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Abstract

Gaussian process regression (GPR) is a non-
parametric model that has been used in many
real-world applications that involve sensitive per-
sonal data (e.g., healthcare, finance, etc.) from
multiple data owners. To fully and securely ex-
ploit the value of different data sources, this pa-
per proposes a privacy-preserving GPR method
based on secret sharing (SS), a secure multi-party
computation (SMPC) technique. In contrast to
existing studies that protect the data privacy of
GPR via homomorphic encryption, differential pri-
vacy, or federated learning, our proposed method
is more practical and can be used to preserve
the data privacy of both the model inputs and
outputs for various data-sharing scenarios (e.g.,
horizontally/vertically-partitioned data). However,
it is non-trivial to directly apply SS on the conven-
tional GPR algorithm, as it includes some opera-
tions whose accuracy and/or efficiency have not
been well-enhanced in the current SMPC proto-
col. To address this issue, we derive a new SS-
based exponentiation operation through the idea of
“confusion-correction” and construct an SS-based
matrix inversion algorithm based on Cholesky de-
composition. More importantly, we theoretically
analyze the communication cost and the secu-
rity of the proposed SS-based operations. Empir-
ical results show that our proposed method can
achieve reasonable accuracy and efficiency under
the premise of preserving data privacy.

1 INTRODUCTION

Gaussian process regression (GPR) [Rasmussen and
Williams, 2006, Yan et al., 2011, Xu et al., 2015, Zhe et al.,
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2016, Zhang et al., 2016, Zhe et al., 2015] is a Bayesian
non-parametric model that has been widely used in various
real-world applications such as disease progression predic-
tion [Ortmann et al., 2019, Shashikant et al., 2021], traffic
prediction [Chen et al., 2015], and finance [Yang et al.,
2015], etc. In practice, the data of the above applications
may belong to different parties and cannot be shared directly
due to the increasing privacy concerns in the machine learn-
ing (ML) community. For example, two hospitals that have a
small amount of patient data would like to jointly construct
a high-quality GPR model for better disease progression
prediction. However, such data usually contain patients’ per-
sonal information and cannot be shared between hospitals
due to legal regulations. In addition, when other hospitals
or patients consider to use the constructed GPR model for
diagnosis, privacy leakage of the personal feature (i.e., test
input) and the diagnostic result (i.e., model output) is also
a concern. Similarly, in finance, a bank that owns users’
financial behaviors (e.g., income, credit, etc.) may hope to
build a GPR model for risk control prediction by exploiting
the users’ consuming behaviors from the e-commerce com-
panies. Obviously, neither the financial nor the consuming
behaviors of the users should be shared directly due to their
high information privacy.

The need of information sharing in the above examples has
motivated the development of a practical GPR model that
can preserve the data privacy of both the model inputs and
outputs in three data-sharing scenarios (Fig. 1): (a) Hori-
zontal data-sharing (HDS): Each party has a set of data for
different entities with the same features and share them for
model construction; (b) Vertical data-sharing (VDS): Each
party has different features of the same set of entities and
shares them for model construction; and (c) Prediction data-
sharing (PDS): A party who aims to use the constructed
model needs to share his data with the model holder for
prediction. At present, a few privacy enhancement tech-
niques such as fully homomorphic encryption (FHE) [Gen-
try, 2009], federated learning (FL) [Konečnỳ et al., 2016],
and differential privacy (DP) [Dwork, 2006, Abadi et al.,
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Figure 1: Diagrams of different data-sharing scenarios.

2016] have been exploited for avoiding privacy leakage in
GPR. However, none of them is general enough to achieve
privacy-preserving GPR for all three data-sharing scenarios.
Specifically, the FHE-GPR [Fenner and Pyzer-Knapp, 2020]
and FL-GPR [Dai et al., 2020, 2021, Kontoudis and Stilwell,
2022, Yue and Kontar, 2021] approaches only focus on PDS
and HDS scenarios, respectively. The DP-GPR methods
[Kharkovskii et al., 2020, Smith et al., 2018] assume all
the data belong to a single party and can only protect the
privacy of either the input features [Kharkovskii et al., 2020]
or the outputs [Smith et al., 2018]. See Section 6 for detailed
discussions.

To fully and securely exploit the value of different data
sources in the aforementioned data-sharing scenarios for
a GPR model, this paper proposes to exploit the secure
multi-party computation (SMPC) [Yao, 1986] which can
deal with different data-sharing scenarios with a theoretical
security guarantee. Among the various types of SMPC ap-
proaches [Evans et al., 2018, Goldwasser, 1987, Yao, 1982],
secret sharing (SS) [Shamir, 1979] is exploited in this work
due to its good communication efficiency and widely appli-
cations in other ML models [Mohassel and Zhang, 2017,
Wagh et al., 2019]. As the name implies, an SS-based ML
approach converts all the original operations (e.g., addi-
tion, multiplication, comparison, etc.) in the ML models
(e.g., neural network) into its privacy-preserving alterna-
tives which take secretly shared data as input and produce
secretly shared results with secure information communica-
tion among parties (see Section 2.2.1 for details).

Although many SS-based operations have been developed
in existing privacy-preserving ML works, they are not suf-
ficient for constructing a privacy-preserving GPR model
since the matrix inversion and exponentiation operations
are essential for GPR (Section 3) but have not been well
adapted to SMPC. To be specific, some works [Knott et al.,
2021] designed SMPC protocols of these two operations
based on approximation methods such as Newton-Raphson
iteration method and Taylor expansion, which significantly
reduces their accuracy and/or efficiency. To address this
issue, this work proposes new SMPC protocols for positive-
definite matrix inversion and exponentiation based on SS
and integrate them into the existing SS-based operations for
achieving an efficient and theoretically secure GPR model.

The specific contributions of this work include:

• To the best of our knowledge, this is the first work that
considers to protect the privacy of a GPR model via se-
cret sharing which can be used for various data-sharing
scenarios (Section 3).

• Based on the SS technique, we propose an efficient
privacy-preserving exponentiation algorithm through the
idea of “confusion-correction”, which is shown to be
10 ∼ 70 times faster than commonly-used approxima-
tion algorithms and can achieve theoretical correctness
and security guarantees (Section 4).

• We propose the first SS-based matrix inversion algorithm
via Choseky decomposition and show that its accuracy
is comparable to the plaintext algorithm with acceptable
communication cost (Section 4).

• Empirical results on two real-world datasets show that the
proposed SS-based GPR algorithm can achieve accurate
prediction results within a reasonable time (Section 5).

2 BACKGROUND AND NOTATIONS

2.1 GAUSSIAN PROCESS REGRESSION (GPR)

Let X denote a d-dimensional input domain. For each
x ∈ X , we assume its corresponding output y(x) ∼
N (f(x), σ2

n) is a noisy observation of a function f(x) with
noise variance σ2

n. Then, the function f(x) can be modeled
using a Gaussian process (GP), that is, every finite subset
of {f(x)}x∈X follows a multivariate Gaussian distribution.
Such a GP is fully specified by its prior mean µ(x) ≜
E[f(x)] and covariance k(x,x′) ≜ cov[f(x), f(x′)] for all
x,x ∈ X . Usually, we assume that µ(x) = 0 and the co-
variance is defined by a kernel function. One example of the
widely-used kernel function is the squared exponential (SE)
kernel:

k(x,x′) ≜ σ2
sexp(−d(x,x′)/2ℓ2) (1)

where d(x,x′) = ||x− x′||22, ℓ is the length-scale and σ2
s is

the signal variance.

Supposing we have a set D of n observations: D =
{(xi, yi)

n
i=1} where yi ≜ y(xi), a GPR model can per-



form probabilistic regression by providing a predictive dis-
tribution p(f(x∗)|D) ≜ N (µx∗|D, σ

2
x∗|D) for any test input

x∗ ∈ X . Let X ≜ (x1, . . . ,xn)
⊤ be an n× d input matrix

and y = (y1, . . . , yn)
⊤ be a column vector of the n noisy

outputs. Then, the posterior mean and variance of the predic-
tive distribution p(f(x∗)|D) can be computed analytically:

µx∗|D ≜ k⊤
∗ (K+ σ2

nI)
−1y ,

σ2
x∗|D ≜ k(x∗,x∗)− k⊤

∗ (K+ σ2
nI)

−1k∗,
(2)

where k∗ ≜ k(x∗,X) = (k(x∗,xi))
n
i=1 is a column vector

of n-dimension, K ≜ k(X,X) = (k(xi,xj))i,j=1,...,n is
an n× n gram matrix, and I is an identity matrix of size n.

2.2 SECURE MULTI-PARTY COMPUTATION

Secure multi-party computation (SMPC) is a type of cryp-
tography technique for multiple parties to jointly compute
an operation f without exposing the privacy of the data
to any of them during the computation. In this work, we
adopt the semi-honest security (also known as honest-but-
curious) model which is one of the standard security models
in SMPC and has been widely used in existing privacy-
preserving machine learning algorithms [Liu et al., 2017,
Mohassel and Rindal, 2018, Mohassel and Zhang, 2017,
Ryffel et al., 2020, Wagh et al., 2019]. In a semi-honest
security model, the parties are assumed to follow the SMPC
protocol but can try to use the obtained data-sharing and
intermediate results to infer the information that is not ex-
posed to them during the execution of the protocol. Next,
we will first present a secret sharing technique designed
based on the semi-honest security model to construct SMPC
protocols and then, introduce the algebraic structure used
for designing the SMPC protocal in this work.

2.2.1 Secret Sharing

Secret sharing (SS) is a technique independently proposed
by Shamir [1979] and Blakley [1979] with its full name
called (t,m)-threshold secret sharing schemes, where m
is the number of parties and t is a threshold value. The
security of SS requires that any less than t parties cannot
obtain any secret information jointly. As a special case of
secret sharing, (2, 2)-additive secret sharing contains two
algorithms: Shr(·) and Rec(·, ·). Let ZL denote the ring of
integers modulo L and [[u]] = ([u]0, [u]1) be the additive
share of any integer u on ZL. Shr(u) → ([u]0, [u]1) is
used to generate the share by randomly selecting a number
r from ZL, letting [u]0 = r, and computing [u]1 = (u− r)
mod L. Note that due to the randomness of r, neither a
single [u]0 nor [u]1 can be used to infer the original value of
u. The algorithm Rec([u]0, [u]1) → u is used to reconstruct
the original value from the additive shares, which can be
done by simply calculating ([u]0 + [u]1) mod L.

The additive secret sharing technique has been widely used
to construct SMPC protocols for ML operations (e.g., ad-
dition, multiplication, etc.) such that both the inputs and
outputs of the protocol can be additive shares of the original
inputs and outputs: πf ([inputs]0, [inputs]1) → [f ]0, [f ]1
where πf denotes an SMPC protocol of the operation f . To
further elaborate the SS technique, we briefly introduce the
SS-based multiplication protocol below, which is essential
in many privacy-preserving ML algorithms and will also be
widely used in this work.

SS-based multiplication u · v . Let Pj with j ∈ {0, 1} be
two parties that are used to execute the SMPC protocol. Each
party Pj will be given one additive share ([u]j , [v]j) ∈ ZL

of the operation inputs for j ∈ {0, 1}. Then, the additive
shares of u · v can be computed with Beaver-triples [Beaver,
1991]: (a, b, c) where a, b ∈ ZL are randomly sampled from
ZL and c = a · b mod L. Specifically, for each j ∈ {0, 1},
Pj first calculates [d]j = [u]j − [a]j and [e]j = [v]j −
[b]j . Then, they send the [d]j and [e]j to each other and
reconstruct d = Rec([d]0, [d]1) and e = Rec([e]0, [e]1).
Finally, the additive share of u · v can be computed using
[u · v]j = −jd · e+ [u]j · e+ d · [v]j + [c]j . To complete the
SS-based multiplication, both parties need to spend 1 round
of two-way communication and transmit two ring elements.

The SS-based multiplication protocol is extended to matrix
multiplication in the work of Mohassel and Zhang [2017].
Let FmatMul denote the SS-based matrix multiplication
functionality, U and V be two matrices of size m × n
and n× k, respectively. The SS-based matrix multiplication
FmatMul(U,V) still requires only 1 rounds of bidirectional
communication between parties P0 and P1 but the transmit-
ted ring elements are of size (m+ n)× k.

Unfortunately, there exist many operations (e.g., exponen-
tiation, matrix inversion, etc.) that cannot be constructed
using purely additive secret sharing on ZL. Some approxi-
mation methods such as Newton-Raphson iteration method
and Taylor expansion have been exploited for designing
additive SS-based protocols of these operations. Details of
the approximation methods and other SMPC protocols can
be found in the work of Knott et al. [2021].

2.2.2 Fixed-Point Representation

As has been shown above, the SS-based SMPC protocols
are constructed in a ring of integers due to security reasons.
In practice, the ML algorithms such as GPR are usually
implemented using floating-point numbers. However, it has
been shown that the SMPC protocols designed based on
floating-point numbers are inefficient [Aliasgari et al., 2012]
and fixed-point representation is a better choice.

Specifically, the fixed-point encoding method represents all
data as l bits. Let Q<ZL,lf> be a set of fixed-point numbers
with a precision of lf (i.e., lf fractional bits) mapped from
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Figure 2: The overall framework of PP-GPR.

ZL and L = 2l. For floating-point numbers in the range1

[−2l−lf−1, 2l−lf−1), this work will first round them to the
nearest fixed-point numbers in Q<ZL,lf> and then, map
them to the integers in ZL by multiplying the converted
fixed-point numbers with 2lf . For example, given l = 5
and lf = 3, a floating-point number 1.125123 in [−2, 2] is
firstly rounded to the fixed-point number 1.125 in Q<Z25 ,3>

and then converted to an element in Z25 by (1.125 × 23)
mod 25 = 9. Conversely, an integer 11 ∈ Z25 can be
converted in Q<Z25 ,3>

as 11/23 = 1.375.

All the algorithms in this paper are performed on ZL and
Q<ZL,lf>. By choosing appropriate l and lf , the fixed-point-
based SMPC protocols can achieve a desirable compromise
between efficiency and accuracy. To ease notations, we will
use lowercase letters to represent either floating-point or
integer numbers and x̌ to represent a fixed-point number
in Q<ZL,lf> converted from x. The algorithm Shr(x) in
Section 2.2.1 will first convert x to its corresponding repre-
sentation in ZL if the input x is a floating-point number.

3 PRIVACY-PRESERVING GPR

In this section, we propose to exploit the SMPC technique
for constructing a privacy-preserving GPR (PP-GPR) al-
gorithm. The overall framework of the Privacy-preserving
GPR (PP-GPR) model is shown in Fig. 2. As can be seen,
the PP-GPR adopts a three-party SMPC architecture with
two computing servers and one assistant server. Let S0 and
S1 represent the two computing servers and T be the assis-
tant server. Each computing server takes one additive share
of the data as input, performs the calculations according to
the steps of the PP-GPR algorithm, and then outputs the
additive share of the GPR predictive results. The assistant
server is responsible for generating random numbers re-
quired during the execution of the SS-based protocols in
the PP-GPR algorithm. The proposed algorithm exploits
the SS-based operations for achieving privacy-preserving
GPR on all three data-sharing scenarios shown in Fig. 1.
The complete steps are illustrated in Algorithm 1.

1We assume that all the numbers appeared in an ML algorithm
are in this range. Appropriate l and lf need to be selected for
avoiding underflow and overflow issues.

Algorithm 1 Privacy-preserving GPR
Setup: The servers determine ZL andQ<ZL,lf>. The data own-
ers convert their private observations D = (X,y) and predicted
samples x∗ into ([[x∗]], [[X]], [[y]]).
Input: For j ∈ {0, 1}, Sj holds the shares ([x∗]j , [X]j , [y]j), and
the hyperparameters (ℓ, σ2

s , σ
2
n).

1: // Model construction stage.
2: [[d(X,X)]]← Fdist([[X]], [[X]])
3: [[K]]← σ2

s · FPPExp([[−d(X,X)/2ℓ2]])
4: [[Inv]]← FMatInv([[(K+ σ2

nI)]])
5: // Prediction stage.
6: [[d(x∗,X)]]← Fdist([[x∗]], [[X]])
7: [[d(x∗,x∗)]]← Fdist([[x∗]], [[x∗]])
8: // Compute the kernel matrices.
9: [[k∗]]← σ2

s · FPPExp([[−d(x∗,X)/2ℓ2]])
10: [[k(x∗,x∗)]]← σ2

s · FPPExp([[−d(x∗,x∗)/2ℓ
2]])

11: // Compute the predictive mean and variance.
12: [[µ2

x∗|D]]← FmatMul(FmatMul([[k
⊤
∗ ]], [[Inv]]), [[y]])

13: [[Λ]]← FmatMul(FmatMul([[k
⊤
∗ ]], [[Inv]]), [[k∗]])

14: [[σ2
x∗|D]]← [[k(x∗,x∗)]]− [[Λ]]

Output: Sj outputs the share [µx∗|D]j , [σ
2
x∗|D]j for j ∈ {0, 1}.

3.1 THE ALGORITHM SETUPS

To ensure a coherent execution of the algorithm, consensus
must be reached among the servers (S0, S1, and T ), data
owners, and users regarding the algebraic structure to be em-
ployed. Specifically, an appropriate choice of l and lf needs
to be made for Z2l and Q< Z2l , lf >, respectively. Once
consensus is established, the data owners and users proceed
with the conversion of their private observations D = (X,y)
and test inputs x∗ into shared representations denoted as
([[x∗]], [[X]], [[y]]). This conversion is accomplished using the
function Shr(·) and each resulting share ([x∗]j , [X]j , [y]j)
is transmitted to the respective computing server Sj for
j ∈ {0, 1}. Afther that, the servers perform GPR’s privacy-
preserving model construction and inference.

Let us consider an illustrative example to showcase the
process. Supposing l = 5 and lf = 3, the model user
aims to privately predict the output of a test input x∗ =
(0.625, 0.375, 0.375). To achieve this, the user firstly con-
verts x∗ into Z23 by x∗ · 23 = (5, 3, 3) , independently
generates random values [x∗]0 = (6, 9, 6), and then calcu-
lates [x∗]1 = ((x∗ − [x∗]0) mod 32) = (31, 26, 29). The
computed value [x∗]j is then transmitted to the computing
server Sj for j ∈ {0, 1}. In a similar manner, the data own-
ers employ the Shr(·) mechanism to send all the values
pertaining to their private observations D to the respective
computing servers.

Note that since Shr(·) is applied independently to each vari-
able in X, y and x∗, the shares of the data can be computed
easily no matter how the variables in X, y and x∗ are par-
titioned among the data owners. Therefore, the SS-based
GPR algorithm can handle HDS, VDS, and PDS scenarios



straightforwardly, which makes it practical enough to be
used in various real-world applications.

The GPR hyperparameters (ℓ, σ2
s , σ

2
n) are assumed to be

known a priori and publicly shared between the computing
servers. The privacy-preserving optimization of the hyper-
parameters will be considered in future work.

3.2 THE ALGORITHM EXECUTION STEPS

Once the computing servers receive the shares of all the data
and hyperparameters, they start to execute the SS-based
protocols for PP-GPR and output the shares of the predic-
tive results. Similar to the conventional GPR, the PP-GPR
algorithm contains two stages: model construction and pre-
diction. At the model construction stage (Lines 1-4), the
servers first compute secret shares of the distance matrix
d(X,X) ≜ (d(xi,xj))i,j=1,...,n. Let Fdist(X,X′) be the
SS-based protocol for computing the shares of the distance
matrix between X and X′. [[d(X,X)]] = Fdist(X,X) =
([[d(xi,xj)]])i,j=1,...,n where Fdist can be constructed us-
ing conventional SS-based addition and (matrix) multiplica-
tion operations. Then, the servers compute [[K]] by calling
a privacy-preserving exponentiation algorithm denoted as
FPPExp and compute [[Inv]] = [[(K + σ2

nI)
−1]] by call-

ing a privacy-preserving matrix-inverse algorithm FMatInv

with the inputs [[K]] and σ2
n. The design of FPPExp and

FMatInv will be discussed later in Section 4.

At the prediction stage (Lines 5-14), the servers first
compute [[k∗]] and [[k(x∗,x∗)]] by calling Fdist and
FPPExp and then, obtain the shares of the predictive mean
[[µx∗|D]] = [[k⊤

∗ ]][[Inv]][[y]] and variance [[σ2
x∗|D]] = [[k⊤

∗ ]]−
[[kx∗,X]][[Inv]][[k∗]] according to (2) by calling FmatMul .

4 PRIVACY-PRESERVING OPERATION
CONSTRUCTION

As has been shown in Section 3, the privacy-preserving
exponentiation FPPExp and matrix inversion FMatInv are
essential for the PP-GPR algorithm. In this section, we
will analyze the issues of existing methods for constructing
these two operations, introduce the proposed algorithms,
and analyze their computational complexity.

4.1 PRIVACY-PRESERVING EXPONENTIATION

As aforementioned in Section 2.2.1, the exponentiation can-
not be constructed directly via additive SS. A commonly-
used method to resolve this issue is to approximate the
exponentiation using its Taylor expansion eu =

∑∞
k=0

1
k!u

k

such that the exponentiation can be converted into addi-
tion and multiplication operations. However, the fact that
the exponential grows much faster than the polynomial

Algorithm 2 Privacy-preserving exponentiation (FPPExp)
Setup. The servers determine ZL,Q<ZL,lf>, the range [umin, 0]
of input u, and the range [−řmax, řmax).
Input. S0 holds the share [u]0; S1 holds the share [u]1.
1: // Offline phase executed on assistant server T :
2: Draw ř in the range [−řmax, řmax) randomly
3: r ← ř · 2lf ▷ ř ∈ Q<ZL,lf>

4: Generate ([r]0, [r]1) ∈ ZL

5: Calculate e−ř inQ<ZL,lf>

6: Generate ([e−ř]0, [e−ř]1) ∈ ZL

7: Send [r]j and [e−ř]j to Sj for j ∈ {0, 1}
8: // Online phase:
9: Sj calculates [d]j ← [u]j + [r]j for j ∈ {0, 1}

10: S0 and S1 sends [d]0 and [d]1 to each other
11: d← Rec([d]0 + [d]1) ▷ Executed by both S0 and S1

12: ď← d/2lf ▷ Executed by both S0 and S1

13: Calculate eď inQ<ZL,lf>

14: Sj calculates [eu]j ← eď · 2lf · [e−ř]j for j ∈ {0, 1}
Output. Sj outputs the share [eu]j for j ∈ {0, 1}.

may lead to large errors in the Taylor series approxima-
tion. Although increasing the degree of the polynomial can
increase the approximation accuracy, the communication
cost will also increase due to the information exchange
needed for SS-based multiplication. The work of Knott et al.
[2021] mitigated this problem via the limit approximation
eu = limk→∞(1 + u

2k
)2

k

and exploited the repeated squar-
ing algorithm to iteratively generate polynomials of higher
order quickly. However, achieving accurate approximation
results with this approach still incurs high communication
and computational costs.

In this work, we propose to construct a privacy-preserving
exponentiation (PP-Exp) operation by adopting the idea of
confusion-correction. In PP-Exp, given a private number
u ∈ [umin, 0], each computing server Sj for j ∈ {0, 1}
takes the additive share [u]j of u as input and then, deduces
the additive shares of eu privately with some random num-
bers generated by T . The algorithm includes the following
steps: (1) The computing servers mask the share of u with a
random value r to obtain [[u−r]]; (2) The computing servers
jointly reveal the obfuscated value u−r; (3) Each computing
server uses the obfuscated value to calculate the obfuscated
target eu−r; and (4) Each computing server corrects the
share of eu−r by removing the mask and obtains the share
of eu. The pseudo-code of the PP-Exp is in Algorithm 2.

Note that Algorithm 2 considers only negative input u since
the commonly used kernel function (e.g., (1)) of GPR in-
volves only exponentiation of negative values. According to
the range of u, the proposed PP-Exp can achieve correctness
and security by selecting appropriate [−řmax, řmax) and lf
as will be discussed later.

Firstly, to guarantee the correctness of the proposed PP-Exp
algorithm, we need to make sure that all the fixed-point cal-



culations (i.e., Line 5 and Lines 13-14) can not overflow or
underflow. Consequently, the selected [−řmax, řmax) and
lf need to satisfy the following relationship.

Theorem 1 (Correctness). For any number u in the range
[umin, 0], if (řmax−umin) log

e
2 ≤ lf < l−1

2 , the PP-Exp al-
gorithm can correctly derive ([eu]0, [eu]1) from ([u]0, [u]1),
satisfying [eu]0 + [eu]1 = eu.

For example, on the ring of integers Z264 , assuming that the
input u takes values in the range [−4, 0] and ř takes values
in the range [−16, 16). By setting lf = 29, the correctness
of the PP-Exp algorithm can be ensured. See Appendix A
for the proof.

Next we will analyze the security of the PP-Exp algorithm.
In Algorithm 2, Line 11 is the only step that will reconstruct
d in the fixed-point domain and has the risk of leaking the
information of u. Specifically, given the maximal range
of u and ř (i.e., [umin, 0] and [−řmax, řmax)), the value
of d may be exploited to reduce the feasible range of u,
which is an information leakage. For example, supposing
u ∈ {−2,−1, 0}, r ∈ {−1, 0, 1}, and d = u + r, one can
infer that u must be −2 or −1 if d = −2.

To formally analyze the amount of privacy leaked, we define
the degree of information leakage as follows:

Definition 1. Supposing u is known to be an element of a
finite set U , the degree of information leakage on u is 1

|U| .

We consider an algorithm to be secure if the degree of in-
formation leakage of the input remains constant during the
algorithm. Given a fixed precision lf , let mu and mr be the
amount of fixed-point numbers that can be represented in
[umin, 0] and [−řmax, řmax), respectively. The security of
the PP-Exp algorithm satisfies the following theorem.

Theorem 2 (Security). For any fixed number u in the range
[umin, 0], the PP-Exp algorithm is secure with the probabil-
ity mr−mu+1

mr
. The expected degree of information leakage

on u is mu+mr−1
mu·mr

.

See Appendix A for the proof. Theorem 2 shows that the
more the number of values of r is greater than the number
of values of u (i.e., mr −mu is larger), the PP-Exp has a
larger probability to be secure. Selecting a larger range of
ř (i.e., larger řmax) can significantly reduce the degree of
information leakage. However, a larger řmax may result in
larger lf and larger l due to the results in Theorem 1 and
consequently, increase the amount of communication cost
as will be shown in Section 4.3.

Note that the PP-Exp algorithm leaks the exact value of
u with probability only 2

mumr
, i.e., both u and r take the

maximum or minimum value of the range in which they are
located. For example, when lf = 29, supposing the input u
takes values in the range [−4, 0] and r takes values in the

range [−16, 16), we have mu = 231 + 1 and mr = 234.
The PP-Exp is secure with 7

8 probability. The degree of
information leakage is 9

234+8 , an increase of 1
234+8 over the

secure one. The probability of revealing a particular value
of u is less than 1

264 .

4.2 PRIVACY-PRESERVING MATRIX INVERSION

In existing work [Knott et al., 2021], the matrix inversion
is approximated via Newton-Raphson iteration which is a
local optimization method such that its performance highly
depends on the initial value of the algorithm. However, in
the state of SS, we cannot know any information about the
original input matrix such that it is difficult to find the initial
inverted matrix that satisfies the convergence condition.

Note that K + σ2
nI is a positive definite matrix whose

inversion can be computed via Cholesky decomposition
K + σ2

nI = LDL⊤ where L is a lower triangular matrix
and D is a diagonal matrix. To theoretically guarantee the
security of a PP-MI algorithm, we choose to go into the
Cholesky decomposition algorithm and convert all the op-
erations to their corresponding SS-based version. Since the
entire process of computing L, D, and their inverse involves
only addition, multiplication, and division between matrix
elements, we can exploit the existing SS-based addition,
multiplication, division, and their composability [Canetti,
2001] for constructing a PP-MI algorithm. In the PP-MI,
each computing server Sj for j ∈ {0, 1} takes one additive
share [U]j of matrix U ∈ Zn×n

L as input and deduces the
share of U−1 privately. The detailed steps and pseudo-code
of the PP-MI are shown in Appendix B.

To the best of our knowledge, this is the first work that im-
plements the SS-based PP-MI via Cholesky decomposition.
A rigorous analysis of its communication cost is detailed
in Section 4.3. Additionally, the performance of the pro-
posed approach is empirically demonstrated and evaluated
in Section 5.1.

4.3 COMMUNICATION COMPLEXITY

In this section, we analyze the theoretical number of commu-
nication rounds and communication volume of the proposed
PP-Exp and PP-MI. We assume that the assistant server T
has generated enough random numbers for the PP-GPR cal-
culation process in the offline stage and sent their shares to
the corresponding computing server a priori.

To execute PP-Exp for an n-dimensional vector u, Algo-
rithm 2 only requires 1 round of communication between
the computing servers in Line 11 of Algorithm 2 and the
amount of this communication is 2nl.

In PP-MI, we decompose the matrix inversion into addi-
tion, multiplication, and division operations by exploiting
the Cholesky decomposition. A single-element SS-based



(a) PP-Exp vs. Polynomial (b) PP-Exp vs. Iterative

Figure 3: Graphs of PP-Exp vs. (a) polynomial approxima-
tion methods; and (b) the iterative approximation method.

Table 1: The computational time (in the unit of second)
incurred by the tested approaches in computing eU with
varying size of U.

Approach
Size of U

10002 30002 50002 100002

Plaintext 0.008 0.014 0.024 0.064
Poly_10 3.308 20.956 56.462 221.582
Crypten_8 2.557 11.701 29.528 113.136
PP-Exp 0.208 0.457 0.935 3.006

multiplication requires 1 rounds of bidirectional communi-
cation with a traffic volume of 2l. Implementing the divi-
sion of a single element by invoking the privacy-preserving
division provided in Crypten takes 17 rounds of commu-
nication and a communication volume of O(l). The PP-
MI of an n× n positive definite matrix includes n rounds
of division and 5n − 6 rounds of multiplication. Thus,
the total number of communication rounds for PP-MI is
17n+ (5n− 6) = 22n− 6. In the PP-MI, it is necessary to
perform O(n3) element multiplication and O(n2) element
division. Therefore, the total communication volume of the
PP-MI algorithm is O(n3l). See Appendix C for detail.

5 EXPERIMENTS AND DISCUSSION

This section empirically evaluates the performance of the
proposed privacy-preserving operations and PP-GPR. The
PP-Exp, PP-MI, and PP-GPR are built upon the open-source
privacy-preserving ML framework Crypten [Knott et al.,
2021]. We set l = 64 and lf = 26. The experiments are
carried out on three servers with a 48-core Intel Xeon CPU
running at 2.9GHz and a local area network with a commu-
nication latency of 0.2ms and bandwidth of 625MBps.

5.1 EVALUATION OF PP-EXP AND PP-MI

We first demonstrate the accuracy and computational effi-
ciency of the proposed operations.

Evaluation of PP-Exp: We compare the performance of
the proposed PP-Exp against that of (a) Plaintext: the con-
ventional exponential operation; (b) Poly: a polynomial ap-

(a) PP-MI Loss (b) PP-MI Time

Figure 4: Graphs of (a) Losses and (b) Computational time
of different MI algorithms vs. dimension of matrix.

proximation based on Taylor expansions; and (c) Crypten:
an iterative approach based on the limit approximation of
the exponential function. We evaluate the accuracy and ef-
ficiency of the PP-Exp algorithm separately. For accuracy,
Poly with varying degrees of polynomials and Crypten with
a varying number of iterations are tested. Losseu is the dif-
ference between the tested algorithm and eu computed in
Plaintext. As shown in Fig. 3, the proposed PP-Exp achieves
almost the same results as the plaintext and outperforms
other tested algorithms. Next, we compare the efficiency
of PP-Exp, Poly (with polynomial degree 10), and Crypten
(with 8 iterations) on varying sizes of input variables (i.e.,
tested on eU with varying sizes of U). The computational
time of the tested algorithms is shown in Table 1. As can be
seen, the PP-Exp incurs significantly less time than both the
polynomial and iterative approaches. In particular, PP-Exp
is at most 70 times faster than Poly_10 and 38 times faster
than Crypten_8 given a large size of inputs.

Evaluation of PP-MI: The performance of PP-MI is tested
by generating random covariance matrices and compared
against that of (a) Plaintext-Cholesky: Matrix inversion via
Cholesky decomposition; and (b) Plaintext-inv: The inv
function in the torch.linalg library. Specifically, we first
randomly sample an input matrix X ∈ [−10, 10]n×d with
d = 2 and then compute K + σ2

nI using (1) with σ2
s = 1,

ℓ = 1, and σ2
n = 0.1. Let Λ be the output of a matrix

inversion algorithm. LossMI ≜ ||(K+σ2
nI)Λ− I||22 is used

as the inversion accuracy metric. The LossMI and wall-clock
time of the tested algorithms averaged over 10 independent
runs with varying n are shown in Fig. 4. The error bars are
computed in the form of standard deviation. As can be seen,
PP-MI incurs an acceptable level of accuracy loss (around
0.0001 for n = 400) with acceptable computational cost.
This loss comes from the approximation of the SS-based
division and the fixed-point encoding steps which cannot be
avoid in most SS-based algorithms.

5.2 EVALUATION OF PP-GPR

This section empirically evaluates the performance of the
proposed PP-GPR on two real-world datasets: (a) Traffic
dataset [Chen et al., 2015] contains taxi demand information



Table 2: Evaluation results of GPR and PP-GPR using RBF kernel with varying sizes of observations and test inputs.

Dataset Size Lossµ Lossσ2 Time (s)

n Test mean(std.) mean(std.) GPR PP-GPR

80 20 0.0005%(±7.5e-05) 0.0141%(±3.7e-03) 0.028 7.068
Traffic 150 50 0.0027%(±1.0e-02) 0.0061%(±4.9e-04) 0.089 13.016

300 100 0.0057%(±3.3e-03) 0.0852%(±1.2e-02) 0.149 32.355

80 20 0.0007%(±3.6e-04) 0.0095%(±2.2e-03) 0.025 7.024
Diabetes 150 50 0.0018%(±1.3e-03) 0.0059%(±1.2e-03) 0.104 13.901

300 142 0.0058%(±2.5e-03) 0.0848%(±5.6e-03) 0.671 97.076

Table 3: Evaluation results of GPR and PP-GPR using Matérn kernel with varying sizes of observations and test inputs.

Dataset Size Lossµ Lossσ2 Time (s)

n Test mean(std.) mean(std.) GPR PP-GPR

80 20 0.2711%(±2.3e-02) 0.0221%(±5.5e-06) 0.032 9.732
Traffic 150 50 0.2665%(±6.1e-03) 0.0241%(±1.2e-06) 0.078 13.116

300 100 0.8288%(±1.5e-02) 0.0257%(±2.0e-06) 0.153 35.33

80 20 0.0548%(± 1.0e-03) 0.0193%(±4.0e-06) 0.023 8.027
Diabetes 150 50 0.0424%(±6.2e-05) 0.0236%(± 7.6e-06) 0.102 15.702

300 142 0.0545%(±4.9e-06) 0.0343%(± 3.0e-06) 0.589 99.082

of 2506 regions in a city between 9:30 p.m. and 10 p.m.
on August 2, 2010; and (b) Diabetes dataset (under BSD
License) [Efron et al., 2004] contains diabetes progression
of 442 diabetes patients with 10 input features. We test
the proposed PP-GPR with both the SE kernel (1) and the
Matérn3/2 kernel:

k(x,x′) ≜ σ2
s(1 +

√
3d(x,x′)/l)exp(−

√
3d(x,x′)/l)

In the diabetes experiments, we use σ2
s = 0.8, σ2

n = 0.1,
and ℓ = 0.23 for the SE kernel and σ2

s = 0.1, σ2
n = 0.1,

and ℓ = 1.0 for the Matérn3/2 kernel. As the traffic dataset
suggested, we set σ2

s = 0.1, σ2
n = 0.1, and ℓ = 1.0 for all

the traffic experiments.

Let X∗ be a set of test inputs, µx∗|D (σ2
x∗|D) and µ̃x∗|D

(σ̃2
x∗|D) be, respectively, the predictive mean (variance) of

the GPR and PP-GPR. The relative difference between
the predictive results of GPR and PP-GPR is used as the
performance metric: Lossµ ≜ |X∗|−1

∑
x∗∈X∗

(|µx∗|D −
µ̃x∗|D|/µx∗|D). Lossσ2 is computed in a similar way. To
test the performance of PP-GPR in different data scales,
we randomly sample observations and test data from each
dataset with varying n and |X∗|. The loss of the predictive
results and the wall-clock execution time (including both
computation and communication time) are shown in Table 2
and Table 3. All the results are averaged over 5 random runs.

It can be observed that the PP-GPR achieves a similar pre-
dictive mean and variance compared to conventional GPR.
The losses are due to the approximation of some SS-based
operations (e.g., division) and the fixed-point encoding step.
The computational errors of the Matérn kernel are slightly

higher than that of the SE kernel but still remain at a low
level. Further analysis revealed that the higher computa-
tional error in the Matérn kernel is due to the inclusion of
the expression

√
d(x,x′). The square root operation is a

non-linear operation that must be approximated using the
Newton iterative approach in Crypten Knott et al. [2021],
which results in the higher computational error. In our future
work, we plan to conduct further research to investigate this
issue.

Furthermore, although PP-GPR incurs a longer time than
GPR, especially if n is large, it can finish the model con-
struction and prediction in a reasonable time (< 2 mins) for
a dataset with several hundred observations.

In Appendix D, we perform an additional empirical compar-
ison between our algorithm and DP-based GPR under the
scenario that only the model outputs are sensitive. We be-
lieve that this comparison is fair, given that both methods can
theoretically preserve privacy. The other privacy-preserving
GPR approaches (e.g., FHE-based and FL-based GPR) are
not compared since even when operating within the same
scenario (i.e., HDS, VDS, or PDS), they may have funda-
mentally different security assumptions to that of PP-GPR,
which ultimately makes them incomparable. See Section 6
for detailed discussions.

6 RELATED WORK

To the best of our knowledge, there is no existing PP-GPR
work that is designed based on SMPC techniques. As has
been mentioned in Section 1, although some other privacy



enhancement techniques have been applied to GPR, none
of them is practical enough to protect the privacy of both
the inputs and outputs of GPR for all the three data-sharing
scenarios (i.e., HDS, VDS, and PDS). To be specific, Fenner
and Pyzer-Knapp [2020] considers only the PDS scenario
and protects the input features of the test data by fully ho-
momorphic encryption (FHE) algorithm. Since performing
computation on the homomorphically encrypted data incurs
high computational costs, they do the PP-GPR prediction
through interactive calculations between the user and the
model constructor. Such an interactive method, however,
cannot be generalized to FHE-based PP-GPR model con-
struction step since the covariance matrix inversion opera-
tion is not considered.

Another technique that is widely used to achieve PP-ML
models is differential-privacy (DP). Smith et al. [2018] pro-
posed the first DP-GPR algorithm which can only protect
the privacy of the model outputs y. Kharkovskii et al. [2020]
proposed a DP method to protect the input features of the
GPR model via random projection. However, this method
requires all the observations used for GPR model construc-
tion to belong to a single curator and thus, cannot be applied
to either HDS or VDS scenarios. In addition, the DP-based
method may incur large DP noise to the original model
when the privacy budget ϵ is small, which may significantly
reduce the model performance [Dwork et al., 2014].

Some other works [Dai et al., 2020, Kontoudis and Stilwell,
2022, Yue and Kontar, 2021] consider protecting the privacy
of the GPR observations via federated learning (FL) or com-
bine FL with DP to further protect the privacy of the model
parameters [Dai et al., 2021]. To convert the GPR model con-
struction into a distributed/federated manner, these works
have to exploit some sparse approximations (e.g., random
features) of the conventional GPR, which may reduce the
model performance. Moreover, FL-based GPR works can
only be applied to the HDS scenario.

Recently, Kelkar et al. [2022] developed a privacy-
preserving exponentiation algorithm based on secret sharing
techniques in a two-server setting. The communication over-
head of this algorithm in the online phase is comparable to
that of PP-Exp (i.e., one round of communication and trans-
mission of two elements). However, the algorithm requires
an expensive cryptographic primitive (i.e., homomorphic en-
cryption) in the preprocessing phase to generate the random
numbers needed in the online phase, resulting in excessive
overhead. In addition, the algorithm suffers a certain proba-
bility of error from the use of a secure ring change procedure.
In the setting of this paper (i.e., l = 64, lf = 26), the proba-
bility that the error occurs is 1

4 , which is unacceptable.

Note that even when operating within the same scenario
(i.e., HDS, VDS, or PDS), different privacy-preserving ap-
proaches may have fundamentally different security assump-
tions [Yin et al., 2021, Zhang et al., 2022]. Specifically, the

privacy of the FHE-based GPR algorithm Fenner and Pyzer-
Knapp [2020] may be at risk even in the PDS scenario due to
the decryption steps designed for reducing the high compu-
tational cost of the exponential operation in FHE. However,
this work provides a solution by effectively addressing the
challenges posed by the SS-based exponentiation operation.
Consequently, this work guarantees complete privacy protec-
tion across the entire PDS process. The FL-based GPR [Dai
et al., 2020, Kontoudis and Stilwell, 2022, Yue and Kontar,
2021] has no theoretical analysis of its privacy-preserving
capabilities. This is because the intermediate results (e.g.,
local model parameters or gradients) generated during the al-
gorithm need to be exchanged between the server and clients.
Numerous studies [Zhu et al., 2019, Zhao et al., 2020] have
demonstrated that these intermediate results pose a potential
risk of revealing private data.

7 CONCLUSION

This paper describes the first SS-based privacy-preserving
GPR model which can be applied to both horizontal and ver-
tical data-sharing scenarios. We provide a detailed workflow
for implementing both the model construction and predic-
tion steps of PP-GPR. Two additive SS-based operations
(i.e., PP-Exp and PP-MI) are proposed such that they can
be combined with existing SS-based operations for con-
structing a secure and efficient GPR model. We analyze
the security and computational complexity of the proposed
operations in theory. Although PP-GPR incurs more com-
putational time due to additional communications between
the two computing servers and some additional computing
steps, it can perform GPR in an acceptable time with a se-
curity guarantee, which is a superior alternative to existing
FL and DP-based privacy-preserving GPR approaches when
the scale of observations is not large.
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A CORRECTNESS AND SECURITY ANALYSIS OF PP-EXP

A.1 PROOF OF THEOREM 1

In terms of algorithm correctness, we need to consider the problem of overflow or underflow errors during the execution of
Algorithm 2. First, the PP-Exp algorithm involves computations on two algebraic structures, namely, the ring of integers
ZL modulo L and the fixed-point set Q<ZL,lf>. Specifically, the operations on shares are performed on ZL and others are
performed on Q<ZL,lf>.

Underflow: The PP-Exp has the risk of underflow when calculating e−ř and eď in Line 5 and Line 13 of Algorithm 2. The
minimum value of e−ř and eď is eumin−řmax . To guarantee that PP-Exp will not overflow during computation, we need
ensure that eumin−řmax can be expressed as a fixed-point number with precision lf . This is equivalent to eumin−řmax ·2lf ≥ 1.
Therefore, lf ≥ (řmax − umin) log

e
2 is needed to ensure that PP-Exp does not underflow during the calculation.

Overflow: PP-Exp has the potential to overflow when computing [eu]j for j ∈ {0, 1} in Line 14. Since [eu]j is the share of
eu, the maximum value of the reconstruction process is

[eumax ]0 + [eumax ]1 = eumax+ř · 2lf · ([e−ř]0 + [e−ř]1) = eumax · 22lf

according to Line 14 of Algorithm 2. Therefore, eumax · 22lf ≤ 2l−1 is required to ensure that the reconstruction process
does not overflow. As u < 0 (i.e., umax = 0), it is achieved that PP-Exp does not overflow if lf < l−1

2 .

A.2 PROOF OF THEOREM 2

In terms of algorithm security, we analyze the probability of PP-Exp privacy leakage and the expected degree of information
leakage. The number of possible values of u is mu and the number of possible values of r is mr, then the probability that
the algorithm leads to additional privacy leakage of input u is

(1 + 2 + · · ·+mu) · 2
mumr

=
mu · (mu − 1)

mumr
=

mu − 1

mr
. (3)

The probability that the PP-Exp is secure is 1− mu−1
mr

= mr−mu+1
mr

.

Since the exponents are all negative in the Gaussian process regression, the number of u values is reduced by half. This
allows the probability of input u leakage to be further reduced. For example, when lf = 229, supposing the input u takes
values in the range [−4, 0] and r takes values in the range [−16, 16) (i.e., the number of values of u and r are 231 + 1 and
234 + 1, respectively), the probability that the algorithm to be secure is 234−231

234 = 7
8 .

The expected degree of information leakage is used to describe the amount of privacy leakage of the PP-Exp algorithm.
It can be understood by the following simple example. Suppose u ∈ {−2,−1, 0}, r ∈ {−2,−1, 0, 1, 2} and d = u+ r ∈
{−4,−3,−2,−1, 0, 1, 2}. The probabilities of d taking different values are as follows:

Pr{d = −4} = Pr{d = 2} = 1
15 ,

Pr{d = −3} = Pr{d = 1} = 2
15 ,

Pr{d = −2} = Pr{d = −1} = Pr{d = 0} = 3
15 .

(4)

If d ∈ {−2,−1, 0}, u can take any of −2,−1, 0 such that no additional information about u is revealed by d. Therefore,
the degree of information leakage of u is 3

15 · 1
3 = 1

5 . If d ∈ {−4, 2}, u will only correspond to unique values, and the
degree of information leakage of u is 2 · 1

15 · 1. If d ∈ {−3, 1}, there are two possible values of u. The degree of information
leakage of u is 2 · 2

15 · 1
2 = 2

15 . Therefore, the degree of information leakage of u averaged over d ∈ {−4,−3, 1, 2} is
2
15 + 2

15 + 1
5 = 7

15 .

In PP-Exp, there are 2k
mumr

, k = 1, 2, · · · ,mu − 1 probabilities that mu − k possible values of the input u are excluded by
d. Therefore, the average degree of information leakage of input u is

(1− mu − 1

mr
) · 1

mu
+

mu−1∑
k=1

(
2k

mumr
) · 1

k
=

mr −mu + 1

mumr
+

2(mu − 1)

mumr
=

mu +mr − 1

mu ·mr
. (5)



It is important to note that the PP-Exp algorithm only exposes the exact value of u when the maximum and minimum values
are in the range where u and r are taken simultaneously. This probability is

2

mn
=

2

(231 + 1) · (234 + 1)
<

2

231 · 234
=

1

264
. (6)

B PRIVACY-PRESERVING MATRIX INVERSION

In this section, we will give the construction details of the privacy-preserving matrix inversion (PP-MI) operation. The main
idea of the PP-MI is to transform the matrix inversion process into MPC-friendly operations such as multiplication and
division. Next, we will first briefly recall the process of positive definite matrix inversion via Cholesky decomposition and
then provide the pseudo-code of the PP-MI algorithm.

Let U = (uh,k)h,k=1,2,...,n be an n× n positive definite matrix. It can be decomposed as U = LDL⊤ where L is a unit
lower triangular matrix and D is a diagonal matrix. Let dk be the kth diagonal element of D for k = 1, . . . , n. We can
calculate L,D through (7). For k = 1, 2, . . . , n and h = k + 1, k + 2, . . . , n.

dk = uk,k −
k−1∑
m=1

l2k,m · dm ,

lh,k = (uh,k −
k−1∑
m=1

lh,m · lk,m · dm)/dk .

(7)

Supposing UΛ = I for a given n× n identity matrix I. Next, we will introduce how to compute Λ from I,L, and D. Then,
we can have U−1 = Λ.

Let V ≜ DL⊤Λ. Then, UΛ = (LDL⊤)Λ = LV = I and V is a unit lower triangular matrix. For k = 1, 2, . . . , n and
h = k + 1, k + 2, . . . , n, we can calculate each element of V as:

vh,k = −
h−1∑
m=1

vm,k · lh,m. (8)

we can calculate the matrices Λ using (9):

Λ = U−1 = ((LDL⊤))−1 = (L−1)⊤D−1L−1 = V⊤D−1V. (9)

Based on equations (7), (8), and (9), we can implement PP-MI by reasonably invoking privacy-preserving multiplication
(PP-MM) and privacy-preserving division (PP-Div) in Knott et al. [2021]. Let U be the an n × n positive definite

Algorithm 3 Privacy-preserving Cholesky decomposition
Setup. The servers determine an integer ring ZL.
Input. S0 holds the share [U]0; S1 hold the share [U]1.
1: // Offline phase:
2: T generates A,B ∈ Zn×n

L randomly, and calculates C = AB;
3: T sends ([A]j , [B]j , [C]j) to Sj .
4: // Online phase:
5: for j ∈ {0, 1} do:
6: [d1]j ← [u1,1]j ;
7: Sj calculates [l1:n,1]j = [u1:n,1]j/[u1,1]j by calling PP-Div;
8: for k ∈ {2, 3, . . . , n} do:
9: Sj calculates [dk]j = [uk,k]j − [

∑k−1
m=1 l

2
k,mdm]j by calling PP-MM;

10: Sj calculates [l̂k+1:n,k]j = [uk+1:n,k]j − [
∑k−1

m=1 lk,mdmlk+1:n,m]j by calling PP-MM;
11: Sj calculates [lk+1:n,k]j = [l̂k+1:n,k]j/[dk]j by calling PP-Div;
12: end for
13: end for ▷ Sj gets [L]j , [D]j .
Output. Sj output the share [L]j , [D]j for j ∈ {0, 1}.



Algorithm 4 Privacy-preserving forward
Setup. The servers determine an integer ring ZL.
Input. S0 holds the share [U]0, [L]0; S1 hold the share [U]1, [L]1.
1: // Offline phase:
2: T generates A,B ∈ Zn×n

L randomly, and calculates C = AB;
3: T sends ([A]j , [B]j , [C]j) to Sj .
4: // Online phase:
5: v1,1 ← 1
6: for j ∈ {0, 1} do
7: for k ∈ {2, 3, . . . , n} do
8: Sj calculates [vk,1:k−1]j = −[

∑k−1
m=1 vm,1:k−1lk,m]j by calling PP-MM;

9: end for
10: end for ▷ Sj gets [V]j .
Output. Sj outputs the share [V]j for j ∈ {0, 1}.

Algorithm 5 Privacy-preserving backward
Setup. The servers determine an integer ring ZL.
Input. S0 holds the share [V]0, [L]0, [D]0; S1 hold the share [V]1, [L]1, [D]1.
1: // Offline phase:
2: T generates A,B ∈ Zn×n

L randomly, and calculates C = AB;
3: T sends ([A]j , [B]j , [C]j) to Sj .
4: // Online phase:
5: Sj calculates [Λ]j = [V⊤]j [D

−1]j [V]j by calling PP-Div and PP-MM. ▷ Sj gets [Λ]j .
Output. Sj outputs the share [Λ]j for j ∈ {0, 1}.

matrix, ua;b,k:h ≜ (ui,j)
j=k,...,h
i=a,...,b . The PP-MI algorithm for U consists of three parts, and their pseudo-codes refer to

the Algorithms 3-5. Note that the pseudo-codes are note exactly the same as (7)-(9) since we vectorize some steps for
accelerating the computation.

C COMMUNICATION COMPLEXITY ANALYSIS

In this section, we will analyze the communication complexity of PP-MI step by step. We only analyze the communication
complexity in the online phase. The process of the offline phase can be done by the server during idle time.

For PP-MI, we will analyze the communication cost for Algorithms 3, 4 and 5, separately. For Algorithm 3, there is 1
vector-wise division in line 7. For each k = 2, ..., n− 1, there are 4 rounds of vector-wise multiplication for lines 9-10 and 1
vector-wise division for line 11. When k = n, there are only 2 rounds of vector-wise multiplication for line 9. We do not
need to compute lines 10-11 when k = n. There are 17 rounds of communication for each element/vector-wise PP-Div
and 1 round of communication for each element/vector-wise PP-MM. Consequently, the total communication round for
Algorithm 3 is 17 + (n− 2) ∗ (4 + 17) + 2 = 21n− 23. Since there are O(n3) element-wise multiplications and O(n2)
element-wise divisions included in Algorithm 3, its communication complexity is O(n3l).

For Algorithm 4, it includes 1 vector-wise multiplication for each k = 2, . . . , n and each round of computation (i.e., line
8 for each k) consists of (k − 1)2 element-wise multiplications. Therefore, Algorithm 4 incurs a total of n− 1 rounds of
communication and its communication complexity is O(n3l).

For Algorithm 5, it contains 1 matrix division and 1 matrix multiplication with n2 elements in line 5. Therefore, the total
number of communication rounds required to execute Algorithm 5 is 17 + 1 = 18. The communication complexity is
O(n2l).

In summary, the PP-MI algorithm incurs 21n−23+n−1+18 = 22n−6 rounds of communication and the communication
complexity is O(n3l).



D ADDITIONAL EXPERIMENTAL RESULTS (PP-GPR VS. DP-GPR)

Another technique that has been widely used to achieve privacy preservation in machine learning is differential-
privacy (DP) [Dwork et al., 2014]. By adding noise that satisfies the privacy budget, DP-based privacy-preserving machine
learning algorithms achieve some privacy protection at the expense of the accuracy of the model. In the domain of Gaussian
process regression (GPR) algorithms, Smith et al. [2018] proposed a significant contribution by presenting the first privacy-
preserving GPR algorithm. However, it is important to note that their approach only safeguards the privacy of the model
outputs y through the addition of noise levels that adhere to a given privacy budget. Consequently, their algorithm falls short
of achieving complete protection for both the model inputs and outputs.

To demonstrate the effectiveness of our algorithm, we present the loss of predictive mean of DP-GPR on the diabetes dataset
for different levels of DP guarantee (i.e., varying ϵ) using the SE kernel. As can be seen, even with a large privacy budget
(i.e., ϵ = 1.0), DP-GPR incurs significantly larger computational errors due to the additional DP noise compared to the
proposed PP-GPR. The Lossµ of our proposed algorithm is kept below 0.01% (Table 2 in the main paper).

Table 4: Comparison of our algorithm with the DP-based algorithm in the relative difference Lossµ.

n Test ϵ = 1.0 ϵ = 0.5 ϵ = 0.2 Ours
80 20 18.6%(±23.4) 42.9%(±188.3) 96.6%(±584.8) 0.0007%(±3.6e− 04)

150 50 27.8%(±19.4) 61.2%(±311.6) 148.6%(±1457.7) 0.0018%(±1.3e− 03)
300 100 18.3%(±10.5) 33.5%(±23.7) 80.6%(±133.3) 0.0058%(±2.5e− 03)
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