
1

PLUMBER: Boosting the Propagation of
Vulnerability Fixes in the npm Ecosystem

Ying Wang, Peng Sun, Lin Pei, Yue Yu†, Chang Xu Senior Member, IEEE ,
Shing-Chi Cheung Fellow, IEEE , Hai Yu, and Zhiliang Zhu

Abstract—Vulnerabilities are known reported security threats that affect a large amount of packages in the npm ecosystem. To
mitigate these security threats, the open-source community strongly suggests vulnerable packages to timely publish vulnerability fixes
and recommends affected packages to update their dependencies. However, there are still serious lags in the propagation of
vulnerability fixes in the ecosystem. In our preliminary study on the latest versions of 356,283 active npm packages, we found that
20.0% of them can still introduce vulnerabilities via direct or transitive dependencies although the involved vulnerable packages have
already published fix versions for over a year. Prior study by Chinthanet et al. [1] lays the groundwork for research on how to mitigate
propagation lags of vulnerability fixes in an ecosystem. They conducted an empirical investigation to identify lags that might occur
between the vulnerable package release and its fixing release. They found that factors such as the branch upon which a fix landed and
the severity of the vulnerability had a small effect on its propagation trajectory throughout the ecosystem. To ensure quick adoption and
propagation of a release that contains the fix, they gave several actionable advice to developers and researchers. However, it is still an
open question how to design an effective technique to accelerate the propagation of vulnerability fixes.
Motivated by this problem, in this paper, we conducted an empirical study to learn the scale of packages that block the propagation of
vulnerability fixes in the ecosystem and investigate their evolution characteristics. Furthermore, we distilled the remediation strategies
that have better effects on mitigating the fix propagation lags. Leveraging our empirical findings, we propose an ecosystem-level
technique, PLUMBER, for deriving feasible remediation strategies to boost the propagation of vulnerability fixes. To precisely diagnose
the causes of fix propagation blocking, PLUMBER models the vulnerability metadata, and npm dependency metadata and continuously
monitors their evolution. By analyzing a full-picture of the ecosystem-level dependency graph and the corresponding fix propagation
statuses, it derives remediation schemes for pivotal packages. In the schemes, PLUMBER provides customized remediation suggestions
with vulnerability impact analysis to arouse package developers’ awareness. We applied PLUMBER to generating 268 remediation
reports for the identified pivotal packages, to evaluate its remediation effectiveness based on developers’ feedback. Encouragingly,
47.4% our remediation reports received positive feedback from many well-known npm projects, such as Tensorflow/tfjs, Ethers.js,
and GoogleChrome/workbox. Our reports have boosted the propagation of vulnerability fixes into 16,403 root packages through 92,469
dependency paths. On average, each remediated package version is receiving 72,678 downloads per week by the time of this work.

Index Terms—npm Ecosystem, Vulnerable Dependencies, Empirical Study

✦

1 INTRODUCTION

Context. npm is the largest software registry for JavaScript
programming language, which hosts over 1.8 million third-
party packages as of January 2022. Unfortunately, npm’s fast

Ying Wang is affiliated with the Software College, Northeasthern University,
the Department of Computer Science and Engineering, The Hong Kong Uni-
versity of Science and Technology, and the State Key Lab for Novel Software
Technology, Nanjing University, China. E-mail: wangying@swc.neu.edu.cn.
Peng Sun, Lin Pei, and Hai Yu are with the Software College, North-
easthern University, China. E-mail:{sunpengneu, peilin_neu}@163.com,
yuhai@mail.neu.edu.cn.
Yue Yu is with the National Laboratory for Parallel and Distributed Pro-
cessing and College of Computer, National University of Defense Technology,
Changsha, China. yuyue@nudt.edu.cn.
Chang Xu is with the State Key Lab for Novel Software Technology and the
Department of Computer Science and Technology, Nanjing University, China.
E-mail: changxu@nju.edu.cn.
Shing-Chi Cheung is with the Hong Kong University of Science and Tech-
nology, and Guangzhou HKUST Fok Ying Tung Research Institute, China.
E-mail: scc@cse.ust.hk.
Zhiliang Zhu is with National Frontiers Science Center for Industrial In-
telligence and Systems Optimization, Key Laboratory of Data Analytics
and Optimization for Smart Industry, and Software College, Northeastern
University, China. E-mail: zzl@mail.neu.edu.cn.
Yue Yu is the corresponding author.
Manuscript received 2022.

growth comes with security risks. Vulnerabilities disclosed
in third-party packages (i.e., vulnerable packages) is a grow-
ing concern for developers. An investigation [2] on a npm
snapshot of November 2, 2017 indicates that, among 610,097
packages, 21.9% of them directly depend on vulnerable
packages. Such vulnerability impact on the npm ecosys-
tem can significantly increase if transitive dependencies are
taken into account.

Vulnerabilities if adversely exploited can cause immense
damages to the ecosystem [3, 4]. In fact, there are many
examples of such incidents. A well-known example is the
vulnerability CVE-2021-28918 [5] in package netmask. It
exposed private IP addresses and led to a variety of attacks
such as malware delivery. Upon its disclosure, over 278,000
client projects were believed to be affected by the security
vulnerability. To mitigate these security risks, the ecosystem
strongly suggests vulnerable packages to timely publish
vulnerability fixes and recommends affected packages to
update their dependencies.
Problem and motivation. Our preliminary study on the
3,948 vulnerability reports for npm packages found that
60.6% of the involved packages had timely released fix
versions after the vulnerabilities were discovered. To facili-

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

2

tate vulnerability fix adoption, the open-source community
launched tools such as npm audit [6] and Dependabot [7]
to alert the projects that directly or transitively depend on
vulnerable package versions. However, there are still serious
lags in the propagation of vulnerability fixes in the npm
ecosystem. We investigated the latest versions of 356,283
active npm packages on the npm snapshot of August 1, 2021,
and found that 20.0% of them can introduce vulnerabilities
via dependencies, although the involved vulnerable pack-
ages have published fixed versions for over a year (see
descriptions in Sec 4).

We made two observations on the causes for the lags in
propagating vulnerability fixes:
• Most packages remediated only the vulnerabilities in their

highest major version trains, without transplanting the fixes
to their earlier popular versions (i.e., backporting1). However,
many downstream packages have difficulties in upgrading their
dependencies to higher versions due to incompatibility issues
or inactive transitive dependencies. A recent study [8] on
over a million npm packages indicated that only a small
proportion (6.6%) of them have backporting practices. It
implies that many affected downstream packages cannot
timely benefit from the vulnerability fix versions.

• Many packages did not realize that they were the cruxes of
blocking fix propagation in the ecosystem, affecting a large
amount of downstream packages. Due to the lack of a full
picture of the ecosystem-level dependency graph, package
developers hardly realized that they were the pivotal
factors preventing fixes from propagating to many of their
downstream packages.

Figure 1 gives two illustrative examples. As shown in
Figure 1(a), the latest version of package browser-sync tran-
sitively depends on a vulnerable package engine.io@3.5.0.
However, browser-sync’s developers did not realize that
the vulnerability SNYK-JS-ENGINEIO-1056749 had already
been remediated by engine.io since version 4.0.0. Besides,
browser-sync’s direct dependency socket.io can also in-
troduce this vulnerability fix via engine.io@4.0.0 since
version socket.io@3.0.0. As a popular package in the npm
ecosystem, browser-sync@2.27.4 was a package used by
2,417 projects. Unfortunately, the propagation of the fix in
engine.io to these projects was blocked by this pivotal
package (i.e., browser-sync@2.27.4).

Another example is shown in Figure 1(b). A vulnera-
bility SNYK-JS-WS-1296835 was transitively introduced to
146 active npm projects transitively via 1,308 dependency
paths. All these paths share a common dependency chain:
graphql@1.2.0 → mqtt@2.18.8 → ws@3.3.3. We observed
that package ws had published the vulnerability fix versions
{≥ 3.4.5}, and these fix versions could be resolved by {mqtt
≥ 3.2.0}. However, the fix propagation was blocked by
graphql, since this package was inactively maintained by
developers (latest update was on Jan 2019).

Nevertheless, the large amount of affected downstream
packages could quickly incorporate the vulnerability fix if
mqtt backports to its lower version train 2.18.* (i.e., mqtt

1. Backporting refers to the process of applying a software update,
typically a patch that fixes a bug or vulnerability to a lower version of
the software [8]. Backporting enables users of lower releases to benefit
from more recent vulnerability fixes.

~ 3.5.0= 2.4.0

engine.io
@3.5.0

socket.io
@2.4.0

Vulnerability SNYK-JS-ENGINEIO-
1056749 has been remediated
in {engine.io 4.0.0}

{socket.io 3.0.0} can
introduce vulnerability fix
via engine.io@4.0.0

None of browser-sync’s
versions can introduce
{socket.io 3.0.0}

…

browser-sync
@2.27.4

= 3.3.3^ 2.3.0

ws
@3.3.3

mqtt
@2.18.8

Vulnerability SNYK-JS-WS-

1296835 has been reme-
diated in {ws 3.4.5}

{mqtt 3.2.0} can
introduce vulnerability
fix via ws@3.4.5

None of graphql’s
versions can introduce
{mqtt 3.2.0}

…

graphql
@1.2.0

ws
@3.4.5

mqtt
@2.18.9

Blocking packageVulnerable package

(a)

(b)

Backporting

Fig. 1: Illustrative examples of blocking propagation of vulner-
ability fixes

publishes a new release mqtt@2.18.*, in which it upgrades
dependency ws from vulnerable version 3.3.3 to fix ver-
sion 3.4.5). In this manner, mqtt@2.18.* with vulnerability
fix would be automatically resolved by its specified ver-
sion constraint ∧ 2.3.0, propagating into 1,308 dependency
paths. Unfortunately, the pivotal package mqtt was unaware
of this fact. Until a backporting request was reported in
mqtt#1306 [9], developers transplanted such a vulnerability
fix to mqtt@2.18.9, in order to mitigate the security threats
to its downstream projects.

To ease presentation, in this paper, we refer to the pack-
age that blocks the fix propagation on dependency paths as
a blocking package. And the dependency path from a blocking
package to a vulnerable package is referred to as a blocking
chain. All the dependency paths passing through the same
blocking chain would suffer from the same vulnerability
issues. The above examples show that if the developers of
pivotal blocking packages can be better informed of their
impacts on vulnerability fix propagation, such situation can
be significantly improved.
Related Work. Prior works have made important advances
in remediating vulnerabilities, which focus on three aspects:
(1) Vulnerability impacts on the ecosystem [2, 10, 10–16]; (2)
Reducing the false alarms for reporting vulnerable dependen-
cies [17–22]; (3) Lags in vulnerable package updates [1, 23–28]
(see detailed discussion in Sec 7). Study by Chinthanet et
al. [1] lays the groundwork for research on how to mitigate
propagation lags of vulnerability fixes in an ecosystem. They
conducted an empirical investigation to identify lags that
might occur between the vulnerable package release and its
fixing release. They found that factors such as the branch
upon which a fix lands and the severity of the vulnerability
had a small effect on its propagation trajectory throughout
the ecosystem. To ensure quick adoption and propagation of
a release that contains the fix, they gave actionable advice to
developers and researchers: developing better awareness mech-
anisms for quicker planning of a dependency update. However,
none of the existing work explores the characteristics of
blocking packages and blocking chains in the ecosystem. It
is still an open question how to design an effective technique

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

3

to accelerate the propagation of vulnerability fixes.
Goal and challenges. To bridge the research gap, in this
paper, we develop PLUMBER, an ecosystem-level technique
that derives feasible remediation strategies for pivotal pack-
ages, boosting the propagation of vulnerability fixes. To
achieve this goal, two challenges should be addressed:
• Acquiring up-to-date vulnerability metadata and npm depen-

dency metadata. To precisely identify the pivotal packages
that block the fix propagation, we should obtain the
vulnerability metadata and ecosystem-level dependency
metadata, and continuously updating these two pieces of
metadata with package evolution in npm.

• Understanding the evolution characteristics of blocking chains
and their impacts on the vulnerability fix propagation. To mit-
igate the fix propagation lags, we need to derive effective
remediation strategies from the evolution characteristics
of blocking chains and their impacts on the vulnerability
fix propagation.

Approach and results. To address the two challenges, we
first conducted a large-scale empirical study on the recent
snapshots of the npm ecosystem, to learn: (RQ1) the scale
of blocking packages and their impacts on other projects;
(RQ2) the evolution characteristics of blocking chains on
consecutive npm snapshots; (RQ3) the remediation strategies
that have better effects on propagating vulnerability fixes.
Leveraging our empirical findings, we propose PLUMBER,
a novel technique to: (1) model the vulnerability and npm
dependency metadata and incrementally update their evo-
lution; (2) identify pivotal blocking chains that hinder the
vulnerability fixes from propagating through dependency
paths; (3) analyze the features of packages on blocking
chains and customize remediation schemes. In the remedia-
tion scheme, PLUMBER arouses package developers’ aware-
ness of the lags in fix version updates and explains the ben-
efits of their dependency updates to the whole ecosystem.

To evaluate the remediation effectiveness of PLUMBER,
we conducted an ecosystem-level study. We applied
PLUMBER to generating 268 remediation reports for the top
influential blocking chains. 47.4% of our remediation reports
received positive feedback from many well-known npm
projects, such as Tensorflow/tfjs [29], Ethers.js [30], and
GoogleChrome/workbox [31]. These reports indeed aroused
the pivotal packages’ awareness to perform dependency up-
grades/backporting/migrations in order to remediate vul-
nerabilities, benefiting the whole ecosystem. Encouragingly,
PLUMBER’s generated reports boosted the propagation of
vulnerability fixes into 16,403 active npm projects via 92,469
dependency paths. On average, each remediated package
version received 72,678 downloads per week. The results
indicate its wide remediation effectiveness and impact. It is
thus necessary to deploy PLUMBER to continuously capture
the pivotal blocking chains as well as suggest proper reme-
diation strategies with impact analysis.
Contributions. In summary, this paper makes the following
contributions:
• A thorough empirical study. We conducted the first empir-

ical study to characterize the situations where packages
are blocking the propagation of vulnerability fixes in an
ecosystem. Our findings shed light on the bottlenecks
of fix propagation due to package dependency in an

ecosystem.
• An ecosystem-level technique for facilitating vulnerability fix

propagation. We developed the PLUMBER tool to boost the
propagation of vulnerability fixes in the npm ecosystem,
via remediating pivotal blocking chains. In its gener-
ated reports, PLUMBER provides customized remediation
suggestions with vulnerability impact analysis to arouse
developers awareness.

• A large-scale vulnerability fix propagation experiment. We
applied PLUMBER to generating remediation reports for
dominant blocking chains. Our reports have boosted the
propagation of vulnerability fixes into 16,403 root pack-
ages through 92,469 dependency paths. On average, each
remediated package version received 72,678 downloads
per week.

• A reproduction package. We provided a reproduction pack-
age at the PLUMBER website (http://plumber-npm.com/)
for future research, which includes: (1) large-scale vulner-
ability and npm dependency metadata on recent ecosys-
tem snapshots, (2) a benchmark containing 362 package
updates performed by developers, which not only re-
mediated blocking chains, but also enabled significant
propagation effects of vulnerability fixes, (3) 268 remedia-
tion reports generated by PLUMBER, and (4) an available
PLUMBER tool.

Paper organization. The remainder of this paper is orga-
nized as follows. Section 2 describes the necessary back-
ground information of vulnerabilities in the npm ecosystem.
Section 3 introduces the terminology used throughout this
paper. In Section 4, we thoroughly conduct an empirical
study and present our main findings. Section 5 proposes
our PLUMBER technique to boost the propagation of vul-
nerability fixes in the npm ecosystem. Section 6 conducts an
ecosystem level study to understand the remediation chal-
lenges and the effectiveness of PLUMBER. Finally, Sections
7 and 8 discuss the threats to validity and related work,
respectively, and Section 9 concludes this paper.

2 BACKGROUND

2.1 Disclosed vulnerabilities in the npm ecosystem

A vulnerability is a security threat2 that exposes some pack-
age versions in a software ecosystem to attacks. We refer
to the packages where such vulnerabilities disclosed as
vulnerable packages and their affected versions as vulnerable
package versions.

Nowadays, several recognized vulnerability databases
such as GitHub Advisory DB [32], Snyk Vulnerability DB [33]
and NPM Security Advisories [34] provide the continuous
security monitoring service, which collects vulnerability
reports of third-party packages to warn project developers
against such vulnerable package versions. As shown in
Figure 2, each vulnerability report contains information
about: (1) affected package, (2) affected package versions, (3)
unique CVE identifier, (4) severity levels (e.g., critical, high,
medium and low based on CVSS score [35]), (5) dates when

2. Security threats can allow unauthorized actions or access to be
performed. These actions are typically used to break through the system
and violate its security policies.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4

Vulnerability name:

CVE identifier:

Severity:

Affected package:

Affected versions:

Disclosed date:

Published date:

Remediation:

Cryptographic issues

CVE-2020-28498

Medium

Elliptic

< 6.5.4

26 Jan, 2021

03 Feb, 2021

Upgrade to 6.5.4

Fig. 2: An illustrative vulnerability report for npm package

TABLE 1: Statistics of exposed vulnerabilities in the npm ecosys-
tem

Database #Vulnerability reports
#Vulnerability

reports with fixes
Fixing ratio

GitHub Advisory DB1 1,990 1,115 56.0%
Snyk Vulnerability DB2 3,119 2,225 69.9%

NPM Security Advisories3 1,614 1,166 71.3%
Union set 3,948 2,391 60.6%

1. https://github.com/advisories; 2. https://snyk.io/vuln;
3. https://www.npmjs.com/advisories. †The three databases are maintained by
different communities and contain overlapping reports.

it is disclosed and published, and (6) remediated versions
(if available).

We crawled the vulnerability reports for npm packages
published before 1 August 2021 from three databases and
listed the statistics in Table 1. On average, 60.6% of vulnera-
ble packages have remediated the disclosed vulnerabilities.
However, our investigation on the latest versions of 356,283
active npm projects revealed that 71,320 of them (20%)
are still directly or transitively depending on vulnerable
package versions, although the vulnerability fix versions of
these packages have already been released for over a year
(see detailed descriptions in Sec 3). There are serious lags in
the propagation of vulnerability fixes in the npm ecosystem.

2.2 npm package version constraints

A version of package pa can explicitly declare a depen-
dency relationship to another package pb with a specified
version constraint. For example, constraint < 2.1.0 defines
the version range [0.0.0, 2.1.0), signifying that any version
below 2.1.0 of pb is allowed to be installed. In fact, the
highest available version within this range will be selected for
installation by the package manager.

npm customizes node-semver [36], a semantic version
parser for Node.js. It inherits the version operators from
semantic versioning (i.e., <, = , >), and also introduces
advanced range syntax (i.e., ∗, ∧, ∼), to allow flexible and
backward compatible version control. For example, 2.1.∗
= ∼ 2.1.0, to allow the range [2.1.0, 2.2.0) of backward
compatible package versions. While 2.∗.0 = ∧ 2.0.0 denotes
version range [2.0.0, 3.0.0). In this paper, we refer to the
version ranges specified with ∗, ∧, ∼ as open version con-
straints. Such range syntax allows flexibility, which enables
projects to automatically deploy the new versions of their
required packages that satisfy the specified version range
(highest available version installation rule). In other words,
new package versions with the vulnerability fixes can be
automatically propagated into the downstream projects if
open constraints are assigned.

2.3 Terminology

This section introduces the following concepts used
throughout this paper. We let pi@vm be a version of
npm package (e.g., electron@12.0.0), where pi denotes the
unique package name released in npm and vm denotes its
version number. Since a package version pi@vm usually di-
rectly and transitively depends on a collection of third-party
packages, the referenced package versions and dependency
relations among them form a package dependency graph
Gi,m. We refer to pi@vm as a root project in its corresponding
package dependency graph Gi,m.

Definition 1. Vulnerable path: Suppose that pj@vn is
a vulnerable package version where vulnerability µt dis-
closed. In the package dependency graph Gi,m, we define
a dependency path from root project pi@vm to vulnerable
package version pj@vn, Pµt

(pi@vm, pw@vk, · · · , pj@vn) =
pi@vm → pw@vk → · · · → pj@vn, as a vulnerable path.
This dependency path is ut-vulnerable if pi@vm directly or
transitively uses pj@vn, i.e., pi@vm potentially invokes the
vulnerable APIs defined in pj@vn. Note that there could
be more than one vulnerable paths from a root project
to a vulnerable package version. Remediated vulnerable
paths can reduce the potential for accessing the disclosed
vulnerable code, which minimizes the risk of being attacked
through the vulnerabilities.

Definition 2. Safe version set: Suppose that vulnerable
package pj has remediated vulnerability µt in its versions
{v1, v2, · · · , vu}, then we consider pj .Sµt

= {v1, v2, · · · , vu}
as pj ’s safe version set for µt. For each package on a vul-
nerable path Pµt

(pi@vm, pw@vk, · · · , pj@vn), we consider
its safe version set as the versions that can directly or
transitively depend on a safe version v ∈ pj .Sµt

, or the
versions that deprecated package pj .

Definition 3. Blocking package: On vulnerable path
Pµt(pi@vm, · · · , pw@vk, · · · , pj@vn), if package pw’s safe
version set pw.Sµt = ∅, and all the packages depended by
pw have already published safe versions for vulnerability
µt, we define pw as a blocking package. We consider pw
blocks the propagation of vulnerability µt’s fix through
path Pµt(pi@vm, · · · , pw@vk, · · · , pj@vn), causing the lags
of vulnerable package updates.

Definition 4. Blocking chain: Let pw be a blocking pack-
age on vulnerable path Pµt

(pi@vm, · · · , pw@vk, pe@vg, · · · ,
pj@vn). We define the subpath from blocking package
to vulnerable package Bµt

(pw@vk, pe@vg, · · · , pj@vn) =
pw@vk → pe@vg · · · → pj@vn as a blocking chain. All
the vulnerable paths passing through the blocking chain
Bµt

(pw@vk, pe@vg, · · · , pj@vn) suffer from the same vul-
nerability issues.

Consider a dependency graph as shown in
Figure 3(a). Vulnerabilities µa and µb disclosed
in packages interface-adapter @0.4.21 and
elliptic@6.5.3, respectively. To diagnose how
root project truffle-upgrades@1.5.0 introduces
µa and µb, we identify two vulnerable paths
Pµa

(truffle-upgrades@1.5.0, contract@4.3.13, interface
-adapter@0.4.21, ethers@4.0.48, elliptic@6.5.3)
and Pµb

(truffle-upgrades@1.5.0, contract@4.3.13,
interface-adapter@0.4.21). In Figure 3(b), we illustrate
how to calculate the safe version set of each package

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

5

@openzeppelin/truffle-upgrades@1.5.0
└─┬@truffle/contract@4.3.13
└─┬@truffle/interface-adapter@0.4.21
└─┬ ethers@4.0.48
└── elliptic@6.5.3

Vulnerable path 1: Pμa (truffle-upgrades@1.5.0, contract@4.3.13, elliptic@6.5.3)

Vulnerable path 2: Pμa (truffle-upgrades@1.5.0, contract@4.3.13, interface-adapter@0.4.21)

μb

truffle-upgrades
@1.5.0

contract
@4.3.13

interface-adapter
@0.4.21

ethers
@4.0.48

elliptic
@6.5.3

truffle-upgrades
@1.5.0

contract
@4.3.13

interface-adapter
@0.4.21

μa

(a) Illustrative examples of vulnerability paths

contract
@4.3.13

interface-adapter
@0.4.21

ethers
@4.0.48truffle-upgrades

@1.5.0

Blocking package

elliptic’s safe version set:
elliptic.Sμa = { 6.5.4}

ethers’s safe version:

ethers.Sμa = { 4.1.0}

= 6.5.3 4.0.32^ 0.4.2^ 4.3.0

Note: {ethers: 4.1.0} can
introduce a version

{elliptic 6.5.4}

interface-adapter’s safe version set:
interface-adapter.Sμa = { 0.5.0}

Note: {interface-adapter 0.5.0} can
introduce a version {ethers 4.1.0}

Note: Vulnerability μa has been
remediated in {elliptic: 6.5.4}

contract’s safe version:

contract.Sμa = {}

Note: None of contract’s versions
can introduce a version
{interface-adapter 0.5.0}

(b) Illustrative examples of safe version set, block package and blocking chain

…

Blocking chain

elliptic
@6.5.3

Vulnerable package

Fig. 3: Examples for illustrating the introduced concepts

on the former path. Because vulnerability µa only
affects {elliptic ≤ 6.5.3}, elliptic’s safe version set
is {≥ 6.5.4}. However, although on the vulnerable path,
ethers@4.0.48 depends on elliptic@6.5.3, since version
4.1.0, ethers upgraded elliptic to its safe version within
{≥ 6.5.4} to remediate vulnerability µa. Accordingly,
ethers’s safe version set for µa is {≥ 4.1.0}. As an
analogy, the safe version sets of remaining packages on
this vulnerable path can be obtained. Notably, none of
contract’s versions can introduce µa’s fix, while package
interface-adapter referenced by contract has already
resolved such a vulnerability issue in versions {≥ 0.5.0}.
We consider contract as a blocking package, which blocks
the propagation of vulnerability µa’s fix through path
Pµa

(truffle-upgrades@1.5.0, contract@4.3.13, interface
-adapter@0.4.21, ethers@4.0.48, elliptic@6.5.3). In the
npm ecosystem, all the vulnerable paths passing through
the blocking chain Bµa

(contract@4.3.13, interface-
adapter@0.4.21, ethers@4.0.48, elliptic@6.5.3) suffer
from the same vulnerability issues.

Definition 5. Remediating vulnerable path: Suppose
that pw is a blocking package on vulnerable path
Pµt

(pi@vm, · · · , pe@vg, pw@vk, · · · , pj@vn), and package
pj has remediated vulnerability µt in versions pj .Sµt

(vn /∈
pj .Sµt

). To remediate such a vulnerable path, allowing the
vulnerability µt’s fix to be propagated into root project
pi@vm, two conditions must be satisfied: (1) pw’s safe ver-
sion set pw.Sµt

̸= ∅ (via updating version of package on
the vulnerable path); (2) one safe version v ∈ pw.Sµt

can be
resolved by the version constraint cw specified by package
pe@vg for pw.

In Figure 3, we can tell that ethers’s versions {≥
4.1.0} have remediated such a vulnerability by referenc-
ing elliptic’s safe versions {≥ 6.5.4}. However, {ethers
≥ 4.1.0} cannot be resolved by constraint ∼ 4.0.32 (i.e.,
[4.0.32, 4.1.0)) that is specified by its inactively maintained
precursor interface-adapter. To resolve this vulnerabil-
ity issue, truffle-upgrades’s developer filed an issue re-

truffle-upgrades
@1.5.0

Contract
@4.3.13

interface-adapter
@0.4.21

ethers
@4.0.48

elliptic
@6.5.3

elliptic.svula

= { 6.5.4}

ethers.svula

= { 4.1.0}

^ 4.3.0 ^ 0.4.2 = 6.5.3

interface-adapter.svula

= { 0.5.0}

Contract
@4.3.13

Contract.svula’ =

{4.3.13}

interface-adapter
@0.4.21

ethers
@4.0.49

elliptic
@6.5.4

= 6.5.4

Contract.svula

= {}

^ 0.4.2

 4.0.32

 4.0.32

Issue#1439
of ethers.js

Conditions of remediating
vulnerable path:
(1) Contract.svula’ = {4.3.13}
(2) Contract@4.3.13 can be
resolved by constraint ̂ 4.3.0
specified by truffle-upgrades
@1.5.0 for Contract

interface-adapter.svula

= { 0.4.21}

ethers.svula

= { 4.0.49}

Fig. 4: A real example of unblocking the vulnerable path

port #1439 [37] to ethers.js. They requested ethers.js
to backport to version 4.0.49, in which it upgraded
elliptic to version 6.5.4 (vulnerability µa’s fix version).
As shown in Figure 4, elliptic@4.0.49 can be transitively
referenced by constract @4.3.13. Therefore, constract
@4.3.13 turn to be a safe version for µa. In this manner,
such a vulnerability fix is propagated into root project
truffle-upgrades@1.5.0, remediating the vulnerable path
Pµa

(truffle-upgrades@1.5.0, contract@4.3.13, interface
-adapter@0.4.21, ethers@4.0.48, elliptic@6.5.3).

3 EMPIRICAL STUDY

In this section, we empirically investigate the scale of pack-
ages that block the propagation of vulnerability fixes in
the npm ecosystem. By digging into evolution history of
blocking chains, we characterize their common remediation
patterns, which can shed light on boosting the the propa-
gation of vulnerability fixes. Our analysis is guided by the
following three research questions:

RQ1 (Scale of blocking packages): What is the scale of
packages that block the propagation of vulnerability fixes in the
npm ecosystem? To what extent do they affect other projects?

Motivation: The concepts of blocking package and blocking
chain are first introduced in this paper. Our motivation for
RQ1 is to reveal the scale of blocking packages and blocking
chains in the npm ecosystem. The investigation can help the
package vendors understand to what extent they affect the
propagation of vulnerability fixes.

Methodology: To answer RQ1, we first identify all the
vulnerable paths, blocking packages and blocking chains in
a recent snapshot of the npm ecosystem (August 1, 2021),
and then analyze their scale and negative impacts.

RQ2 (Evolution of blocking chains): How do the blocking
chains evolve in the npm ecosystem? How long have they existed
in the npm ecosystem?

Motivation: Our motivation for RQ2 is to inspect whether
the blocking chains can be effectively remediated via the
natural evolution of package versions. The investigation
reveals the challenges of remediating blocking chains.

Methodology: To answer RQ2, we investigate the evo-
lution trends of blocking chains across consecutive npm
snapshots over the past year (from August 1, 2020 to August
1, 2021).

RQ3 (Remediation patterns): How were the blocking
chains removed from the vulnerable paths? Are there common
remediation patterns that can be distilled to facilitate the propaga-
tion of vulnerability fixes?

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

6

Identify vulnerable pathsParse dependency constrains
Identify vulnerable package

versions

NPM Dependency

Metadata

Vulnerability
Metadata

GitHub Advisory DB

Snyk Vulnerability DB

NPM Security Advisories

Crawling

Merging
+

Snapshot: e.g.,1 July, 2021

pkga

@1.2.0

pkgb

@1.9.0

Fig. 5: An overview of VP model construction

Motivation: Our motivation for RQ3 is to investigate how
the blocking chains or vulnerable paths were being reme-
diated via package updates during evolution. The distilled
common remediation patterns shed light on designing ef-
fective techniques to boost the propagation of vulnerability
fixes in the npm ecosystem.

Methodology: To answer RQ3, we select a collection of
real instances of blocking chains that have better remedi-
ation effects as subjects. Via replaying the package evolu-
tion history of these collected instances, we observe their
package updates that can remediate blocking chains, their
preconditions of propagating the vulnerability fixes, and the
corresponding remediation costs.

In the following, we present our data collection proce-
dure and study results in detail.

3.1 Vulnerability Propagation Model
To investigate our RQs, we construct a Vulnerability
Propagation (VP) model, which locates the vulnerable pack-
age versions in the ecosystem-level dependency graph to
facilitate a holistic analysis of vulnerability affects. Figure 5
shows an overview of VP model construction. It first crawls
a snapshot of npm dependency metadata and vulnerability
metadata. By parsing the version constraints on package
dependency relations and identifying vulnerable package
versions, all the vulnerable paths can be identified.

Collecting vulnerability metadata. To collect more com-
plete vulnerability metadata, we crawl vulnerability reports
published before 1 August 2021, from three recognized
vulnerability databases, i.e., GitHub Advisory DB, Snyk Vul-
nerability DB and NPM Security Advisories. Since the vulnera-
bility information is usually described in plain text, for each
vulnerability report, VP model needs to filter programming
languages and identify its unique identifier, affected package,
affected package versions, fix versions and severity level.

Collecting npm dependency metadata. npm public reg-
istry [38] provides RESTful APIs to obtain the metadata of
all packages published in npm. The metadata describes the
complete info of all releases of a given package. With the
aid of such APIs, we capture the dependency metadata of
npm ecosystem and described it as a directed graph G =
(V,E,C), to retrieve packages and resolve their dependen-
cies. It consists of a set of package versions V and a set of de-
pendency relations E = {pi@va → pj@vb|pi@va, pj@vb ∈
V }. Each relation pi@va → pj@vb ∈ E is determined by
its corresponding dependency constraint c(pi@va, pj) ∈ C ,
where c(pi@va, pj) denotes a version constraint specified by
pi@va for pj , and vb is the highest version of pj that satisfies
the constraint (npm’s dependency resolution rule).

In our study, we analyze the dependency metadata of
the npm snapshot on 1 August, 2021. To understand the

status quo of vulnerability affects on the whole ecosystem,
on such a npm snapshot, we filter out the legacy packages
and only collect the latest versions of active packages and
the package versions they directly or transitively depend on.
Note that, we consider a package is active if it published
new versions in the past year, following the assumption
given by approaches [1, 8, 18].

Identifying vulnerable paths. By mapping the vulner-
ability metadata into npm dependency metadata G =
(V,E,C), in set V , we locate all the vulnerable package
versions with detailed vulnerability info. We consider the
latest versions of active packages in V as root nodes and
vulnerable package versions in V as leaf nodes, to identify
all the vulnerable paths via reachability analysis. However,
a vulnerable package version may contain multiple vulnera-
bilities and each vulnerability corresponds to a safe version
set. To precisely analyze the affects of each known vulnera-
bility, when identifying vulnerable paths, a vulnerable pack-
age version with multiple vulnerabilities are distinguished
as multiple leaf nodes. As such, a vulnerable path involves
a unique vulnerability.

Statistics of VP model. Table 2 shows the statistics of
metadata collected by VP model. To ease presentation, we
denote root projects as the latest versions of active packages.
Our vulnerability metadata includes 3,948 vulnerability re-
ports, 2,391 of them (60.6%) have published vulnerability
fix versions, especially for the ones with higher severity
levels. For npm dependency metadata, VP model collected
521,413 latest versions of active packages which directly or
transitively depend on 689,350 package versions. Among
the 2,542,753 dependency relations among packages, it iden-
tified 1,065,723 vulnerable paths that are affected by the
vulnerable packages having published fix versions. In our
study, we considered the above 1,065,723 vulnerable paths
that block the the propagation of vulnerability fixes as
subjects to study their characteristics.

Data validation. The VP model took four months for
three authors of this paper who had over two years vulner-
ability analysis experience to implement and test. The two
experienced authors conducted daily manual validation of
vulnerability metadata independently. Disagreements were
reconciled with the third author joining the discussions.
Specifically, we carefully checked two cases during the data
validation process: (1) Case 1: Multiple databases share the
vulnerability reports with the same CVE identifier. We only
kept a vulnerability with unique CVE identifier in our
dataset and filter out the duplicated ones. (2) Case 2: A
vulnerability with unique CVE identifier may be disclosed
in multiple packages. We recorded all the affected packages
and their corresponding versions. The Cohen’s kappa for
their data validation is 0.92, indicating a near perfect inter-
rater agreement [39]. For the eight disagreement cases, the
information of shared vulnerability reports (e.g., affected
package versions) were different from multiple vulnerability
databases. Eventually, the third author checked the release
notes of vulnerable package and kept our records to be
consistent with that originated from package publishers.
The three authors reached a consensus on our final dataset.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

7

TABLE 2: Statistics of metadata collected by PLUMBER (on the
recent npm snapshot of 1 August, 2021)

Vulnerability metadata
#vulnerabilities 3,948
critical: 473 high: 1,910 medium: 1,374 low: 191

#vulnerabilities without fixes 1,557
critical: 96 high: 677 medium: 643 low: 141

#vulnerabilities with fixes 2,391
critical: 140 high: 1,021 medium: 1,078 low: 152

#vulnerable packages: 2,289 #vulnerable package versions: 38,166
#vulnerabilities per package 1.7±2.9

npm dependency metadata
#root projects 356,283
#package versions directly or transitively depended by root projects 689,350
#dependency relations 2,542,753
#vulnerable paths 1,245,694
#vulnerable paths whose corresponding vulnerabilities have released fixes 1,065,723
Root projects denote the latest versions of active packages.

3.2 RQ1. Scale of blocking packages

3.2.1 Methodology.

To answer RQ1, we gather the statistics of vulnerable
paths, blocking packages and blocking chains, to analyze
their scale and negative impacts on the npm ecosystem.
To achieve this, for each vulnerability µt, we first iden-
tify the corresponding safe versions Sµt

of a vulnerable
package pj where it is disclosed. For each vulnerable path
Pµt

(pi@vm, · · · , pk@vg, pw@vh, · · · , pj@vn), starting from
the vulnerable package pj , we iteratively find each pack-
age’s safe versions for µt, until a blocking package pk
whose safe version set pk.Sµt

= ∅ is located. Accordingly, a
blocking chain Bµt

(pk@vg, pw@vh, · · · , pj@vn) from block-
ing package to vulnerable package on each vulnerable path
can be identified. In particular, we count the number of
vulnerable paths and root projects that are affected by
blocking chains, to investigate their influence on impeding
propagation of vulnerability fixes.

3.2.2 Results.

Table 3 shows our investigation results of RQ1. In our study,
we only focused on the 2,289 vulnerable packages that have
published fix versions for their involved vulnerabilities.
However, such vulnerability fix versions are not widely
spread. 71,320 out of 356,283 (20.0%) active root projects in
the npm ecosystem still directly or transitively depend on
these vulnerable packages via 1,065,723 vulnerable paths.
On average, each root project are affected by 4.4±7.5 vul-
nerabilities. Even worse, 48.5% of the widespread vulnera-
bilities are rated as high/critical severity level issues.

We identified 45,148 blocking packages in the npm
ecosystem, which involved 358,422 blocking chains. All
the published versions of blocking packages could only
reference the vulnerable package versions through 983,336
vulnerable paths, causing the lags in propagation of vul-
nerability fixes into 68,413 root projects. In addition, we
observed that 82,387 out of 1,065,723 vulnerable paths (7.7%)
did not pass through blocking packages, since their root
projects have ever introduced the vulnerability fix versions
but then rolled back to vulnerable versions due to incompat-
ibility issues. For instance, on a vulnerable path, root project
zos@2.4.3 introduces vulnerable package lodash@4.17.10
through a direct dependency truffle. Whereas its previous

Fig. 6: The influence of blocking packages/blocking chains

version zos@2.4.2 has ever transitively referenced the fix
version lodash @4.17.21 for vulnerability CVE-2021-23337,
but then rolled it back because version 4.17.21 induced an
incompatibility issue#1147 [40] in truffle.

Interestingly, we observed a clear centrality on both
blocking packages and blocking chains. Figure 6 shows
the influence of blocking packages/blocking chains on
the whole ecosystem. The y-axis denotes the percent-
age of vulnerable paths/root projects that pass through
the corresponding blocking packages/blocking chains pre-
sented in x-axis. While x-axis indicates the blocking pack-
ages/blocking chains that are ranked by the number of
vulnerable paths/root projects affected by them. We can tell
that the top 20% influential blocking packages hinder the
vulnerability fixes from propagating through 92.1% vulner-
able paths, affecting 75.2% root projects. Similarly, a small
proportion (20%) of influential blocking chains can affect
the vast majority (75.6%/65.5%) of vulnerable paths/root
projects.

Table 4 lists the statistics of Top 10 influential
blocking packages and blocking chains in the npm
ecosystem. Take the most influential blocking package
swap-core [41] as an example. It affects 41,278 vulnera-
ble paths, transitively introducing two vulnerabilities into
395 root projects. In total, various versions of package
swap-core induce 291 influential blocking chains. Among
them, swap-core@0.1.0 is the most popular version with
24,283 weekly downloads, which introduces a blocking
chain swap-core@0.1.0 → hdwallet-provider@1.0.17 →
web3@1.2.1 → web3-bzz@1.2.1 → underscore@1.9.1 into 234
root projects via 6,503 vulnerable paths. Such influential
blocking chains are the cruxes of impeding propagation of
vulnerability fixes in the ecosystem. Accordingly, remedi-
ating the influential blocking chains can benefit the whole
ecosystem, enabling the vulnerability fixes to be spread into
a large amount of projects simultaneously.

Answer to RQ1: In the recent snapshot of the npm ecosystem,
there are 45,148 blocking packages and 358,422 blocking chains
causing the lags in propagation of vulnerability fixes through
983,336 dependency paths. There is clear centrality on both in-
fluential blocking packages and blocking chains. 20% of blocking
packages and blocking chains affect the vast majority of vulnerable
paths.
Implication: Remediating the influential blocking chains enables
the vulnerability fixes propagate into a large amount of root
projects, which significantly benefits the whole ecosystem.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

8

TABLE 3: Statistics of investigation results in RQ1 (on the recent npm snapshot of 1 August, 2021)
Vulnerable paths critical high medium low

#root projects affected by the vulnerabilities 71,320 690 34,548 59,918 16,160
#vulnerable paths referenced by each root project (Avg) 14.9±70.8 2.4±10.9 5.9±40.7 14.4±62.0 5.1±33.9
#vulnerablities referenced by each root project (Avg) 4.4±7.5 1.1±0.3 3.0±5.3 3.0±3.4 1.9±1.7

Blocking packages and blocking chains
#blocking packages 45,148
#blocking chains 358,422
#vulnerable paths affected by blocking packages 983,336
#root projects affected by blocking packages 68,413
#vulnerable paths affected by each blocking package (Avg) 21.8±344.3
#root projects affected by each blocking package (Avg) 3.6±65.9
#vulnerable paths affected by each blocking chain (Avg) 2.7±77.2
#root projects affected by each blocking chain (Avg) 1.9±25.3
We only consider the vulnerable paths that are affected by the vulnerabilities with fixes

TABLE 4: Statistics of top 10 influential blocking packages and blocking chains (on the recent npm snapshot of August 1, 2021)
Top 10 influential blocking packages

Rank Blocking package #Induced blocking chains #Affected paths #Affected root projects Vulnerabilities
1 swap-core 291 41,278 395 CVE-2021-23358, CVE-2020-28498
2 glob-base 1 33,656 17,683 CVE-2020-28469
3 embark-utils 769 28,937 81 CVE-2020-28499, CVE-2021-23358
4 watchpack-chokidar2 1 15,608 10,340 CVE-2020-28469
5 @0x/subproviders 928 11,164 130 CVE-2020-28500, CVE-2021-23337
6 react-scripts 57 8,368 4,166 CVE-2021-33587, CVE-2020-28469
7 tree-sync 2 8,278 1,306 npm:underscore.string:20170908
8 koa-ejs-remote 2 7,431 150 CVE-2020-28168
9 glob-stream 2 6,849 3,117 CVE-2020-28469
10 @svgr/plugin-svgo 3 6,601 5,134 CVE-2021-33587

Top 10 influential blocking chains
Rank Blocking chain #Affected paths #Affected root projects Vulnerabilities

1 glob-base@0.3.0→glob-parent@2.0.0 33,656 17,683 CVE-2020-28469
2 watchpack-chokidar2@2.0.1→chokidar@2.1.8→glob-parent@3.1.0 15,608 10,340 CVE-2020-28469
3 @evolab/coreutils@4.2.0→url-parse@1.4.7 6,276 76 CVE-2021-3664,CVE-2021-27515
4 web3-eth-abi@1.2.6→ethers@4.0.0→elliptic@6.3.3 6,087 856 CVE-2020-28498
5 koa-ejs-remote@1.1.6→axios@0.18.1 4,830 150 CVE-2020-28168
6 Bwrapper@4.1.0→BVcheck@4.0.0→Bversion@3.1.0→Sregex@2.0.0 4,312 1,533 SNYK-JS-SEMVERREGEX-1047770
7 squeak@1.3.0→lpad-align@1.1.2→meow@3.7.0→Tnewlines@1.0.0 4,252 1,486 CVE-2021-33623
8 glob-stream@6.1.0→glob-parent@3.1.0 4,210 2,255 CVE-2020-28469
9 glob-watcher@5.0.5→chokidar@2.1.8→glob-parent@3.1.0 3,870 1,535 CVE-2020-28469
10 @S/plugin-svgo@5.5.0→svgo@1.3.2→css-select@2.1.0→css-what@3.4.2 3,394 2,843 CVE-2021-33587

TABLE 5: Statistics of vulnerabilities disclosed in July 2020
#vulnerabilities with fixes: 61
critical:1 high:25 medium:30 low: 5

#vulnerable packages: 35 #vulnerable package versions: 312

TABLE 6: Statistics of npm snapshots (from August 1, 2020 to
August 1, 2021)

Snapshots #Root projects #Dependency relations

s1: August 1, 2020 220,819 1,576,547
s2: October 1, 2020 238,833 1,596,379
s3: December 1, 2020 253,339 1,613,350
s4: Febrary 1, 2021 269,140 1,676,070
s5: April 1, 2021 289,673 1,764,397
s6: June 1, 2021 313,208 1,871,487
s7: August 1, 2021 356,283 2,542,753

3.3 RQ2. Evolution of Blocking Chains

3.3.1 Methodology.

To answer RQ2, we construct a collection of consecutive
snapshots of npm dependency metadata (denoted as s1-s7)
over the past year (from August 1, 2020 to August 1, 2021),
in order to investigate the evolution trends of blocking
chains. The interval between two consecutive snapshots
(si−1 and si (1 < i ≤ 7)) is taken as two months, since
the npm projects in snapshot s1 published new releases
every 1.85 months on average. To observe the evolution of
blocking chains ever since they appeared, for vulnerability
metadata, we focus only on the vulnerabilities that were
disclosed with fixes before the date of snapshot s1.

The statistics of our mined vulnerabilities and seven npm
snapshots are listed in Tables 5 and 6, respectively. On each
snapshot, we consider the latest versions of active packages
as root projects and collect all the package versions directly
or transitively referenced by them. As previously presented,
a root project is regarded as active if it published new
versions in the past year (from the date of snapshot si).
We identify all the blocking chains and vulnerable paths
induced by the above vulnerabilities in snapshots s1-s7, and
then investigate their evolutionary trends.

Specifically, we perform two tasks in the investigation:
(a) by comparing the statistics of snapshot si (1 < i ≤ 7)
with that of s1, we investigated the scale of blocking chains,
vulnerable paths and affected root projects in s1 that have
been remediated by developers during a year of evolution.
(b) by comparing the statistics of two consecutive snap-
shots si−1 and si, we counted the number of remediated
blocking chains, vulnerable paths and affected root projects
during every two months interval. Besides, we also concern
whether si introduced new cases compared with si−1. We
analyze the three cases as follows:
• Remaining cases: Since the package versions keep evolving

across s1-s7, we consider two blocking chains/vulnerable
paths in sm and sn (m ≤ n) as the equivalent ones, if
they share the same packages in the same sequence but
sn involves updated versions. Similarly, the root projects
in sm are regarded equivalent with their updated versions
in sn. Such equivalent cases in sn are the remaining ones

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

9

Fig. 7: Evolutionary trend analysis (comparing si with s1)

Fig. 8: Severity of vulnerabilities that affect the remaining cases

Fig. 9: Evolutionary trend analysis (comparing si with si−1)

of sm that have not been remediated yet.
• Remediated/newly introduced cases: Suppose BCk, V Pk and
ARPk are the sets of blocking chains, vulnerable paths
and affected root projects identified in snapshot sk, re-
spectively. We then consider BCm − BCn, V Pm − V Pn

and ARPm−ARPn as the cases that has been remediated
during the interval between snapshots sm and sn (m ≤
n). While BCn −BCm, V Pn − V Pm and ARPn −ARPm

are regarded as the blocking chains, vulnerable paths and
affected root projects newly introduced into snapshot sn,
since the date of snapshot sm.

3.3.2 Results.

Figure 7 shows the scale of remediated/remaining blocking
chains, vulnerable paths and affected root projects in si (1 <
i ≤ 7), comparing with the initial snapshot s1. After a year
of evolution, among the 13,914 blocking chains identified in
s1, 10,713 of them (77.0%) still exist in the npm ecosystem.
Only 37.1% (11,689/31,509) of vulnerable paths have been
remediated, and the number of root projects affected by
these blocking chains fall by 17.3% (2,081/12,031). Figure 8
depicts the severity levels of vulnerabilities that affect the
remaining cases in the latest snapshot s7. It is worth noting
that 76.7% of remaining vulnerable paths and 83.0% root
projects still reference the high/critical severity level vulner-
abilities. Such low remediation rates of vulnerable paths and
affected root projects reveal that the pivotal blocking chains
do not arouse developers’ awareness or have challenges to
be remediated.

Figure 9 shows the statistics of remediated/newly in-
troduced blocking chains, vulnerable paths and affected
root projects between two consecutive snapshots. As of the
vulnerable packages are disclosed in July 2020, the number
of new blocking chains (179 on average) emerge in each
snapshot signicantly lower than the remediated ones (581 on
average). However, on average, each snapshot newly intro-
duced 2,790 vulnerable paths and 251 affected root projects
via referencing blocking packages as the projects evolve.
The phenomenon occurs because some popular blocking
packages (i.e., high downloads) can be easily adopted as
dependencies during evolution, even if they would tran-
sitively introduce vulnerable packages into projects. For
instance, glob-base@0.3.0 is influential in the ecosystem
(4,755,881 weekly downloads), which depends on a vul-
nerable package glob-parent@≤ 5.1.2 (CVE-2020-28469).
We consider glob-base as a blocking package since all its
published versions cannot reference the vulnerability’s fix
versions (safe version set is ∅ for CVE-2020-28469 on the
vulnerable paths). Between the interval of snapshots s1 and
s7, such a popular version glob-base@0.3.0 has been newly
introduced into 143 root projects via 843 dependency paths.
The results indicate that remediating pivotal blocking chains
cannot only boost the propagation of vulnerability fixes into
the existing vulnerable paths but also reduce the risk of
introducing new vulnerable paths into root projects.

Answer to RQ2: In the npm snapshot of August 1, 2020, 77.0%
of identified blocking chains still exist after a year of evolution.
During this period, the number of vulnerable paths and root
projects affected by these blocking chains fall by 37.1% and 17.3%.
9,808 blocking chains bundled with higher level vulnerabilities
are still referenced by 9,904 active root projects through 17,612
vulnerable paths.
Implication: The low remediation rates of vulnerable paths and
affected root projects indicate that developers do not realize the
influence of blocking chains or have challenges to remediate them.

3.4 RQ3. Remediation Patterns

3.4.1 Methodology.
To answer RQ3, we empirically investigated how the block-
ing chains or vulnerable paths were being remediated via
package updates during the evolution across snapshots s1-
s7 (collected in RQ2) and distilled common remediation pat-
terns. It is worth noting that these package updates are not
necessarily performed for remediating vulnerabilities. Some
of the reactions might be preventive maintenance activities
for package dependencies, but resulted in the propagation
of vulnerability fixes.

Subject selection. We focus on two types of blocking
chains that have been remediated via package updates with
significant effects of propagating vulnerability fixes:
• Type A. The blocking chains existed in snapshots s1-si−1

(1 < i ≤ 7), while were remediated in snapshot si. Note
that, as the remediation of these blocking chains, all the
vulnerable paths passing through them can introduce the
vulnerability fixes.

• Type B. The blocking chains that existed in snapshots s1-s7,
while the number of vulnerable paths affected by them sig-
nificantly reduced during evolution. On average, the block-
ing chains were passed through by 59.4±13.4 vulnerable

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

10

TABLE 7: Statistics of the selected blocking chain instances
126 Type A blocking chain instances

#blocking packages #vulnerable packages #root projects #vulnerable paths (Avg)
38 28 542 34.4±32.7

243 Type B blocking chain instances
#blocking packages #vulnerable packages #root projects #vulnerable paths (Avg)

62 22 604 92.8±12.5

paths in s1 and had fallen by 46.9%±10.3% in s7. In our
study, we consider the blocking chains as Type B cases
if the number of their involved vulnerable paths is more
than 59.4 in s1 (above average value), and have fallen by
over 46.9% in s7 (above average value).

The remediation patterns of these two types of block-
ing chains can help us understand how to facilitate the
propagation of vulnerability fixes in the npm ecosystem. For
each type of blocking chain, we only selected the instances
involving high/critical severity level vulnerabilities, which
are worthy of developers’ attentions. Table 7 provides the
demographic information of our selected blocking chain
instances. As we can see, the selected 369 blocking chains
involve diverse blocking packages and vulnerable packages.
In total, they affect 887 root projects via 26,884 vulnerable
paths. We distill common features in their vulnerability
remediation and summarize their taxonomy of remediation
patterns.

Data analysis. Specifically, we performed three tasks to
analyze the characteristics and remediation patterns of our
selected blocking chain instances:
• Task 1. For each blocking chain instance, we investigate its

three aspects of characteristics:
(a) whether the packages on the blocking chain are active (i.e.,
publishing new versions in the past year from the date
of snapshot). Characteristic a helps us understand which
packages can update their dependencies to remediate
such a blocking chain.
(b) whether the packages on the blocking chain are specified with
open version constraints (i.e., the range syntax such as 2.1.∗,
∼ 2.1.0 and ∧ 2.1.0, enables new package versions that sat-
isfy its specified constraints to be installed). With the aid
of Characteristic b, we can observe how vulnerability fixes
are propagated into blocking chains/vulnerable paths.
(c) whether the packages need to upgrade/downgrade their
direct dependencies’ major versions, in order to introduce the
concerned vulnerability fixes. According to the semantic ver-
sioning strategy [42], developers are suggested to increase
their projects’ major version number, if they make incom-
patible API changes. As such, upgrading/downgrading
dependencies’ major versions would take project develop-
ers’ more efforts on modifying or testing code. We can esti-
mate the remediation costs of blocking chains/vulnerable
paths via Characteristic c.

• Task 2. For each blocking chain of Type A, we first identi-
fied the snapshot si (1 < i ≤ 7) in which it had been re-
mediated. For each package on such a blocking chain, we
collected all its versions publishing between the interval
of snapshots s1 and si. Based on the chronological order of
these version releases, we iteratively replayed the version
updates of each package on this blocking chain, to check
which version update enabled the remediation of blocking
chain (i.e., blocking package can use the vulnerability fix
version). Finally, we recorded the duration (#days) from

the date of the blocking chain being remediated to the
date of snapshot s1.

• Task 3. For each blocking chain of Type B, we collected the
vulnerable paths passing through it on snapshot s1 but
were remediated on snapshot si (1 < i ≤ 7). Furthermore,
for each package on such remediated vulnerable paths, we
collected all its versions publishing between the interval
of snapshots s1 and si. Based on the chronological order
of these version releases, we iteratively replayed the ver-
sion updates of each package on the selected vulnerable
paths, and checked which version update enabled the
remediation of vulnerable paths (i.e., root project can use
the vulnerability fix version). Finally, we recorded the
duration (#days) from the date of the vulnerable path
being remediated to the date of snapshot s1.

Similar to many existing empirical studies [43, 44], we
followed an open coding procedure [45] to inductively
categorize the common remediation patterns in a bottom-
up manner, which involves two labeling processes:
• Labeling process 1: Initially, two authors performed an in-

depth analysis on the above characteristics of blocking
chains and their involved vulnerable paths, to understand
how they were remediated as the packages evolved. They
first analyzed 50% of both Types A and B blocking chains
independently and marked those unclear or insufficient
categories. They then discussed and adjusted their cate-
gory tags during meetings, with the help of a third author
to resolve conflicts. In this way, we constructed the pilot
taxonomy.

• Labeling process 2: Next, the first two authors continued
to label remediation pattern of the remaining 50% of
blocking chains and iteratively refined the results as well
as the labeling strategy. Conflicts were reconciled with the
third author joining the discussions. We adjusted the pilot
taxonomy and obtained the final result.

Specifically, the number of conflicts in the two labeling
processes are 31 and 26, respectively. Since the labeling
involves much manual work, errors could be induced in
any of the three tasks when analyzing block chain instances,
causing labeling conflicts between the two authors. The
Cohen’s kappa for our two labeling processes are 0.79 and
0.80, respectively, indicating a substantial inter-rater agree-
ment [39].

3.4.2 Results.
Via replaying the package evolution history of the col-
lected blocking chain instances across snapshots s1 − s7,
we observed three common remediation patterns. Figure 10
summarizes the taxonomy of remediation patterns, their
preconditions of propagating the vulnerability fixes, and
the corresponding costs. In the following, we discuss each
remediation pattern in detail. To ease presentation, we refer
to the package in between the blocking and vulnerable
packages on a blocking chain as an intermediate package.

Remediation pattern A. The blocking package publishes a
new release in its highest major version train, in which it upgrades
the direct dependency to transitively introduce the vulnerability
fix (46.1% of Type B blocking chain instances). 46.1% of Type
B blocking chain instances were remediated via Pattern A.
Among the 243 Type B blocking chain instances, 112 of
them are induced by active blocking packages. The lags in

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

11

C’s safe version set:
Sc = { 4.0.0} {3.0.8}

Note: C’s higher major version train
{C: 4.0.0} can introduce D@3.0.1.

Fig. 10: Descriptions of remediation patterns

dependency updates of such blocking packages are the key
causes of hindering root projects from introducing vulnera-
bility fixes. As such, they finally remediated vulnerabilities
in their highest available versions, by upgrading the direct
dependencies to the safe versions.

In this scenario, for the vulnerable paths on which
the blocking packages were specified with open version
constraints (i.e., the remediated higher versions can be
resolved by the constraints), vulnerability fixes could be
automatically propagated into the root projects. Among the
112 instances that adopt remediation Pattern A, 34 of them
needed to upgrade the major versions of dependencies with
an average duration of 107.6 days. While the remaining 78
instances only took 33.5 days (Avg) for the remediation.

Remediation pattern B. An intermediate package publishes
a new release in its lower major version train, in which it
upgrades the direct dependency to enable the inactive blocking
package to transitively introduce a vulnerability fix (100% of
Type A blocking chain instances). 100% of Type A blocking
chain instances are remediated via Pattern B. These instances
share a common feature: the involved blocking packages are
inactively maintained by developers (86.5% of them have
not published new releases for over three years), which can
hardly remediate the concerned vulnerabilities. To allow
the inactive blocking package to transitively reference the
vulnerability fix, an intermediate package published a new
release in its lower major version train, in which it upgraded
its direct dependency to safe versions. In studies [8, 46], the

above process is referred as backporting. Such backporting
practices can bring the benefit of vulnerability fixes to the
substantial number of downstream packages that have to
depend on the lower major version train of intermediate
packages due to incompatibility issues.

By further investigation, we can tell that in our col-
lected Type A instances, such intermediate packages have
two shared characteristics: (a) they had remediated the
vulnerabilities in their higher major version train while not
instantly realized the vulnerability affects on downstream
packages induced by their lower major version train; (b)
they actively maintained package releases in multiple major
version trains; (c) they are specified with open version con-
straints on the blocking chains (i.e., the remediated versions
can be automatically resolved by the constraints).

With the aid of Pattern B, the vulnerability fix can be
automatically propagated into all the root projects affected
by such a blocking chain. However, these intermediate pack-
ages took more time to realize the vulnerability affects on
other packages induced by their lower versions. In addition,
they spent much effort on code changes and testing for
the cases that needed to upgrade the major versions of
dependencies. On average, Pattern B took 195.1 days for the
remediation.

Remediation pattern C. A package deprecates the inactive
blocking package and migrates to other well-maintained one
to remediate vulnerabilities (53.9% of Type B blocking chain
instances). 53.9% of Type B blocking chain instances use

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

12

Pattern C to remediate vulnerabilities. These Type B instances
share two characteristics: (a) the blocking chains are induced
by inactive blocking packages (on average they have not
published new releases for 2.6 years); (b) the intermedi-
ate packages on such blocking chains are either inactively
maintained or specified with locked version constraints.
Consequently, even if the vulnerabilities can be remediated
by intermediate packages, the remediated package versions
cannot be propagated via such locked version constraints.
To address the vulnerability issues, the packages affected
by the above 131 intractable Type B blocking chains, finally
deprecated the inactive blocking package and migrated to
other well-maintained ones.

If the packages that deprecate the blocking ones, are
popular in the npm ecosystem and specified with open
version constraints, their remediated versions can be au-
tomatically propagated into many root projects. Generally,
package migration needs more efforts than package up-
grades. To achieve this, developers have to identify high-
quality packages with similar functionalities to replace the
inactive blocking ones, and spend efforts to modify and test
code as well. On average, Pattern C took 251.5 days for the
remediation.

In general, remediation costs token by the three patterns
follow: Pattern A < Pattern B < Pattern C. Patterns B and
C bring more burden to package developers. Based on our
empirical findings, for the blocking chains induced by active
blocking packages, Pattern A is highly recommended to
remediate vulnerabilities. For the blocking chains induced
by inactive blocking packages, in the cases that the interme-
diate packages on vulnerable paths are specified with open
version constraints, remediation Pattern B would be feasible
if they can backport to the lower version trains. Otherwise,
the packages affected by such blocking chains can adopt
Pattern C to deprecate the inactive blocking packages.

To remediate vulnerabilities, many prior works have
been proposed to suggest practitioners to timely upgrade
vulnerable dependencies [1, 23–28], backport to lower ver-
sions [8], and migrate the outdated dependencies [1, 47].
By contrast, the three distilled remediation patterns in our
study, synthesize three factors: (1) the above three depen-
dency update operations; (2) characteristics of blocking
chains; (3) preconditions of propagating the vulnerability
fixes. Our empirical findings shed light on how to update
pivotal packages’ version constraints based on semantic ver-
sioning mechanism, for mitigating the lags in propagating
vulnerability fixes in an ecosystem.

Answer to RQ3: We distilled three common remediation patterns
and their preconditions of propagating the vulnerability fixes. For
the blocking chains induced by active blocking packages, such
blocking packages can remediate vulnerabilities in their highest
available version (Pattern A). For the blocking chains induced by
inactive blocking packages, the intermediate packages can remediate
vulnerabilities in their lower major version trains to enable the
inactive blocking packages to transitively introduce vulnerability
fixes (Pattern B). Besides, a package affected by a blocking chain
can also deprecate the inactive blocking package and migrate to
other well-maintained one to remediate vulnerabilities (Pattern C).
Implication: Combining the three common patterns to remediate
pivotal blocking chains can significantly boost the propagation of
vulnerability fixes in the npm ecosystem.

NPM Dependency

Metadata

Vulnerability
Metadata

GitHub Advisory DB

SnykVulnerability DB

NPM Security Advisories

Crawling

Merging
+

Model metadata

Identify vulnerable paths

pkga

@1.2.0

pkgb

@1.9.0

Monitoring the evolution of npm ecosystem

Identify blocking chains

……Top 1

……Top 2

……Top 3

Identifying pivotal blocking chains

Mine package migration

history

Characterize blocking chains Classify blocking chains

Deriving remediation schemes

C
@4.0.48

B
@0.4.21

A
@4.3.13

D’s safe version:
D.Svula ={ 6.5.4}

C’s safe version:

C.Svula ={ 4.1.0}
B’s safe version:
B.Svula ={ 0.5.0}

A’s safe version:

A.Svula = {}

C
@4.0.48

B
@0.4.21

A
@4.3.13

For each package on
the blocking chain:

Whether it is active?
Whether it is specified

with open version
constraint?

Whether it needs to
upgrade

dependency’s major
version?

…

Strategy A

Strategy B

Strategy C

…

…

Preconditions of propagating

vulnerability fixes

Affects on the ecosystem

Arouse developers’ awareness

Package migration historical data

Package migration records:

migrate

D
@6.5.3

Package

A

Package

B

weekly update

D
@6.5.3

Collect metadata

…

…

Rank pivotal blocking

chains

Generate remediation

reports

Fig. 11: Architecture of PLUMBER

4 THE PLUMBER APPROACH

Inspired by our empirical findings, we propose PLUMBER,
a novel technique to boost the propagation of vulnera-
bility fixes in the npm ecosystem, via remediating pivotal
blocking chains. Figure 11 gives the overall architecture of
PLUMBER. Its core idea is to (1) model the vulnerability
and npm dependency metadata and continuously monitor
their evolution; (2) identify which pivotal blocking chains
hinder the vulnerability fixes from propagating through
vulnerable paths (based on findings in RQ1); (3) analyze
the features of pivotal blocking chains and derive their
remediation schemes combining the three patterns learnt
from our empirical findings in RQ3. In the remediation
scheme, PLUMBER can provide detailed information for
package developers to arouse their awareness of the lags
in fix version updates and the vulnerability affects on the
npm ecosystem (based on findings in RQ2).

4.1 Monitoring the evolution of the npm ecosystem
To precisely capture the propagation of vulnerability fixes
in the whole ecosystem, PLUMBER continuously collects
vulnerability metadata and dependency metadata among
npm packages. By comparing two contiguous snapshots of
npm dependency metadata, we can also mine the migration
history of packages, in order to provide clues for deriving re-
mediation strategies (as we will show later in Section 4.3.1).

4.1.1 Modeling and collecting metadata
Metadata model. We model the metadata of npm snapshot
si as a 2-tuple M(si) = (dmi, Gi):
• dmi = {µ1, µ2, · · · , µn} is a collection of disclosed vulner-

abilities, where µk = (Idk, slk, pk, verk). Fields Idk and slk

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

13

denote unique identifier and severity level of µk. Fields pk
and verk = {v1, v2, · · · , vn} represent the package name
and its published versions affected by such a vulnerability.

• Gi = (Vi, Ei, Ci) is a directed graph depicting the de-
pendency metadata of npm snapshot si. Vi denotes a
collection of package versions published on snapshot si.
Ei = {pk@va → pu@vb|pk@va, pu@vb ∈ Vi} represents
a set of dependency relations among the package ver-
sions in Vi. Each relation pk@va → pu@vb ∈ Ei is
determined by its corresponding dependency constraint
c(pk@va, pu) ∈ Ci, where c(pk@va, pu) denotes a version
constraint specified by pk@va for pu, and vb is the highest
version of pu on snapshot si that satisfies the constraint
(npm’s dependency resolution rule).

Metadata collection. As described in Section 3.1, PLUMBER
crawls the above vulnerability metadata dmi from three
representative databases GitHub Advisory DB, Snyk Vulner-
ability DB and NPM Security Advisories. While the depen-
dency metadata Gi is crawled with the aid of RESTful APIs
provided by npm public registry [38].

PLUMBER weekly updates the metadata model M(Si)
to continuously monitor the evolution of vulnerability and
npm dependency metadata. To analyze the propagation of
vulnerability fixes in the npm ecosystem, dmi only records
the vulnerabilities that have been remediated with fixes.

4.1.2 Mining package migration history
During evolution, PLUMBER compares the dependency
graphs G on two contiguous npm snapshots si and si+1 to
identify package migration records, which can provide clues
for deriving remediation Strategy C. We formally define a
package migration record as follows.

Definition 6. Package migration record: If a project dep-
recates package pm and adopts pn as a substitute, we define
pm ⇒ pn as a migration record, where pm is source package
while pn is the target one in the migration.

Combining library migration mining approach [47] with
our collected dependency metadata, PLUMBER collects a
package migration record based on two criteria:
• If pk@va → pu@vb ∈ Ei exists in snapshot si, while in

snapshot si+1, pk@(va+1) deprecates package pu and de-
pends on a new package pt, PLUMBER records <pu, pt> as
a dependency change pair. PLUMBER considers pu ⇒ pt as
possible migration record, iff such a dependency change
pair appears over M times in different projects during
evolution. PLUMBER takes the default value of M = 5,
which can effectively reduce noise via our experiment
validation (see discussions in Section 5.3). We leave its
adaptive tuning to future work.

• For each possible migration record pu ⇒ pt, to guarantee
its reliability, PLUMBER searches for its corresponding
migration commits on GitHub using keywords “replace
pu” OR “deprecate pu” OR “remove pu” OR “switch pu”
OR “migrate pu” OR “delete pu”. PLUMBER determines pu
⇒ pt as a certain migration record, iff the newly added
package pt can be identified in the returned code commits.

It is worth noting that for a source package, PLUMBER
could find multiple target packages in the migration records.
When deriving remediation Strategy C, all possible sugges-
tions can be provided for developers to migrate problematic
packages.

Algorithm 1: Identifying blocking chains
Input: Pµt (pk@vm, pw@vr, · · · , pu@vn), Vi and vert
Output: Bµt

1 Queue← ReverselyTraverse(Pµt);
2 pb ← Queue.pop();
3 pb.Sµt ← PublishedV (Vi, pb)− vert;
4 while pb.Sµt ̸= ∅ do
5 pa ← Queue.pop();
6 pa.Svult ← ResolvedSV (PublishedV (Vi, pa), pb);
7 pb ← pa;

8 return Bµt (pb@vr, · · · , pu@vn);

4.2 Identifying pivotal blocking chains
The metadata model M(si) = (dmi, Gi) built by PLUMBER
contains sufficient information for identifying vulnerable
paths and blocking chains.

4.2.1 Identifying vulnerable paths
Let vl ⊂ Vi be a set of vulnerable package versions
affected by the vulnerabilities in dmi, and vr ⊂ Vi be
a set of latest versions of active packages (i.e., publish-
ing versions in the past year). On dependency graph Gi,
PLUMBER considers package versions pk@vm ∈ vr as
root nodes and vulnerable package versions pu@vn ∈ vl
as leaf nodes, to identify all the vulnerable paths P =
{Pµt

(pk@vm, pw@vr, · · · , pu@vn)|µt ∈ dmi} via reachabil-
ity analysis. Note that, PLUMBER only considers vulnerable
paths whose root nodes are the latest versions of active
packages, in order to analyze the status quo of vulnerability
affects on the whole ecosystem.

However, a package version may contain multiple vul-
nerabilities and each vulnerability corresponds to a spe-
cific safe version set. For example, Dotty 0.1.0 contains
two vulnerabilities CVE-2021-23624 [48] and CVE-2021-
25912 [49]. While the safe versions of Dotty for these
two vulnerabilities are {≥ 0.1.1} and {≥ 0.1.2}, respectively.
To precisely find the blocking packages, when identifying
vulnerable paths, a package version containing multiple
vulnerabilities are distinguished as multiple leaf nodes.
In this manner, PLUMBER ensures that a vulnerable path
Pµt

(pk@vm, pw@vr, · · · , pu@vn) involves a unique vulner-
ability µt.

4.2.2 Identifying pivotal blocking chains
The detailed process of identifying blocking chains is
described in Algorithm 1. For each vulnerable path
Pµt(pk@vm, · · · , pw@vr, pe@vf , · · · , pu@vn) ∈ P , start-
ing from the vulnerable package pu, PLUMBER itera-
tively calculates each package’s safe versions for vulner-
ability µt, until a blocking package pw whose safe ver-
sion set pw.Sµt = ∅ is found. Then, PLUMBER considers
Bµt(pw@vr, pe@vf , · · · , pu@vn) as a blocking chain.

Specifically, the safe versions of each package are re-
solved as follows:
• For vulnerable package pu, PLUMBER records its safe

version set as pu.Sµt = PublishedV (Vi, pu)−vert, where
PublishedV (Vi, pu) denotes a collection of pu’s published
versions in the npm snapshot si and vert records the pu’s
vulnerable versions affected by µt (Lines 1-3).

• For other package pa (a ̸= u) on the vulnerable path,
PLUMBER uses function ResolvedSV to calculate its safe
version set. Suppose that pb is the direct dependency of

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

14

pa on the vulnerable path. ResolvedSV returns the pa’s
versions that depend on a safe version v ∈ pb.Sµt

, or pa’s
versions that deprecate package pb (Lines 5-7).

Finally, PLUMBER ranks the identified blocking chains
based on the number of vulnerable paths passing through
them. The top ranking blocking chains are considered as
pivotal ones should be remediated to enable the propagation
of vulnerability fixes into a large amount of packages.

4.3 Deriving remediation schemes

Leveraging our empirical findings, PLUMBER aims to derive
remediation schemes for the top K pivotal blocking chains.
By characterizing these blocking chains, it reports which
packages should perform remediation operations and how
should they update dependencies to boost the propagation
of vulnerability fixes in the whole ecosystem.

4.3.1 Characterizing blocking chains

Our empirical findings reveal that the blocking chains re-
mediated using the same strategy share common character-
istics. To facilitate deriving remediation schemes, PLUMBER
characterizes the top K pivotal blocking chains according
to (1) whether the packages are active, (2) whether the packages
are specified with open version constraints, and (3) whether the
packages need to upgrade their direct dependencies’ major versions
to introduce the concerned vulnerability fixes. The activity de-
gree of packages determines which package on the blocking
chain can update their dependencies. The open version
constraints specified for packages can help automatically
propagate vulnerability fixes. Since upgrading dependen-
cies’ major versions takes more efforts on changing and
testing code, PLUMBER considers this factor when deriving
remediation schemes to avoid bringing more burdens to
package developers. Specifically, PLUMBER classifies the top
pivotal blocking chains into three categories:
• Blocking chains to be remediated via Strategy A: For a

blocking chain Bµt(pw@vr, pe@vf , · · · , pu@vn), if block-
ing package pw is actively maintained (i.e., publishing
releases in the past year), PLUMBER arouses pw’s aware-
ness to upgrade its direct dependency pe to a safe version
v ∈ pe.Sµt , in order to introduce the vulnerability fix.

• Blocking chains to be remediated via Strategy B: For
a blocking chain Bµt

(pw@vr, · · · , pg@vh, pe@vf , pc@vd,
· · · , pu@vn), PLUMBER remediates it using Strategy B, if
the blocking chain satisfies:
– a. Blocking package pw is inactively maintained;
– b. There exists at least one intermediate package
pe@vf that is specified with open version constraint
c(pg@vh, pe) (pe@vf is in between the blocking package
pw@vr and vulnerable package pu@vn);

– c. Upgrading intermediate package pe’s direct depen-
dency pc from version vd to a safe version v ∈ pc.Sµt

needs not to cross pc’s major version.
In this case, PLUMBER suggests the intermediate package
pe@vf to release a new version that can be resolved by
constraint c(pg@vh, pe), in which it upgrades package pc
to a safe version v ∈ pc.Sµt

. As such, the vulnerability fix
can be propagated into blocking package pw@vr , remedi-
ating the blocking chain.

• Blocking chains to be remediated via Strategy C: For a
blocking chain Bµt

(pw@vr, · · · , pu@vn), PLUMBER sug-
gests developers to migrate the blocking package pw, if
the blocking chain satisfies:
– a. Blocking package pw is inactively maintained;
– b. There are no intermediate packages that are specified

with open version constraints;
– c. Although there exists intermediate packages that are

specified with open version constraints, upgrading their
concerned direct dependencies to the safe versions has
to cross major version train.

Based on the collected package migration records (in Sec-
tion 4.1.2), it generates remediation schemes. If there exists
a record pw ⇒ pm and package pm does not introduce
other vulnerabilities, PLUMBER suggests the packages de-
pending on blocking package pw to perform the migration
to package pm.

To summarize, our empirical findings indicate that reme-
diation costs token by the three strategies typically follow:
Strategy A < Strategy B < Strategy C. As such, for the blocking
chains induced by actively maintained packages, PLUMBER
highly suggests remediation Strategy A. For the blocking
chains induced by inactive blocking packages, in the cases
that the intermediate packages (i.e., packages in between the
blocking and vulnerable packages) are specified with open
version constraints, PLUMBER suggests remediation Strategy
B if they can backport to their lower version trains. Other-
wise, PLUMBER adopts remediation Strategy C to migrate
the inactive blocking chains.

4.3.2 Generating remediation reports

Based on the characteristics of blocking chains, PLUMBER
identifies which packages should perform the remediation
operations and then customizes reports with applicable
solutions. Figure 12 shows the templates of remediation
reports generated by PLUMBER. Specifically, in each report,
it provides the following customized information:
• To arouse developers’ awareness, PLUMBER gives the

issue description with potential vulnerability impact anal-
ysis on the npm ecosystem: (1) the number of affected
vulnerable paths, and (2) the scale of affected downstream
projects.

• To boost the propagation of vulnerability fixes, PLUMBER
explicitly points out how the packages update their de-
pendencies: (1) suggesting the package version number to
perform the remediation, and (2) listing the safe versions
of dependencies to be upgraded.

• To facilitate developers migrate the inactive blocking
packages, PLUMBER suggests the possible target packages
and provides the migration records (including the corre-
sponding commit ID) performed by other projects as a
reference.

5 EVALUATION&AN ECOSYSTEM-LEVEL STUDY

In the evaluation section, we conducted an ecosystem-level
study to answer the following three research questions:

RQ4 (Effectiveness of PLUMBER): Are the remedial strate-
gies derived by Plumber consistent with those made by developers?

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

15

Remediation Reports of Strategy A

Issue Description:

Remediation Suggestions:

A vulnerability μt.Idt is introduced in package pa (affected versions: vert) via path

pa@vm→ pg@vh→... → pu@vn. Since pa@vm (nd downloads per week) is referenced

by nr downstream projects (e.g., pe@vf, pp@vq, etc.) through np paths, vulnerability

μt.Idt can be propagated into these projects and expose security threats to them.

1

Upgrade dependency pg from version vh to v pg.Sμt in pa’s highest major version

train to decrease downstream users’ pain.

Remediation Reports of Strategy B

Issue Description:

A vulnerability μt.Idt is introduced in package pa (affected versions: vert) via path

pa@vm→ pg@vh→... → pu@vn. Although such a vulnerability has been remediated in

versions pkga.Sμt, pa’s popular previous version v vert (nd downloads per week) is

still transitively referenced by nr downstream projects (e.g., pe@vf, pw@vq, etc.)

through np paths. If pa can backport to the widely used lower version train, such a

vulnerability fix can be automatically propagated into a large amount of downstream

projects.

Upgrade dependency pg from version vh to v pg.Sμt in pa’s lower version train v

vert to benefit the downstream projects.

Remediation Suggestions:

Remediation Reports of Strategy C

Issue Description:

Remediation Suggestions:

A vulnerability μt.Idt is introduced in package pa (affected versions: vert) via path

pa@vm→ pg@vh→... → pu@vn. However, pg is not actively maintained by developers.

If pa can migrate pg to other package, then np vulnerable paths can be remediated.

Replace pg with other package to remediate a large amount of vulnerable paths. As a

reference, the migration records for pg in other project repositories are listed below:

1. Project ps@vc has migrated pg to pm via commit commitID.

…

The downloads info can be mined from https://www.npmjs.com/.

pa is the package identified by Plumber to perform the remediation operations.

Customized information by Plumber

Fig. 12: Simplified templates of generated remediation reports

RQ5 (Remediation challenges): How challenging is reme-
diating the blocking chains in the npm ecosystem?

RQ6 (Usefulness of PLUMBER): Can PLUMBER boost the
propagation of vulnerability fixes in the npm ecosystem and
provide useful remediation strategies to developers?

To answer RQ4, we first identified a collection of pack-
age updates performed by developers that could remediate
blocking chains with significant propagation effects of vul-
nerability fixes as a benchmark. We applied PLUMBER to
analyzing the above blocking chains and then compare our
derived remediation strategies with benchmark, in order to
quantify the tool’s effectiveness.

To answer RQ5, for the identified 358,422 blocking chains
on the recent npm snapshot of August 1, 2021, we clas-
sified them into different difficulty levels of remediation.
Furthermore, we observe their distribution and discuss the
remediation challenges.

To answer RQ6, we applied PLUMBER to generating
remediation reports for the top pivotal blocking chains
and evaluate the remediation effectiveness based on de-
velopers’ feedback. In our generated reports, we described
the detected vulnerability issues together with remediation
suggestions. More importantly, to arouse developers’ aware-
ness, we explained the vulnerability impacts on the npm
ecosystem and the benefits of their dependency updates to
the propagation of vulnerability fixes.

TABLE 8: Statistics of the npm snapshots from July 1, 2019 to
July 1, 2020

Snapshots #Root projects #Dependency relations

s′1: July 1, 2019 168,432 1,332,859
s′2: September 1, 2019 171,764 1,342,622
s′3: November 1, 2019 173,552 1,353,335
s′4: January 1, 2020 187,230 1,376,942
s′5: March 1, 2020 192,784 1,421,438
s′6: May 1, 2020 206,642 1,486,321
s′7: July 1, 2020 210,538 1,521,230

TABLE 9: Statistics of our benchmark
92 Type A blocking chain instances

#blocking packages #vulnerable packages #root projects #vulnerable paths(Avg)
32 25 630 38.4±24.5

293 Type B blocking chain instances
#blocking packages #vulnerable packages #root projects #vulnerable paths(Avg)

76 35 803 72.3±26.2

362 package updates
Dependency updates
by blocking packages

Backporting by
intermediate packages

Migration of inactive
blocking packages

221 42 99
15 package updates remediate more than one blocking chains

5.1 RQ4: Effectiveness of PLUMBER

Experimental setup. To evaluate the effectiveness of
PLUMBER, we constructed a benchmark by collecting a set
of package updates performed by developers. These pack-
age updates not only remediated blocking chains, but also
enabled significant propagation effects of vulnerability fixes.
The benchmark construction process involves three steps:

• Constructing npm snapshots: Based on our VP model, we
constructed a collection of consecutive snapshots (s′1-s′7)
of npm dependency metadata from July 1, 2019 to July
1, 2020, which were not used in our empirical study.
Statistics of the npm snapshots are listed in Table 8. The
seven snapshots only contain the active root projects and
the package versions directly or transitively used by them.
To precisely identify the blocking chains in snapshot s′1,
we only considered the vulnerabilities that were disclosed
with fixes before July 1, 2019.

• Identifying the blocking chains that have been remediated with
significant effects of propagating vulnerability fixes: Similar as
the subject selection strategy adopted in RQ3, we focused
on two types of blocking chains: (1) Type A. The blocking
chains existed in snapshots s′1 − s′i−1 (1 < i ≤ 7), while
were remediated in snapshot s′i. All the vulnerable paths
passing through Type A blocking chains can introduce
the vulnerability fixes. (2) Type B. The blocking chains
that existed in snapshots s′1-s′7, while the number of
vulnerable paths affected by them significantly reduced
during evolution. On average, the blocking chains were
passed through by 56.5±23.6 vulnerable paths in s′1 and
had fallen by 52.3%±9.2% in s′7. In our study, we consider
the blocking chains as Type B cases if the number of their
involved vulnerable paths was more than 56.5 in s′1, and
had fallen by over 52.3% in s′7.

• Identifying the package updates that remediate the blocking
chains of Types A and B: We identified the package updates
that remediated the Types A and B blocking chains as our
benchmark. Specifically, we performed two tasks below:

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

16

TABLE 10: Effectiveness of PLUMBER in deriving remediation
strategies

Inconsistent Remediation
Strategies

Consistent Remediation
Strategies

NU NB NR NP
Benchmark - 0 2 71 2,585
PLUMBER 79.8% (289/362) 41 32 0 4,679

NU: # Dependency updates by blocking packages (Strategy A);
NB: # Backporting by intermediate packages (Strategy B);
NR: # Migration of inactive blocking packages (Strategy C);
NP: # Vulnerable paths remediated by package updates

– For each Type A blocking chain, we first identified
the snapshot s′i (1 < i ≤ 7) in which it had been
remediated. Furthermore, for each package on such a
blocking chain, we collected all its versions publishing
between the interval of snapshots s′1 and s′i. Based on
the chronological order of these version releases, we
iteratively replayed the version updates of each package
on this blocking chain, to check which version update
enabled the remediation of blocking chain (i.e., blocking
package can use the vulnerability fix version).

– For each Type B blocking chain, we collected the vulner-
able paths passing through it on snapshot s′1 but were
remediated on snapshot s′i (1 < i ≤ 7). Furthermore, for
each package on such remediated vulnerable paths, we
collected all its versions publishing between the interval
of snapshots s′1 and s′i. Based on the chronological
order of these version releases, we iteratively replayed
the version updates of each package on the selected
vulnerable paths, and checked which version update
enabled the remediation of vulnerable paths (i.e., root
project can use the vulnerability fix version).

Table 9 shows the statistics of our collected bench-
mark. The 362 package updates remediated 385 blocking
chains, involving diverse blocking packages and vulnerable
packages. They enabled the propagation of vulnerability
fixes into 1,103 root projects via 12,926 vulnerable paths.
Specifically, these package updates can be divided into three
categories: (1) dependency version updates by blocking packages;
(2) backporting by intermediate packages; (3) migration of inac-
tive blocking packages. Furthermore, we applied PLUMBER to
deriving remediation strategies for the 385 blocking chains.
To quantify the effectiveness our tool, we validated if the
derived remediation strategies were consistent with the real
package updates in benchmark.
Results. Table 10 presents our evaluation results. In total,
289 out of 362 remediation strategies (79.8%) derived by
PLUMBER are consistent with those in benchmark. Among
the 289 consistent remediation strategies, 221 of them
(76.6%) suggest blocking packages to update dependencies,
40 of them (13.8%) suggest intermediate packages to back-
port to their lower versions, and 28 of them (9.7%) suggest
the affected packages to migrate inactive blocking packages
to other ones. Consequently, 10,341 vulnerable paths intro-
duced vulnerability fixes via the effective package updates.

For the 73 blocking chains, PLUMBER derived inconsis-
tent remediation strategies with those in benchmark. Via
balancing the remediation costs and propagation effects of
vulnerability fixes, PLUMBER suggested 41 of them to be re-
mediated based on Strategy A and 32 of them to be resolved
using Strategy B. However, since our derived 71 remediation
strategies either need to upgrade dependencies crossing

22.3%

21.8%

19.3%

19.0%

18.0%

18.3%

10.4%

13.3%

14.4%

16.5%

19.2%

20.7%

12.3%

11.0%

13.8%

13.0%

12.0%

12.0%

38.0%

37.0%

36.5%

35.7%

35.3%

34.0%

17.0%

16.9%

16.0%

15.8%

15.5%

15.0%

100%

Top 20%

Top 10%

Top 5%

Top 1%

Top 300

Type A.a Type A.b Type A.c Type B Type C

Fig. 13: Distribution of blocking chains with different remedia-
tion difficulty levels

major version trains or raise awareness of backporting prac-
tices, developers decided to migrate the inactive blocking
packages to other well-maintained ones in our benchmark.
For example, when resolving vulnerability issues, pack-
age Reaction’s developers tried to upgrade the vulnerable
package Meteorite from 0.7.2 to its safe version 0.9.0, but
encountered incompatibility issues. As described in issue
Meteorite#299 [50], they decided to migrate Meteorite to
other alternative packages with high quality. In another
example, the intermediate package React-reality on a
blocking chain refused to backport to its lower versions (see
discussions in issue React-reality#1 [51]), due to a series
of technical challenges. As a result, the affected projects
had to migrate inactive blocking package Configtest [52],
in order to remediate vulnerability issues. In addition, for
the remaining two blocking chains, PLUMBER suggested
the active blocking packages to upgrade dependencies to
their safe versions (i.e., Strategy A with less remediation
efforts). However, in our benchmark, developers eventually
performed backporting practices to bring the benefit of
vulnerability fixes to their downstream projects (clues could
be found in issues Mapbox#7 [53] and Opac#1034 [54]).

The evaluation results indicate the effectiveness of our PLUMBER
in deriving remediation strategies for blocking chains. 289 out of
362 remediation strategies (79.8%) derived by PLUMBER are con-
sistent with those in our benchmark. For the 73 inconsistent reme-
diation strategies, our tool generates the suggestions via balancing
the remediation costs and propagation effects of vulnerability fixes.
However, due to the incompatibility issues or technical challenges,
the package updates in our benchmark resolved the vulnerability
issues in alternative ways.

5.2 RQ5: Remediation Challenges

Experimental setup. To understand how challenging is re-
mediating the blocking chains in the npm ecosystem, we
analyzed the identified 358,422 blocking chains on the recent
npm snapshot of August 1, 2021 and classified them into
different difficulty levels of remediation. Based on the pack-
ages’ characteristics on each blocking chain, leveraging our
empirical findings in RQ3, we identify the blocking chains
that are difficult/less difficult to be remediated, according
to the following criteria:
• Type A. Blocking chains are of high difficulty to remedi-

ate.
– a. The blocking chains that are induced by inactive blocking

packages, whose involved intermediate packages are all spec-
ified with locked version constraints (Strategy C).

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

17

– b. The blocking chains that are induced by inactive blocking
packages, whose involved intermediate packages are specified
with open version constraints but need to upgrade dependen-
cies’ major versions to introduce vulnerability fixes (Strategy
C).

– c. The blocking chains that are induced by active blocking
packages, but blocking packages have to upgrade dependen-
cies’ major versions in order to introduce vulnerability fixes
(Strategy A).

For Types A.a and A.b blocking chains, developers cannot
easily remediate them through upgrading dependencies.
They are suggested to spend efforts to migrate the block-
ing packages. For Type A.c blocking chains, PLUMBER
encourages the blocking packages to upgrade their depen-
dencies, which requires more efforts to test the packages
crossing their major versions.

• Type B. Blocking chains are of medium difficulty to
remediate.
– The blocking chains that are induced by inactive blocking

packages, whose involved intermediate packages are specified
with open version constraints but need not to upgrade de-
pendencies’ major versions to introduce vulnerability fixes
(Strategy B).

Type B blocking chains would be remediated if the in-
volved intermediate packages can backport to their lower
version trains. However, the backporting practices need
package developers to spend efforts on supporting multi-
ple version trains.

• Type C. Blocking chains are of low difficulty to remediate.
– The blocking chains that are induced by active blocking

packages, and the blocking packages need not to upgrade
dependencies’ major versions to introduce vulnerability fixes
(Strategy A).

Type C blocking chains can be remediated by active block-
ing packages via upgrading dependencies with fewer
compatibility issues, which are highly recommended by
PLUMBER.

Results. Figure 13 shows the distribution of blocking chains
with different remediation difficulty levels. To see trends,
we divided all blocking chains into six groups (overlapping)
based on their influence ranking: top 300, 1%, 5%, 10%, 20%
and 100%. For the top 20% pivotal blocking chains that affect
most of vulnerable paths in the npm ecosystem, 46.1% of
them (Types A.a, A.b and A.c) are challenging to remediate.
81,044 packages depending on Types A.a and A.b blocking
chains should migrate the inactive blocking packages to
avoid inducing vulnerability fixes, which bring heavy bur-
den to developers. For the 11.0% Types A.c blocking chains,
the blocking packages have to upgrade their dependencies’
major versions to introduce vulnerability fixes, which need
more testing efforts to avoid incompatibility issues.

Moreover, to remediate the 37.0% top pivotal block-
ing chains of Type B, 26,523 involved intermediate pack-
ages specified with open version constraints should back-
port to their lower version trains. Only 16.9% Types C
blocking chains can be easily remediated by the active
blocking packages via upgrading their dependencies to
safe versions. It would take a long time for pivotal
packages to realize the affects of their dependency up-

M

Fig. 14: Occurrences of each dependency change pair M in
different projects during evolution

grades/migrations/backporting practices on propagation
of vulnerability fixes. The ecosystem-level demographics
of blocking chains generated by PLUMBER can provide
concrete guidelines and policies for package developers to
address the above remediation challenges.

For the top 20% pivotal blocking chains that affect most of vulner-
able paths in the npm ecosystem, 46.1% of them are challenging
to remediate. They either need to migrate the inactive blocking
packages or upgrading their the dependencies’ major versions to
introduce vulnerability fixes, which need more code changing and
testing efforts. 37.0% top pivotal blocking chains can be remediated
via backporting practices of the involved intermediate packages.
Only 16.9% top pivotal blocking chains can be easily remediated
by active blocking packages via upgrading their dependencies to
safe versions with fewer incompatibility issues.

5.3 RQ6: Usefulness of PLUMBER

Experiment setup. For the top 300 pivotal blocking chains,
we deployed PLUMBER to report remediation suggestions to
corresponding package developers. As shown in Figure 13,
27.0% (81 Types A.c and C) and 34.0% (102 Type B) block-
ing chains should be remediated using Strategies A and
B, respectively. For the remaining 39.0% blocking chains
(117 Types A.a and A.b), based on Strategy C, PLUMBER
should warn developers to migrate the involved 56 inactive
blocking packages.

As of September 1 2021, PLUMBER located 48,325 de-
pendency change pairs <pu, pt> (i.e., a project deprecated
dependency pu and added a new dependency pt across
two consecutive npm snapshots). Figure 14 shows the oc-
currences of each dependency change pair M in different
projects during evolution (on average M = 2.15±3.50). For
1,081 out of 48,325 (2.2%) dependency change pairs <pu,
pt>, PLUMBER found migration keywords in the commit
messages on GitHub (e.g., “replace pu”) and identified the
addition of package pt in the corresponding code com-
mits as well. The 1,081 migration records appear at least
five times in different projects during evolution (M ≥
5). PLUMBER considered such dependency change pairs as
certain migration records. Among the 56 inactive blocking
packages in the 117 Types A.a and A.b pivotal blocking
chains, 43 of them (76.8%) can be migrated according to our
mined records.

It is worth noting that PLUMBER only concerned the
blocking chains induced by vulnerabilities with critical, high
or medium levels, and merged the remediation suggestions
that should be performed by the same package into one
report. In total, it submitted 268 remediation reports (73
reports using Strategy A, 98 reports using Strategy B and
97 reports using Strategy C) to packages’ issue trackers. To
arouse developers’ awareness, in the remediation reports,
we explained the vulnerability impacts on the npm ecosys-
tem and the benefits of dependency updates to the propa-
gation of vulnerability fixes. We evaluate the usefulness of
PLUMBER based on developers’ feedback.

Ethical Considerations. To avoid spamming the open-
source community and developers, we only remediated the

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

18

TABLE 11: Statistics of remediation reported by PLUMBER

Report Status Strategy A Strategy B Strategy C
♠ Vulnerabilities remediated using our
strategies 25 27 32

♣ Vulnerabilities under remediation
using our strategies 7 5 4

⋆ Remediation strategies confirmed,
but inducing incompatibility issues 9 18 0

• Developers were unwilling to create
backports 0 7 0

♦ False positive vulnerabilities checked
by developers 3 10 9

■ Inaccurate info in the vulnerability DB 1 1 0
▼ Do not care about vulnerabilities 7 12 3
▲ Reports pending 21 18 49

Confirmation rate = 47.4% (127/268) 56.2%(41/73) 51.0%(50/98) 37.1%(36/97)
Remediation rate = 66.1% (84/127) 61.0%(25/41) 54.0%(27/50) 88.9%(32/36)

More detailed info of reports is provided on http://plumber-npm.com/.

top 300 pivotal blocking packages and thoroughly validated
the information of reports generated by PLUMBER. We guar-
anteed that there were no editing errors in our remediation
reports and have checked the correctness of vulnerability
information (e.g., unique CVE identifier, severity level and
affected versions of vulnerable package). More importantly,
we manually validated if the affected downstream projects
could introduce the concerned vulnerability fix, combining
the npm dependency metadata with node-semver rules. All
the 268 remediation reports were submitted in compliance
with the projects’ contributing guidelines and licenses.

Results. Table 11 summarizes the statues of our reme-
diation reports. 127 reports (47.4%) were quickly confirmed
by developers, and 84 confirmed reports (66.1%) were later
remediated or were under remediation using our strategies.
22 reports (8.2%) had been rejected since the relevant vul-
nerabilities were considered as false positives or inaccurate
records in vulnerability DB through developers’ validation.
While in our 22 reported issues (8.2%), developers expressed
that they did not care about vulnerabilities. The other
reports were still pending, likely due to the less active
maintenance of the projects.

Impacts on boosting the propagation of vulnerability
fixes. In Table 12, #AVP’ and #ARP’ denote the number
of vulnerable paths and root projects that can introduce
vulnerability fixes after the concerned blocking chains being
remediated. #RD denotes the download count of package
versions having been remediated based on our suggestions
(recorded on https://www.npmjs.com/ as of December 23,
2021). We use these three metrics to estimate the impacts
of our submitted remediation reports on propagation of
vulnerability fixes.

After the 84 packages published their remediated ver-
sions according to our reports, in total, the involved vulner-
ability fixes can be propagated into 16,403 root projects via
92,469 vulnerable paths. It is worth noting that 15,719 vul-
nerable paths (17.0%) are remediated based on backporting
practices, while 14,425 paths (15.6%) get rid of vulnerabil-
ities by migrating inactive blocking packages. On average,
each remediated package version is receiving 72,678 down-
loads per week by the time of this work. The results indicate
the usefulness of PLUMBER in boosting the propagation of
vulnerability fixes in the ecosystem. It is thus necessary to
deploy PLUMBER to continuously capture the pivotal block-
ing chains as well as suggest proper remediation strategies
with impact analysis.

PLUMBER’s generated remediation reports have boosted the propa-
gation of vulnerability fixes into 16,403 root projects via 92,469
vulnerable paths. On average, each remediated package version
received 72,678 downloads per week.

Feedback on remediation reports generated by
PLUMBER. Different remediation strategies achieved differ-
ent confirmation rates (Stratgy A: 56.2%, Stratgy B: 51.0%
and Stratgy C: 37.1%). Most submitted reports received
developers’ positive feedback. In 45 reports, developers
were unwilling to remediate vulnerabilities because they
encountered challenges (e.g., incompatibility issues) during
the fixing process or did not care about security issues (see
discussions in Section 5.4). We discuss the representative
cases that reveal the usefulness of PLUMBER in five aspects:

• The responsive reports cover many well-known npm
projects. 25 (Types A.c and C) and 27 (Type B) pivotal
blocking chains were remediated by developers using
Strategies A and B, respectively. 32 packages migrated
the inactive blocking packages based on our remediation
Strategy C. The responsive reports cover many well-
known npm projects, such as Tensorflow/tfjs#5492 [29]
(Strategy A), Ethers.js#1782 [30] (Strategy B),
Googleapi#337 [55] (Strategy B), Google-gax#1062 [56]
(Strategy B), Google-cloud/storage#1538 [57] (Strategy
B), GoogleChrome/workbox#2912 [31] (Strategy C), and
Microsoft/just#555 [58] (Strategy C).

• Many remediation reports struck a chord with down-
stream packages. For example, Node-sqlite3 is a block-
ing package, which hinders the propagation of a vul-
nerability fix (CVE-2021-32803 with high severity) along
vulnerable paths. Our submitted remediation report
Node-sqlite3#1493 [59] (Strategy A) attracted 17 develop-
ers’ comments to request their dependency upgrades and
was linked to 16 real vulnerability issues of the down-
stream projects. A downstream user of Node-sqlite3
commented that: “It is package developers’/maintainers’ re-
sponsibilities to remove the vulnerabilities. Otherwise, such
effects on other packages like a cancer in the ecosystem.”

• Our remediation reports indeed aroused the pivotal pack-
ages’ awareness to backport to their lower version trains
to benefit the whole ecosystem. For example, in report
Peer-id#153 [60] (Strategy B), we suggested Peer-id to
backport to version 0.12.5, in order to mitigate the af-
fects of vulnerability CVE-2020-7720 on 450 vulnerable
paths. Encouragingly, this report was quickly confirmed
by developers and left a comment: “This vulnerability had
already been resolved since Peer-id@0.14.3. We typically don’t
maintain versions far back, but make an exception for this case
whose weekly download rate is rather high.”
In approach [1], Chinthanet et al. concluded that practi-
tioners should provide developers more awareness mech-
anisms to enable quicker planning of dependency up-
dates. This point of view is echoed by the above devel-
opers’ feedback in our study.

• Many projects were willing to migrate the inactive
blocking packages to remediate vulnerabilities. For ex-
ample, in report Image-cropper#42 [61] (Strategy C), we
suggested Image-cropper to replace the inactive block-
ing package Babel-cli that introduce vulnerability CVE-
2020-28469 with a high-quality package Webpack. After

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

19

TABLE 12: The impacts of our remediated reports on propagating vulnerability fixes
ID Issue Reports Strategy #AVP’ #ARP’ #RD ID Issue Reports Strategy #AVP’ #ARP’ #RD
1 glob-entries-plugin#19 C 576 565 1,539 138 browser-extension#463 C 143 25 1,148
2 storybook#15830 C 1,759 327 523,504 139 bst#677 C 97 61 1,808
3 ethers.js#1782 B 12,471 1,792 100,099 140 victory#1945 A 536 137 30,353
7 just#555 C 320 13 6,619 141 openVectorEditor#760 C 535 449 3,230
8 workbox#2912 C 297 31 2,425 143 amcharts4#3684 A 530 480 24,796
9 off-main-thread#46 A 2,922 2,528 596,269 147 fis3#1328 A 543 511 5,314
10 actionhero#1907 C 51 34 1,081 150 cross-fetch#112 B 1,083 704 148,135
11 assetgraph-builder#892 C 241 33 1,141 152 react-components#265 C 515 431 6,441
13 hads#65 C 37 11 1,797 154 release-it#794 B 511 487 18,580
14 node-windows#293 C 112 5 2,974 156 ibm-security#1083 C 508 440 1,383
18 swig-email-templates#50 C 71 53 2,525 157 jsonld.js#457 B 642 453 37,234
24 oc#1197 C 368 211 2,364 158 plugin-i18n-json#44 C 174 35 31,366
28 vue-cli#6632 C 163 71 2,509 163 node-jose#322 B 1,009 304 128,959
34 MQTT.js#1306 B 1,394 228 30,998 165 node-console-stamp#54 A 504 492 9,456
42 strider#1124 C 242 13 2,434 166 rendition#1361 C 502 434 2,837
44 universalviewer#808 C 234 11 2,820 169 easy-peasy#684 B 501 432 2,964
47 google-p12-pem#337 B 1,265 683 205,683 172 mammoth.js#290 A 543 334 10,773
57 react-native#31987 A 10,189 1,016 77,208 173 sequelize#13398 B 956 632 81,364
65 vf-core#1644 C 103 74 2,415 189 terminal-kit#182 B 482 442 7,620
69 pdfkit#1273 A 909 498 136,646 193 spectral#1755 B 475 455 2,559
75 rsuite#1852 C 778 613 3,969 194 auth0.js#1193 A 476 412 19,988
79 imodeljs#2066 C 36 6 1,111 195 powerapps-docs#2663 C 121 5 1,289
82 http-server#707 B 799 557 13,820 199 nodejs-storage#1538 B 783 398 72,336
86 azure-storage-node#691 A 754 625 25,460 204 apisauce#269 B 498 447 14,732
94 assetgraph#1187 C 15 13 1,701 206 xml-crypto#231 B 464 443 42,446
97 enact#2941 C 646 527 1,409 209 gax-nodejs#1062 B 678 475 128,095
102 js-libp2p-webrtc-star#374 A 741 332 1,546 211 iot-device-sdk-js#376 A 474 355 33,420
103 tedious#1297 B 606 553 51,840 213 node-sqlite3#1493 A 485 459 263,472
104 avatar-image-cropper#42 C 114 2 1,008 214 fabric#98 A 454 354 13,057
106 jupyterlab#10818 C 137 43 1,154 219 js-peer-id#153 B 2,788 290 6,986
111 syntax-highlighter#417 B 2,101 389 214,515 220 nestjs-mailgun#21 C 125 9 2,167
112 father#391 A 650 507 2,234 224 importers#136 A 598 433 4,730
116 spatial-navigation#104 C 571 490 1,731 231 DefinitelyTyped#55072 B 471 329 2,755
120 oas-kit#467 A 562 464 8,310 232 engine.io-client#676 B 2,452 668 53,578
122 lint-staged#995 B 592 398 530,750 234 z-schema#269 B 458 165 240,864
123 commitlint#2687 B 563 517 48,814 238 markdown-preview#101 B 440 313 5,378
125 patternfly-react#6153 C 561 479 1,459 239 ng2-rest#18 A 1,113 105 12,003
127 node-convict#396 B 613 540 19,981 243 celo-monorepo#8521 A 3,478 604 3,273
128 bundle-stats#1578 C 552 470 1,683 246 tfjs#5492 A 588 537 5,875
132 json-rpc-middleware#99 B 551 389 3,540 256 rollup-plugin-styles#188 A 420 420 15,707
133 rollup-plugin-postcss#386 A 549 530 149,887 260 node-xlsx#156 A 422 400 7,565
135 git-up#27 A 542 370 1,587,296 262 parse-server#7491 A 457 283 4,014

checking the historical migration record Babel-cli ⇒
Webpack (Commit#8616b1 [62] in Learn-webpack) pro-
vided by PLUMBER, developers accepted our remediation
suggestion.
Similar findings can be found in study [1]. Among the
5,417 projects investigated by Chinthanet et al., 1,389 of
them (25.64%) decided to remove vulnerable dependen-
cies to mitigate the secure risks. Instead of waiting for
the vulnerability fix, client projects might remove the
vulnerable package if they were able to find a similar one
as a replacement.

• Developers showed great interest in the PLUMBER tool.
For example, one developer left a comment in report
Xml-crypto#231 [63]: “I noticed that you have raised similar
issues in other code repositories. Are you using an automated
tool? It seems that the tool can help the vulnerability patches
propagate into our npm projects.” Besides, PLUMBER’s re-
mediation report Meow#195 [64] struck a chord with the
affected downstream packages. A developer supported
our suggestions for Meow and commented that: “Based
on the detailed issue reports, there exists more than 33,500
affected downstream projects. Would you be willing to slightly
compromise your principles in exchange for making a lot of
downstream users happy?”

Such feedback indicates that remediating pivotal block-
ing chains with proper strategies is indeed important to
and welcomed by real-world npm developers. Encouraged

by such comments, we are planning to release our tool for
public use to help build a healthy npm ecosystem.

47.4% of our remediation reports received positive feedback from
many well-known npm projects, such as Tensorflow/tfjs,
Ethers.js, Googleapi, and GoogleChrome/workbox, etc. These
reports indeed aroused the pivotal packages’ awareness to perform
dependency upgrades/backporting/migrations in order to remediate
vulnerabilities, benefiting the whole ecosystem. Besides, developers
showed interest in the PLUMBER tool and recognized its usefulness
in building a healthy npm ecosystem.

5.4 Discussions

Lessons learnt from developers’ feedback. Developers were
unwilling to resolve our remediation reports mainly because
of five cases: (1) they had weak awareness of vulnerability
affects and did not care about them; (2) dependency upgrades
induced incompatibility issues; (3) they were unwilling to create
backports to remediate vulnerabilities; (4) they only concerned the
exploitable vulnerability code; and (5) vulnerability DB recorded
inaccurate information.

Based on developers’ feedback, we can label the pack-
ages of Cases (1), (2) and (3) as improper ones to perform
remediation. PLUMBER regards the improper packages as
equivalent of inactive packages to derive more feasible
remediation strategies for blocking chains. Regarding Cases
(4) and (5), the remediation ability of PLUMBER can be fur-
ther improved, if vulnerability info correction and vulnerability

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

20

reachability analysis techniques are integrated into its archi-
tecture. Several approaches have been proposed to correct
vulnerability records [22] and identify the unexploitable
vulnerabilities [19–21], which provide technical references
for tool enhancement.
Backporting practices. PLUMBER’s remediation Strategy B
is inspired by backporting practices. Backporting requires
additional efforts from package developers, as it entails
transplanting important bug and vulnerability fixes to ear-
lier versions [8]. Downstream projects can directly benefit
from backported fixes without having to upgrade their
dependencies to higher major or minor versions. Thus, back-
porting practices of packages on the pivotal blocking chains
can significantly boost the propagation of vulnerability fixes
in the ecosystem.

In our study, we found an interesting phenomenon that
many developers were willing to support their lower major
releases for a period of time, after which they have no
backporting plans to avoid giving downstream packages a
false sense of security. Instead, they encourage downstream
users to abandon the old versions and bump to higher ones.
For example, in remediation report Angular-cli#21608 [65],
a developer express that “Angular-cli’s versions prior to
10.0.0 (released two years ago) are no longer supported, since
the backporting request goes against our maintenance policy: (a)
6 months of active support, during which regularly-scheduled up-
dates and patches are released; (b) 12 months of long-term support,
during which only critical fixes and security patches are released.”
According to developers’ feedback, PLUMBER gives higher
priority to request package developers to backport to their
lower versions that have been published within one year.

Similar empirical findings were given by Decan et al.
in work [8]. Their investigation for backporting practices in
open source community indicated that continued support of
lower major trains might have the adverse effect of delaying
the migration of dependents to the highest major release.
Since lower major releases are unlikely to be maintained
forever even when they benefit from backports, package
producers should devise and advertise a clear phase-out
strategy of lower major trains.
Noteworthy blocking chain cases. Among the top 300 block-
ing chains remediated in our study, we noticed two types of
interesting blocking chain cases:
• Multiple blocking chains share the same packages but in-

volve different vulnerabilities. On such blocking chains, each
package has different safe version sets corresponding
to different vulnerabilities. When deriving remediation
strategies, for each package, PLUMBER identify the inter-
section of safe versions for all the involved vulnerabil-
ities. Figure 15(a) shows three blocking chains passing
through the same packages but package sanitize-html
contain three vulnerabilities CVE-2021-26539, CVE-2021-
26540 and SNYK-JS-SANITIZE HTML-585892. Since each
vulnerability corresponds to a safe version set for
sanitize-html, to remediate all of them, PLUMBER sug-
gests postman-collection to publish version 3.4.*, in
which it upgrades sanitize-html from version 2.2.1 to
3.5.3 (the lowest version satisfying the intersection of three
safe versions). However, to avoid inducing incompatibil-
ity issues, in report postman-collection#1215 [66], de-
velopers finally decided to remediate two vulnerabilities

swagger
@0.5.0

postman-collection
@3.4.11

= 2.2.1^ 3.4.5

sanitize-html’s safe version set:

sanitize-html.Svula = { 2.3.1}

sanitize-html.Svulb = { 2.3.2}

sanitize-html.Svulc = { 3.5.3}

(a) Multiple blocking chains share the same package but involve different vulnerabilities

Vula: CVE-2021-26539

affects {< 2.3.1}

Vulb: CVE-2021-26540

affects {< 2.3.2}

Vulc: SNYK-JS-SANITIZE

HTML-585892
affects {< 3.5.3}

sanitize-html
@2.2.1

Blocking packageVulnerable package Intermediate package

Bvula (swagger@0.5.0, sanitize-html@2.2.1)

Bvulb (swagger@0.5.0, sanitize-html@2.2.1)

Bvulc (swagger@0.5.0, sanitize-html@2.2.1)

parse-server
@2.19.1

property
@1.5.1

property-expr
@2.0.1

Vuld: CVE-2020-7707

affects {< 2.1.3}

Vule: CVE-2020-36048

affects {< 1.7.1}

engine.io
@3.5.0

Vulf: CVE-2021-36448

affects {< 3.7.0}

yup
@0.27.0

react-imgpro
@0.27.0

^ 2.19.1

^ 2.19.1
^ 2.19.1

schema-to-yup
@1.10.0

lint-staged
@1.4.1

Bvuld (react-imgpro@0.27.0, property-expr@2.0.1)

Bvule (lint-staged@1.4.1, property@1.5.1)

Bvulf (schema-to-yup@1.10.0, engine.io@3.5.0)

(b) Multiple blocking chains intersect at an active package

Fig. 15: Illustrative examples of noteworthy blocking chains

(i.e., CVE-2021-26539 and CVE-2021-26540) by upgrading
sanitize-html to 2.3.2 rather than acrossing major ver-
sions.

• Multiple blocking chains intersect at an active package. In
the cases that multiple blocking chains intersect at an
active package, PLUMBER suggests the intersection to per-
form remediation by upgrading multiple dependencies.
Figure 15(b) shows an illustrative example. Three block-
ing chains intersect at parse-server@2.19.1, on which
parse-server are all specified with the open version
constraint ∧ 2.19.1. In report parse-server#7491 [67],
PLUMBER suggested parse-server to publish a version
2.19.* (2.19.* could be referenced by all the three block-
ing packages), in which it upgraded three dependencies
property-expr, property and engine.io to the corre-
sponding safe versions. Encouragingly, parse-server’s
backporting remediated the three blocking chains to-
gether, allowing three vulnerability fixes to be propagated
into 283 root projects via 457 dependency paths.

Responsibility for remediating pivotal blocking chains.
After deriving remediation strategies for pivotal blocking
chains, PLUMBER sends alert notifications to the issue track-
ers of certain packages that are feasible to update de-
pendencies. The customized issue reports with applicable
solutions can arouse developers’ awareness of mitigating
lags in vulnerability fix propagation. In our evaluation,
package developers’ feedback indicate the effectiveness of
our notification mechanism. However, the remediation re-
ports only reflect the authors’ personal views rather than
the organizational position. To build a long-term healthy
ecosystem, PLUMBER’s vision is to continuously report the
identified pivotal blocking chains together with remediation
strategies to the large-scale reporting entities such as CERT

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

21

(Computer Emergency Response Team)3. According to our
validated remediation reports, the entities can alert relevant
organizations or package vendors to perform the depen-
dency updates within a guaranteed time frame, on behalf of
the open-source community. Achieving acknowledgement
by the large-scale reporting entities is the direction for our
future efforts.
PLUMBER’s generality beyond the npm ecosystem. Our
methodology can be generalized to other programming
language ecosystems if two conditions below are satisfied:
• It is feasible to collect and model the metadata of pack-

age dependency relationships and vulnerabilities in the
ecosystem, which enables PLUMBER to continuously mon-
itor their evolution and identify blocking chains.

• The programming language ecosystem should resolve
package dependencies using the similar semantic version
syntax as npm (e.g., PyPI and Cargo). The version range
syntax allows flexibility, which enables projects to auto-
matically deploy the new versions of their required pack-
ages that satisfy the specified version range (highest avail-
able version installation rule). In this manner, PLUMBER
can boost the propagation of vulnerability fixes via open
constraints if the new remediated package versions are
released.

6 THREATS TO VALIDITY

Following the structure provided by Wohlin et al. [68], we
discuss the main threats to validity of our research.

Threats to external validity. The main external threat
is the generality of our results to other ecosystems. In this
study, we made all observations on npm packages. How-
ever, our analysis is applicable to other ecosystems that
have similar package management systems, e.g., PyPI for
Python and NuGet for the .NET. Additionally, as packages
evolve over time, our experiment results are limited to the
time period (August 1, 2020 - August 1, 2021) when we
conducted those experiments. Therefore, the findings may
not generalize well to all the projects. In the future, we
would like to include more projects and involve various
programming languages into our empirical study, so that
our findings would be more representative.

Threats to internal validity. Threats to internal validity
concern the external factors not considered in our study. The
vulnerability dataset used for our case study may not cover
all known vulnerabilities. To reduce the threat, we crawl
vulnerability reports from three recognized vulnerability
databases, i.e., GitHub Advisory DB, Snyk Vulnerability DB
and NPM Security Advisories and filtered out the duplicated
ones. The dataset covers 3,948 vulnerabilities, involving
2,289 vulnerable packages and 38,166 vulnerable package
versions. Hence, this threat has minimal influence on our
analysis results.

The second internal threat is the correctness and com-
pleteness of the remediation strategy taxonomy constructed
by our manual inspection in RQ3. Our study involved much
manual work. We understand that such a manual process is
subject to errors. To reduce the threat, we followed an open

3. A Computer Emergency Response Team (CERT) is a group of
information security experts responsible for the protection against,
detection of and response to an organization’s cybersecurity incidents.

coding procedure to inductively categorize the common
remediation strategies.

Threats to conclusion validity. Threats to conclusion
validity concern the reliability of the tools and methods we
have used in our paper. The vulnerability metadata used in
our empirical study is collected through a self-developed VP
model. Although tool development could have potentially
introduced bugs that might affect the results presented in
this paper, we tried our best to reduce the probability of
bugs. Since the vulnerability information from database is
usually described in plain text, collecting the metadata is an
error-prone process. For each vulnerability report, our VP
model needs to filter programming languages and identify
its unique identifier, affected package, affected package versions,
fix versions and severity level. To mitigate such threats, the
VP model took four months for three authors of this paper
who had over two years vulnerability analysis experience
to implement and test. The two experienced authors con-
ducted daily manual validation of vulnerability metadata.
Disagreements were reconciled with the third author joining
the discussions. The Cohen’s kappa for their data validation
is 0.92, indicating a near perfect inter-rater agreement.

7 RELATED WORK

The work most related to our study falls into three cate-
gories: studies on vulnerable dependencies, software ecosystems
and library package updates. This section covers a compre-
hensive portion of prior work on these topics and reflects
on how the work compares with ours.

Vulnerable Dependencies. Several studies [2, 10–
15, 23, 24] in the literature investigated vulnerabilities that
come from dependencies. In approaches [23] and [24],
researchers empirically studied the evolution and decay
of vulnerabilities in source code, and found that due
to the software code reuse and third-party libraries,
most vulnerabilities are recurring. Cox et al. introduced
metrics to qualify the “dependency freshness” of software
projects, to understand the relations between outdated
dependencies and vulnerabilities based on industry
benchmark. Their investigation results shown that the
projects using outdated dependencies four times as likely
to have security issues as opposed to the projects that were
up-to-date. Studies [2, 10, 11] investigated millions of npm
packages to analyze how and when these vulnerabilities
were discovered and fixed, and to what extent they
affected other packages. Zimmermann [11] pointed out
that a small proportion of individual vulnerable packages
could impact large parts of the entire ecosystem. Whereas
approaches [12–15] studied the evolution and impacts of
vulnerable packages in specific communities, including
Firefox, Docker Images, Apache HTTP Server and Tomcat,
and Proprietary Systems. They reported their findings and
provided guidelines for software maintainers and tool
developers to improve the process of dealing with security
issues.

Recent studies [19–22] were proposed to reduce the
false alarms for reporting vulnerable dependencies. Since
CVE reports are used to share information about software
vulnerabilities and provide a baseline for security mea-
sures, their correctness is crucial for detecting and patching

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

22

software vulnerabilities. Woo et al. [22] proposed a precise
mechanism V0FINDER for discovering the correct origin of
publicly reported software vulnerabilities, which can en-
hance the credibility of information provided by the CVEs.
Pashchenko et al. [17, 18] presented precise methodologies
for counting actually vulnerable dependencies, which com-
bined the code-based analysis of patches with information
on build, test, and update dates. Afterwards, the evaluation
on 25,767 Java libraries shown that the proposed method-
ology can reduce the number of false alerts for vulnerable
dependencies. Zapata et al. [19] assessed the security risks of
having vulnerabilities in dependent libraries by analyzing
call graphs of the vulnerable functions. They manually
validated 60 projects that depend on vulnerabilities, and
found that 73.3% of them were actually safe because they
did not make use of the vulnerable functionality of their
dependencies. In approaches [20, 21], Ponta et al. provided a
fine-grained assessment approach using static and dynamic
analysis to determine whether the located vulnerable code
would be reachable.

Since vulnerabilities can easily be propagated through
code clones, the vulnerable code clones are increasing in
conjunction with the open-source software, potentially con-
taminating many projects [69, 70]. Approaches [71, 72] are
proposed to efficiently and accurately detect vulnerable
code clones in large software projects. Kim et al. [71] de-
veloped a scalable tool VUDDY, leveraging function-level
granularity and a length-filtering technique to reduce the
number of signature comparisons. Such an efficient design
enables VUDDY to preprocess a billion lines of code in 14
hour and 17 minutes, after which it requires a few seconds to
identify code clones. Besides, they also presented a security-
aware abstraction technique, which extends the scope of
VUDDY to identify variants of known vulnerabilities with
high accuracy. The evaluation results demonstrated its ef-
fectiveness in detecting zero-day vulnerabilities in widely
used software projects. Jiang et al. [72] proposed a scalable
binary code clone detection framework QUICKBCC for vul-
nerability scanning. The framework was built on the idea of
extracting semantics from vulnerable binaries both before
and after security patches, and comparing them to target
binaries. In order to improve performance, they created a
signature based on the changes between the pre- and post-
patched binaries, and implemented a filtering process when
comparing the signatures to the target binaries. QUICKBCC
outperformed other approaches in terms of performance
when detecting well known vulnerabilities with acceptable
level of accuracy.

The study most relevant to our work is done by
Chinthanet et al [1]. The researchers conducted an empirical
investigation to identify lags that may occur between client
project-side fixing releases and package-side fixing releases.
Through a preliminary study on 231 package-side fixing
releases, they observed that nearly 85.72% of them bundled
commits that were unrelated to a vulnerability fix. Even if
the package-side fixing release was quick, the stale clients
require additional efforts to introduce the fixes. This work
lays the groundwork for mitigating propagation lags in an
ecosystem. Compared with all the work mentioned above,
our study is different in terms of the research scope and
study method. In this paper, we introduced the concepts

of blocking packages and blocking chains, and focused
on how to remediate them for facilitating the propagation
of vulnerability fixes. In addition to a thorough empirical
study to characterize the blocking chains, we also propose
a technique to automatically monitor and generate remedi-
ation strategies for pivotal packages.

Software Ecosystems. Software ecosystem research has
been rapidly growing in the past years. Several studies
compared different ecosystems. Decan et al. [73, 74] con-
ducted a quantitative empirical analysis of the similarities
and differences between the evolution of package depen-
dency networks for seven package ecosystems: Cargo for
Rust, CPAN for Perl, CRAN for R, npm for JavaScript,
NuGet for the .NET, Packagist for PHP, and RubyGems for
Ruby. They introduced novel metrics to capture the growth,
changeability, resuability and fragility of these dependency
networks, and use these metrics to analyse and compare
their evolution. Approaches [75–77] pointed out the fragility
of software ecosystems and gave insights on the challenges
software developers face. They examined the Eclipse, CPAN
and npm ecosystems, focusing on what practices cause API
breakages. They found that developers in fact struggle with
dependency updates, even if their projects were affected by
vulnerable packages.

Approaches [16, 78–81] specifically focused on the npm
ecosystem. In work [78, 79], researchers conducted empirical
investigations with millions of npm packages to understand
(i) the widespread phenomena of micro-packages, (ii) the
size of dependencies inherited by a micro-package and (iii)
the costs (ie., fetch, install, load times) of using a micro-
package. Kula et al. [78] suggested developers to be aware of
how sensitive their third-party dependencies were to critical
changes in the software ecosystem. Abdalkareem et al. [79]
suggested that npm developers should be careful about
the selection of packages and how to keep them updated.
Jafari et al. [80] defined a set of dependency management
issues (i.e., dependency smells) in the npm ecosystem. They
then conducted surveys with practitioners, to identify and
quantify seven dependency smells with varying degrees
of popularity and investigate why smells are introduced.
Wittern et al. [81] investigated the evolution of npm using
metrics such as dependencies between packages, download
count, and usage count in JavaScript applications. Their
findings helped understand the evolution of npm, design
better package recommendation engines, and can help de-
velopers understand how their packages are being used. Liu
et al. [16] proposed a knowledge graph-based dependency
resolution, which resolved the inner dependency relations
of dependency trees, and investigated the security threats
from vulnerabilities in dependency trees at a large scale. To
the best of our knowledge, our work is the first attempt to
diagnose and monitor the lags in propagation of vulnerabil-
ity fixes in the npm ecosystem.

Library/Package Updates. Recent studies [25–28, 76, 82–
91] focused on upgrading dependencies. Kula et al. [25] an-
alyzed 850,000 library migrations in Maven ecosystem, and
found that the projects heavily depended on these libraries,
and nearly 81.5% projects had outdated libraries. Based on
interviews conducted with developers, the study pointed
out that 69% of participants tended to be not aware of their
vulnerable dependencies. Mirhosseini et al. [26] studied

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

23

about the pull request notifications to update dependencies.
Their results showed that pull requests and badge notifi-
cations could reduce lags, however, developers were often
overwhelmed by lots of notifications. Approaches [27, 28]
studied how prevalent is semantic versioning adopted by
software projects and its impacts on dependency upgrades.
Dietrich et al. [27] investigated over 70 million dependencies
across 17 different package managers. They did not find
evidence that projects switch to semantic versioning on a
large scale. Raemaekers et al. [28] performed an empirical
study on potential rework caused by breaking changes in
library releases and found that breaking changes had a
significant impact on client libraries.

As outlined in work [76, 82–85], dependency manage-
ment should include quantitative cost-benefit analysis for
assisting developers to make confident decisions in up-
dating dependency versions. Approaches [86–89] studied
the API evolution in the ecosystem and characterized the
impacts of evolution on dependency upgrades. To support
automated upgrades, Foo et al. [90] and McCamant et
al. [91] proposed static analysis techniques for automatically
and efficiently checking if a library update introduced API
incompatibility issues. The above work can guide further
research into better practices for automated dependency
management. Our work focus on how to update pivotal
packages’ version constraints based on semantic versioning
mechanism for vulnerability remediation. Our study com-
plemented the findings of prior work, with the similar goal
of encouraging developers to update dependencies.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we empirically studied the scale of packages
that block the propagation of vulnerability fixes in npm
ecosystem. By digging into the evolution history of blocking
chains, we characterize their common remediation patterns,
which can shed light on mitigating fix propagation lags. We
refined our empirical findings into a technique, to derive
effective remediation strategies for pivotal packages. The
evaluation demonstrated the effectiveness of our efforts as a
tool implementation PLUMBER in boosting the propagation
of vulnerability fixes in the ecosystem.

In the future, we plan to improve the performance of
PLUMBER in four aspects: (1) Identifying unexploitable vul-
nerabilities. To effectively reduce the false alerts, PLUMBER
should integrate more precise program analysis techniques
in order to identify the vulnerable dependencies that could
not be exploited. (2) Compatibility analysis. To avoid inducing
incompatibility issues, PLUMBER should identify proper safe
versions of packages without API breaking changes, when
deriving remediation strategies. (3) Correcting vulnerability
information. Since the vulnerability database may provide in-
exact information (e.g., affected versions of vulnerable pack-
age), PLUMBER should correct the vulnerability information
based on effective data mining techniques. (4) Generalizing
PLUMBER to other ecosystems. PLUMBER should model and
collect the metadata from other ecosystems that resolving
dependencies using similar semantic version syntax as npm
(e.g., PyPI and Cargo), in order to generalize our technique
to other programming language communities.

ACKNOWLEDGMENT

The authors express their thanks to anonymous reviewers
for their constructive comments. This work is supported by
National Grand R&D Plan (Grant No. 2020AAA0103504),
the National Natural Science Foundation of China (Grant
Nos. 61932021, 62141210, 61902056), the Major Key Project
of PCL (Grant No. PCL2021A06), the Hong Kong RGC/GRF
grant 16207120, MSRA grant, ITF grant (MHP/055/19,
PiH/255/21), Research Grants Council (RGC) Research Im-
pact Fund under Grant R5034-18, the Leading-edge Technol-
ogy Program of Jiangsu Natural Science Foundation (Grant
No. BK20202001), Open Fund of State Key Lab. for Novel
Software Technology, Nanjing University (KFKT2021B01),
and 111 Project (B16009). The authors would like to thank
the support from the Collaborative Innovation Center of
Novel Software Technology and Industrialization, Jiangsu,
China.

REFERENCES

[1] B. Chinthanet, R. G. Kula, S. McIntosh, T. Ishio, A. Ihara, and
K. Matsumoto, “Lags in the Release, Adoption, and Propagation
of npm Vulnerability Fixes,” Empirical Software Engineering, vol. 26,
no. 3, pp. 1–28, 2021.

[2] A. Decan, T. Mens, and E. Constantinou, “On the Impact of Se-
curity Vulnerabilities in the npm Package Dependency Network,”
in Proceedings of the 15th International Conference on Mining Software
Repositories (MSR), 2018, pp. 181–191.

[3] X. Sun, T. Zhou, R. Wang, Y. Duan, L. Bo, and J. Chang, “Experi-
ence Report: Investigating Bug Fixes in Machine Learning Frame-
works/Libraries,” Frontiers of Computer Science, vol. 15, no. 6, pp.
1–16, 2021.

[4] J. Hu, L. Huang, T. Sun, Y. Fan, W. Hu, and H. Zhong, “Proactive
Planning of Bandwidth Resource Using Simulation-based What-if
Predictions for Web Services in the Cloud,” Frontiers of Computer
Science, vol. 15, no. 1, pp. 1–28, 2021.

[5] “CVE-2021-28918,” https://nvd.nist.gov/vuln/detail/CVE-2021-
28918, 2021, accessed: 2021-08-01.

[6] “npm Audit,” https://docs.npmjs.com/cli/v6/commands/npm-
audit, 2021, accessed: 2021-08-01.

[7] “Dependabot,” https://dependabot.com/, 2021, accessed: 2021-
08-01.

[8] A. Decan, T. Mens, A. Zerouali, and C. De Roover, “Back to
the Past–Analysing Backporting Practices in Package Dependency
Networks,” IEEE Transactions on Software Engineering, 2021.

[9] “Mqtt.js#1306,” https://github.com/mqttjs/MQTT.js/issues/
1306, 2021, accessed: 2021-08-01.

[10] R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee, “Identifying Open-
source License Violation and 1-day Security Risk at Large Scale,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2169–2185.

[11] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small
World with High Risks: A Study of Security Threats in the
npm Ecosystem,” in 28th USENIX Security Symposium (USENIX
Security), 2019, pp. 995–1010.

[12] F. Massacci, S. Neuhaus, and V. H. Nguyen, “After-life Vulner-
abilities: A Study on Firefox Evolution, Its Vulnerabilities, and
Fixes,” in International Symposium on Engineering Secure Software
and Systems. Springer, 2011, pp. 195–208.

[13] A. Zerouali, V. Cosentino, T. Mens, G. Robles, and J. M. Gonzalez-
Barahona, “On the Impact of Outdated and Vulnerable Javascript
Packages in Docker Images,” in 2019 IEEE 26th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2019, pp. 619–623.

[14] V. Piantadosi, S. Scalabrino, and R. Oliveto, “Fixing of Security
Vulnerabilities in Open Source Projects: A Case Study of Apache
Http Server and Spache Tomcat,” in 2019 12th IEEE Conference on
software testing, validation and verification (ICST). IEEE, 2019, pp.
68–78.

[15] M. Cadariu, E. Bouwers, J. Visser, and A. van Deursen, “Tracking
Known Security Vulnerabilities in Proprietary Software Systems,”
in 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). IEEE, 2015, pp. 516–519.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://nvd.nist.gov/vuln/detail/CVE-2021-28918
https://nvd.nist.gov/vuln/detail/CVE-2021-28918
https://docs.npmjs.com/cli/v6/commands/npm-audit
https://docs.npmjs.com/cli/v6/commands/npm-audit
https://dependabot.com/
https://github.com/mqttjs/MQTT.js/issues/1306
https://github.com/mqttjs/MQTT.js/issues/1306

24

[16] C. Liu, S. Chen, L. Fan, B. Chen, Y. Liu, and X. Peng, “Demystifying
the Vulnerability Propagation and Its Evolution via Dependency
Trees in the npm Ecosystem,” 44th International Conference on
Software Engineering (ICSE), 2022.

[17] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vulnerable Open Source Dependencies: Counting Those That
Matter,” in Proceedings of the 12th ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM),
2018, pp. 1–10.

[18] I. Pashchenko, H. Plate, E. Ponta, A. Sabetta, and F. Massacci,
“Vuln4real: A Methodology for Counting Actually Vulnerable
Dependencies,” IEEE Transactions on Software Engineering, vol. 48,
pp. 1592–1609, 2020.

[19] R. E. Zapata, R. G. Kula, B. Chinthanet, T. Ishio, K. Matsumoto,
and A. Ihara, “Towards Smoother Library Migrations: A Look
at Vulnerable Dependency Migrations at Function Level for npm
Javascript Packages,” in International Conference on Software Main-
tenance and Evolution (ICSME), 2018, pp. 559–563.

[20] H. Plate, S. E. Ponta, and A. Sabetta, “Impact Assessment for
Vulnerabilities in Open-source Software Libraries,” in 2015 IEEE
International Conference on Software Maintenance and Evolution (IC-
SME). IEEE, 2015, pp. 411–420.

[21] S. E. Ponta, H. Plate, and A. Sabetta, “Beyond Metadata: Code-
centric and Usage-based Analysis of Known Vulnerabilities in
Open-source Software,” in 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2018, pp. 449–
460.

[22] S. Woo, D. Lee, S. Park, H. Lee, and S. Dietrich, “V0Finder:
Discovering the Correct Origin of Publicly Reported Software
Vulnerabilities,” in 30th USENIX Security Symposium (USENIX
Security), 2021, pp. 3041–3058.

[23] M. Di Penta, L. Cerulo, and L. Aversano, “The Life and Death of
Statically Detected Vulnerabilities: An Empirical Study,” Informa-
tion and Software Technology, vol. 51, no. 10, pp. 1469–1484, 2009.

[24] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,
“Detection of Recurring Software Vulnerabilities,” in Proceedings
of the IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2010, pp. 447–456.

[25] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue,
“Do Developers Update Their Library Dependencies?” Empirical
Software Engineering, vol. 23, no. 1, pp. 384–417, 2018.

[26] S. Mirhosseini and C. Parnin, “Can Automated Pull Requests
Encourage Software Developers to Upgrade Out-of-date Depen-
dencies?” in 2017 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). IEEE, 2017, pp. 84–94.

[27] J. Dietrich, D. Pearce, J. Stringer, A. Tahir, and K. Blincoe, “De-
pendency Versioning in the Wild,” in 2019 IEEE/ACM 16th Inter-
national Conference on Mining Software Repositories (MSR). IEEE,
2019, pp. 349–359.

[28] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic Version-
ing and Impact of Breaking Changes in the Maven Repository,”
Journal of Systems and Software, vol. 129, pp. 140–158, 2017.

[29] “Tensorflow/tfjs,” https://github.com/tensorflow/tfjs, 2021, ac-
cessed: 2021-08-01.

[30] “Ethers.js,” https://github.com/ethers-io/ethers.js, 2021, ac-
cessed: 2021-08-01.

[31] “Googlechrome/workbox,” https://github.com/
GoogleChrome/workbox, 2021, accessed: 2021-08-01.

[32] “Github Advisory DB,” https://github.com/advisories, 2021, ac-
cessed: 2021-08-01.

[33] “Snyk Vulnerability DB,” https://snyk.io/vuln/, 2021, accessed:
2021-08-01.

[34] “Npm Security Advisories,” https://github.com/npm/npm/
security/advisories, 2021, accessed: 2021-08-01.

[35] “CVSS Score,” https://www.first.org/cvss/, 2021, accessed: 2021-
08-01.

[36] “node-semver,” https://github.com/npm/node-semver, 2021,
accessed: 2021-08-01.

[37] “Ethers.js#1439,” https://github.com/ethers-io/ethers.js/issues/
1439, 2021, accessed: 2021-08-01.

[38] “npm Public Registry,” https://docs.npmjs.com/cli/v7/using-
npm/registry, 2021, accessed: 2021-08-01.

[39] M. L. McHugh, “Interrater reliability: the kappa statistic,” Bio-
chemia medica, vol. 22, no. 3, pp. 276–282, 2012.

[40] “Truffle#1147,” https://github.com/trufflesuite/truffle/issues/
1147, 2021, accessed: 2021-08-01.

[41] “Swap-core,” https://github.com/pancakeswap/pancake-swap-
core, 2021, accessed: 2021-08-01.

[42] “semver,” https://github.com/advisories, 2021, accessed: 2021-
08-01.

[43] Z. Chen, Y. Cao, Y. Liu, H. Wang, T. Xie, and X. Liu, “A Compre-
hensive Study on Challenges in Deploying Deep Learning Based
Software,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2020, pp. 750–762.

[44] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco, and
P. Tonella, “Taxonomy of Real Faults in Deep Learning Systems,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering (ICSE), 2020, pp. 1110–1121.

[45] J. W. Creswell, Qualitative Inquiry and Research Design: Choosing
Among Five Approaches (3rd Edition). SAGE Publications, Inc.,
2013.

[46] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “When and
How to Make Breaking Changes: Policies and Practices in 18
Open Source Software Ecosystems,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 30, no. 4, pp. 1–56,
2021.

[47] H. He, R. He, H. Gu, and M. Zhou, “A Large-scale Empirical Study
on Java Library Migrations: Prevalence, Trends, and Rationales,”
in Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2021, pp. 478–490.

[48] “CVE-2021-23624,” https://security.snyk.io/vuln/SNYK-JS-
DOTTY-1577292, 2021, accessed: 2021-08-01.

[49] “CVE-2021-25912,” https://security.snyk.io/vuln/SNYK-JS-
DOTTY-1069933, 2021, accessed: 2021-08-01.

[50] “Meteorite#299,” https://github.com/oortcloud/meteorite/
issues/299, 2021, accessed: 2021-08-01.

[51] “React-reality#1,” https://github.com/rhdeck/react-reality/
issues/1, 2021, accessed: 2021-08-01.

[52] “Configtest,” https://github.com/codeconsole/configtest, 2021,
accessed: 2021-08-01.

[53] “Mapbox#7,” https://github.com/mapbox/github-release-tools/
issues/7, 2021, accessed: 2021-08-01.

[54] “Opac#1034,” https://github.com/scieloorg/opac/issues/1034,
2021, accessed: 2021-08-01.

[55] “Googleapis,” https://github.com/googleapis/googleapis, 2021,
accessed: 2021-08-01.

[56] “Google-gax,” https://github.com/googleapis/gax-nodejs, 2021,
accessed: 2021-08-01.

[57] “Google-cloud/storage,” https://github.com/googleapis/
nodejs-storage, 2021, accessed: 2021-08-01.

[58] “Microsoft/just,” https://github.com/microsoft/just, 2021, ac-
cessed: 2021-08-01.

[59] “Node-sqlite3#1493,” https://github.com/mapbox/node-
sqlite3/issues/1493, 2021, accessed: 2021-08-01.

[60] “Peer-id#153,” https://github.com/libp2p/js-peer-id/issues/
153, 2021, accessed: 2021-08-01.

[61] “Image-cropper#42,” https://github.com/likeconan/react-
avatar-image-cropper/issues/42, 2021, accessed: 2021-08-01.

[62] “Commit#8616b1 in learn-webpack,” https:
//github.com/AlNuN/learn-webpack/commit/
837c45edfadbac033fa7f1cb88eb420d098616b1, 2021, accessed:
2021-08-01.

[63] “Xml-crypto#231,” https://github.com/yaronn/xml-crypto/
issues/231, 2021, accessed: 2021-08-01.

[64] “Meow#195,” https://github.com/sindresorhus/meow/issues/
195, 2021, accessed: 2021-08-01.

[65] “Angular-cli#21608,” https://github.com/angular/angular-cli/
issues/21608, 2021, accessed: 2021-08-01.

[66] “Xml-crypto#1215,” https://github.com/postmanlabs/postman-
collection/issues/1215, 2021, accessed: 2021-08-01.

[67] “Cssnano#7491,” https://github.com/parse-community/parse-
server/issues/7491, 2021, accessed: 2021-08-01.

[68] V. R. Basili, R. W. Selby, and D. H. Hutchens, “Experimentation in
Software Engineering,” IEEE Transactions on Software Engineering,
no. 7, pp. 733–743, 1986.

[69] W. Cai, F. He, X. Lv, and Y. Cheng, “A Semi-transparent Selective
Undo Algorithm for Multi-user Collaborative Editors,” Frontiers of
Computer Science, vol. 15, no. 5, pp. 1–17, 2021.

[70] S. Khoshnevis, “A Search-based Identification of Variable Mi-
croservices for Enterprise SaaS,” Frontiers of Computer Science,
vol. 17, no. 3, pp. 1–16, 2023.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://github.com/tensorflow/tfjs
https://github.com/ethers-io/ethers.js
https://github.com/GoogleChrome/workbox
https://github.com/GoogleChrome/workbox
https://github.com/advisories
https://snyk.io/vuln/
https://github.com/npm/npm/security/advisories
https://github.com/npm/npm/security/advisories
https://www.first.org/cvss/
https://github.com/npm/node-semver
https://github.com/ethers-io/ethers.js/issues/1439
https://github.com/ethers-io/ethers.js/issues/1439
https://docs.npmjs.com/cli/v7/using-npm/registry
https://docs.npmjs.com/cli/v7/using-npm/registry
https://github.com/trufflesuite/truffle/issues/1147
https://github.com/trufflesuite/truffle/issues/1147
https://github.com/pancakeswap/pancake-swap-core
https://github.com/pancakeswap/pancake-swap-core
https://github.com/advisories
https://security.snyk.io/vuln/SNYK-JS-DOTTY-1577292
https://security.snyk.io/vuln/SNYK-JS-DOTTY-1577292
https://security.snyk.io/vuln/SNYK-JS-DOTTY-1069933
https://security.snyk.io/vuln/SNYK-JS-DOTTY-1069933
https://github.com/oortcloud/meteorite/issues/299
https://github.com/oortcloud/meteorite/issues/299
https://github.com/rhdeck/react-reality/issues/1
https://github.com/rhdeck/react-reality/issues/1
https://github.com/codeconsole/configtest
https://github.com/mapbox/github-release-tools/issues/7
https://github.com/mapbox/github-release-tools/issues/7
https://github.com/scieloorg/opac/issues/1034
https://github.com/googleapis/googleapis
https://github.com/googleapis/gax-nodejs
https://github.com/googleapis/nodejs-storage
https://github.com/googleapis/nodejs-storage
https://github.com/microsoft/just
https://github.com/mapbox/node-sqlite3/issues/1493
https://github.com/mapbox/node-sqlite3/issues/1493
https://github.com/libp2p/js-peer-id/issues/153
https://github.com/libp2p/js-peer-id/issues/153
https://github.com/likeconan/react-avatar-image-cropper/issues/42
https://github.com/likeconan/react-avatar-image-cropper/issues/42
https://github.com/AlNuN/learn-webpack/commit/837c45edfadbac033fa7f1cb88eb420d098616b1
https://github.com/AlNuN/learn-webpack/commit/837c45edfadbac033fa7f1cb88eb420d098616b1
https://github.com/AlNuN/learn-webpack/commit/837c45edfadbac033fa7f1cb88eb420d098616b1
https://github.com/yaronn/xml-crypto/issues/231
https://github.com/yaronn/xml-crypto/issues/231
https://github.com/sindresorhus/meow/issues/195
https://github.com/sindresorhus/meow/issues/195
https://github.com/angular/angular-cli/issues/21608
https://github.com/angular/angular-cli/issues/21608
https://github.com/postmanlabs/postman-collection/issues/1215
https://github.com/postmanlabs/postman-collection/issues/1215
https://github.com/parse-community/parse-server/issues/7491
https://github.com/parse-community/parse-server/issues/7491

25

[71] S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A Scalable Approach
for Vulnerable Code Clone Discovery,” in 2017 IEEE Symposium on
Security and Privacy (S&P). IEEE, 2017, pp. 595–614.

[72] H. Jang, K. Yang, G. Lee, Y. Na, J. D. Seideman, S. Luo, H. Lee,
and S. Dietrich, “QuickBCC: Quick and Scalable Binary Vulnerable
Code Clone Detection,” in IFIP International Conference on ICT
Systems Security and Privacy Protection. Springer, 2021, pp. 66–
82.

[73] A. Decan, T. Mens, and P. Grosjean, “An Empirical Comparison
of Dependency Network Evolution in Seven Software Packaging
Ecosystems,” Empirical Software Engineering, vol. 24, no. 1, pp. 381–
416, 2019.

[74] A. Decan, T. Mens, and M. Claes, “An Empirical Comparison
of Dependency Issues in OSS Packaging Ecosystems,” in 2017
IEEE 24th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2017, pp. 2–12.

[75] C. Bogart, C. Kästner, and J. Herbsleb, “When It Breaks, It Breaks:
How Ecosystem Developers Reason About the Stability of De-
pendencies,” in 2015 30th IEEE/ACM International Conference on
Automated Software Engineering Workshop (ASEW). IEEE, 2015, pp.
86–89.

[76] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to Break an
API: Cost Negotiation and Community Values in Three Software
Ecosystems,” in Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, 2016, pp.
109–120.

[77] C. Xu, Y. Qin, P. Yu, C. Cao, and J. Lv, “Theories and Techniques
for Growing Software: Paradigm and Beyond,” SCIENTIA SINICA
Informationis, vol. 50, pp. 1595–1611, 2020.

[78] R. G. Kula, A. Ouni, D. M. German, and K. Inoue, “On the Impact
of Micro-packages: An Empirical Study of the npm Javascript
Ecosystem,” arXiv preprint arXiv:1709.04638, 2017.

[79] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,
“Why Do Developers Use Trivial Packages? An Empirical Case
Study on npm,” in Proceedings of the 2017 11th joint meeting on
Foundations of Software Engineering, 2017, pp. 385–395.

[80] A. J. Jafari, D. E. Costa, R. Abdalkareem, E. Shihab, and N. Tsan-
talis, “Dependency Smells in Javascript Projects,” IEEE Transac-
tions on Software Engineering, 2021.

[81] E. Wittern, P. Suter, and S. Rajagopalan, “A Look at the Dynamics
of the Javascript Package Ecosystem,” in Proceedings of the 13th
International Conference on Mining Software Repositories (MSR), 2016,
pp. 351–361.

[82] S. Raemaekers, A. Van Deursen, and J. Visser, “Measuring Soft-
ware Library Stability Through Historical Version Analysis,” in
28th IEEE International Conference on Software Maintenance (ICSM).
IEEE, 2012, pp. 378–387.

[83] Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng, Y. Liu,
and Y. Wu, “An Empirical Study of Usages, Updates and
Risks of Third-party Libraries in Java Projects,” arXiv preprint
arXiv:2002.11028, 2020.

[84] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me
updated: An Empirical Study of Third-party Library Updatability
on Android,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2017, pp. 2187–2200.

[85] I. J. M. Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and
A. E. Hassan, “Analyzing ad Library Updates in Android Apps,”
IEEE Software, vol. 33, no. 2, pp. 74–80, 2016.

[86] A. Hora, R. Robbes, N. Anquetil, A. Etien, S. Ducasse, and M. T.
Valente, “How Do Developers React to API Evolution? The Pharo
Ecosystem Case,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2015, pp. 251–260.

[87] A. A. Sawant, R. Robbes, and A. Bacchelli, “On the Reaction to
Deprecation of Clients of 4+ 1 Popular Java APIs and the JDK,”
Empirical Software Engineering, vol. 23, no. 4, pp. 2158–2197, 2018.

[88] J. Henkel and A. Diwan, “Catchup! Capturing and Replaying
Refactorings to Support API Evolution,” in Proceedings of the 27th
International Conference on Software Engineering (ICSE), 2005, pp.
274–283.

[89] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella,
“How the Apache Community Upgrades Dependencies: An Evo-
lutionary Study,” Empirical Software Engineering, pp. 1275–1317,
2015.

[90] D. Foo, H. Chua, J. Yeo, M. Y. Ang, and A. Sharma, “Efficient
Static Checking of Library Updates,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (ESEC/FSE),
2018, pp. 791–796.

[91] S. McCamant and M. D. Ernst, “Predicting Problems Caused by
Component Upgrades,” in Proceedings of the 9th European soft-
ware engineering conference held Jointly with 11th ACM SIGSOFT
International Symposium on Foundations of Software Engineering
(ESEC/FSE), 2003, pp. 287–296.

Ying Wang received her doctoral degree in soft-
ware engineering from Northeastern University,
China, in 2019. She is currently an associate
professor at the Software College, Northeast-
ern University, China. Her research interests in-
clude program analysis, dependency manage-
ment, and software ecosystems. Her research
work has been regularly published in top con-
ferences and journals in the research commu-
nities of software engineering, including ICSE,
ESEC/FSE, ASE, and TSE and has received

ICSE 2021 ACM SIGSOFT Distinguished Paper Award. She received
Outstanding Doctoral Dissertation Award of Liaoning province (2021),
and Nominees Award for Outstanding Doctoral Dissertation of China
Computer Federation (CCF) in 2020. She joined Microsoft Research
Asia StarTrack Program (2020). More information about her can be
found at: https://wangying-neu.github.io/.

Peng Sun is currently a Master student at the
Software College, Northeastern University, un-
der the supervision of Prof. Zhiliang Zhu. His
main research interests include program anal-
ysis, dependency management, and software
testing.

Lin Pei is currently a Master student at the Soft-
ware College, Northeastern University, under the
supervision of Prof. Hai Yu. His main research
interests include program analysis, dependency
management, and software testing.

Yue Yu is an associate professor in the Col-
lege of Computer at National University of De-
fense Technology (NUDT). He received his Ph.D.
degree in Computer Science from NUDT in
2016. He has won Outstanding Ph.D. Thesis
Award from Hunan Province. His research find-
ings have been published on ICSE, FSE, ASE,
TSE, MSR, IST, ICSME, ICDM and ESEM. His
current research interests include software en-
gineering, data mining and computer-supported
cooperative work.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

26

Chang Xu received his doctoral degree in com-
puter science and engineering from The Hong
Kong University of Science and Technology,
Hong Kong, China. He is a full professor with the
State Key Laboratory for Novel Software Tech-
nology and Department of Computer Science
and Technology at Nanjing University. He partic-
ipates actively in program and organizing com-
mittees of major international software engineer-
ing conferences. He co-chaired the MIDDLE-
WARE 2013 Doctoral Symposium, FSE 2014

SEES Symposium, and COMPSAC 2017 SETA Symposium. His re-
search interests include big data software engineering, intelligent soft-
ware testing and analysis, and adaptive and autonomous software sys-
tems. He is an IEEE/ACM senior member.

Shing-Chi Cheung received his Bachelor’s de-
gree in Electrical and Electronic Engineering
from the University of Hong Kong, and his PhD
degree in Computing from the Imperial College
London. After doctoral graduation, he joined the
Hong Kong University of Science and Tech-
nology (HKUST) where he is a professor of
Computer Science and Engineering. He founded
the CASTLE research group at HKUST and
co-founded in 2006 the International Workshop
on Automation of Software Testing (AST). He

serves on the editorial board of Science of Computer Programming
(SCP) and Journal of Computer Science and Technology (JCST). He
was an editorial board member of the IEEE Transactions on Software
Engineering (TSE, 2006-9) and Information and Software Technology
(IST, 2012-5). He participates actively in the program and organizing
committees of major international software engineering conferences.
He chaired the 19th Asia-Pacific Software Engineering Conference
(APSEC) in 1996, 1997 and 2012. He was the General Chair of the
22nd ACM SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE 2014). He is an extended member of the
ACM SIGSOFT executive committee. He owns four patents in China
and the United States. His research interests lie in boosting the quality of
software applications using program analysis, testing, debugging, syn-
thesis, repository mining, and artificial intelligence. Target applications
include Android apps, open-source software, deep learning systems,
smart contracts and spreadsheets. He is an IEEE Fellow, a distinguished
member of the ACM and a fellow of the British Computer Society.

Hai Yu received a B.E. degree in Electronic Engi-
neering from Jilin University, China, in 1993 and
a PhD degree in Computer Software and Theory
from Northeastern University, China, in 2006.
He is currently an Associate Professor of Soft-
ware Engineering at the Northeastern University,
China. His research interests include complex
networks, chaotic encryption, software testing,
software refactoring, and software architecture.
At present, he serves as an Associate Editor
for the International Journal of Bifurcation and

Chaos, Guest Editor for Entropy, and Guest Editor for the Journal of
Applied Analysis and Computation. In addition, he was a Lead Guest
Editor for Mathematical Problems in Engineering during 2013. Moreover,
he has served different roles at several international conferences, such
as Associate Chair for the 7th IWCFTA in 2014, Program committee
Chair for the 4th IWCFTA in 2010, Chair of the Best Paper Award
Committee at the 9th International Conference for Young Computer
Scientists in 2008, and Program committee member for the 3rd − 13th

IWCFTA and the 5th Asia Pacific Workshop on Chaos Control and
Synchronization.

Zhiliang Zhu received an M.S. degree in Com-
puter Applications and a PhD degree in Com-
puter Science from Northeastern University,
China. He is currently a full professor at Soft-
ware College, Northeastern University, China.
His main research interests include software en-
gineering, complexity software systems, and ap-
plications of complex network theorie. He has
authored and co-authored over 130 international
journal papers and 100 conference papers. In
addition, he has published five books, including

Introduction to Communication and Program Designing of Visual Basic
.NET, etc. He is also the recipient of nine academic awards at na-
tional, ministerial, and provincial levels. Prof. Zhu has served in different
capacities at many international journals and conferences. Currently,
he serves as Co-Chair of the 1st − 13th International Workshop on
Chaos-Fractals Theories and Applications. He is a senior member of the
Chinese Institute of Electronics and the Teaching Guiding Committee for
Software Engineering under the Ministry of Education.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3243262

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

	Introduction
	Background
	Disclosed vulnerabilities in the npm ecosystem
	npm package version constraints
	Terminology

	Empirical Study
	Vulnerability Propagation Model
	RQ1. Scale of blocking packages
	Methodology.
	Results.

	RQ2. Evolution of Blocking Chains
	Methodology.
	Results.

	RQ3. Remediation Patterns
	Methodology.
	Results.

	The Plumber Approach
	Monitoring the evolution of the npm ecosystem
	Modeling and collecting metadata
	Mining package migration history

	Identifying pivotal blocking chains
	Identifying vulnerable paths
	Identifying pivotal blocking chains

	Deriving remediation schemes
	Characterizing blocking chains
	Generating remediation reports

	Evaluation&An Ecosystem-level Study
	RQ4: Effectiveness of Plumber
	RQ5: Remediation Challenges
	RQ6: Usefulness of Plumber
	Discussions

	Threats to Validity
	Related Work
	Conclusions and Future Work
	References
	Biographies
	Ying Wang
	Peng Sun
	Lin Pei
	Yue Yu
	Chang Xu
	Shing-Chi Cheung
	Hai Yu
	Zhiliang Zhu

