
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Influential Global and Local Contexts Guided Trace Representation for Fault
Localization

ZHUO ZHANG∗, School of Big Data & Software Engineering, Chongqing University, China

YAN LEI†, School of Big Data & Software Engineering, Chongqing University, China

TING SU, Software Engineering Institute, East China Normal University, China

MENG YAN, School of Big Data & Software Engineering, Chongqing University, China

XIAOGUANG MAO, College of Computer, National University of Defense Technology, China

YUE YU, College of Computer, National University of Defense Technology, China

Trace data is critical for fault localization (FL) to analyze suspicious statements potentially responsible for a failure. However, existing
trace representation meets its bottleneck mainly in two aspects: (1) the trace information of a statement is restricted to a local context
(i.e., a test case) without the consideration of a global context (i.e., all test cases of a test suite); (2) it just uses the ‘occurrence’ for
representation without strong FL semantics.

Thus, we propose UNITE: an inflUential coNtext-GuIded Trace rEpresentation, representing the trace from both global and local
contexts with influential semantics for FL. UNITE embodies and implements two key ideas: (1) UNITE leverages the widely-used
weighting capability from local and global contexts of information retrieval to reflect how important a statement (a word) is to a
test case (a document) in all test cases of a test suite (a collection), where a test case (a document) and all test cases of a test suite (a
collection) represent local and global contexts respectively; (2) UNITE further elaborates the trace representation from ‘occurrence’
(weak semantics) to ‘influence’ (strong semantics) by combing program dependencies. The large-scale experiments on 12 FL techniques
and 22 programs show that UNITE significantly improves FL effectiveness.

CCS Concepts: • Software and its engineering → Software testing and debugging.

Additional Key Words and Phrases: fault localization; trace representation; statement weighting; program dependence; suspiciousness;

ACM Reference Format:
Zhuo Zhang, Yan Lei, Ting Su, Meng Yan, Xiaoguang Mao, and Yue Yu. 2022. Influential Global and Local Contexts Guided Trace
Representation for Fault Localization. ACM Trans. Softw. Eng. Methodol. 1, 1 (October 2022), 27 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

∗Also with Guangzhou College of Commerce, Guangzhou, China.
†Corresponding author and also with Peng Cheng Laboratory, ShenZhen, China.

Authors’ addresses: Zhuo Zhang, School of Big Data & Software Engineering, Chongqing University, Chongqing, China, zz8477@126.com; Yan Lei, School
of Big Data & Software Engineering, Chongqing University, Chongqing, China, yanlei@cqu.edu.cn; Ting Su, Software Engineering Institute, East China
Normal University, Shanghai, China, tsu@sei.ecnu.edu.cn; Meng Yan, School of Big Data & Software Engineering, Chongqing University, Chongqing,
China, mengy@cqu.edu.cn; Xiaoguang Mao, College of Computer, National University of Defense Technology, Changsha, China, xgmao@nudt.edu.cn;
Yue Yu, College of Computer, National University of Defense Technology, Changsha, China, yuyue@nudt.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Zhang and Lei, et al.

1 INTRODUCTION

In software development and maintenance, debugging is one of the most expensive and time-consuming processes [18,
38, 48]. To reduce the cost, researchers have developed many fault localization (FL) techniques to provide automated
assistance in seeking the faults that cause a failure [13, 23, 40, 52, 55, 57, 69].

Initialization Trace
representaion

 Coverage pass
 matrix of or
the test suite fail

Execution Input

Suspiciousness
evaluation

output
A test
suite

Suspicious
statements

A faulty
program

Fig. 1. The typical process of FL.

Fig. 1 shows the typical process of FL. Suppose that we have a faulty program and a test suite for initialization. Then,
FL executes the test suite on the program to collect and abstract the execution traces as a coverage matrix for trace
representation, where an element denotes a statement covered (i.e., the value of ‘1’ denoting occurrence) or not covered
(i.e., the value of ‘0’ representing non-occurrence) by a specific test case. Trace representation also constructs an error
vector to represent the test results (i.e., ‘1’ for fail and ‘0’ for pass). Next, FL takes as input the trace representation, and
uses an evaluation model (e.g., correlation coefficients [15, 16, 35, 39] and neural networks [53, 56, 66–68]) to evaluate
the suspiciousness of each statement of being faulty. Finally, FL outputs the suspicious statements as a ranking list of
all statements in descending order of suspiciousness.

Although trace representation is an indispensable component of the FL process, it still has some limitations. Existing
trace representation uses the binary state of a statement (i.e., occurrence or non-occurrence) in a test case, which is
restricted to a local context (i.e., a test case) without the consideration of a global context (i.e., all test cases of a test
suite). For example, suppose that we have two statements 𝑠1 and 𝑠2, where 𝑠1 is only executed by the test case 𝑡1 and 𝑠2
is not only executed by 𝑡1 but also executed by many other test cases. Considering the global context of a test suite, 𝑠1
should be more important than 𝑠2 for 𝑡1 since 𝑠1 only occurs in 𝑡1. For another example, suppose that we have two test
cases 𝑡 ‘1 and 𝑡 ′2, where 𝑡

′
1 executes 10 statements including the statement 𝑠′1 and 𝑡

′
2 covers 100 statements including 𝑠′1.

Based on the global context of a test suite, 𝑠′1 should be more important for 𝑡 ′1 in comparison to 𝑡 ′2 since 𝑡
′
1 executes

less statements than 𝑡 ′2. However, existing trace representation using binary state of a statement cannot capture such
importance information. Therefore, its information is limited, e.g., it cannot show to what degree of the importance
of a statement is in an execution. Even if some approaches [11, 45] seek to enrich the representation from the local
context of a test case itself, the lack of global context of all test cases of a test suite can cause some biases posing a
negative effect on the effectiveness of fault localization [22], i.e., their representation actually performs worse than the
widely-used binary trace representation [22]. Furthermore, existing trace representations mainly use the ‘occurrence’
semantics whereas the occurrence of a statement in a test case does not necessarily mean that the execution of the
statement influences the program output. For example, suppose that a failing test case 𝑡𝑓 executes two statements 𝑠𝑓 1
and 𝑠𝑓 2, where the variable causing the faulty output of 𝑡𝑓 is only computed by 𝑠𝑓 1. In this case, we should exclude 𝑠𝑓 2
since its execution does not influence the faulty output. Nevertheless, the existing trace representation using statement
coverage cannot capture such influence information. Thus, it lacks a strong FL semantics, restricting a deep analysis of
suspicious evaluation model in evaluating the suspiciousness of a statement of being faulty.
Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Influential Global and Local Contexts Guided Trace Representation for Fault Localization 3

Therefore, this paper proposes UNITE: an inflUential coNtext-GuIded Trace rEpresentation for effective FL, exploit-
ing global and local contexts guided trace representation with influential semantics. Similar to the coverage matrix in
Fig. 1, UNITE abstracts trace representation as a matrix by redefining the element which combines global and local
contexts with influential semantics. Inspired by the widely-used word weighting capability from both local and global
contexts of term frequency-inverse document frequency [41, 44] in information retrieval, UNITE applies this promising
capability on trace representation in fault localization. Based on the term frequency-inverse document frequency, the
idea of UNITE embodying the global and local contexts is that (1) if a statement is executed by many test cases, its
weight should be lower for these test cases since it is difficult to distinguish the statement in these test cases; (2) if a
statement is executed by a few test cases and the executed statements in these test cases have a small size, its weight
should be higher for these test cases since the statement is more important to these test cases. With the weights of
a statement in all test case of a test suite, UNITE can build linkages between the statement and the test results (i.e.,
passing or failing) of test cases. To realize this idea, first, UNITE reformulates the trace information of a statement as
the weight of a word in information retrieval. For an analogy, UNITE uses the three sources of information for FL: a
statement (a word), a test case (a document) and all test cases of a test suite (a collection). UNITE defines the trace
representation of a statement as the weight of the statement (the word) by increasing proportionally to the number of
times a statement (the word) occurs in the test case (the document), and being offset by the number of the test cases
(the documents) in all test cases of a test suite (the collection) that contain the statement (the word), which helps to
adjust for the fact that some statements (words) occur more frequently in general. Thus, UNITE elaborates the local
context as term frequency that increases proportionally to the number of times a statement occurs in the test case
(i.e., statement frequency), and the global context as inverse document frequency that is offset by the number of
the test cases in all test cases of a test suite that contain the statement (i.e., inverse test case frequency).

Thus, UNITE elaborates the local context as term frequency that increases proportionally to the frequency of a
statement occurs in the test case (i.e., statement frequency), and the global context as inverse document frequency
that is offset by the number of the test cases in all test cases of a test suite that contain the statement (i.e., inverse test
case frequency). Although UNITE considers trace representation from both local and global contexts, it still relies on
the occurrence frequency of a statement or a test case. Therefore, UNITE further combines program dependencies into
trace representation for upgrading the FL semantics. Specifically, UNITE uses program slicing [2, 47, 61] to identify
those statements whose execution influences the incorrect output according to program dependencies. Then, UNITE
updates higher weights of those statements with influential semantics, and thus upgrades the ‘occurrence’ (weak
semantics) into the ‘influence’ (strong semantics).

Since UNITE follows the widely-used matrix structure of most FL techniques, it means that UNITE may serve
as a universal representation for most FL techniques. To evaluate the potential and the effectiveness of UNITE, we
apply UNITE to 12 state-of-the-art FL techniques (e.g., Dstar [54], CNN-FL [66], ProFL [28] and DeepRL4FL [26]) and
conduct large-scale experiments on 22 benchmark programs. The results show that UNITE significantly improves FL
effectiveness, e.g., the average improvement for the important Top-N metric [17], i.e., Top-1, Top-3, Top-5 and Top-10,
increases up to 2.19%, 11.18%, 11.47% and 14.18%, respectively.

The main contributions of this paper can be summarized as:

• We propose UNITE: an influential context-guided trace representation for FL by combining global and local
contexts with influential semantics.

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Zhang and Lei, et al.

• We demonstrate the potential of UNITE as a universal representation for a wide spectrum of the state-of-the-art
FL techniques.

• We evaluate the effectiveness of UNITE across various 22 real-life large programs, showing that the UNITE is
effective at improving FL.

• We open source the replication package online1, including the source code, datasets and running examples.

The structure of the rest paper is organized as follows. Section 2 introduces related work. Section 3 depicts our approach
UNITE. Section 4 and Section 5 present our large-scale experiments and the discussion. And Section 6 concludes the
whole study and mentions future work.

2 RELATEDWORK

This section surveys closely related work on fault localization (FL) from its two parts: trace representation and
suspiciousness evaluation. More other work can be found in the survey [55].

2.1 Trace Representation

N statements errors N dimensional

⎣
⎢
⎢
⎢
⎡
𝑥11 𝑥12 … 𝑥1𝑁

𝑥21 𝑥22 … 𝑥2𝑁

⋮ ⋮ ⋱ ⋮
𝑥𝑀1 𝑥𝑀2 … 𝑥𝑀𝑁⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑒1

𝑒2

⋮
𝑒𝑀⎦

⎥
⎥
⎥
⎤

 𝐶𝑡1

 𝐶𝑡2

⋮
 𝐶𝑡𝑁

⎣
⎢
⎢
⎢
⎢
⎡1 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1⎦

⎥
⎥
⎥
⎥
⎤

Fig. 2. FL Trace Representation on𝑀 test cases of a test suite.

FL usually defines a matrix (i.e., a coverage matrix and an error vector) to represent the trace of each statement in
each test case of a test suite and their corresponding test results. Next, FL takes as input the trace representation for its
suspiciousness evaluation. The trace representation records the runtime information and test results of a test suite
including the execution information of statements.

Fig. 2 shows the definition of the FL trace representation (i.e., a𝑀 × (𝑁 + 1) matrix). Specifically, given a program P

with N statements (𝑠1, 𝑠2, ..., 𝑠𝑁), it is executed by a test suite T with M test cases (𝑡1, 𝑡2, ..., 𝑡𝑀), which contain at least
one failing test case (see Fig. 2). The element 𝑥𝑖 𝑗=1 means that the statement 𝑠 𝑗 occurs in (i.e., is covered by) the test
case 𝑡𝑖 , and 𝑥𝑖 𝑗=0 otherwise. The M×N matrix records the execution information of each statement in the test suite T.
The error vector e represents the test results. The element 𝑒𝑖 equals to 1 if the test case 𝑡𝑖 failed, and 0 otherwise. The
error vector shows the test results of each test case (i.e., failure or non-failure).

Even if some research [11, 45, 65, 70] tries to enrich trace representation of FL by using other information (e.g., state-
ment frequency), these approaches like the binary representation still have some limitations: (1) the trace information of
a statement is restricted to a local context (i.e., a test case) without the consideration of a global context (i.e., all test cases
of a test suite); (2) they just uses the ‘occurrence’ for representation without strong FL semantics. Even worse, recent
work [22] shows that these approaches (e.g., [11, 45]) cause some bias posing a negative effect on fault localization
effectiveness, i.e., their elaboration on trace representation is not better than the binary state of FL trace representation.

1https://github.com/oy-sarah/UNITE

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Influential Global and Local Contexts Guided Trace Representation for Fault Localization 5

This motivates our work to solve the above two problems by proposing an FL trace representation to combine both
local and global contexts and upgrade the ‘occurrence’ (weak semantics) into ‘influence’ (strong semantics).

2.2 Suspiciousness Evaluation

Based on the trace representation in Fig. 2, researchers develop many suspiciousness evaluation models to evaluate the
suspiciousness of a statement of being faulty. We can roughly classify the suspiciousness evaluation models into two
categories.

One category is suspiciousness evaluation using correlation coefficients, which are widely studied by the
spectrum-based fault localization (SFL) researchers [15, 16, 35, 39]. Correlation coefficients are suspiciousness evaluation
formulas, and SFL uses the trace representation to define four variables for the formulas as follows:

𝑎𝑛𝑝 (𝑠 𝑗) =
∑︁

𝑖∈𝑛𝑝 (𝑠 𝑗)
(1 − 𝑥𝑖 𝑗), 𝑛𝑝 (𝑠 𝑗) = {𝑖 | (𝑥𝑖 𝑗 = 0) ∧ (𝑒𝑖 = 0)} (1)

𝑎𝑒𝑝 (𝑠 𝑗) =
∑︁

𝑖∈𝑒𝑝 (𝑠 𝑗)
𝑥𝑖 𝑗 , 𝑒𝑝 (𝑠 𝑗) = {𝑖 | (𝑥𝑖 𝑗 > 0) ∧ (𝑒𝑖 = 0)} (2)

𝑎𝑛𝑓 (𝑠 𝑗) =
∑︁

𝑖∈𝑛𝑓 (𝑠 𝑗)
(1 − 𝑥𝑖 𝑗), 𝑛𝑓 (𝑠 𝑗) = {𝑖 | (𝑥𝑖 𝑗 = 0) ∧ (𝑒𝑖 = 1)} (3)

𝑎𝑒 𝑓 (𝑠 𝑗) =
∑︁

𝑖∈𝑒 𝑓 (𝑠 𝑗)
𝑥𝑖 𝑗 , 𝑒 𝑓 (𝑠 𝑗) = {𝑖 | (𝑥𝑖 𝑗 > 0) ∧ (𝑒𝑖 = 1)} (4)

Eq. (1), Eq. (2), Eq. (3) and Eq. (4) show the computation of 𝑎𝑛𝑝 , 𝑎𝑛𝑓 , 𝑎𝑒𝑝 , and 𝑎𝑒 𝑓 for the statement 𝑗 (i.e., 𝑠 𝑗),
denoting the number of passing/failing test cases in which the statement was/wasn’t executed. Based on the four
variables for each statement (i.e., 𝑎𝑛𝑝 , 𝑎𝑛𝑓 , 𝑎𝑒𝑝 , and 𝑎𝑒 𝑓), SFL defines many suspiciousness evaluation formulas using
correlation coefficients to evaluate the suspiciousness of each statement being faulty. Researchers have conducted both
theoretical [59, 60] and empirical [39] analysis on finding the optimal SFL formulas using correlation coefficients, and
identified seven effective ones, namely ER1’, ER5, GP02, GP03, GP19, Ochiai and Dstar. Table 1 shows all the seven
effective suspiciousness evaluation formulas using correlation coefficients2. Based on these formulas, some researchers
incorporate more useful information into suspiciousness evaluation, e.g., the popular and promising approach ProFL [28]
leverages repair information as feedback.

The other one category is suspiciousness evaluation using neural networks, which are recently studied by the
deep learning-based fault localization (DLFL) researchers [25, 46, 67, 72]. Based on the trace representation, this category
tries to utilize artificial neural network with hidden layers [9, 20, 24, 34, 49, 68] to learn a fault localization model
reflecting the statistical coincidences between test results (i.e., failing or passing) and the executions of the different
statements of a program (i.e., occurrence or non-occurrence). We will introduce four representative suspiciousness
evaluation models used in our experiments, namely MLP-FL [71], CNN-FL [66], BiLSTM-FL [68] and DeepRL4FL [26].

Fig. 3 shows the architecture of suspiciousness evaluation of DLFL using neural networks: one input layer, deep
learning components with several hidden connected layers, and one output layer. In the input layer, the coverage matrix
and the error vector of FL trace representation in the Fig. 2 are used as the training samples and their corresponding

2The * in D* formula is usually assigned to 2.

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Zhang and Lei, et al.

Table 1. Suspiciousness evaluation using correlation coefficients.

Name Formulas Name Formulas

ER1’
Naish1

{
−1 𝑖 𝑓 𝑎𝑛𝑒 > 0
𝑎𝑛𝑝 𝑖 𝑓 𝑎𝑛𝑒 ≤ 0

GP02 2
(
𝑎𝑒 𝑓 + √

𝑎𝑛𝑝

)
+ √

𝑎𝑒𝑝

Optimal_P 𝑎𝑒 𝑓 − 𝑎𝑒𝑝
𝑎𝑒𝑝+𝑎𝑛𝑝+1 GP03

√︂���𝑎2
𝑒 𝑓

− √
𝑎𝑒𝑝

���
GP13 𝑎𝑒 𝑓

(
1 + 𝑎𝑒𝑝

2𝑎𝑒𝑝+𝑎𝑒𝑓

)
GP19 𝑎𝑒 𝑓

√︃��𝑎𝑒𝑝 − 𝑎𝑒 𝑓 + 𝑎𝑛𝑓 − 𝑎𝑛𝑝
��

ER5
Wong1 𝑎𝑒 𝑓 Dstar

𝑎∗
𝑒𝑓

𝑎𝑛𝑓 +𝑎𝑒𝑝Russel_Rao 𝑎𝑒𝑓
𝑎𝑒𝑓 +𝑎𝑛𝑓 +𝑎𝑒𝑝+𝑎𝑛𝑝

Binary

{
0, 𝑖 𝑓 𝑎𝑛𝑒 > 0
1, 𝑖 𝑓 𝑎𝑛𝑒 ≤ 0

Ochiai 𝑎𝑒𝑓√︃
(𝑎𝑒𝑓 +𝑎𝑛𝑓) (𝑎𝑒𝑓 +𝑎𝑒𝑝)

...

...

...

...

F
unction

Input layer Deep learning components with hidden layers Output layer

Func Func Func

Func Func Func

Func Func Func

Output Target

xi1, xi2, …, xiN

X(i+1)1,X(i+1)2,…,X(i+1)N...

X(i+h-1)1,X(i+h-1)2,…,X(i+h-1)N

yi

y(i+1)

loss

y(i+h-1)

ei

e(i+1)

e(i+h-1)

... ...

Deep
Learning

components

1 2

(1)1 (1)2 (1)

(1)1 (1)2 (1)

...

...

...

i i iN

i i i N

i h i h i h N

x x x

x x x

x x x

Fig. 3. Suspiciousness evaluation using neural networks.

labels, respectively. In other words, h rows of the matrix M×N and its corresponding error vector are used as an input,
which are the coverage information of h test cases and their corresponding test results starting from the i-th row,
where i ∈ {1,1+h,1+2h,...,1+(⌊M/h⌋+1)×h}. In deep learning components with several hidden connected layers, MLP-FL,
CNN-FL and BiLSTM-FL use multi-layer perceptron, convolutional neural network and bi-directional long short-term
memory respectively. DeepRL4FL integrate these basic neural networks using multiple dimensions of features. In the
output layer, DLFL uses Sigmoid function [24] because values sent into a Sigmoid function will be 0 to 1. Each element
in the result vector of the Sigmoid function has difference with the corresponding element of the target vector. Back
propagation algorithm is used to fine-tune the parameters of the model, and the goal is to minimize the difference
between training result y and error vector e. The network is trained iteratively. Finally, DLFL using neural networks
learns a trained model reflecting the relationship between statement coverage and test results. With the trained model,
DLFL evaluates the suspiciousness of each statement.

Our work focuses on developing an effective universal representation for these suspciousness evaluation models,
and can be widely used by these models.
Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Influential Global and Local Contexts Guided Trace Representation for Fault Localization 7

 N statements errors N statements errors

⎣
⎢
⎢
⎢
⎡
x11 x12 … x1N

x21 x22 … x2N

⋮ ⋮ ⋱ ⋮

xM1 xM2 … xMN⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
e1

e2

⋮

eM⎦
⎥
⎥
⎥
⎤

→

⎣
⎢
⎢
⎢
⎢
⎡
GLinfluence(x11

) GLinfluence(x12) … GLinfluence(x1N
)

GLinfluence(x21) GLinfluence(x22) … GLinfluence(x2N
)

⋮ ⋮ ⋱ ⋮

GLinfluence(xM1) GLinfluence(xM2) … GLinfluence(xMN)⎦
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
e1

e2

⋮

eM⎦
⎥
⎥
⎥
⎤

 Original trace representation UNITE representation

Fig. 4. The original FL trace representation and the UNITE representation of M test cases of a test suite.

3 APPROACH

3.1 Formulation

First, we should formulate the problem. Given a program P with N statements (𝑠1, 𝑠2, ..., 𝑠𝑁), it is executed by M test
cases T (𝑡1, 𝑡2, ..., 𝑡𝑀). Fig. 4 shows the original FL trace representation and the UNITE representation. let us recall the
original FL trace representation (see the left matrix of Fig. 4). 𝑥𝑖 𝑗=1 indicates that the statement 𝑠 𝑗 occurs in the test
case 𝑡𝑖 , and 0 otherwise. The error vector e represents the test results. The element 𝑒𝑖 equals to 1 if the test case 𝑡𝑖 failed,
and 0 otherwise. Since the original FL trace representation serves as a universal input for most FL techniques, UNITE
will keep its structure for wide FL applicability. Thus, as shown in Fig. 4, the core work of UNITE is to redefine the
elements of the original FL trace representation with influential global and local contexts.

3.2 UNITE with Global and Local Contexts

In the field of information retrieval, term frequency-inverse document frequency (TF-IDF) [41] is a popular word
weighting technique designed to reflect the importance of a word to a document (i.e., local context) in a collection (i.e.,
global context). Inspired by the TF-IDF, UNITE utilizes its promising weighting capability by elaborating the trace
representation to reflect the importance of a statement to a test case (i.e., local context) in all test cases of a test suite (i.e.,
global context). Thus, for an analogy, the basic idea of UNITE with global and local contexts can be roughly summarized
as that if a statement (keyword) occurs only in a few test cases (documents), then it is easy to lock the FL target (search
target), and the weight of the statement (word) should be relatively large. If a statement (word) exists in a large number
of test cases(documents), then it is not clear to find the goal with the statement (word), and the weight of the statement
(word) should be small. As a reminder, a statement occurring in a test case means that a statement is covered by the
test case. Since UNITE considers the times of a statement occurs in (is covered by) a test case, the specific content (e.g.,
whitespace and variable names) of a statement itself will not affect UNITE.

To realize the above idea, UNITE defines the local context as the term frequency which increases proportionally
to the frequency of a statement occurs in the test case (i.e., statement frequency); and the global context as inverse
document frequency which is offset by the number of the test cases in all test cases of a test suite that contain the
statement (i.e., inverse test case frequency). Specifically, UNITE defines the following 𝑇𝐹𝑙𝑜𝑐𝑎𝑙 , 𝐼𝐷𝐹𝑔𝑙𝑜𝑏𝑎𝑙 , 𝐺𝐿𝑜𝑐𝑐𝑢𝑟 as
the local context, the global context and the combination of the global and local contexts, respectively.

𝑇𝐹𝑙𝑜𝑐𝑎𝑙
(
𝑥𝑖 𝑗

)
= 𝑥𝑖 𝑗 ∗ 1

1+𝑙𝑜𝑔 (𝑁 (𝑡𝑖)) (5)

𝐼𝐷𝐹𝑔𝑙𝑜𝑏𝑎𝑙
(
𝑥𝑖 𝑗

)
= 𝑙𝑜𝑔(𝑀

𝐷𝐹 (𝑠 𝑗)) (6)
Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Zhang and Lei, et al.

𝐺𝐿𝑜𝑐𝑐𝑢𝑟
(
𝑥𝑖 𝑗

)
= 𝑇𝐹𝑙𝑜𝑐𝑎𝑙

(
𝑥𝑖 𝑗

)
∗𝐼𝐷𝐹𝑔𝑙𝑜𝑏𝑎𝑙

(
𝑥𝑖 𝑗

)
(7)

Based on the 𝑥𝑖 𝑗 of the original FL trace representation (i.e., the binary value of 1 or 0 of 𝑠 𝑗 in test case 𝑡𝑖), Eq. (5)
calculates 𝑇𝐹𝑙𝑜𝑐𝑎𝑙 (𝑥𝑖 𝑗), denoting the TF value of the statement 𝑠 𝑗 in the test case 𝑡𝑖 (i.e., statement frequency of 𝑠 𝑗 in
test case 𝑡𝑖), where N (𝑡𝑖) means the number of executed statements in the test case 𝑡𝑖 . Eq. (6) calculates 𝐼𝐷𝐹𝑔𝑙𝑜𝑏𝑎𝑙 (𝑥𝑖 𝑗),
representing the IDF value of the statement 𝑠 𝑗 in the test suite (i.e., inverse document frequency of 𝑠 𝑗 in the whole
test suite), where DF (𝑠 𝑗) indicates the number of test cases executing the statement 𝑠 𝑗 . In Eq. (5) and Eq. (6), we adopt
the widely-used 𝑙𝑜𝑔 function in TF-IDF. Eq. (7) calculates 𝐺𝐿𝑜𝑐𝑐𝑢𝑟 (𝑥𝑖 𝑗) via the the multiplication of 𝑇𝐹𝑙𝑜𝑐𝑎𝑙 (𝑥𝑖 𝑗) and
𝐼𝐷𝐹𝑔𝑙𝑜𝑏𝑎𝑙 (𝑥𝑖 𝑗), denoting the TF-IDF value of the statement 𝑠 𝑗 in the test case 𝑡𝑖

Based on the Eq. (7), UNITE redefines an element of 𝑥𝑖 𝑗 as 𝐺𝐿𝑜𝑐𝑐𝑢𝑟 (𝑥𝑖 𝑗) by combing the global and local contexts
into trace representation.

3.3 UNITE with Influence Semantics

We can observe that the global and local contexts are constructed from statement coverage information. Although the
statement coverage information is useful and effective, an occurrence of a statement in a test case does not necessarily
mean that the execution of the statement will influence the output of the test case. For example, for a statement 𝑠𝑡𝑚, its
execution does not influence the incorrect output. Even if the statement 𝑠𝑡𝑚 has a high value of 𝐺𝐿𝑜𝑐𝑐𝑢𝑟 , the statement
𝑠𝑡𝑚 should have the lowest weight because its execution is independent of the incorrect output. Thus, the new trace
representation (i.e.,𝐺𝐿𝑜𝑐𝑐𝑢𝑟 (𝑥𝑖 𝑗)) still relies on the ‘occurrence’ semantics (i.e., the occurrence frequency of a statement
or a test case), and thus cannot capture such ‘influence’ semantics (i.e., whether the execution of a statement influences
the output or not). To further improve FL effectiveness, this motivates us to integrate ‘influence’ semantics into the
trace representation via using program slicing [2, 61] to capture whether the execution of a statement influences the
output or not. Therefore, UNITE uses program slicing [2, 61] to elaborate the trace representation by upgrading the
‘occurrence’ into the ‘influence’ semantics.

Program slicing [2, 61] extracts the data and/or control dependencies of program statements to identify a subset
of statements whose execution affects the output. It names the subset of statements as a slice. A slice is a program
dependency graph showing how those statements influence the output according to data and/or control dependencies.
Therefore, UNITE uses dynamic slicing [2, 61] on the output statement whose output value is incorrect to identify those
statements affecting the faulty output value as an influential slice. Thus, an influential slice is defined as follows:

An influential slice: statements that directly or indirectly affect the computation of the faulty output value of a
failure through chains of dynamic data and/or control dependencies.

For the computation of an influential slice, we use the following slicing criterion.

𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝑆𝐶 = (𝑜𝑢𝑡𝑆𝑡𝑚, 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑉𝑎𝑟, 𝑓 𝑎𝑖𝑙𝐸𝑥) (8)

Where, 𝑜𝑢𝑡𝑆𝑡𝑚 is an output statement whose value of a variable (i.e., 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑉𝑎𝑟) is incorrect in the execution of a
failing test case (i.e., 𝑓 𝑎𝑖𝑙𝐸𝑥). Dynamic slicing collects runtime information along the execution path of a test case, i.e.,
the set of the executed statements of a test case. It means that a test case with a smaller set of executed statements is
usually easier for a dynamic slicing tool to perform efficient instrumentation and produce compressed traces for space
optimization. Thus, for multiple failing test cases, the one with the least executed statements usually is beneficial for
the efficiency of constructing an influential slice. From the efficiency aspect, UNITE chooses the failing test case having

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Influential Global and Local Contexts Guided Trace Representation for Fault Localization 9

Program P (maximal value of a,b,c) Bug information

 s1: Read(a); s7: max = a;
 s2: Read(b); s8: else {max = b;}
 s3: Read(c) ;
 s4: if(c>a)and (c>b){
 s5: max = c;}
 s6: else if (a<b){

s6 is faulty.
Correct form:
else if (a>b){

T a,b,c s1 s2 s3 s4 s5 s6 s7 s8 T s1 s2 s3 s4 s5 s6 s7 s8 R

t1 1,2,3 1 1 1 1 1 0 0 0 t1 0 0 0 0 0 0 0 0 0

t2 -2,-7,5 1 1 1 1 1 0 0 0 t2 0 0 0 0 0 0 0 0 0

t3 5,-6,-8 1 1 1 1 0 1 0 1 t3 0 0 0 0 0.06 0 0 0 1

t4 5,4,3 1 1 1 1 0 1 0 1 t4 0 0 0 0 0.06 0 0 0 1

t5 4,7,1 1 1 1 1 0 1 1 0 t5 0 0 0 0 0.06 0.17 0 0 1

t6 -1,2,1 1 1 1 1 0 1 1 0 t6 0 0 0 0 0.06 0.17 0 0 1

MLP-FL
value 0.62 0.64 0.61 0.69 0.57 0.59 0.60 0.58 MLP-FL

(UNITE)
0.56 0.28 0.19 0.46 0.79 0.95 0.97 0.88

rank 3 2 4 1 8 6 5 7 5 7 8 6 4 2 1 3

ER5
value 0.67 0.67 0.67 0.67 0 0.67 0.33 0.33 ER5

(UNITE)
0 0 0 0 0 0.11 0.08 0

rank 1 2 3 4 8 5 6 7 6 7 8 4 5 1 2 3

The influential slice with t5:
{s1, s2, s3, s4, s5, s6}

Fig. 5. An Example illustrating our approach.

the least executed statements to construct a slicing criterion in the Eq. (8), and inputs this slicing criterion into program
slicing technique to construct an influential slice.

Based on the influential slice, UNITE defines Eq. (9) to combine influential semantics into trace representation.

𝐺𝐿𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒
(
𝑥𝑖 𝑗

)
= GLoccur

(
𝑥𝑖 𝑗

)
∗ 𝑆𝐿𝐼𝐶𝐸

(
𝑥𝑖 𝑗

)
(9)

Where, 𝑆𝐿𝐼𝐶𝐸 (𝑥𝑖 𝑗) = 1 if the statement 𝑠 𝑗 ∈ 𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝑆𝐶; and 0 otherwise. Eq. (9) assigns the lowest value to those
statements not in the influential slice because their executions do not influence the faulty output.

Finally, as shown in Fig. 4, UNITE defines 𝐺𝐿𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 (𝑥𝑖 𝑗) to replace the original 𝑥𝑖 𝑗 , and models a new trace
representation (i.e., a new matrix) with influential global and local contexts. FL techniques (e.g., SFL and DLFL in
Section 2) take as input the UNITE representation to analyze and evaluate the suspiciousness of a statement of being
faulty.

3.4 An Illustrative Example

Fig. 5 shows an example illustrating how UNITE is applied. As shown in Fig. 5, we have a program 𝑃 with a fault at
the statement 𝑠6, and its function is to calculate the maximal value of three variables. The left six cells below each
statement represent whether the statement is covered by the test case (1 for covered and 0 otherwise), evaluated by
the original trace representation. The right six cells represent the 𝐺𝐿𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 values of each statement in each test
case, evaluated by UNITE (see Eq. (9)). The rightmost cells below 𝑅 indicate whether the test case is failing or not (1 for
failing and 0 otherwise). In this illustrative example, we choose MLP-FL and ER5 as the representative for DLFL and
SFL, which are described in Section 2. MLP-FL(UNITE) and ER5(UNITE) mean that MLP-FL and ER5 use the UNITE
trace representation. UNITE uses the failing test case 𝑡5 to calculate the influence slice. Here, we can observe that

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Zhang and Lei, et al.

UNITE representation is more concise and precise than binary representation by purifying uninfluenctial statements
and showing a magnitude of the importance of a statement in a test case.

After acquiring the trace representation, FL techniques take as input the representation to analyze and evaluate the
suspiciousness of each statement of being faulty. For example, MLP-FL(UNITE) takes as input UNITE representation
and its concrete process is as follows: first, UNITE constructs the MLP model with the number of input layer nodes
being eight, three hidden layers with the number of each one’s nodes being 10, and the number of output layer nodes
being 1; then, we input the vector 𝑡1 (0,0,0,0,0,0,0,0) and its result 0, then vector 𝑡2 (0,0,0,0,0,0,0,0) and its result 0 into
the input layer until all the vectors of UNITE representation are all inputted into the network. After that, we train
the network iteratively to acquire the relationship between the execution influence of a statement and the test results.
Thirdly, we construct the virtual test set which is an eight dimensional unit matrix, then put it into the network, and
finally obtain the suspiciousness values. Based on these information, MLP-FL(UNITE) outputs a ranking list of all
statements in descending order. The original MLP-FL uses the binary representation to perform a similar process to
evaluate the suspiciousness of each statement of being faulty. The results show that the faulty statement 𝑠6 is ranked
2nd by UNITE and ranked 6th by the original MLP-FL.

Based on the binary representation and UNITE representation, ER5 and ER5(UNITE) both output a ranking list of
all statements in descending order. The results show that the faulty statement 𝑠6 is ranked 1st by UNITE and ranked
5th by the original ER5 using the binary representation. It should be noted that when the statements have the same
suspiciousness value, we adopt the widely strategy by ranking them in the ascending order of their line numbers. As
shown in Fig. 5, although 𝑠1, 𝑠2, 𝑠3, 𝑠4 and 𝑠6 have the same highest suspiciousness value in ER5, 𝑠6 is ranked 5th for
its larger line number. Thus, for different strategies of breaking the tie, the ranks of those statements with the same
suspiciousness value may be slightly different.

We can first observe that global and local contexts of UNITE work. Since the statements 𝑠1, 𝑠2, 𝑠3 and 𝑠4 are executed
by all the 6 test cases, their𝐺𝐿𝑜𝑐𝑐𝑢𝑟 values are 0 in comparison to the other statements, and thus their𝐺𝐿𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 are
0. Furthermore, the statement 𝑠6 and 𝑠7 acquire a decimal value, rather than a binary value, showing how important
of a statement is in a test case. Then, the influence semantics of UNITE works. Due to using the influential slice, the
execution of 𝑠5 and 𝑠8 do not influence the faulty output of 𝑡5, their 𝑆𝐿𝐼𝐶𝐸 values are 0 and thus their𝐺𝐿𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 are 0
Thus, based on this illustrative example, we can observe that the two parts of UNITE (i.e., global and local contexts,
and influential semantics) both contribute to FL effectiveness, leading to better FL effectiveness over the original trace
representation. Section 4.3.2 offers an evaluation on the contribution of each part of UNITE to FL effectiveness.

4 EXPERIMENTS

4.1 Experimental Setup

Benchmarks The experiments choose the subject programs for the two reasons: (1) they are the widely used
large-sized programs (e.g., [24, 33, 35–37, 39, 42, 55, 66, 67]) in fault localization; (2) they are easy to be acquired for
enabling comparable and reproducible studies. Table 2 summarizes the 22 subject programs. For each program, it
provides a brief functional description (column ‘Description’), the number of faulty versions used (column ‘Versions’),
the number of thousand lines of statements (column ‘KLOC’), the number of test cases (column ‘Test’) and the type of
the faults (column ‘Type’). The first four programs are real faults, among which python, gzip and libtiff are collected

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Influential Global and Local Contexts Guided Trace Representation for Fault Localization 11

Table 2. Subject programs.

Program Description Versions KLOC Test Type
python General-purpose language 8 407 355 Real
gzip Data compression 5 491 12 Real
libtiff Image processing 12 77 78 Real
space ADL interpreter 35 6.1 13585 Real
spoon Java code analysis & transformation 31 76 1114 Real
dubbo Apache incubator dubbo 1 0.6 90 Real

jackson-databind General data binding 13 99 1711 Real
oak Apache jackrabbit oak 1 1.8 2403 Real

debezium Platform for change data capture 4 53 508 Real
byte-buddy Runtime code generation for the JVM 3 140 8066 Real

AutomatedCar Passenger vehicle behavior simulator 1 2 48 Real
cash-count Accounting software back-end 2 0.7 16 Real
nanoxml v1 XML parser 7 5.4 206 Seeded
nanoxml v2 XML parser 7 5.7 206 Seeded
nanoxml v3 XML parser 10 8.4 206 Seeded
nanoxml v5 XML parser 7 8.8 206 Seeded

chart JFreeChart 26 96 2205 Real
math Apache commons math 106 85 3602 Real
lang Apache commons-lang 65 22 2245 Real
time Joda-Time 27 53 4130 Real

from ManyBugs3, and space is acquired from the SIR4. The next seven programs are real faults from BEARS5. Then,
the next four programs are seeded faults of the four sperate releases of nanoxml acquired from the SIR. The last four
programs (i.e., chart, math, lang and time) are acquired from Defectcs4J6. As a reminder, since the recent studies [10, 72]
have identified over-fitting benchmarks (e.g., Defects4J) for FL, we use the recently recommended benchmarks [29]
(e.g., BEARS) to alleviate this problem. Therefore, we do not include the experimental results of Defects4J in Section 4.3
and provide a discussion on the effect of benchmarks over-fitting on our approach using Defects4J in Section 5.1.

We use JSlice7 and Javaslicer8 for slicing Java programs, and WET9 for slicing C Programs. Due to running environ-
ments, the tools cannot slice some faulty versions, and we remove these versions in our evaluation.
Baselines According to the extensive existing studies [26, 28, 31, 32, 39, 43, 51, 59, 60, 63, 66, 67], the experiments
use the 12 state-of-the-art FL approaches as the baselines, i.e., ER5, GP02, GP03, Dstar, ER1’, GP19, Ochiai, MLP-FL,
CNN-FL, BiLSTM-FL, ProFL and DeepRL4FL. We implement the 12 baselines including the parameters as described in
their publications.
Environment The physical environment of the experiments is on a computer containing a CPU of Intel I5-2640 with
128G physical memory, and two 12G GPUs of NVIDIA TITAN X Pascal. The operating system is Ubuntu 16.04.3. We
conducted the experiments on the MATLAB R2016b.

3ManyBugs, https://repairbenchmarks.cs.umass.edu/ManyBugs/.
4SIR, http://sir.unl.edu/portal/index.php.
5BEARS, https://github.com/bears-bugs/bears-benchmark.
6Defects4J, http://defects4j.org.
7http://jslice.sourceforge.net/.
8https://github.com/hammacher/javaslicer/.
9http://wet.cs.ucr.edu/.

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Zhang and Lei, et al.

4.2 Evaluation Metrics

We adopt four widely used metrics to evaluate the effectiveness of UNITE, namely Top-N accuracy [17, 38], Mean

Average Rank (MAR) [24], Mean First Rank (MFR) [24] and Relative Improvement (RImp) [4, 7, 21]. A higher value of
Top-N Accuracy means better localization effectiveness, while a lower value denotes better localization effectiveness for
the other four metrics.
Top-N Accuracy It denotes the percentage of faults located within the first N position of a ranked list of all statements
in descending order of suspiciousness returned by a FL approach.
Mean Average Rank (MAR) It is the mean of the average rank of all faults using a FL approach.
Mean First Rank (MFR) For a fault with multiple faulty statements, locating the first one is critical since the others
may be located after that. MFR is the mean of the first faulty statement’s rank of all faults using a localization approach.
Relative Improvement (RImp) It is to compare the total number of statements that need to be examined to find all
faults using UNITE versus the number that need to be examined by without using UNITE.

4.3 Experimental Results

4.3.1 RQ1. What is the FL effectiveness of UNITE compared with the original state-of-the-art FL baselines?
We compare 12 state-of-the-art FL baselines using UNITE with the original ones to answer RQ1.

Table 3. Top-N, MAR and MFR comparison of 13 FL approaches using UNITE over without using UNITE

Comparison top-1 top-3 top-5 top-10 MAR MFR
ER5 1.09% 5.46% 9.29% 11.95% 421 263

ER5(UNITE) +1.64% +9.84% +8.20% +9.91% 134 125
GP02 1.09% 6.01% 8.20% 11.29% 464 289

GP02(UNITE) +2.19% +8.74% +11.47% +11.66% 124 111
GP03 1.09% 5.76% 10.14% 12.57% 417 251

GP03(UNITE) +1.64% +11.18% +7.11% +7.66% 131 119
Dstar 2.73% 6.56% 14.27% 23.50% 386 243

Dstar(UNITE) +0.55% +5.94% +3.76% +4.92% 125 113
ER1’ 2.73% 5.21% 7.10% 11.29% 425 317

ER1’(UNITE) +0.00% +5.72% +7.11% +10.63% 127 115
GP19 2.73% 6.56% 12.57% 13.11% 417 278

GP19(UNITE) +0.55% +6.98% +6.18% +10.39% 126 121
Ochiai 2.73% 6.56% 13.70% 19.13% 397 227

Ochiai(UNITE) +0.55% +9.29% +4.01% +7.1% 122 112
MLP-FL 1.09% 4.32% 6.56% 9.29% 471 335

MLP-FL(UNITE) +1.10% +7.16% +8.19% +11.48% 137 129
CNN-FL 2.73% 6.01% 11.48% 17.53% 407 251

CNN-FL(UNITE) +0.55% +10.93% +6.55% +3.78% 123 117
BiLSTM-FL 1.09% 3.28% 6.15% 8.74% 493 354

BiLSTM-FL(UNITE) +1.10% +7.65% +8.06% +14.18% 133 124
ProFL 3.54% 7.64% 16.75% 25.95% 365 227

ProFL(UNITE) +0.78% +9.85% +6.75% +4.1% 122 107
DeepRL4FL 7.10% 15.41% 22.95% 26.23% 323 219

DeepRL4FL(UNITE) +0.00% +4.81% +3.83% +6.56% 103 96

Top-N Accuracy, MAR and MFR Parnin and Orso [38] conducted a user study of evaluating the usefulness of fault
localization techniques in assisting developers, and recommended using the rank of the faulty statement to evaluate
Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Influential Global and Local Contexts Guided Trace Representation for Fault Localization 13

Fig. 6. RImp comparison of 12 FL baselines using UNITE vs without using UNITE.

fault localization effectiveness. Since then, Top-N, MAR and MFR are widely used in fault localization. Afterwards
many comprehensive user studies (e.g., [17, 58]) show that it is useful to help developers in debugging by using these
metrics. Thus, our experiments use Top-N, MAR, and MFR to compare the 12 baselines between using UNITE and
using the original representation. Table 3 presents their distribution among 12 fault localization approaches using
original trace representation and UNITE representation, respectively. As shown in Table 3, UNITE achieves promising
best localization effectiveness in all 12 scenarios in comparison to the baselines without using UNITE. Take one FL
technique ER5 as an example. UNITE shows an increase of 1.64%, 9.84%, 8.20% and 9.91% improvement over ER5 for
the Top-1, Top-3, Top-5 and Top-10 metrics respectively. The MAR and MFR are 134 and 125 respectively, achieving
(421-134)/421=68.17% and (263-125)/263=52.47% relative improvement over ER5 respectively.
RImp distribution For a detailed improvement, we adopt RImp to evaluate UNITE. Fig. 6 shows the RImp distribution
of UNITE: the RImp on the 12 FL baselines without using UNITE. As shown in Fig. 6, the RImp score is less than 100% in
all approaches, meaning that UNITE improves localization effectiveness of all the 13 FL baselines. The statements that
need to be examined decrease ranging from 14.10% in MLP-FL to 70.47% in DeepRL4FL. It also means that UNITE, obtains
a maximum saving of 85.90% (100%-14.10%=85.90%) in MLP-FL and the minimum saving is 29.53% (100%-70.47%=48.68%)
in DeepRL4FL, which indicates that UNITE can save from 29.53% to 85.90% of the number of statements examined
among the fault localization approaches. Based on the RImp scores, we can observe that there is a significant saving
after using UNITE, showing that UNITE is effective to improve fault localization.
Statistical comparison To investigate whether the difference between the baselines using UNITE and without using
UNITE is statistically significant, we adopt Wilcoxon-Signed-Rank Test [5], with a Bonferroni correction [1], which is
a non-parametric statistical hypothesis test for testing the differences between pairs of measurements F(x) and G(y).
The experiments performed 12 paired Wilcoxon-Signed-Rank tests by using the ranks [30] of the faulty statements as
the pairs of measurements F(x) and G(y). Each test uses left-tailed p-value checking at the 𝜎 level of 0.05. Specifically,
we use the list of the ranks of the faulty statements using UNITE in all faulty versions of all programs as the list of
measurements of F(x), while the list of measurements of G(y) is the list of the ranks of the faulty statements without
using UNITE in all faulty versions of all programs. If p<0.05, 𝐻1 that the ranks of using UNITE significantly tends to be
smaller than that of without using UNITE is accepted, meaning that UNITE has BETTER effectiveness than without

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Zhang and Lei, et al.

Table 4. Wilcoxon-Signed-Rank Test results of the six of 12 FL approaches using UNITE vs without using UNITE (part 1).
Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion

ER5
(UNITE)

vs
ER5

gzip 0.008 0.997 5.00e-04 BETTER

GP02
(UNITE)

vs
GP02

gzip 0.027 0.899 0.018 BETTER
libtiff 0.018 0.978 0.005 BETTER libtiff 0.011 0.969 0.009 BETTER
python 0.010 0.958 0.012 BETTER python 0.018 0.963 0.003 BETTER
space 4.38e-04 1.000 2.41e-04 BETTER space 4.38e-04 1.000 2.41e-04 BETTER

nanoxml_v1 0.017 0.929 0.010 BETTER nanoxml_v1 0.045 0.707 0.048 BETTER
nanoxml_v2 0.018 0.963 0.019 BETTER nanoxml_v2 0.039 0.789 0.041 BETTER
nanoxml_v3 0.008 0.989 0.003 BETTER nanoxml_v3 0.46 0.705 0.039 BETTER
nanoxml_v5 0.013 0.985 0.007 BETTER nanoxml_v5 0.009 0.985 3.01e-04 BETTER

spoon 0.008 0.997 5.0e-04 BETTER spoon 0.011 0.995 6.43e-03 BETTER
dubbo 0.008 0.997 0.003 BETTER dubbo 0.014 0.950 0.009 BETTER

jackson-databind 0.013 0.929 0.009 BETTER jackson-databind 0.025 0.896 0.023 BETTER
oak 0.018 0.963 0.009 BETTER oak 0.011 0.969 0.009 BETTER

debezium 0.011 0.969 0.007 BETTER debezium 0.018 0.966 0.003 BETTER
byte-buddy 0.012 0.989 0.003 BETTER byte-buddy 0.011 0.969 0.009 BETTER

AutomatedCar 0.017 0.977 0.008 BETTER AutomatedCar 0.018 0.963 0.019 BETTER
cash-count 0.013 0.981 0.009 BETTER cash-count 0.046 0.705 0.039 BETTER

total 4.20e-12 1.000 2.15e-12 BETTER total 2.99e-09 1.000 1.53e-09 BETTER

GP03
(UNITE)

vs
GP03

gzip 0.012 0.899 0.013 BETTER

Dstar
(UNITE)

vs
Dstar

gzip 0.012 0.899 0.013 BETTER
libtiff 0.011 0.969 0.009 BETTER libtiff 0.011 0.969 0.09 BETTER
python 0.018 0.967 4.00e-04 BETTER python 0.018 0.963 3.00e-04 BETTER
space 4.38e-04 1.000 2.41e-04 BETTER space 4.38e-04 1.000 2.41e-04 BETTER

nanoxml_v1 0.045 0.707 0.046 BETTER nanoxml_v1 0.045 0.707 0.046 BETTER
nanoxml_v2 0.011 0.969 0.009 BETTER nanoxml_v2 0.043 0.789 0.039 BETTER
nanoxml_v3 0.047 0.663 0.042 BETTER nanoxml_v3 0.047 0.663 0.042 BETTER
nanoxml_v5 0.013 0.985 0.003 BETTER nanoxml_v5 0.013 0.985 0.003 BETTER

spoon 0.008 1.000 4.58e-04 BETTER spoon 0.008 0.962 0.007 BETTER
dubbo 0.008 0.970 0.005 BETTER dubbo 0.045 0.728 0.041 BETTER

jackson-databind 0.012 0.989 0.003 BETTER jackson-databind 0.024 0.896 0.035 BETTER
oak 0.011 0.961 0.009 BETTER oak 0.015 0.909 0.010 BETTER

debezium 0.018 0.963 0.003 BETTER debezium 0.007 0.985 0.003 BETTER
byte-buddy 0.011 0.969 0.014 BETTER byte-buddy 0.045 0.707 0.048 BETTER

AutomatedCar 0.011 0.969 0.009 BETTER AutomatedCar 0.018 0.963 0.003 BETTER
cash-count 0.046 0.705 0.039 BETTER cash-count 0.047 0.663 0.042 BETTER

total 2.32e-08 1.000 1.25e-08 BETTER total 1.61e-07 1.000 8.19e-08 BETTER

ER1’
(UNITE)

vs
ER1’

gzip 0.017 0.899 0.016 BETTER

GP19
(UNITE)

vs
GP19

gzip 0.008 0.978 0.007 BETTER
libtiff 0.011 0.969 0.009 BETTER libtiff 0.11 0.969 0.009 BETTER
python 0.018 0.963 0.003 BETTER python 0.018 0.963 0.003 BETTER
space 4.38e-04 1.000 2.41e-04 BETTER space 4.38e-04 1.000 2.41e-04 BETTER

nanoxml_v1 0.045 0.707 0.047 BETTER nanoxml_v1 0.011 0.966 0.011 BETTER
nanoxml_v2 0.011 0.969 0.009 BETTER nanoxml_v2 0.011 0.969 0.009 BETTER
nanoxml_v3 0.045 0.663 0.042 BETTER nanoxml_v3 0.012 0.953 0.009 BETTER
nanoxml_v5 0.003 0.985 0.008 BETTER nanoxml_v5 0.003 0.985 0.008 BETTER

spoon 0.008 0.962 0.004 BETTER spoon 0.008 0.997 0.005 BETTER
dubbo 0.045 0.702 0.041 BETTER dubbo 0.015 0.911 0.014 BETTER

jackson-databind 0.25 0.896 0.042 BETTER jackson-databind 0.013 0.929 0.010 BETTER
oak 0.015 0.909 0.009 BETTER oak 0.019 0.789 0.039 BETTER

debezium 0.009 0.985 0.003 BETTER debezium 0.012 0.953 0.010 BETTER
byte-buddy 0.010 0.969 0.009 BETTER byte-buddy 0.010 0.969 0.009 BETTER

AutomatedCar 0.007 0.989 0.003 BETTER AutomatedCar 0.012 0.963 0.003 BETTER
cash-count 0.025 0.896 0.043 BETTER cash-count 0.046 0.705 0.039 BETTER

total 3.25e-08 1.000 1.66e-08 BETTER total 4.79e-11 1.000 2.45e-11 BETTER

using UNITE; otherwise, 𝐻0 that ranks of using UNITE does not significantly tend to be smaller than that of without
using UNITE is accepted, meaning that using UNITE does not perform better than without using UNITE.

Table 4 and Table 5 show the Wilcoxon-Signed-Rank Test results on this relationship, where the cells show the
p values of Wilcoxon-Signed-Rank Tests. The results show that the ranks of the faulty statements of all the 12 FL
approaches using UNITE are significantly smaller than those of all the 12 baselines using original trace representation
in all programs, yielding BETTER results in all cases.

To further assess the difference quantitatively, we leverage the nonparametric Vargha-Delaney A-test, which is
recommended in [3], to evaluate the magnitude of the difference by measuring effect size (scientific significance). For
A-test, the bigger deviation of A-statistic is from the value of 0.5, the greater difference is between the two studied
groups. Vargha and Delaney [50] suggest that A-test of greater than 0.64 (or less than 0.36) is indicative of “medium”
effect size, and of greater than 0.71 (or less than 0.29) can be indicative of a promising “large” effect size.
Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Influential Global and Local Contexts Guided Trace Representation for Fault Localization 15

Table 5. Wilcoxon-Signed-Rank Test results of the other six of 12 FL approaches using UNITE vs without using UNITE (part 2).

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion

Ochiai
(UNITE)

vs
Ochiai

gzip 0.008 0.978 0.007 BETTER

MLP
(UNITE)

vs
MLP

gzip 0.008 0.978 0.005 BETTER
libtiff 0.011 0.969 0.004 BETTER libtiff 0.011 0.966 0.009 BETTER
python 0.002 0.993 0.002 BETTER python 0.012 0.963 0.009 BETTER
space 4.38e-04 1.000 2.41e-04 BETTER space 4.38e-04 1.000 2.41e-04 BETTER

nanoxml_v1 0.042 0.707 0.047 BETTER nanoxml_v1 0.009 0.971 0.009 BETTER
nanoxml_v2 0.033 0.789 0.039 BETTER nanoxml_v2 0.013 0.961 0.011 BETTER
nanoxml_v3 0.034 0.853 0.020 BETTER nanoxml_v3 0.012 0.989 0.003 BETTER
nanoxml_v5 0.005 0.985 0.003 BETTER nanoxml_v5 0.005 0.985 0.003 BETTER

spoon 0.006 0.971 0.004 BETTER spoon 0.015 0.909 0.011 BETTER
dubbo 0.045 0.819 0.029 BETTER dubbo 0.017 0.943 0.019 BETTER

jackson-databind 0.013 0.949 0.010 BETTER jackson-databind 0.008 0.970 0.005 BETTER
oak 0.019 0.789 0.039 BETTER oak 0.018 0.963 0.009 BETTER

debezium 0.010 0.969 0.009 BETTER debezium 0.012 0.965 0.003 BETTER
byte-buddy 0.010 0.969 0.009 BETTER byte-buddy 0.005 0.989 0.002 BETTER

AutomatedCar 0.010 0.923 0.013 BETTER AutomatedCar 0.002 0.991 0.002 BETTER
cash-count 0.024 0.896 0.025 BETTER cash-count 0.006 0.985 0.003 BETTER

total 3.90e-09 1.000 1.99e-09 BETTER total 3.55e-10 1.000 1.83e-10 BETTER

CNN
(UNITE)

vs
CNN

gzip 0.008 0.978 0.005 BETTER

BiLSTM
(UNITE)

vs
BiLSTM

gzip 0.007 0.978 0.005 BETTER
libtiff 0.011 0.969 0.004 BETTER libtiff 0.011 0.969 0.004 BETTER
python 0.012 0.952 0.003 BETTER python 0.002 0.998 3.25e-04 BETTER
space 4.36e-04 1.000 2.41e-04 BETTER space 4.38e-04 1.000 2.41e-04 BETTER

nanoxml_v1 0.011 0.957 0.006 BETTER nanoxml_v1 0.011 0.957 0.006 BETTER
nanoxml_v2 0.011 0.956 0.010 BETTER nanoxml_v2 0.011 0.956 0.010 BETTER
nanoxml_v3 0.011 0.953 0.007 BETTER nanoxml_v3 0.011 0.953 0.007 BETTER
nanoxml_v5 0.006 0.985 0.003 BETTER nanoxml_v5 0.006 0.985 0.003 BETTER

spoon 0.010 0.969 0.004 BETTER spoon 0.009 0.909 0.011 BETTER
dubbo 0.008 0.951 0.019 BETTER dubbo 0.008 0.972 0.003 BETTER

jackson-databind 0.036 0.791 0.029 BETTER jackson-databind 0.004 0.985 0.006 BETTER
oak 0.008 0.942 0.019 BETTER oak 0.008 0.981 0.003 BETTER

debezium 0.004 0.985 0.003 BETTER debezium 0.011 0.964 0.003 BETTER
byte-buddy 0.008 0.970 0.005 BETTER byte-buddy 0.006 0.978 0.004 BETTER

AutomatedCar 0.006 0.971 0.005 BETTER AutomatedCar 0.018 0.913 0.003 BETTER
cash-count 0.004 0.985 0.003 BETTER cash-count 0.006 0.978 0.005 BETTER

total 9.50e-10 1.000 4.88e-10 BETTER total 4.19e-10 1.000 2.15e-10 BETTER

ProFL
(UNITE)

vs
ProFL

gzip 0.008 0.978 0.007 BETTER

DeepRL4FL
(UNITE)

vs
DeepRL4FL

gzip 0.009 0.969 0.011 BETTER
libtiff 0.009 0.969 0.011 BETTER libtiff 0.003 0.989 0.004 BETTER
python 0.011 0.963 0.009 BETTER python 0.035 0.859 0.021 BETTER
space 4.36e-04 1.000 2.41e-04 BETTER space 4.36e-04 1.000 2.41e-04 BETTER

nanoxml_v1 0.009 0.969 0.011 BETTER nanoxml_v1 0.35 0.708 0.043 BETTER
nanoxml_v2 0.009 0.978 0.004 BETTER nanoxml_v2 0.007 0.973 0.003 BETTER
nanoxml_v3 0.011 0.953 0.007 BETTER nanoxml_v3 0.025 0.814 0.015 BETTER
nanoxml_v5 0.004 0.985 0.003 BETTER nanoxml_v5 0.015 0.896 0.027 BETTER

spoon 0.009 0.987 0.003 BETTER spoon 0.035 0.789 0.039 BETTER
dubbo 0.035 0.789 0.039 BETTER dubbo 0.004 0.989 0.002 BETTER

jackson-databind 0.015 0.896 0.024 BETTER jackson-databind 0.005 0.969 0.010 BETTER
oak 0.005 0.969 0.010 BETTER oak 0.008 0.981 0.003 BETTER

debezium 0.008 0.978 0.006 BETTER debezium 0.008 0.972 0.009 BETTER
byte-buddy 0.003 0.979 0.007 BETTER byte-buddy 0.003 0.989 0.002 BETTER

AutomatedCar 0.003 0.989 0.002 BETTER AutomatedCar 0.042 0.705 0.043 BETTER
cash-count 0.015 0.896 0.015 BETTER cash-count 0.012 0.911 0.004 BETTER

total 1.31e-07 1.000 7.35e-08 BETTER libtiff 1.65e-07 1.000 6.36e-08 BETTER

Table 6. A-Test results of 12 FL approaches using UNITE vs without using UNITE.

Comparison A-Test Comparison A-Test Comparison A-Test Comparison A-Test
ER5(UNITE) vs ER5 0.86 GP02(UNITE) vs GP02 0.87 GP03(UNITE) vs GP03 0.91 Dstar(UNITE) vs Dstar 0.85
ER1’(UNITE) vs ER1’ 0.88 GP19(UNITE) vs GP19 0.91 Ochiai(UNITE) vs Ochiai 0.88 MLP(UNITE) vs MLP 0.93
CNN(UNITE) vs CNN 0.89 BiLSTM(UNITE) vs BiLSTM 0.96 ProFL(UNITE) vs ProFL 0.83 DeepRL4FL(UNITE) vs DeepRL4FL 0.81

Table 6 shows the A-Test results of 12 FL approaches using UNITE vs without using UNITE. We could observe
that UNITE arrives at the promising “large” effect size, thus showing better performance. Therefore, it is statistically
significant that UNITE outperforms FL without using UNITE.

Summary for RQ1 In RQ1, we explore the effectiveness of UNITE over original 12 FL baselines. We can safely conclude

that the 12 techniques with UNITE significantly outperform the original ones, showing that incorporating influential

global and local contexts guided trace representation into FL is potential to improve FL effectiveness.

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Zhang and Lei, et al.

Table 7. Statistical results of the 12 FL approaches using each part of UNITE vs using original representation.

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test

UNITE
(Influence)

vs
original

representation

ER5 0.010 0.978 0.009 BETTER 0.83

UNITE
(GLContexts)

vs
original

representation

ER5 0.018 0.968 0.009 BETTER 0.73
GP02 0.012 0.785 0.018 BETTER 0.78 GP02 0.014 0.917 0.003 BETTER 0.74
GP03 0.026 0.865 0.004 BETTER 0.67 GP03 0.015 0.935 0.003 BETTER 0.74
Dstar 0.027 0.893 0.031 BETTER 0.65 Dstar 0.034 0.746 0.026 BETTER 0.63
ER1’ 0.009 0.903 0.004 BETTER 0.81 ER1’ 0.034 0.743 0.029 BETTER 0.63
GP19 0.015 0.899 0.028 BETTER 0.64 GP19 0.031 0.824 0.046 BETTER 0.63
Ochiai 0.015 0.912 0.005 BETTER 0.64 Ochiai 0.012 0.876 0.009 BETTER 0.76
MLP-FL 0.011 0.969 0.009 BETTER 0.87 MLP-FL 0.043 0.785 0.030 BETTER 0.65
CNN-FL 0.013 0.902 0.018 BETTER 0.62 CNN-FL 0.028 0.897 0.029 BETTER 0.76

BiLSTM-FL 0.010 0.974 0.002 BETTER 0.81 BiLSTM-FL 0.016 0.894 0.008 BETTER 0.78
ProFL 0.017 0.929 0.014 BETTER 0.67 ProFL 0.038 0.770 0.037 BETTER 0.62

DeepRL4FL 0.026 0.893 0.025 BETTER 0.63 DeepRL4FL 0.045 0.812 0.039 BETTER 0.61

Table 8. Statistical results of the 12 FL approaches using UNITE vs using each part of UNITE.

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test

UNITE
vs

UNITE
(Influence)

ER5 0.013 0.909 0.004 BETTER 0.74

UNITE
vs

UNITE
(GLContexts)

ER5 0.016 0.913 0.005 BETTER 0.71
GP02 0.018 0.903 0.009 BETTER 0.82 GP02 0.011 0.869 0.041 BETTER 0.73
GP03 0.029 0.859 0.021 BETTER 0.71 GP03 0.015 0.835 0.038 BETTER 0.74
Dstar 0.023 0.893 0.020 BETTER 0.73 Dstar 0.014 0.846 0.036 BETTER 0.71
ER1’ 0.039 0.824 0.043 BETTER 0.71 ER1’ 0.014 0.885 0.039 BETTER 0.72
GP19 0.016 0.906 0.009 BETTER 0.81 GP19 0.011 0.895 0.009 BETTER 0.81
Ochiai 0.015 0.903 0.005 BETTER 0.78 Ochiai 0.012 0.911 0.016 BETTER 0.73
MLP-FL 0.010 0.969 0.008 BETTER 0.82 MLP-FL 0.013 0.907 0.012 BETTER 0.71
CNN-FL 0.031 0.864 0.046 BETTER 0.72 CNN-FL 0.018 0.847 0.036 BETTER 0.71

BiLSTM-FL 0.017 0.915 0.014 BETTER 0.73 BiLSTM-FL 0.013 0.902 0.014 BETTER 0.78
ProFL 0.013 0.919 0.009 BETTER 0.72 ProFL 0.019 0.886 0.046 BETTER 0.72

DeepRL4FL 0.017 0.899 0.024 BETTER 0.72 DeepRL4FL 0.017 0.878 0.045 BETTER 0.73

4.3.2 RQ2. Does each part of UNITE contribute to FL effectiveness?
UNITE has two major parts: combining global and local contexts into representation and incorporating influential

semantics into representation. It is desirable to see whether each part of UNITE contributes to FL effectiveness. Therefore,
We implement UNITE with each part as UNITE(GLContexts) and UNITE(Influence), respectively. There are two cases:
(1) we compare UNITE(GLContexts) and UNITE(Influence) with the original trace representation to check whether each
part improves the original one; (2) we compare UNITE with each part (i.e., UNITE(GLContexts) and UNITE(Influence))
to check whether UNITE successfully combines two parts to achieve better effectiveness than each part. We use the
ranks of the faulty statements as measurements, and conduct Wilcoxon-Signed-Rank Test with a Bonferroni correction
at the 𝜎 level of 0.05 for each comparison of the above two cases. Furthermore, for each comparison of the above two
cases, we adopt the nonparametric Vargha-Delaney A-test to evaluate the magnitude of their difference by measuring
effect size.

Table 7 and Table 8 show the statistical results of each one of the above two cases, respectively. As shown in Table 7,
the ranks of the faulty statements of all the 12 FL baselines using each part of UNITE (i.e., UNITE(GLContexts) and
UNITE(Influence)) are significantly smaller than those of all the original FL approaches, yielding BETTER results in
all scenarios. Furthermore, each part of UNITE (i.e., UNITE(GLContexts) and UNITE(Influence)) acquire “medium”
and “large” effect sizes over those of all original FL approaches. Similarly, as show in Table 8, UNITE significantly
outperforms its each part (i.e., UNITE(GLContexts) and UNITE(Influence)), yielding BETTER results and “large” effect
sizes in all scenarios.

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Influential Global and Local Contexts Guided Trace Representation for Fault Localization 17

Summary forRQ2 In RQ2, we explore the contribution of each part of UNITE to FL effectiveness. Based on the above results,

we can conclude that (1) each part of UNITE (i.e., UNITE(GLContexts) and UNITE(Influence)) significantly contributes to FL
effectiveness; (2) UNITE successfully combines the contributions of UNITE(GLContexts) and UNITE(Influence), significantly

outperforming each separated part.

4.3.3 RQ3. Why is UNITE better than original state-of-the-art FL baselines?
The experimental results show that UNITE outperforms the original trace representation. It is natural to seek why is

UNITE better than original trace representation. Let us use the definitions (e.g., 𝑥𝑖 𝑗 and 𝐺𝐿𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 (𝑥𝑖 𝑗)) in Section 3.
For a statement 𝑠 𝑗 , we first define the following four formulas:

𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 (𝑠 𝑗) =
∑︁

𝑖∈{𝑖 |𝑒𝑖=1}
𝑥𝑖 𝑗

𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 (𝑠 𝑗) =
∑︁

𝑖∈{𝑖 |𝑒𝑖=1}
𝐺𝐿𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 (𝑥𝑖 𝑗)

𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 (𝑠 𝑗) =
∑︁

𝑖∈{𝑖 |𝑒𝑖=0}
𝑥𝑖 𝑗

𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 (𝑠 𝑗) =
∑︁

𝑖∈{𝑖 |𝑒𝑖=0}
𝐺𝐿𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 (𝑥𝑖 𝑗)

(10)

𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 (𝑠 𝑗) and 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 (𝑠 𝑗) denote the cumulative weights of the statement 𝑠 𝑗 acquired in all failing
test cases by using original representation andUNITE, respectively. Similarly, 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 (𝑠 𝑗) and 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 (𝑠 𝑗)
represent the cumulative weights of the statement 𝑠 𝑗 acquired in all passing test cases by using original representation
and UNITE, respectively. For a statement, a high 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 means that it is strongly related to failing test cases whereas a
high 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 represents it is strongly related to passing test cases10. Thus, it desirable to design a trace representation
that will always assign the faulty statements with a high 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 and a low 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 . This may be the reason why
UNITE outperforms the original trace representation. In other words, the values of the ranks and exam of the faulty
statements in descending order of 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 should be smaller than those in descending order of 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 ,
and the values of the ranks of the faulty statements in descending order of 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 should be higher than those
in descending order of 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 .

To verify the above analysis, based on the four formulas in Eq. (10), we calculate the 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 and 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 of each
statement in all faulty versions of a program using the original representation and UNITE, respectively. We conduct
two paired Wilcoxon-Signed-Rank tests with a Bonferroni correction by using the pairs of measurements F(x) and G(y),
and each test uses left-tailed p-value checking at the 𝜎 level of 0.05. One test adopts the ranks and exam of the faulty
statements using 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 in all faulty versions of a program as the list of measurements of F(x), while the list
of measurements of G(y) is the list of the ranks and exam of the faulty statements using 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 in all faulty
versions of the program. The other test utilizes the ranks of the faulty statements using 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑔𝑖𝑛 in all faulty
versions of a program as the list of measurements of F(x), while the list of measurements of G(y) is the list of the ranks
and exam of the faulty statements using 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 in all faulty versions of the program. For each of the above
comparison, we further adopt the nonparametric Vargha-Delaney A-test to evaluate the magnitude of their difference
by measuring effect size.

10This analysis excludes those statement whose 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 and 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 are both 0 because they have nothing with failing and passing test cases
and will be first excluded by FL techniques.

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Zhang and Lei, et al.

Table 9. Statistical results of the comparison between UNITE and the original representation using 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 and 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 .

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test

𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸

vs
𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑔𝑖𝑛

gzip 0.014 0.939 0.001 BETTER 0.81
libtiff 0.016 0.921 0.007 BETTER 0.78
python 0.007 0.965 0.001 BETTER 0.82
space 0.012 0.914 0.003 BETTER 0.76

nanoxml_v1 0.011 0.951 0.007 BETTER 0.77
nanoxml_v2 0.012 0.916 0.008 BETTER 0.76
nanoxml_v3 0.011 0.903 0.009 BETTER 0.78
nanoxml_v5 0.010 0.925 0.008 BETTER 0.76

spoon 0.004 0.985 0.003 BETTER 0.85
dubbo 0.011 0.924 0.008 BETTER 0.78

jackson-databind 0.018 0.892 0.026 BETTER 0.76
oak 0.017 0.914 0.002 BETTER 0.74

debezium 0.008 0.970 0.003 BETTER 0.82
byte-buddy 0.012 0.893 0.022 BETTER 0.77

AutomatedCar 0.016 0.907 0.012 BETTER 0.76
cash-count 0.017 0.879 0.029 BETTER 0.76

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test

𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸

vs
𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛

gzip 0.012 0.953 0.007 BETTER 0.74
libtiff 0.033 0.865 0.037 BETTER 0.71
python 0.018 0.906 0.009 BETTER 0.76
space 0.029 0.899 0.038 BETTER 0.72

nanoxml_v1 0.025 0.883 0.046 BETTER 0.72
nanoxml_v2 0.025 0.894 0.041 BETTER 0.74
nanoxml_v3 0.023 0.917 0.024 BETTER 0.74
nanoxml_v5 0.020 0.953 0.006 BETTER 0.76

spoon 0.012 0.957 0.007 BETTER 0.77
dubbo 0.033 0.889 0.038 BETTER 0.72

jackson-databind 0.036 0.846 0.037 BETTER 0.71
oak 0.016 0.908 0.007 BETTER 0.76

debezium 0.018 0.917 0.014 BETTER 0.75
byte-buddy 0.037 0.802 0.043 BETTER 0.71

AutomatedCar 0.028 0.835 0.038 BETTER 0.72
cash-count 0.034 0.849 0.045 BETTER 0.71

Table 9 shows the statistical results of the comparison between UNITE and original trace representation using failing
and passing cumulative weights, respectively. As shown in Table 9, the values of the ranks of the faulty statements using
𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 and 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑔𝑖𝑛 are significantly smaller than 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 and 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 , respectively,
yielding BETTER results and “large” effect sizes in all programs.

Summary for RQ3 In RQ3, we explore the reason of why UNITE performs better than original FL techniques. The results

show that the reason of UNITE outperforms the original trace representation may lie in that UNITE will always assign the

faulty statements with a high 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 and a low 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 .

5 DISCUSSION

5.1 Benchmark Over-fitting Effect on UNITE

Does benchmark over-fitting effect impact UNITE? Recent work [10] shows that the widely-used benchmark
Defects4J (i.e., chart, math, lang and time in the Table 2) is over-fitting for SFL including the seven state-of-the-art FL
baselines (i.e., ER5, GP02, GP03, Dstar, ER1’, GP19 and Ochiai) used by our experiments. In other words, SFL shows
inconsistencies between the benchmark Defects4J and other benchmarks in terms of FL effectiveness. For example,
34.8% and 47.8% of bugs in Defects4J are localized at top 10 using Ochiai and Dstar while only a few bugs in other
benchmarks can be localized even in top 100 [10, 72]. It is interesting to see whether UNITE still effectively works
under the effect of benchmark over-fitting.
Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Influential Global and Local Contexts Guided Trace Representation for Fault Localization 19

Table 10. The statistical results of the 12 FL approaches on Defects4J using UNITE vs without using UNITE.

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test

UNITE
vs

original
representation

ER5 0.017 0.914 0.017 BETTER 0.78
GP02 0.019 0.895 0.038 BETTER 0.76
GP03 0.022 0.879 0.014 BETTER 0.74
Dstar 0.010 0.913 0.013 BETTER 0.75
ER1’ 0.013 0.902 0.012 BETTER 0.76
GP19 0.012 0.914 0.018 BETTER 0.77
Ochiai 0.013 0.927 0.010 BETTER 0.76
MLP-FL 0.016 0.925 0.014 BETTER 0.75
CNN-FL 0.012 0.894 0.026 BETTER 0.77

BiLSTM-FL 0.009 0.966 0.008 BETTER 0.82
ProFL 0.025 0.843 0.046 BETTER 0.74

DeepRL4FL 0.027 0.834 0.047 BETTER 0.72

Table 11. Statistical results of the comparison between UNITE and the original representation using 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 and 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 on
Defects4J.

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test

𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸

vs
𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛

chart 0.012 0.906 0.009 BETTER 0.79
𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸

vs
𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛

chart 0.024 0.879 0.034 BETTER 0.74
math 0.010 0.916 0.008 BETTER 0.79 math 0.022 0.898 0.014 BETTER 0.76
lang 0.008 0.946 0.003 BETTER 0.78 lang 0.011 0.967 0.009 BETTER 0.81
time 0.011 0.906 0.009 BETTER 0.78 time 0.008 0.963 0.006 BETTER 0.78

We apply UNITE to the 12 FL techniques on Defects4J, and compare their FL effectiveness. Specifically, we perform 12
paired Wilcoxon-Signed-Rank tests by using the ranks and exam of the faulty statements as the pairs of measurements
F(x) (i.e., UNITE) and G(y) (i.e., each of 12 original FL baselines). Each test uses left-tailed p-value checking at the 𝜎
level of 0.05.

Table 10 shows the statistical results on this relationship. As shown in Table 10, the p-values are all less than 0.05 and
the A-test values are all greater than 0.71. It means that the ranks of the faulty statements of all the 12 FL approaches
using UNITE are significantly smaller than those of all the original FL approaches on Defects4J, yielding BETTER
results and “large” effect sizes in all scenarios. Thus, UNITE can still effectively work under the effect of benchmark
over-fitting.
Does the reason of a high 𝒇𝑾𝒆𝒊𝒈𝒉𝒕𝒔 and a low 𝒑𝑾𝒆𝒊𝒈𝒉𝒕𝒔 still work for UNITE under the benchmark over-fitting
effect? In RQ3, the results show that the reason of UNITE outperforms the original trace representation may lie in
that UNITE will always assign the faulty statements with a high 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 and a low 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 . This reason may still
work for explaining that the effect of benchmark over-fitting does not impact UNITE. Thus, we also conduct two paired
Wilcoxon-Signed-Rank tests with a Bonferroni correction on Defects4J by using left-tailed p-value checking at the 𝜎
level of 0.05. One test adopts the ranks of the faulty statements using 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 in all faulty versions of Defects4J
as the list of measurements of F(x), while the list of measurements of G(y) is the list of the ranks of the faulty statements
using 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 in all faulty versions of Defects4J. The other test utilizes the ranks of the faulty statements using
𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑔𝑖𝑛 in all faulty versions of Defects4J as the list of measurements of F(x), while the list of measurements of
G(y) is the list of the ranks of the faulty statements using 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 in all faulty versions of Defects4J.

Table 11 shows the statistical results of the comparison between UNITE and original trace representation using
𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 and 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 on Defects4J, respectively. As shown in Table 11, the p-values are all less than 0.05 and the
A-test values are all greater than 0.71, yielding BETTER results and “large” effect sizes in all programs of Defects4J.
Thus, under the effect of benchmark over-fitting, UNITE will still always assign the faulty statements with a high
𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 and a low 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 .

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Zhang and Lei, et al.

Table 12. Average time cost of using UNITE and without using UNITE.

Comparison ER5(UNITE)/ER5 GP02(UNITE)/GP02 GP03(UNITE)/GP03 Dstar(UNITE)/Dstar
Time Cost 35.7s/4.7s 31.8s/4.2s 41.2s/5.3s 32.3s/4.4s
Comparison ER1’(UNITE)/ER1’ GP19(UNITE)/GP19 Ochiai(UNITE)/Ochiai MLP-FL(UNITE)/MLP-FL
Time Cost 44.7s/5.9s 45.3s/6.2s 36.1s/4.9s 3.5h/2.1h
Comparison CNN-FL(UNITE)/CNN-FL BiLSTM-FL(UNITE)/BiLSTM-FL ProFL(UNITE)/PRoFL DeepRL4FL(UNITE)/DeepRL4FL
Time Cost 5.9h/4.1h 18.7h/11.3h 3.6h/2.3h 6.2h/4.6h

5.2 Efficiency of UNITE

Due to the use of both global and local contexts with influential semantics, it is necessary to evaluate the efficiency of
UNITE. Table 12 shows the average time cost of 12 baselines using and without using UNITE, where s and h denote
seconds and hours respectively. As shown in Table 12, for the seven baselines (i.e., ER5, GP02, GP03, Dstar, ER1’, GP19
and Ochiai), even if the time cost changes from several seconds into dozens of seconds after using UNITE, the time
cost is still low. For the other baselines (i.e., MLP-FL, CNN-FL, BiLSTM-FL, ProFL, DeepFL4FL), the time costs of using
UNITE and without using UNITE are within the same order of magnitude. Thus, the time cost of UNITE is acceptable
in comparison to the original baselines.

5.3 Application of UNITE in Automated Program Repair

Automated program repair (APR) [19] is a concrete software engineering task by automatically repairing programs.
APR usually consists of three phases: fault localization, patch generation and patch validation. Being the first step, fault
localization provides a suspicious rank list of statements for APR. Specifically, the APR techniques generate patches
in the suspicious rank list from top to down and many APR techniques [12, 27, 62] set clear time limitation. It means
that, after using UNITE, the improvement of Top-N and MFR metrics could help the APR techniques, since the APR
techniques relay on the suspicious rank list and have limited time for each bug during the repair. Thus, we adopt the
concrete software engineering task(i.e., APR) to illustrate meaningful improvement of our approach.

We use two typical APR techniques (i.e., Nopol [62] and Tbar [27]) and apply UNITE to their fault localization
modules (i.e., Ochiai [35]). We adopt Defects4J, widely used by the existing APR studies including Nopol [62] and
Tbar [27], to conduct the comparison. We further exclude those faulty versions which the slicing tools cannot slice, and
apply Nopol and Tbar to these faulty versions, where Nopol generated plausible patches for the programs of chart, lang
and math and Tbar produced plausible patches for the programs of chart, lang, math and time. Thus, we perform 100
repeated repairs for each of those faulty versions which are finally fixed by Nopol [62] or Tbar [27].

To evaluate the effect of UNITE on APR efficiency, we adopt twowidely used metrics (i.e., repair time andNPC) [27, 62].
We show different parts of repair time in seconds: fault localization time (i.e., the time cost of fault localization), patch
acquisition time (i.e., the time cost of patch generation and validation), total time (i.e., the time cost of the whole APR
process including fault localization time and patch acquisition time). NPC denotes the number of patch candidates
generated by an APR technique until the first plausible patch is found. Table 13 shows the efficiency distribution of
APR techniques with and without using UNITE. As shown in Table 13, for repair time, although our approach increases
fault localization time, the patch acquisition time decreases and the total time decreases except for two programs using
Nopol; for NPC, our approach reduces the NPC in Tbar and keeps the same NPC in Nopol. These results show that
UNITE can improve the APR efficiency.
Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Influential Global and Local Contexts Guided Trace Representation for Fault Localization 21

Table 13. Efficiency distribution of repair time and NPC among the original APR techniques and the ones using UNITE.

Comparison Fault Localization Time (s) Patch Acquisition Time (s) Total Time (s) NPC

Nopol
chart 13.15 5.69 19.84 1
lang 15.38 29.30 44.68 1
math 69.84 293.45 363.29 1

Nopol(UNITE)
chart 47.37 3.25 50.62 1
lang 52.64 18.67 71.31 1
math 121.43 238.91 360.34 1

TBar

chart 15.79 783.75 799.54 587.25
lang 16.54 848.49 865.03 714.75
math 86.81 798.09 884.90 79.60
time 12.08 7244.91 7256.99 6812.63

Tbar(UNITE)

chart 56.23 542.61 598.84 327.39
lang 57.19 585.83 643.02 485.92
math 142.25 505.78 648.03 61.37
time 47.85 4473.38 4521.23 2341.25

Table 14. Effectiveness distribution of plausibly fixed bugs among the original APR techniques and the ones using UNITE.

Comparison Fixed Bugs

Nopol
chart 5,9,13,17
lang 44,51,58
math 40

Nopol(UNITE)
chart 5,9,13,17
lang 44,51,58
math 40,50

TBar

chart 1,4,7,8,9,11,12,13,14,15,19,20,24,25
lang 7,10,22,33,39,43,44,45,47,51,58,59,63
math 2,3,4,5,6,8,11,15,22,28,30,32,33,34,35,49,50,57,58,59,60,62,63,65,70,73,75,77,79,80,82,85,89,95,96,98
time 7,11,17

Tbar(UNITE)

chart 1,4,7,8,9,11,12,13,14,15,19,20,24,25,26
lang 7,10,22,33,39,43,44,45,47,51,58,59,63, 13, 18, 27
math 2,3,4,5,6,8,11,15,22,28,30,32,33,34,35,49,50,57,58,59,60,62,63,65,70,73,75,77,79,80,82,85,89,95,96,98,52,88,94
time 7,11,17,2,19

To evaluate the effect of UNITE on the APR effectiveness, we adopt the widely used metric, i.e., the number of
plausibly fixed bugs generated by an APR technique [27, 62]. Table 14 shows the specific fixed bugs of the original APR
techniques and the ones using UNITE. As shown in Table 14, after applying UNITE, for Nopol, it has plausibly fixed
one more bug (i.e., math_50); for Tbar, it has plausibly fixed nine more bugs (i.e., chart_26, lang_13, lang_18, lang_27,
math_52, math_88, math_94, time_2 and time_19). Thus, UNITE can improves the APR effectiveness.

5.4 An Example ofQualitative Analysis for UNITE

To show whether the difference is meaningful after applying UNITE, we demonstrate a qualitative example to show the
detailed information of 12 FL approaches locating the faults. Specifically, we use the faulty version two of the program
nanoxml_v2 whose faulty statement is the line 309 as the qualitative example, showing the faulty program with call
relationship and the locations where the 12 FL approaches locate the faults.

Table 15 summarized the detailed results of 12 FL approaches with and without UNITE, where the column ‘Ranking
List’ is the ranking list of the statements in descending order of suspiciousness until finding the faulty statement and
the column ’Rank’ denotes the rank of faulty statement in the ranking list. As shown in Table 15, after applying UNITE,
the length of the ranking list decreases and the rank of the faulty statement increases, showing UNITE is more effective.

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Zhang and Lei, et al.

Table 15. Detailed FL results of the qualitative example.

Comparison Ranking list Rank

ER5 52 58 64 96 97 98 99 100 101 125 126 147 148 191 192 218 220 221 239 240 243 245 246 253 256 263 277 279 285 286 40289 290 292 331 333 344 345 348 349 390
ER5(UNITE) 344 390 2

GP02 348 349 344 345 390 5
GP02(UNITE) 344 390 2

GP03 348 349 344 345 390 5
GP03(UNITE) 344 390 2

Dstar 348 349 344 345 390 5
Dstar(UNITE) 344 390 2

ER1’ 348 349 344 345 390 5
ER1’(UNITE) 344 390 2

GP19 52 58 64 96 97 98 99 100 101 125 126 147 148 191 192 239 240 243 277 279 453 455 456 457 459 464 467 473 475 292 58484 485 489 491 505 507 256 590 592 594 348 349 245 246 479 480 481 600 602 605 606 289 290 476 522 344 345 390
GP19(UNITE) 344 390 2

Ochiai 348 349 344 345 390 5
Ochiai(UNITE) 344 390 2

MLP-FL 125 126 191 218 220 221 239 240 453 455 456 457 459 243 344 345 390 17
MLP-FL(UNITE) 218 220 239 240 243 344 390 7

CNN-FL 239 240 243 277 279 344 345 390 8
CNN-FL(UNITE) 243 277 279 344 390 5

BiLSTM-FL 52 64 58 220 239 246 253 240 221 147 148 169 158 202 243 245 256 277 278 279 281 304 305 307 308 312 313 316 289 37286 285 290 291 292 344 345 390
BiLSTM-FL(UNITE) 239 240 243 245 277 279 285 344 390 9

ProFL 348 349 344 345 390 5
ProFL(UNITE) 344 390 2
DeepRL4FL 243 245 246 344 345 390 6

DeepRL4FL(UNITE) 243 245 344 390 4

Although Table 15 shows the ranking list, we cannot visually see the locations of the ranking list and call relationship
in the faulty program. Thus, Fig 7 shows visual FL results of the 12 FL approaches with and without UNITE. In Fig 7, for
each of the 12 FL approaches, we use the same symbol (i.e., a colored rectangle with a solid or dotted line) to mark the
locations (i.e., the statements) of the ranking list (i.e., the one in Table 15) in the faulty program. In addition, when there
is a call between different functions, we use an arrow with a solid line to denote the call action. As a reminder, for those
FL approaches with the same ranking list, we use the symbol to represent their ranking list, e.g., GP02, GP02, ER1’,
Dstar, Ochiai, ProFL. Taking ER5 as an example, Table 15 shows that its ranking list has 40 statements, meaning that
the faulty statement is ranked 40th. Therefore, in Fig 7, the 40 statements are marked with the same yellow and solid
line rectangle, showing the distribution of the locations of the ranking list in the program via using ER5. As shown in
Fig 7, after applying UNITE, we can visually see that the searching scope of locating the fault is significantly reduced.

Thus, based on the FL results of the qualitative example, we can safely conclude that UNITE significantly improves
FL effectiveness. For enabling the qualitative analysis on other programs, we include the complete information about
UNITE, faulty locations and the subject programs in the online package11.

5.5 Threats to Validity

Threats to internal validity. Threats to internal validity relate to potential errors in our implementation. First,
one potential threat to validity is the potential errors in the implementation of UNITE and 12 baselines. To mitigate
the threat, for eight SFL techniques, we implement them based on the widely used SFL source code GZoltar 12; for
four DLFL techniques, we use and enhance the source code from the previous studies to implement them on source

11https://github.com/oy-sarah/UNITE/tree/master/subjectPorgrams.
12https://gzoltar.com/

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Influential Global and Local Contexts Guided Trace Representation for Fault Localization 23

Faulty line

ER5 GP19 GP02, GP03, ER1', Dstar, Ochiai, ProFL CNN-FL MLP-FL BiLSTM-FL DeepRL4FL

ER5(UNITE),GP19(UNITE),GP02(UNITE), GP03(UNITE), ER1'(UNITE), Dstar(UNITE), Ochiai(UNITE), ProFL(UNITE)

CNN-FL(UNITE) MLP-FL(UNITE)

BiLSTM-FL(UNITE) DeepRL4FL(UNITE)

Fig. 7. Visual FL results of the qualitative example.

code [66, 67]. We also double-checked the implementation and fully tested our code, but there could be errors that we
did not notice.
Threats to external validity. Threats to external validity relate to generalizability of our results.We use FL techniques
using neural networks (i.e., MLP-FL, CNN-FL, BiLSTM-FL and DeepRL4FL), whose outputs are not stable, meaning that
the localization results are not the same through different training times. That drawback is caused by characteristic
of deep learning technology. To make the results more reliable, we follow the convention strategy by repeating the
experiments ten times and using the average score as the experimental results.

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Zhang and Lei, et al.

Another threat to external validity is the subject programs used for our experiments. Our subject programs are
commonly used in the field of software debugging, which are all from the real-life development. However, the experi-
mental results may not apply to all programs because there are still many unknown and complicated factors in realistic
debugging that could affect the experiment results. For example, in our approach, a specific failing test case is needed
for the obtain of an influential slice to exclude irrelevant statements for a smaller inspecting scope. However, such a
choice strategy is suitable for single-fault scenarios since the chosen failing test case can only reveal its own root cause.
Consequently, if there are more than one fault contained in a program, the remaining faults will be ignored, i.e., our
approach can be affected by multiple-faults scenarios. Specifically, for multiple faults, we have two typical problems.
The one is that dynamic information is partially related to multiple faults, i.e., a failing test case only executes part
of all the faulty statements of multiple faults. Dynamic FL approaches including UNITE cannot obtain the dynamic
information of unexecuted faulty statements, and thus it is difficult for dynamic approaches to be effective at locating
those faulty statements not executed by the failing test case. The other one is that multiple faults have complicated
effect (e.g., fault interference and coupling effect [6, 8, 64]), which is still difficult to be accurately analyzed. Dynamic
slicing used by our approach UNITE also suffer from this problem, and may miss part of all the faulty statements of
multiple faults. Consequently, UNITE is ineffective at locating those faulty statements of multiple faults missed by
dynamic slicing. To alleviate the problem, we may leverage clustering technology (e.g., [14]) to alleviate the effect by
transforming the context of multiple faults into that of single faults. Thus, it is worthwhile to incrementally extend our
study to more applications (e.g., multiple-faults programs) to seek additional insights.
Threats to construct validity. Threats to construct validity relate to the suitability of our evaluation. We adopt
the widely used metrics (i.e., TopN, MAR, MFR and RImp) to evaluate UNITE. According to the extensive use of the
measurements, the threat is acceptably mitigated.

6 CONCLUSION AND FUTUREWORK

In this paper, we propose UNITE: an inflUential coNtext-GuIded Trace rEpresentation, to represent the trace from both
global and local contexts with influential semantics for effective FL. UNITE embodies two key ideas: (1) not only local
context but also global context is useful for FL trace representation. (2) program dependencies are potential for upgrading
‘occurrence’ semantics. To implement the two key ideas UNITE uses the widely-used weighting capability of information
retrieval to combine global and local contexts, and further leverages program slicing to incorporate influence semantics
into the trace representation through program dependencies. We apply UNITE to 12 state-of-the-art FL techniques and
conduct large-scale experiments on 22 benchmark programs. The results show that UNITE significantly improves 12 FL
techniques, e.g., the average relative improvement for the most important Top-N metric [17], i.e., Top-1, Top-3, Top-5
and Top-10, achieves 35.58%, 119.90%, 47.43% and 50.66%, respectively.

In the future, we plan to design sophisticated weighting functions for a further optimization on global and local
contexts. We also plan to compose influence semantics with other solutions proposed in the literature to improve FL
effectiveness (e.g., feature selection).

ACKNOWLEDGMENTS

This work is partially supported by the National Natural Science Foundation of China (Nos. 62272072 and 62002034),
the National Defense Basic Scientific Research Project (No. WDZC20205500308) and the Major Key Project of PCL (No.
PCL2021A06).
Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Influential Global and Local Contexts Guided Trace Representation for Fault Localization 25

REFERENCES
[1] Hervé Abdi. 2007. The Bonferonni and Šidák Corrections for Multiple Comparisons. Encyclopedia of measurement and statistics 3 (2007), 103–107.
[2] Hiralal Agrawal and Joseph R Horgan. 1990. Dynamic program slicing. ACM SIGPlan Notices 25, 6 (1990), 246–256.
[3] Andrea Arcuri and Lionel Briand. 2011. A practical guide for using statistical tests to assess randomized algorithms in software engineering. In 2011

33rd International Conference on Software Engineering (ICSE). IEEE, 1–10.
[4] L. C Briand, Y Labiche, and Xuetao Liu. 2007. Using Machine Learning to Support Debugging with Tarantula. In The IEEE International Symposium

on Software Reliability. 137–146.
[5] Gregory W. Corder and Dale I. Foreman. 2010. Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach. Vol. 78. International

Statistical Review. 451–452 pages.
[6] Vidroha Debroy and W Eric Wong. 2009. Insights on fault interference for programs with multiple bugs. In the 20th International Symposium on

Software Reliability Engineering. IEEE, 165–174.
[7] Vidroha Debroy, W. Eric Wong, Xiaofeng Xu, and Byoungju Choi. 2010. A Grouping-Based Strategy to Improve the Effectiveness of Fault Localization

Techniques. In International Conference on Quality Software. 13–22.
[8] Chunrong Fang, Yang Feng, Qingkai Shi, Zicong Liu, Shuying Li, and Baowen Xu. 2017. Fault Interference and Coupling Effect.. In SEKE. 501–506.
[9] R. Ranganath H. Lee, R. Grosse and A.Y. Ng. 2009. Convolutional deep belief networks for scalable unsupervised learning of hierarchical

representations. In Proceedings of the 26th Annual International Conference on Machine Learning. 609–616.
[10] SimonHeiden, Lars Grunske, Timo Kehrer, Fabian Keller, Andre VanHoorn, Antonio Filieri, and David Lo. 2019. An evaluation of pure spectrum-based

fault localization techniques for large-scale software systems. Software: Practice and Experience 49, 8 (2019), 1197–1224.
[11] Jie Lee Hua, Lee Naish, and Kotagiri Ramamohanarao. 2010. Effective Software Bug Localization Using Spectral Frequency Weighting Function. In

IEEE Computer Software and Applications Conference.
[12] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. 2018. Shaping program repair space with existing patches and similar

code. In Proceedings of the 27th ACM SIGSOFT international symposium on software testing and analysis. 298–309.
[13] James A. Jones. 2004. Fault Localization Using Visualization of Test Information. In International Conference on Software Engineering, 2004. ICSE

2004. Proceedings. 54–56.
[14] James A Jones, James F Bowring, and Mary Jean Harrold. 2007. Debugging in parallel. In Proceedings of the 2007 International Symposium on Software

Testing and Analysis (ISSTA 2007). ACM, 16–26.
[15] James A Jones and Mary Jean Harrold. 2005. Empirical evaluation of the tarantula automatic fault-localization technique. In Proceedings of the 20th

IEEE/ACM international Conference on Automated software engineering (ASE). 273–282.
[16] Fabian Keller, Lars Grunske, Simon Heiden, Antonio Filieri, Andre van Hoorn, and David Lo. 2017. A critical evaluation of spectrum-based fault

localization techniques on a large-scale software system. In 2017 IEEE International Conference on Software Quality, Reliability and Security (QRS).
IEEE, 114–125.

[17] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’ expectations on automated fault localization. In Proceedings of the
25th International Symposium on Software Testing and Analysis. 165–176.

[18] Tien Duy B. Le, Richard J. Oentaryo, and David Lo. 2015. Information retrieval and spectrum based bug localization: better together. In Joint Meeting
on Foundations of Software Engineering. 579–590.

[19] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2011. Genprog: A generic method for automatic software repair. Ieee
transactions on software engineering 38, 1 (2011), 54–72.

[20] Yann Lecun, Yoshua Bengio, and G eoffrey Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436.
[21] Yan Lei, Xiaoguang Mao, Ziying Dai, and Chengsong Wang. 2012. Effective Statistical Fault Localization Using Program Slices. In Computer Software

and Applications Conference. 1–10.
[22] Yan Lei, Xiaoguang Mao, Min Zhang, Jingan Ren, and Yinhua Jiang. 2017. Toward understanding information models of fault localization: Elaborate

is not always better. In 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), Vol. 1. IEEE, 57–66.
[23] Yan Lei, Chengnian Sun, Xiaoguang Mao, and Zhendong Su. 2018. How test suites impact fault localisation starting from the size. IET Software 12, 3

(2018), 190–205.
[24] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. Deepfl: Integrating multiple fault diagnosis dimensions for deep fault localization. In

Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. 169–180.
[25] Xia Li and Lingming Zhang. 2017. Transforming programs and tests in tandem for fault localization. Proceedings of the Acm on Programming

Languages 1, OOPSLA (2017), 1–30.
[26] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. Fault Localization with Code Coverage Representation Learning. In International Conference on

Software Engineering, 2021. ICSE 2021.
[27] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. TBar: Revisiting template-based automated program repair. In Proceedings

of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. 31–42.
[28] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao, and Lu Zhang. 2020. Can automated program repair refine fault

localization? a unified debugging approach. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis.
75–87.

Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Zhang and Lei, et al.

[29] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus. 2019. Bears: An extensible java bug benchmark for automatic program repair
studies. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 468–478.

[30] Xiaoguang Mao, Yan Lei, Ziying Dai, Yuhua Qi, and Chengsong Wang. 2014. Slice-based statistical fault localization. Journal of Systems and Software
89, 1 (2014), 51–62.

[31] Wes Masri and Rawad Abou Assi. 2010. Cleansing Test Suites from Coincidental Correctness to Enhance Fault Localization. In Third International
Conference on Software Testing.

[32] Wes Masri and Rawad Abou Assi. 2014. Prevalence of Coincidental Correctness and Mitigation of its Impact on Fault Localization. Acm Transactions
on Software Engineering and Methodology 23, 1 (2014), 1–28.

[33] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the Mutants: Mutating Faulty Programs for Fault Localization. In IEEE
Seventh International Conference on Software Testing, Verification and Validation. 153–162.

[34] J.J. DiCarlo N. Pinto, D. Doukhan and D.D. Cox. 2009. A high-throughput screening approach to discovering good forms of biologically inspired
visual representation. In PLoS computational biology. vol.5.

[35] Lee Naish and Hua. 2011. A model for spectra-based software diagnosis. Acm Transactions on Software Engineering and Methodology 20, 3 (2011),
1–32.

[36] Mike Papadakis and Yves Le Traon. 2012. Using Mutants to Locate "Unknown" Faults. In IEEE Fifth International Conference on Software Testing,
Verification and Validation. 691–700.

[37] Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: Mutation-based fault localization. John Wiley and Sons Ltd. 605–628 pages.
[38] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques actually helping programmers?. In International Symposium on

Software Testing and Analysis. 199–209.
[39] Spencer Pearson, Jose Campos, and Just. 2017. Evaluating and Improving Fault Localization. In International Conference on Software Engineering.
[40] A. J. C. van Gemund R. Abreu, P. Zoeteweij. 2006. An evaluation of similarity coeffcients for software fault localization. In Proceedings of the 12th

Pacific Rim International Symposium on Dependable Computing. 39–46.
[41] Anand Rajaraman and Jeffrey David Ullman. 2011. Mining of massive datasets: Data mining. Min. Massive Datasets (2011), 1–17.
[42] Abreu Rui, Peter Zoeteweij, and Arjan J. C. Van Gemund. 2009. Spectrum-Based Multiple Fault Localization. In Ieee/acm International Conference on

Automated Software Engineering. 88–99.
[43] Abreu Rui, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. Van Gemund. 2009. A practical evaluation of spectrum-based fault localization. Journal of

Systems and Software 82, 11 (2009), 1780–1792.
[44] Cong Ying Shi, X. U. ChaoJun, and Xiao Jiang Yang. 2009. Study of TFIDF algorithm. Journal of Computer Applications (2009).
[45] Ting Shu, Tiantian Ye, Zuohua Ding, and Jinsong Xia. 2016. Fault localization based on statement frequency. Information Sciences 360 (2016), 43–56.
[46] Jeongju Sohn and Shin Yoo. 2017. FLUCCS: Using Code and Change Metrics to Improve Fault Localization. In Proceedings of the 26th ACM SIGSOFT

International Symposium on Software Testing and Analysis (Santa Barbara, CA, USA) (ISSTA 2017). Association for Computing Machinery, New York,
NY, USA, 273–283. https://doi.org/10.1145/3092703.3092717

[47] Ezekiel Soremekun, Lukas Kirschner, Marcel Böhme, and Andreas Zeller. 2021. Locating faults with program slicing: an empirical analysis. Empirical
Software Engineering 26, 3 (2021), 1–45.

[48] Chengnian Sun and Siau Cheng Khoo. 2013. Mining succinct predicated bug signatures. In Joint Meeting on Foundations of Software Engineering.
576–586.

[49] S. C. Turaga, J. F. Murray, V Jain, F Roth, M Helmstaedter, K Briggman, W Denk, and H. S. Seung. 2010. Convolutional networks can learn to
generate affinity graphs for image segmentation. Neural Computation 22, 2 (2010), 511–538.

[50] András Vargha and Harold D Delaney. 2000. A critique and improvement of the CL common language effect size statistics of McGraw and Wong.
Journal of Educational and Behavioral Statistics 25, 2 (2000), 101–132.

[51] Xinming Wang, Shing Chi Cheung, Wing Kwong Chan, and Zhenyu Zhang. 2009. Taming coincidental correctness: Coverage refinement with
context patterns to improve fault localization. In IEEE International Conference on Software Engineering.

[52] W. Eric Wong, Vidroha Debroy, and Byoungju Choi. 2010. A family of code coverage-based heuristics for effective fault localization. Elsevier Science
Inc. 188–208 pages.

[53] W. Eric Wong, Vidroha Debroy, Richard Golden, Xiaofeng Xu, and Bhavani Thuraisingham. 2012. Effective Software Fault Localization Using an
RBF Neural Network. IEEE Transactions on Reliability 61, 1 (2012), 149–169.

[54] W. Eric Wong, Vidroha Debroy, Yihao Li, and Ruizhi Gao. 2012. Software Fault Localization Using DStar (D*). In IEEE Sixth International Conference
on Software Security and Reliability. 21–30.

[55] W. Eric Wong, Ruizhi Gao, Yihao Li, Abreu Rui, and Franz Wotawa. 2016. A Survey on Software Fault Localization. IEEE Transactions on Software
Engineering 42, 8 (2016), 707–740.

[56] W. ERICWONG and YU QI. 2009. BP Neural Network-based Effective Fault Localization. International Journal of Software Engineering and Knowledge
Engineering 19, 04 (2009), 573–597.

[57] W. Eric Wong, Yu Qi, Lei Zhao, and Kai Yuan Cai. 2007. Effective Fault Localization using Code Coverage. In Computer Software and Applications
Conference, 2007. COMPSAC 2007. International. 449–456.

[58] Xin Xia, Lingfeng Bao, David Lo, and Shanping Li. 2016. “Automated Debugging Considered Harmful” Considered Harmful: A User Study Revisiting
the Usefulness of Spectra-Based Fault Localization Techniques with Professionals Using Real Bugs from Large Systems. In Proceedings of the IEEE

Manuscript submitted to ACM

https://doi.org/10.1145/3092703.3092717

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Influential Global and Local Contexts Guided Trace Representation for Fault Localization 27

International Conference on Software Maintenance and Evolution (ICSME). 267–278.
[59] Xiaoyuan Xie, Tsong Yueh Chen, Fei Ching Kuo, and Baowen Xu. 2013. A theoretical analysis of the risk evaluation formulas for spectrum-based

fault localization. Acm Transactions on Software Engineering and Methodology 22, 4 (2013), 31.
[60] Xiaoyuan Xie, Fei Ching Kuo, Tsong Yueh Chen, Shin Yoo, and Mark Harman. 2013. Provably Optimal and Human-Competitive Results in SBSE for

Spectrum Based Fault Localisation. Springer Berlin Heidelberg. 224–238 pages.
[61] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen. 2005. A brief survey of program slicing. ACM SIGSOFT Software Engineering

Notes 30, 2 (2005), 1–36.
[62] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebastian Lamelas Marcote, Thomas Durieux, Daniel Le Berre, and Martin

Monperrus. 2016. Nopol: Automatic repair of conditional statement bugs in java programs. IEEE Transactions on Software Engineering 43, 1 (2016),
34–55.

[63] Lei Yan, Chengnian Sun, Xiaoguang Mao, and Zhendong Su. 2018. How Test Suites Impact Fault Localization Starting from the Size. Iet Software 12,
3 (2018), 190–205.

[64] Abubakar Zakari, Sai Peck Lee, Rui Abreu, Babiker Hussien Ahmed, and Rasheed Abubakar Rasheed. 2020. Multiple fault localization of software
programs: A systematic literature review. Information and Software Technology 124 (2020), 106312.

[65] Zhuo Zhang, Yan Lei, Xiaoguang Mao, Xi Chang, Jianxin Xue, and Qingyu Xiong. 2020. Fault Localization Approach Using Term Frequency and
Inverse Document Frequency. Journal of Software 31, 11 (2020), 132–144.

[66] Zhuo Zhang, Yan Lei, Xiaoguang Mao, and Panpan Li. 2019. CNN-FL: An Effective Approach for Localizing Faults using Convolutional Neural
Networks. In the 26th International Conference on Software Analysis, Evolution and Reengineering (SANER 2019). IEEE, 445–455.

[67] Zhuo Zhang, Yan Lei, Xiaoguang Mao, Meng Yan, Ling Xu, and Junhao Wen. 2020. Improving Deep-Learning-based Fault Localization with
Resampling. Journal of Software: Evolution and Process (2020), 1–22.

[68] Zhuo Zhang, Yan Lei, Xiaoguang Mao, Meng Yan, Ling Xu, and Xiaohong Zhang. 2021. A study of effectiveness of deep learning in locating real
faults. Information and Software Technology 131 (2021), 106486.

[69] Zhuo Zhang, Yan Lei, Qingping Tan, Xiaoguang Mao, Ping Zeng, and Xi Chang. 2017. Deep Learning-Based Fault Localization with Contextual
Information. Ieice Transactions on Information and Systems E100.D, 12 (2017), 3027–3031.

[70] Zhuo Zhang, Yan Lei, Jianjun Xu, Xiaoguang Mao, and Xi Chang. 2019. TFIDF-FL: Localizing Faults Using Term Frequency-Inverse Document
Frequency and Deep Learning. IEICE Transactions on Information and Systems 102, 9 (2019), 1860–1864.

[71] Wei Zheng, Desheng Hu, and Jing Wang. 2016. Fault Localization Analysis Based on Deep Neural Network. Mathematical Problems in
Engineering,2016,(2016-4-24) 2016 (2016), 1–11.

[72] Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D. Ernst, and Lu Zhang. 2019. An Empirical Study of Fault Localization Families and Their
Combinations. IEEE Transactions on Software Engineering (2019), 1–1.

Manuscript submitted to ACM

