𝑘★};
8 select an arbitrary unique 𝑘 ′ ∉ 𝐹 for remaining (𝜃

dec
)𝑖 , and reset

(𝜃
dec
)𝑖,𝑘′ to 1 and others to 0s;

9 (V, T, E𝑙 , E𝑟 ) ← decode(𝜃 ) ;
10 (V∗, T∗, E∗

𝑙
, E∗𝑟 ) ← reduce( (V, T, E𝑙 , E𝑟 ) ) ;

11 return (V, T, E𝑙 , E𝑟 ) ;

Example 4.3. Recall the OBDD𝜓 shown in Example 3.1. A faith-

ful OBDD encoding 𝜃 of depth 𝐻 = 3 (and size 𝑁 = 11) of 𝜓

is as follows: (𝜃
dec
)1,1 = (𝜃

dec
)2,2 = (𝜃

dec
)3,3 = 1; (𝜃

left
)1,2 =

(𝜃
left
)2,6 = (𝜃left)6,10 = 1; (𝜃

right
)1,6 = (𝜃right)2,11 = (𝜃right)6,11 = 1;

(𝜃
left
)𝑖,10 = (𝜃right)𝑖,11 = 1 for each 𝑖 in {3, 4, 5, 7, 8, 9}; and the other

parameters are assigned 0. Reversely, by Definition 6, as shown

in Figure 2(b), decode(𝜃 ) computes a 4-tuple (V,T , E𝑙 , E𝑟 ) where
V = {𝑣1, 𝑣2, 𝑣6, 𝑣10, 𝑣11}, T = {(𝑣1, 𝑓1), (𝑣2, 𝑓2), (𝑣6, 𝑓3), (𝑣10,⊤),
(𝑣11,⊥)}, E𝑙 = {(𝑣1, 𝑣2), (𝑣2, 𝑣6), (𝑣6, 𝑣10)} and E𝑟 = {(𝑣1, 𝑣6), (𝑣2, 𝑣11),
(𝑣6, 𝑣11)}. Clearly, it represents an OBDD isomorphic to𝜓 .

Theorem 4.4. For any OBDD representation𝜓 of depth 𝐻 ′, there
exists a faithful OBDD encoding 𝜃 of OBDD-NET of depth𝐻 ≥ 𝐻 ′ such
that decode(𝜃 ) and𝜓 are isomorphic.

Proof Sketch. LetV′ = {𝑣 ′
1
, · · · 𝑣 ′

𝑁 ′ }. Let𝜓 be an OBDD (V′,
T ′, E′

𝑙
, E′𝑟 ) of depth 𝐻 ′ respecting 𝜋 = [𝑓1, · · · , 𝑓𝐻 ′ ] over F . Let

map : {1, · · · , 𝑁 ′} → {1, · · · , 𝑁 }, where map(1) = 1, and for

1 < 𝑖 ≤ 𝑁 ′,map(𝑖) = 𝑁 − 1 (resp.map(𝑖) = 𝑁 ) if (𝑣𝑖 ,⊤) ∈ T (resp.

(𝑣𝑖 ,⊥) ∈ T ), otherwise map(𝑖) = (𝑘 − 2) · 2𝐻−1 + 𝑗 + 1 when 𝑣𝑖 is

the 𝑗-th vertex of𝜓 s.t. rank(𝑑𝑉 (𝑣𝑖 )) = 𝑘 . With the function map,
roughly as described at the beginning of this subsection, we can

construct a faithful OBDD encoding of depth𝐻 ≥ 𝐻 ′ for𝜓 , denoted
by 𝜃𝜓 (𝐻 ) . By Lemma 1, decode(𝜃𝜓 (𝐻 ) ) is an OBDD representation.

Let 𝜑 = decode(𝜃𝜓 (𝐻 ) ) = (V,T , E𝑙 , E𝑟 ). Let 𝜌 : V′ →V defined

as: for any 1 ≤ 𝑖 ≤ 𝑁 ′, 𝜌 (𝑣 ′
𝑖
) = 𝑣map(𝑖 ) . Then, by the construction of

𝜃𝜓 (𝐻 ) and Definition 6, we can prove that (1) the function 𝜌 is a one-

to-one correspondence betweenV′ andV; (2) for any 1 ≤ 𝑖 ≤ 𝑁 ′,
(𝑣 ′
𝑖
, 𝑡) ∈ T ′ iff (𝑣map(𝑖 ) , 𝑡) ∈ T , where 𝑡 ∈ (F ∪ {⊤,⊥}); (3) for any

1≤ 𝑖 < 𝑗 ≤ 𝑁 ′, (𝑣 ′
𝑖
, 𝑣 ′

𝑗
) ∈E′

𝑙
iff (𝑣map(𝑖 ) , 𝑣map( 𝑗 ) ) ∈ E𝑙 ; and (𝑣 ′𝑖 , 𝑣

′
𝑗
) ∈

E′
𝑙
iff (𝑣map(𝑖 ) , 𝑣map( 𝑗 ) ) ∈E𝑙 . So, 𝜑 and𝜓 are isomorphic. □

4.4 Inference of OBDD-NET vs Inference of OBDD
We hereafter bridge the inference |= of OBDDs and the inference

ESat (in Definition 4) of OBDD-NET, by showing the consistency be-

tween them under condition of faithfulness. This allows to treat

the OBDD classifier learning problem as a joint optimization of

OBDD-NET in terms of maximizing the consistency with dataset and

the faithfulness to the OBDD representation.
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Lemma 2 states that the𝐻 -reachability evaluation ((r𝜔 ) (𝐻 ) )𝑁−1 =
1 precisely when there is a path from 𝑣1 to 𝑣𝑁−1 within𝐻 length and

in consistence with 𝜔 . Similar to the context of OBDDs, given an

example 𝜔 = [𝑙1, · · · , 𝑙𝑚] and a faithful OBDD encoding 𝜃 of depth

𝐻 , we say 𝑣𝑖 can reach 𝑣 𝑗 in 1 ≤ 𝑛 ≤ 𝐻 step in consistence with

𝜔 , if there is a sequence of nodes 𝑣𝑠1, · · · , 𝑣𝑠 (𝑛+1) (a path of length

𝑛 in 𝜃 ) such that 𝑣𝑠1 = 𝑣𝑖 , 𝑣𝑠 (𝑛+1) = 𝑣 𝑗 , and for every 1 ≤ 𝑖 ≤ 𝑛, if

(𝜃
dec
)lev(𝑠𝑖 ),𝑘 = 1 then either (1) (𝜃

left
)𝑠𝑖,𝑠 (𝑖+1) = 1 and 𝑙𝑘 = 𝑓𝑘 ; or

(2) (𝜃
right
)𝑠𝑖,𝑠 (𝑖+1) = 1 and 𝑙𝑘 = ¬𝑓𝑘 .

Lemma 2. Let 𝜃 be a faithful OBDD encoding of depth𝐻 , and𝜔 an
example [𝑙1, · · · , 𝑙𝑚]. Then, 𝑣1 can reach 𝑣𝑁−1 in 𝑛 step in consistence
with 𝜔 for some 1 ≤ 𝑛 ≤ 𝐻 iff ((r𝜔 ) (𝐻 ) )𝑁−1 = 1.

Theorem 4.5 shows the equivalence of the inference on classifica-

tion of anOBDD𝜓 and that of a faithful OBDD encoding𝜃 whose de-

coding result decode(𝜃 ) is isomorphic to𝜓 . That is, for any arbitrary

OBDD𝜓 , there exists a well-trained faithful OBDD encoding 𝜃 s.t.

the evaluation ESat(𝜃, 𝜔) of the satisfaction relation between 𝜃 and

𝜔 coincides with that between the example𝜔 and the OBDD. In this

case, an OBDD can be interpreted directly from the OBDD encoding

without any gap between them on classification performance.

Theorem 4.5. Let𝜓 be an OBDD of depth 𝐻 ′, and 𝜃 be a faithful
OBDD encoding of depth 𝐻 ≥ 𝐻 ′ such that decode(𝜃 ) and 𝜓 are
isomorphic. Then, for any example 𝜔 = [𝑙1, · · · , 𝑙𝑚], it holds that
ESat(𝜃, 𝜔) = 1 if 𝜔 |= 𝜓 , and ESat(𝜃, 𝜔) = 0 otherwise.

Proof Sketch. Let 𝜓 = (V′,T ′, E′
𝑙
, E′𝑟 ). Let 𝜑 = decode(𝜃 ) =

(V,T , E𝑙 , E𝑟 ). We first prove that 𝜔 |= 𝜓 only if ESat(𝜃, 𝜔) = 1.

Assume that 𝜔 |= 𝜓 . There is a path 𝜅 of length 1 ≤ 𝑛 ≤ 𝐻 ′ from
the root 𝑣 ′

1
of 𝜓 to the ⊤-leaf such that 𝜅 is in consistence with

𝜔 . Since𝜓 and 𝜑 are isomorphic, we get that the root 𝑣1 of 𝜑 can

reach the ⊤-leaf in 𝑛 step in consistence with 𝜔 . By Definition 6,

in 𝜃 , 𝑣1 can reach 𝑣𝑁−1 in 𝑛 step in consistence with 𝜔 . As 𝜃 is a

faithful OBDD encoding and 1 ≤ 𝑛 ≤ 𝐻 , it follows from Lemma 2

that ((r𝜔 ) (𝐻 ) )𝑁−1 = 1 (i.e., ESat(𝜃, 𝜔) = 1).

We now prove that 𝜔 ̸ |= 𝜓 only if ESat(𝜃, 𝜔) = 0 by contra-

position. Assume that ESat(𝜃, 𝜔) ≠ 0. Since 𝜃 is a faithful OBDD

encoding, it can be verified that ESat(𝜃, 𝜔) = 1. By Lemma 2 and

Definition 6, 𝑣1 can reach 𝑣𝑁−1 (⊤-leaf) in 𝑛 step in consistence

with 𝜔 for some 1 ≤ 𝑛 ≤ 𝐻 . Since𝜓 and 𝜑 are isomorphic, we get

that the root 𝑣 ′
1
of𝜓 can reach ⊤-leaf in 𝑛 step in consistence with

𝜔 , i.e., 𝜔 |= 𝜓 . □

5 Learning OBDDs by OBDD Encoding
Exploiting the (faithful) OBDD encoding, a gradient-based OBDD

learning approach is developed.

We first build network structure of OBDD-NET parameterized by

an OBDD encoding 𝜃 via a softmax operation as shown in Equation

(2)
3
. It fulfills constraints 2 and 3 of the faithfulness defined in Def-

inition 5, which captures the basic structural properties of a BDD.

(𝜃
left
)𝑖, 𝑗 =

𝑒 (Γleft )𝑖,𝑗

(𝜂
left
)𝑖

, (𝜃
right
)𝑖, 𝑗 =

𝑒 (Γright )𝑖,𝑗

(𝜂
right
)𝑖
, (𝜃

dec
)𝑖,𝑘 =

𝑒 (Γdec )𝑖,𝑘

(𝜂
dec
)𝑖

, (2)

3
We remark that in our implement, a more complicate variant of the softmax operation,

named Gumbel Softmax function [16], is used to promote structural exploration.

Gumbel softmax allows to approximate a discrete categorical distribution. Its advantage

on gradient-based structure learning has been demonstrated in [27].

where (𝜂
left
)𝑖 =

∑
1≤𝑖< 𝑗≤𝑁

lev(𝑖 )<lev( 𝑗 )

𝑒 (Γleft )𝑖,𝑗 , (𝜂
right
)𝑖 =

∑
1≤𝑖< 𝑗≤𝑁

lev(𝑖 )<lev( 𝑗 )

𝑒 (Γright )𝑖,𝑗 ,

(𝜂
dec
)𝑖 =

∑
1≤𝑘≤ |F |

𝑒 (Γdec )𝑖,𝑘 .

Then, we train the parameterized neural network to jointly ex-

plore an assignment of the parameters approximately faithful to the

OBDD representation and optimize classification. The basic opti-

mization objective to maximize the consistency between the dataset

E and 𝜃 , is formulated as L0. To overcome the vanishing gradi-

ent when training, we replace the function 𝜎01 used in ESat(𝜃, 𝜔)
of L0 with its differentiable approximation 𝜎′

01
defined as follow:

𝜎′
01
(𝑥) = 𝑐0𝑥 if 𝑥 < 0, 𝜎′

01
(𝑥) = 𝑐0𝑥 + 1 − 𝑐0 if 𝑥 > 1, otherwise

𝜎′
01
(𝑥) = 𝑥 , where 𝑐0 = 0.01 a small positive constant. Besides, the

remaining constraints 1 and 4 of the faithfulness are characterized

as regularization loss L1 to L3.

L0 =
1

|E | ·
∑
𝜔∈E (ESat(𝜃, 𝜔) − lab(𝜔))2,

L1 =
∑ | F |
𝑘=1

Relu(∑𝐻
𝑖=1 (𝜃dec)𝑖,𝑘 − 1),

L2 = −
∑𝐻
𝑖=1

∑ | F |
𝑘=1
((𝜃

dec
)𝑖,𝑘 · log((𝜃dec)𝑖,𝑘 + 𝑐1)),

L3 = −
∑𝑁−2
𝑖=1

∑𝑁
𝑗=𝑖+1 ((𝜃left)𝑖, 𝑗 · log((𝜃left)𝑖, 𝑗 + 𝑐1)

+ (𝜃
right
)𝑖, 𝑗 · log((𝜃right)𝑖, 𝑗 + 𝑐1)),

(3)

where 𝑐1 = 1𝑒-5 is a small positive constant bias.

The regularization loss L1 is obtained from the condition 4 in

Definition 5 by replacing constraint like 𝑥 ≤ 𝑦 with a differentiable

one Relu(𝑥 − 𝑦). The regularization loss L2 and L3 are used to ap-

proximately fulfill the constraint 1 by bootstrapping binarization of

assignment of the involved parameters. The final joint optimization

objective for training OBDD-NET is: L = L0 +
∑
3

𝑖=1 𝛼𝑖L𝑖 , where 𝛼𝑖
is the regularization coefficient.

Finally, we interpret an OBDD from the trainedmodel (which cor-

responds to an approximately faithful OBDD enconding). As shown

in Algorithm 1, we first convert it to a faithful one, and then an

OBDD representation can be acquired by calling the routine decode
defined in Definition 6. To achieve faithfulness, it is sufficient to re-

alize both the constraints 1 and 4 in Definition 5, that is, to binarize

the assignment of all the parameters in 𝜃 while ensuring that there is

no 1 ≤ 𝑘 ≤ |F | s.t. two different parameters (𝜃
dec
)𝑖,𝑘 and (𝜃

dec
) 𝑗,𝑘

are simultaneously assigned the value 1. This can be done by the fol-

lowing step: (1) reset the maximum in each (𝜃
left
)𝑖 and (𝜃right)𝑖 to 1

and all other values to 0s, allowing to generate a BDD-style topolog-

ical DAG with root 𝑣1; (2) calculate the involved verticesV and the

levels 𝐿; (3) iteratively assign a unique feature 𝑓𝑘 to each level of 𝐿

in turn, by selecting the one with maximal value (𝜃
dec
)𝑖,𝑘 from the

available features (Lines 4 to 7). Similar operation for the remaining

levels is done by the following line. After decoding an OBDD rep-

resentation from 𝜃 , the procedure reduce (Line 10) first applies the
dd package

4
to produce a preliminary ROBDD (but in a slightly

different OBDD form with complement edges), and then converts

it back to the simple form (without complement edges) adopted in

this paper. In this way, we obtain a final ROBDD classifier.

4
https://github.com/tulip-control/dd/tree/main
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Table 1: The statistics of the datasets. |E | indicates the number
of examples; |F𝑜𝑟𝑔 | indicates the number of original features;
|F | indicates the number of binarized features; |E+ |/|E | indi-
cates the percentage of positive examples in the dataset.

Dataset | E | | F𝑜𝑟𝑔 | | F | | E+ |/| E |
anneal 812 42 89 0.77

tic-tac-toe 958 9 27 0.65

car 1,728 6 21 0.30

splice-1 3,190 60 287 0.52

kr-vs-kp 3,196 36 73 0.52

hypothyroid 3,247 43 86 0.91

christine 5,418 1636 4031 0.50

musk2 6,174 166 1829 0.15

mushroom 8,124 21 112 0.52

heloc 9,488 23 87 0.46

magic04 10,167 10 79 0.50

adult 21,647 14 144 0.24

secondary mushroom 22,037 20 157 0.55

bank marketing 38,424 20 125 0.12

higgs 97,276 28 93 0.53

weatherAUS 141,970 22 246 0.22

BNG (labor) 615,870 16 95 0.57

BNG (credit-g) 988,973 20 90 0.70

6 Experiments
Baselines.We compare OBDD-NET with three SOTA OBDD learn-

ers: OODG [19] for heuristic approach, and MaxSAT-BDD[15] and

Shati et al. [23]’s approach for exact ones. For OODG, as we did

not find the publicly available implementation of the authors, we

use its recent implementation
5
of [15] instead.

Datasets.We take 10 small and 8 large-scale public binary classi-

fication datasets from CP4IM
6
, UCI [9], Open-ML [25] and Kaggle

repository
7
.For small datasets, we follow those in [15] that contain

more than 800 examples, while including three additional datasets

from UCI and OpenML. Besides, as in [12], for assessing scalability

on large-scale classification problems, we also consider 8 signifi-

cantly larger datasets with increasing numbers of examples from

about 10,000 to 1,000,000. The features in the datasets are discretized

by entropy-based discretization and then binarized with the one-hot

encoding to get binary features. We perform these discretization

and binarization using the tool Orange [8], and then remove dupli-

cate examples. The statistics of these datasets is shown in Table 1.

6.1 Experimental Settings
All experiments were conducted on a Linux system equipped with

an Intel(R) Xeon(R) Gold 5218R CPU with 2.1 GHz and 64 GB

RAM and a NVIDIA RTX 3090 GPU. For MaxSAT-BDD and Shati

et al.’s approach, we follow their settings and apply the Loandra [2]

MaxSAT solver to solve their encoding instances. For our approach,

we use Adam [17] to optimize the parameters in our model. We per-

form grid search for the hyper-parameters tuning, the best setting

for them is as follows: the learning rate is set to 0.2, the number of

epochs is set to 3000 for small datasets and 800 for large datasets,

5
https://gitlab.laas.fr/hhu/bddencoding

6
https://dtai.cs.kuleuven.be/CP4IM/datasets/

7
https://www.kaggle.com/datasets

the batch size is set to 512, the regularization coefficients 𝛼1, 𝛼2, 𝛼3
are set to 1, 1𝑒-6, 1𝑒-6, respectively.

The depth𝐻 of OBDD-NET and the baselines are all set to 6. For all
datasets, we split them uniformly and perform cross-validation eval-

uations of each classifier on the same split datasets. For all classifiers

including our approach, the time limit for training is 900 seconds

for each small dataset, and 1,800 seconds for each large dataset
8
.

6.2 Performance Measurement
For each dataset, we perform 5-fold cross-validation and report the

average testing performance over the split 5 pairs of training-testing

sets. Specifically, we use (average) testing accuracy and macro-F1

score for classification performance evaluation, and (average) size

of the final produced ROBDD for rule-size evaluation. Note that, for

OODG which generates non-reduced OBDDs, we apply the post-

processing to produce ROBDDs as in our approach. In this way, the

final OBDDs we compared are all ROBDDs and in the same object.

6.3 Classification Performance and Rule Size
Comparison of 5-fold cross validated (average) testing accuracy (%),

macro-F1 score (%) and size among the generated ROBDDs on the

datasets is shown in Table 2. Our approach outperforms the SOTAs

on 14 out of 18 datasets on classification performance.

First, OBDD-NET achieves competitive testing accuracy and macro-

F1 on most small datasets compared to the two MaxSAT-based base-

lines, expect for the three smallest ones (containing fewer than 2000

examples). The underperformance of OBDD-NET on these very small

datasets aligns with the intuition that neural methods typically re-

quire more data while constraint programming solver-based meth-

ods are more efficient when search space is small. We can observe

that OBDD-NET outperforms them on datasets with more examples

and features. For OODG, as observed in [15], despite occasional

good performance, it usually produces classifiers with poor classifi-

cation performance. A timeout also occurs in OODG when solving

the christine and musk2 datasets, which have more than 1000 fea-

tures, due to the large exploration space for feature selection.

For the large datasets, OBDD-NET achieves significantly higher

prediction quality than the three SOTAs, with improvements more

than 3% on accuracy and 4% on macro-F1 in most cases. For the

rule-size, OODG performs best, followed by OBDD-NET and Shati’s

approach. However, OODG has significant poor prediction quality

on most of datasets. To sum up, OBDD-NET achieves competitive clas-

sification and rule-size performance w.r.t. the SOTA OBDD learners.

6.4 Scalability
From Table 2, we observe that the three SOTAs, especially OODG

and MaxSAT-BDD, have significantly lower classification perfor-

mance than OBDD-NET on the large datasets. In particular, they fail to
handle the last three datasets in the time limit, which contains hun-

dreds of thousands to a million of examples. For the two MaxSAT-

based SOTAs, they need to explicitly encode the satisfaction towards

the whole dataset, leading to the linear growth of encoding size

(i.e., the total number of literals in the encoded MaxSAT instance)

8
The time limits for MaxSAT-BDD and Shati et al.’s approach were set by their APIs,

while for OODG with no relevant API was provided, we do that by setting the timeout

threshold for its execution.
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Table 2: Comparison of 5-fold cross validated (average) testing accuracy (%), macro-F1 score (%) and size among the generated
ROBDDs by OBDD-NET and other OBDD learners. “OOT" abbreviates timeout. Numbers in bold means the best performing results.

Datasets # examples OBDD-NET MaxSAT-BDD Shati’s approach OODG
Acc. Macro-F1 Size Acc. Macro-F1 Size Acc. Macro-F1 Size Acc. Macro-F1 Size

anneal 812 83.37 70.23 8.4 84.85 75.98 15.2 83.25 74.18 9.8 81.4 60.57 7.2
tic-tac-toe 958 78.38 74.8 19.0 82.25 79.39 24.8 83.61 80.79 22.8 79.22 71.63 14.0

car 1,728 91.15 89.28 12.0 93.4 92.48 13.4 93.87 93.07 9.6 91.9 91.0 8.0
splice-1 3,190 93.76 93.76 11.4 67.81 65.86 13.4 75.8 75.63 13.4 63.39 56.19 11.0
kr-vs-kp 3,196 94.56 94.55 9.2 94.46 94.45 12.2 94.59 94.57 10.6 75.6 73.36 4.8

hypothyroid 3,247 98.15 94.38 8.2 98.09 94.18 13.6 98.06 94.08 10.8 91.35 49.05 6.8
christine 5,418 67.66 67.64 12.4 56.98 56.02 20.4 55.04 54.88 19.5 OOT OOT OOT

musk2 6,174 90.51 77.71 10.4 82.22 65.44 15.4 61.76 50.55 12.0 OOT OOT OOT

mushroom 8,124 99.8 99.8 12.8 98.77 98.77 16.4 99.63 99.63 12.0 99.61 99.61 10.2
heloc 9,488 71.54 71.19 11.8 56.26 54.45 19.8 65.2 64.58 16.2 46.26 31.68 3.2

magic04 10,167 73.98 73.91 11.2 53.39 42.56 17.2 72.96 72.51 10.0 50.25 33.44 3.8
adult 21,647 83.16 68.17 8.2 59.29 49.98 14.0 79.34 63.97 10.4 24.23 19.85 4.4

sec mushroom 22,037 75.83 75.28 16.4 56.96 55.98 18.2 64.3 63.18 14.4 56.74 40.37 9.0
bank marketing 38,424 89.97 70.63 9.0 74.99 53.71 14.2 88.81 60.37 18.4 11.97 10.7 8.0

higgs 97,276 61.03 60.14 8.4 OOT OOT OOT 50.69 45.34 13.33 52.9 34.64 11.8

weatherAUS 141,970 82.05 65.03 7.0 OOT OOT OOT OOT OOT OOT OOT OOT OOT

BNG (labor) 615,870 88.2 87.87 10.8 OOT OOT OOT OOT OOT OOT OOT OOT OOT

BNG (credit-g) 988,973 72.29 62.73 6.6 OOT OOT OOT OOT OOT OOT OOT OOT OOT

# best 14 14 6 1 1 0 3 3 0 0 0 12

(a) (b) (c) (d)

Figure 3: (a) 5-fold cross-validated (average) testing accuracy of the generated ROBDDs by OBDD-NET and OBDD-NET(relaxed). (b)
Training accuracy of networks of OBDD-NET and that of the interpreted ROBDDs. (c) Testing accuracy of the generated ROBDDs
by OBDD-NET with different depths on the sec-mushroom dataset. (d) Testing accuracy and size of the generated ROBDDs by
OBDD-NET with different depths under fixed width on the sec-mushroom dataset.

w.r.t. dataset size. As shown in Figure 1(b) in Introduction, when

applied to large-scale datasets, the encoding size of them become

extremely large (e.g., greater than 100 million for both approaches

when dataset size reaches 100 thousand), being quite challenging

to be solved by modern MaxSAT solvers. For the heuristic-based

approach OODG, it relies on a lot of computation of mutual in-

formation on the dataset for feature selection and turns out to be

time consuming when handling the large-scale datasets. In contrast,

OBDD-NET does not suffer from these problems and is able to scale to

million-size datasets. These exhibit better scalability of OBDD-NET.

6.5 Ablation Study
To evaluate the effect of the faithfulness of the OBDD-NET on classifi-

cation performance, we build a relaxed model of OBDD-NET, namely

OBDD-NET(relaxed), by replacing the softmax operation in Equation

(2) with the sigmoid operation and setting all the regularization

coefficient 𝛼𝑖 to 0. It can be view as a neural network model with

much weaker faithfulness guarantee, since applying the sigmoid

operation on a parameter assignment commonly produces only a

trivial OBDD encoding far from fulfilling constraints 2 and 3 of the

faithfulness. We then conduct 5-fold cross-validation experiments

for OBDD-NET and OBDD-NET(relaxed) on all datasets as before. As

can be seen from Figure 3(a), OBDD-NET(relaxed) have significant
poorer classification performance than OBDD-NET.This confirms the

effectiveness of the faithfulness in OBDD-NET.
Besides, Figure 3(b) compares the training accuracy achieved

by the network and the interpreted ROBDD of OBDD-NET on the

90 runs (5 folds × 18 datasets). We can find that the performance

gap is small, which suggests that the trained network is most often

highly faithful to the OBDD representation.
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Figure 4: A ROBDD learned on the BNG(labor) dataset.

6.6 Impact of depth
We conduct experiments with various depths 𝐻 under different

time-limits on the sec-mushroom dataset. We use 80% of the ex-

amples for training and the left for testing. From Figure 3(c), as 𝐻

grows, the accuracy first increases generally then remains stable.

This is because higher 𝐻 allows to build a complicate OBDD classi-

fier with more different features, but is usually harder to train due to

exponentially greater search space. The exponential growth of the

encoding size causes OBDD-NET fail to handle OBDD learning prob-

lems with large depth. Note that, the two competitive SOTAs also

face the challenge of exponential explosion [15, 23]. In practice, we

can alleviate the affect via taking a smaller width𝑊 <2
𝐻−1

. From

Figure 3(d), under𝑊 =32, OBDD-NET can handle a greater depth and

learn a more complicate ROBDD with better prediction quality.

6.7 Case study
In the BNG(labor) dataset, the classifier is to predict whether a

given labor contract is acceptable. Although ROBDD classifiers are

learned on binarized features, in practice we find that it is usually

interpretable enough due to the small depth (i.e., the number of used

features). Figure 4 shows an ROBDD classifier learned by OBDD-NET,
which has depth 6 and size 12. The feature ordering is [‘longterm-

disability-assistance=yes’, ‘contribution-to-health-plan=full’, ‘wage-

increase-first-year<2.1217’, ‘education-allowance=yes’, ‘pension

=none’, ‘contribution-to-dental-plan=none’]. There are 5 paths from

the root to the ⊤-leaf. For instance, the second right-most path says

a contract that provides long-term disability assistance without full

contribution to health-plan, with a first-year wage increase below

2.1217%, but offers education allowance and pension, is acceptable.

From the classifier, an essential feature is ‘longterm-disability-

assistance=yes’. That is, all contracts to be acceptable should offer

long-term disability assistance. Consider now a contract that in-

cludes long-term disability benefits, partial health-plan coverage,

a first-year wage increase of at least 2.1217%, as well as education

allowance and pension provisions, which corresponds to a (par-

tial) example 𝜔 : [𝑓1, ¬𝑓2, ¬𝑓3, 𝑓4, ¬𝑓5]. It can be verified that this

contract is acceptable by the classifier shown in Figure 4. One may

wonder why such an example triggers the positive decision of the

classifier. To this end, we can compute the complete reason and

the sufficient reason (aka. prime implicant explanation) behind this

decision, where the former captures the necessary and sufficient

condition to trigger a decision [7]. The resulting complete reason is

𝑓1∧¬𝑓2∧¬𝑓5∧ (¬𝑓3∨ 𝑓4), and we can get two sufficient reasons: (1)

𝑓1 ∧¬𝑓2 ∧¬𝑓3 ∧¬𝑓5 and (2) 𝑓1 ∧¬𝑓2 ∧ 𝑓4 ∧¬𝑓5. In other words, any

contract that offers long-term disability assistance, partial health-

plan coverage, pensions, as well as at least one of the following: a

minimum wage increase of 2.1217% in the first year or an education

allowance, will be accepted by this classifier.

Note that the computation of the complete reason for a deci-

sion can be done in linear time for an OBDD classifier [7]. Recent

studies [7, 24, 32, 33] have fully demonstrated the effectiveness of

OBDD representations in facilitating the computation of decision

explanation (including complete reason analysis and prime impli-

cant explanations) as well as quantitative robustness analysis. We

will no longer illustrate them here. Please refer to them for details.

7 Discussions and Future Work
The limitations of the current design of OBDD-NET are two-fold. (1)

OBDD-NET is more suitable for learning OBDDs of small depth, sim-

ilar to other successful applications of gradient-based structure

learning techniques in mining succinct logical rules, e.g., Linear

Temporal Logic on finite traces (LTLf) formula [26] and Finite-State

Automata (FSA) [20]. In practice, it is usually effective enough, as

a relatively complex formula could possibly be simplified to a more

concise form. (2) OBDD-NET is limited to binary classification with

binarized features, relying on preprocessing with conventional fea-

ture binarization approaches. This also hinders the extension to

end-to-end learning more general decision diagrams, due to non-

differentiability of these binarization approaches. Future work will

extend our approach to suit classification with real-valued features

and Multi-valued Decision Diagrams (MDDs), by integrating some

advanced differentiable binarization techniques [31].

8 Conclusions
In this paper we have developed an end-to-end OBDD learning

neural model named OBDD-NET, which exploits an OBDD encoding

method to parameterize a neural network and allows the utilization

of gradient descent optimization for efficient learning. Experimental

results on 10 small and 8 large datasets show that OBDD-NET scales

better than existing OBDD learners with competitive performance.
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