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Influential Global and Local Contexts Guided Trace Representation for Fault
Localization

ZHUO ZHANG∗, School of Big Data & Software Engineering, Chongqing University, China

YAN LEI†, School of Big Data & Software Engineering, Chongqing University, China

TING SU, Software Engineering Institute, East China Normal University, China

MENG YAN, School of Big Data & Software Engineering, Chongqing University, China

XIAOGUANG MAO, College of Computer, National University of Defense Technology, China

YUE YU, College of Computer, National University of Defense Technology, China

Trace data is critical for fault localization (FL) to analyze suspicious statements potentially responsible for a failure. However, existing
trace representation meets its bottleneck mainly in two aspects: (1) the trace information of a statement is restricted to a local context
(i.e., a test case) without the consideration of a global context (i.e., all test cases of a test suite); (2) it just uses the ‘occurrence’ for
representation without strong FL semantics.

Thus, we propose UNITE: an inflUential coNtext-GuIded Trace rEpresentation, representing the trace from both global and local
contexts with influential semantics for FL. UNITE embodies and implements two key ideas: (1) UNITE leverages the widely-used
weighting capability from local and global contexts of information retrieval to reflect how important a statement (a word) is to a
test case (a document) in all test cases of a test suite (a collection), where a test case (a document) and all test cases of a test suite (a
collection) represent local and global contexts respectively; (2) UNITE further elaborates the trace representation from ‘occurrence’
(weak semantics) to ‘influence’ (strong semantics) by combing program dependencies. The large-scale experiments on 12 FL techniques
and 22 programs show that UNITE significantly improves FL effectiveness.
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1 INTRODUCTION

In software development and maintenance, debugging is one of the most expensive and time-consuming processes [18,
38, 48]. To reduce the cost, researchers have developed many fault localization (FL) techniques to provide automated
assistance in seeking the faults that cause a failure [13, 23, 40, 52, 55, 57, 69].

Initialization Trace 
representaion

   Coverage pass
   matrix of  or  
the test suite fail

    

   
   
   
      

Execution Input

Suspiciousness 
evaluation

output
A test 
suite

Suspicious 
statements

A faulty 
program 

Fig. 1. The typical process of FL.

Fig. 1 shows the typical process of FL. Suppose that we have a faulty program and a test suite for initialization. Then,
FL executes the test suite on the program to collect and abstract the execution traces as a coverage matrix for trace
representation, where an element denotes a statement covered (i.e., the value of ‘1’ denoting occurrence) or not covered
(i.e., the value of ‘0’ representing non-occurrence) by a specific test case. Trace representation also constructs an error
vector to represent the test results (i.e., ‘1’ for fail and ‘0’ for pass). Next, FL takes as input the trace representation, and
uses an evaluation model (e.g., correlation coefficients [15, 16, 35, 39] and neural networks [53, 56, 66–68]) to evaluate
the suspiciousness of each statement of being faulty. Finally, FL outputs the suspicious statements as a ranking list of
all statements in descending order of suspiciousness.

Although trace representation is an indispensable component of the FL process, it still has some limitations. Existing
trace representation uses the binary state of a statement (i.e., occurrence or non-occurrence) in a test case, which is
restricted to a local context (i.e., a test case) without the consideration of a global context (i.e., all test cases of a test
suite). For example, suppose that we have two statements 𝑠1 and 𝑠2, where 𝑠1 is only executed by the test case 𝑡1 and 𝑠2
is not only executed by 𝑡1 but also executed by many other test cases. Considering the global context of a test suite, 𝑠1
should be more important than 𝑠2 for 𝑡1 since 𝑠1 only occurs in 𝑡1. For another example, suppose that we have two test
cases 𝑡 ‘1 and 𝑡 ′2, where 𝑡

′
1 executes 10 statements including the statement 𝑠′1 and 𝑡

′
2 covers 100 statements including 𝑠′1.

Based on the global context of a test suite, 𝑠′1 should be more important for 𝑡 ′1 in comparison to 𝑡 ′2 since 𝑡
′
1 executes

less statements than 𝑡 ′2. However, existing trace representation using binary state of a statement cannot capture such
importance information. Therefore, its information is limited, e.g., it cannot show to what degree of the importance
of a statement is in an execution. Even if some approaches [11, 45] seek to enrich the representation from the local
context of a test case itself, the lack of global context of all test cases of a test suite can cause some biases posing a
negative effect on the effectiveness of fault localization [22], i.e., their representation actually performs worse than the
widely-used binary trace representation [22]. Furthermore, existing trace representations mainly use the ‘occurrence’
semantics whereas the occurrence of a statement in a test case does not necessarily mean that the execution of the
statement influences the program output. For example, suppose that a failing test case 𝑡𝑓 executes two statements 𝑠𝑓 1
and 𝑠𝑓 2, where the variable causing the faulty output of 𝑡𝑓 is only computed by 𝑠𝑓 1. In this case, we should exclude 𝑠𝑓 2
since its execution does not influence the faulty output. Nevertheless, the existing trace representation using statement
coverage cannot capture such influence information. Thus, it lacks a strong FL semantics, restricting a deep analysis of
suspicious evaluation model in evaluating the suspiciousness of a statement of being faulty.
Manuscript submitted to ACM
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Influential Global and Local Contexts Guided Trace Representation for Fault Localization 3

Therefore, this paper proposes UNITE: an inflUential coNtext-GuIded Trace rEpresentation for effective FL, exploit-
ing global and local contexts guided trace representation with influential semantics. Similar to the coverage matrix in
Fig. 1, UNITE abstracts trace representation as a matrix by redefining the element which combines global and local
contexts with influential semantics. Inspired by the widely-used word weighting capability from both local and global
contexts of term frequency-inverse document frequency [41, 44] in information retrieval, UNITE applies this promising
capability on trace representation in fault localization. Based on the term frequency-inverse document frequency, the
idea of UNITE embodying the global and local contexts is that (1) if a statement is executed by many test cases, its
weight should be lower for these test cases since it is difficult to distinguish the statement in these test cases; (2) if a
statement is executed by a few test cases and the executed statements in these test cases have a small size, its weight
should be higher for these test cases since the statement is more important to these test cases. With the weights of
a statement in all test case of a test suite, UNITE can build linkages between the statement and the test results (i.e.,
passing or failing) of test cases. To realize this idea, first, UNITE reformulates the trace information of a statement as
the weight of a word in information retrieval. For an analogy, UNITE uses the three sources of information for FL: a
statement (a word), a test case (a document) and all test cases of a test suite (a collection). UNITE defines the trace
representation of a statement as the weight of the statement (the word) by increasing proportionally to the number of
times a statement (the word) occurs in the test case (the document), and being offset by the number of the test cases
(the documents) in all test cases of a test suite (the collection) that contain the statement (the word), which helps to
adjust for the fact that some statements (words) occur more frequently in general. Thus, UNITE elaborates the local
context as term frequency that increases proportionally to the number of times a statement occurs in the test case
(i.e., statement frequency), and the global context as inverse document frequency that is offset by the number of
the test cases in all test cases of a test suite that contain the statement (i.e., inverse test case frequency).

Thus, UNITE elaborates the local context as term frequency that increases proportionally to the frequency of a
statement occurs in the test case (i.e., statement frequency), and the global context as inverse document frequency
that is offset by the number of the test cases in all test cases of a test suite that contain the statement (i.e., inverse test
case frequency). Although UNITE considers trace representation from both local and global contexts, it still relies on
the occurrence frequency of a statement or a test case. Therefore, UNITE further combines program dependencies into
trace representation for upgrading the FL semantics. Specifically, UNITE uses program slicing [2, 47, 61] to identify
those statements whose execution influences the incorrect output according to program dependencies. Then, UNITE
updates higher weights of those statements with influential semantics, and thus upgrades the ‘occurrence’ (weak
semantics) into the ‘influence’ (strong semantics).

Since UNITE follows the widely-used matrix structure of most FL techniques, it means that UNITE may serve
as a universal representation for most FL techniques. To evaluate the potential and the effectiveness of UNITE, we
apply UNITE to 12 state-of-the-art FL techniques (e.g., Dstar [54], CNN-FL [66], ProFL [28] and DeepRL4FL [26]) and
conduct large-scale experiments on 22 benchmark programs. The results show that UNITE significantly improves FL
effectiveness, e.g., the average improvement for the important Top-N metric [17], i.e., Top-1, Top-3, Top-5 and Top-10,
increases up to 2.19%, 11.18%, 11.47% and 14.18%, respectively.

The main contributions of this paper can be summarized as:

• We propose UNITE: an influential context-guided trace representation for FL by combining global and local
contexts with influential semantics.

Manuscript submitted to ACM
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• We demonstrate the potential of UNITE as a universal representation for a wide spectrum of the state-of-the-art
FL techniques.

• We evaluate the effectiveness of UNITE across various 22 real-life large programs, showing that the UNITE is
effective at improving FL.

• We open source the replication package online1, including the source code, datasets and running examples.

The structure of the rest paper is organized as follows. Section 2 introduces related work. Section 3 depicts our approach
UNITE. Section 4 and Section 5 present our large-scale experiments and the discussion. And Section 6 concludes the
whole study and mentions future work.

2 RELATEDWORK

This section surveys closely related work on fault localization (FL) from its two parts: trace representation and
suspiciousness evaluation. More other work can be found in the survey [55].

2.1 Trace Representation

N statements    errors        N dimensional 

  

⎣
⎢
⎢
⎢
⎡
𝑥11 𝑥12 … 𝑥1𝑁

𝑥21 𝑥22 … 𝑥2𝑁

⋮ ⋮ ⋱ ⋮
𝑥𝑀1 𝑥𝑀2 … 𝑥𝑀𝑁⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑒1

𝑒2

⋮
𝑒𝑀⎦

⎥
⎥
⎥
⎤

           

  𝐶𝑡1

  𝐶𝑡2

⋮
  𝐶𝑡𝑁

 

⎣
⎢
⎢
⎢
⎢
⎡1 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1⎦

⎥
⎥
⎥
⎥
⎤

 

 
Fig. 2. FL Trace Representation on𝑀 test cases of a test suite.

FL usually defines a matrix (i.e., a coverage matrix and an error vector) to represent the trace of each statement in
each test case of a test suite and their corresponding test results. Next, FL takes as input the trace representation for its
suspiciousness evaluation. The trace representation records the runtime information and test results of a test suite
including the execution information of statements.

Fig. 2 shows the definition of the FL trace representation (i.e., a𝑀 × (𝑁 + 1) matrix). Specifically, given a program P

with N statements (𝑠1, 𝑠2, ..., 𝑠𝑁 ), it is executed by a test suite T with M test cases (𝑡1, 𝑡2, ..., 𝑡𝑀 ), which contain at least
one failing test case (see Fig. 2). The element 𝑥𝑖 𝑗=1 means that the statement 𝑠 𝑗 occurs in (i.e., is covered by) the test
case 𝑡𝑖 , and 𝑥𝑖 𝑗=0 otherwise. The M×N matrix records the execution information of each statement in the test suite T.
The error vector e represents the test results. The element 𝑒𝑖 equals to 1 if the test case 𝑡𝑖 failed, and 0 otherwise. The
error vector shows the test results of each test case (i.e., failure or non-failure).

Even if some research [11, 45, 65, 70] tries to enrich trace representation of FL by using other information (e.g., state-
ment frequency), these approaches like the binary representation still have some limitations: (1) the trace information of
a statement is restricted to a local context (i.e., a test case) without the consideration of a global context (i.e., all test cases
of a test suite); (2) they just uses the ‘occurrence’ for representation without strong FL semantics. Even worse, recent
work [22] shows that these approaches (e.g., [11, 45]) cause some bias posing a negative effect on fault localization
effectiveness, i.e., their elaboration on trace representation is not better than the binary state of FL trace representation.

1https://github.com/oy-sarah/UNITE
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Influential Global and Local Contexts Guided Trace Representation for Fault Localization 5

This motivates our work to solve the above two problems by proposing an FL trace representation to combine both
local and global contexts and upgrade the ‘occurrence’ (weak semantics) into ‘influence’ (strong semantics).

2.2 Suspiciousness Evaluation

Based on the trace representation in Fig. 2, researchers develop many suspiciousness evaluation models to evaluate the
suspiciousness of a statement of being faulty. We can roughly classify the suspiciousness evaluation models into two
categories.

One category is suspiciousness evaluation using correlation coefficients, which are widely studied by the
spectrum-based fault localization (SFL) researchers [15, 16, 35, 39]. Correlation coefficients are suspiciousness evaluation
formulas, and SFL uses the trace representation to define four variables for the formulas as follows:

𝑎𝑛𝑝 (𝑠 𝑗 ) =
∑︁

𝑖∈𝑛𝑝 (𝑠 𝑗 )
(1 − 𝑥𝑖 𝑗 ), 𝑛𝑝 (𝑠 𝑗 ) = {𝑖 | (𝑥𝑖 𝑗 = 0) ∧ (𝑒𝑖 = 0)} (1)

𝑎𝑒𝑝 (𝑠 𝑗 ) =
∑︁

𝑖∈𝑒𝑝 (𝑠 𝑗 )
𝑥𝑖 𝑗 , 𝑒𝑝 (𝑠 𝑗 ) = {𝑖 | (𝑥𝑖 𝑗 > 0) ∧ (𝑒𝑖 = 0)} (2)

𝑎𝑛𝑓 (𝑠 𝑗 ) =
∑︁

𝑖∈𝑛𝑓 (𝑠 𝑗 )
(1 − 𝑥𝑖 𝑗 ), 𝑛𝑓 (𝑠 𝑗 ) = {𝑖 | (𝑥𝑖 𝑗 = 0) ∧ (𝑒𝑖 = 1)} (3)

𝑎𝑒 𝑓 (𝑠 𝑗 ) =
∑︁

𝑖∈𝑒 𝑓 (𝑠 𝑗 )
𝑥𝑖 𝑗 , 𝑒 𝑓 (𝑠 𝑗 ) = {𝑖 | (𝑥𝑖 𝑗 > 0) ∧ (𝑒𝑖 = 1)} (4)

Eq. (1), Eq. (2), Eq. (3) and Eq. (4) show the computation of 𝑎𝑛𝑝 , 𝑎𝑛𝑓 , 𝑎𝑒𝑝 , and 𝑎𝑒 𝑓 for the statement 𝑗 (i.e., 𝑠 𝑗 ),
denoting the number of passing/failing test cases in which the statement was/wasn’t executed. Based on the four
variables for each statement (i.e., 𝑎𝑛𝑝 , 𝑎𝑛𝑓 , 𝑎𝑒𝑝 , and 𝑎𝑒 𝑓 ), SFL defines many suspiciousness evaluation formulas using
correlation coefficients to evaluate the suspiciousness of each statement being faulty. Researchers have conducted both
theoretical [59, 60] and empirical [39] analysis on finding the optimal SFL formulas using correlation coefficients, and
identified seven effective ones, namely ER1’, ER5, GP02, GP03, GP19, Ochiai and Dstar. Table 1 shows all the seven
effective suspiciousness evaluation formulas using correlation coefficients2. Based on these formulas, some researchers
incorporate more useful information into suspiciousness evaluation, e.g., the popular and promising approach ProFL [28]
leverages repair information as feedback.

The other one category is suspiciousness evaluation using neural networks, which are recently studied by the
deep learning-based fault localization (DLFL) researchers [25, 46, 67, 72]. Based on the trace representation, this category
tries to utilize artificial neural network with hidden layers [9, 20, 24, 34, 49, 68] to learn a fault localization model
reflecting the statistical coincidences between test results (i.e., failing or passing) and the executions of the different
statements of a program (i.e., occurrence or non-occurrence). We will introduce four representative suspiciousness
evaluation models used in our experiments, namely MLP-FL [71], CNN-FL [66], BiLSTM-FL [68] and DeepRL4FL [26].

Fig. 3 shows the architecture of suspiciousness evaluation of DLFL using neural networks: one input layer, deep
learning components with several hidden connected layers, and one output layer. In the input layer, the coverage matrix
and the error vector of FL trace representation in the Fig. 2 are used as the training samples and their corresponding

2The * in D* formula is usually assigned to 2.
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Table 1. Suspiciousness evaluation using correlation coefficients.

Name Formulas Name Formulas

ER1’
Naish1

{
−1 𝑖 𝑓 𝑎𝑛𝑒 > 0
𝑎𝑛𝑝 𝑖 𝑓 𝑎𝑛𝑒 ≤ 0

GP02 2
(
𝑎𝑒 𝑓 + √

𝑎𝑛𝑝

)
+ √

𝑎𝑒𝑝

Optimal_P 𝑎𝑒 𝑓 − 𝑎𝑒𝑝
𝑎𝑒𝑝+𝑎𝑛𝑝+1 GP03

√︂���𝑎2
𝑒 𝑓

− √
𝑎𝑒𝑝

���
GP13 𝑎𝑒 𝑓

(
1 + 𝑎𝑒𝑝

2𝑎𝑒𝑝+𝑎𝑒𝑓

)
GP19 𝑎𝑒 𝑓

√︃��𝑎𝑒𝑝 − 𝑎𝑒 𝑓 + 𝑎𝑛𝑓 − 𝑎𝑛𝑝
��

ER5
Wong1 𝑎𝑒 𝑓 Dstar

𝑎∗
𝑒𝑓

𝑎𝑛𝑓 +𝑎𝑒𝑝Russel_Rao 𝑎𝑒𝑓
𝑎𝑒𝑓 +𝑎𝑛𝑓 +𝑎𝑒𝑝+𝑎𝑛𝑝

Binary

{
0, 𝑖 𝑓 𝑎𝑛𝑒 > 0
1, 𝑖 𝑓 𝑎𝑛𝑒 ≤ 0

Ochiai 𝑎𝑒𝑓√︃
(𝑎𝑒𝑓 +𝑎𝑛𝑓 ) (𝑎𝑒𝑓 +𝑎𝑒𝑝 )

... ... ...

...

...

...

F
unction

Input layer Deep learning components with hidden layers Output layer

Func Func Func

Func Func Func

Func Func Func

Output Target

xi1, xi2,  …, xiN
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...
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i h i h i h N

x x x

x x x

x x x

  

     

 
 
 
 
 
  

  

Fig. 3. Suspiciousness evaluation using neural networks.

labels, respectively. In other words, h rows of the matrix M×N and its corresponding error vector are used as an input,
which are the coverage information of h test cases and their corresponding test results starting from the i-th row,
where i ∈ {1,1+h,1+2h,...,1+(⌊M/h⌋+1)×h}. In deep learning components with several hidden connected layers, MLP-FL,
CNN-FL and BiLSTM-FL use multi-layer perceptron, convolutional neural network and bi-directional long short-term
memory respectively. DeepRL4FL integrate these basic neural networks using multiple dimensions of features. In the
output layer, DLFL uses Sigmoid function [24] because values sent into a Sigmoid function will be 0 to 1. Each element
in the result vector of the Sigmoid function has difference with the corresponding element of the target vector. Back
propagation algorithm is used to fine-tune the parameters of the model, and the goal is to minimize the difference
between training result y and error vector e. The network is trained iteratively. Finally, DLFL using neural networks
learns a trained model reflecting the relationship between statement coverage and test results. With the trained model,
DLFL evaluates the suspiciousness of each statement.

Our work focuses on developing an effective universal representation for these suspciousness evaluation models,
and can be widely used by these models.
Manuscript submitted to ACM
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  N statements    errors      N statements     errors 

⎣
⎢
⎢
⎢
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x11 x12 … x1N

x21 x22 … x2N

⋮ ⋮ ⋱ ⋮

xM1 xM2 … xMN⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
e1

e2

⋮

eM⎦
⎥
⎥
⎥
⎤

→

⎣
⎢
⎢
⎢
⎢
⎡
GLinfluence(x11

) GLinfluence(x12) … GLinfluence(x1N
)

GLinfluence(x21) GLinfluence(x22) … GLinfluence(x2N
)

⋮ ⋮ ⋱ ⋮

GLinfluence(xM1) GLinfluence(xM2) … GLinfluence(xMN)⎦
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
e1

e2

⋮

eM⎦
⎥
⎥
⎥
⎤

   

  Original trace representation       UNITE representation 

Fig. 4. The original FL trace representation and the UNITE representation of M test cases of a test suite.

3 APPROACH

3.1 Formulation

First, we should formulate the problem. Given a program P with N statements (𝑠1, 𝑠2, ..., 𝑠𝑁 ), it is executed by M test
cases T (𝑡1, 𝑡2, ..., 𝑡𝑀 ). Fig. 4 shows the original FL trace representation and the UNITE representation. let us recall the
original FL trace representation (see the left matrix of Fig. 4). 𝑥𝑖 𝑗=1 indicates that the statement 𝑠 𝑗 occurs in the test
case 𝑡𝑖 , and 0 otherwise. The error vector e represents the test results. The element 𝑒𝑖 equals to 1 if the test case 𝑡𝑖 failed,
and 0 otherwise. Since the original FL trace representation serves as a universal input for most FL techniques, UNITE
will keep its structure for wide FL applicability. Thus, as shown in Fig. 4, the core work of UNITE is to redefine the
elements of the original FL trace representation with influential global and local contexts.

3.2 UNITE with Global and Local Contexts

In the field of information retrieval, term frequency-inverse document frequency (TF-IDF) [41] is a popular word
weighting technique designed to reflect the importance of a word to a document (i.e., local context) in a collection (i.e.,
global context). Inspired by the TF-IDF, UNITE utilizes its promising weighting capability by elaborating the trace
representation to reflect the importance of a statement to a test case (i.e., local context) in all test cases of a test suite (i.e.,
global context). Thus, for an analogy, the basic idea of UNITE with global and local contexts can be roughly summarized
as that if a statement (keyword) occurs only in a few test cases (documents), then it is easy to lock the FL target (search
target), and the weight of the statement (word) should be relatively large. If a statement (word) exists in a large number
of test cases(documents), then it is not clear to find the goal with the statement (word), and the weight of the statement
(word) should be small. As a reminder, a statement occurring in a test case means that a statement is covered by the
test case. Since UNITE considers the times of a statement occurs in (is covered by) a test case, the specific content (e.g.,
whitespace and variable names) of a statement itself will not affect UNITE.

To realize the above idea, UNITE defines the local context as the term frequency which increases proportionally
to the frequency of a statement occurs in the test case (i.e., statement frequency); and the global context as inverse
document frequency which is offset by the number of the test cases in all test cases of a test suite that contain the
statement (i.e., inverse test case frequency). Specifically, UNITE defines the following 𝑇𝐹𝑙𝑜𝑐𝑎𝑙 , 𝐼𝐷𝐹𝑔𝑙𝑜𝑏𝑎𝑙 , 𝐺𝐿𝑜𝑐𝑐𝑢𝑟 as
the local context, the global context and the combination of the global and local contexts, respectively.

𝑇𝐹𝑙𝑜𝑐𝑎𝑙
(
𝑥𝑖 𝑗

)
= 𝑥𝑖 𝑗 ∗ 1

1+𝑙𝑜𝑔 (𝑁 (𝑡𝑖 ) ) (5)

𝐼𝐷𝐹𝑔𝑙𝑜𝑏𝑎𝑙
(
𝑥𝑖 𝑗

)
= 𝑙𝑜𝑔( 𝑀

𝐷𝐹 (𝑠 𝑗 ) ) (6)
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𝐺𝐿𝑜𝑐𝑐𝑢𝑟
(
𝑥𝑖 𝑗

)
= 𝑇𝐹𝑙𝑜𝑐𝑎𝑙

(
𝑥𝑖 𝑗

)
∗𝐼𝐷𝐹𝑔𝑙𝑜𝑏𝑎𝑙

(
𝑥𝑖 𝑗

)
(7)

Based on the 𝑥𝑖 𝑗 of the original FL trace representation (i.e., the binary value of 1 or 0 of 𝑠 𝑗 in test case 𝑡𝑖 ), Eq. (5)
calculates 𝑇𝐹𝑙𝑜𝑐𝑎𝑙 (𝑥𝑖 𝑗 ), denoting the TF value of the statement 𝑠 𝑗 in the test case 𝑡𝑖 (i.e., statement frequency of 𝑠 𝑗 in
test case 𝑡𝑖 ), where N (𝑡𝑖 ) means the number of executed statements in the test case 𝑡𝑖 . Eq. (6) calculates 𝐼𝐷𝐹𝑔𝑙𝑜𝑏𝑎𝑙 (𝑥𝑖 𝑗 ),
representing the IDF value of the statement 𝑠 𝑗 in the test suite (i.e., inverse document frequency of 𝑠 𝑗 in the whole
test suite), where DF (𝑠 𝑗 ) indicates the number of test cases executing the statement 𝑠 𝑗 . In Eq. (5) and Eq. (6), we adopt
the widely-used 𝑙𝑜𝑔 function in TF-IDF. Eq. (7) calculates 𝐺𝐿𝑜𝑐𝑐𝑢𝑟 (𝑥𝑖 𝑗 ) via the the multiplication of 𝑇𝐹𝑙𝑜𝑐𝑎𝑙 (𝑥𝑖 𝑗 ) and
𝐼𝐷𝐹𝑔𝑙𝑜𝑏𝑎𝑙 (𝑥𝑖 𝑗 ), denoting the TF-IDF value of the statement 𝑠 𝑗 in the test case 𝑡𝑖

Based on the Eq. (7), UNITE redefines an element of 𝑥𝑖 𝑗 as 𝐺𝐿𝑜𝑐𝑐𝑢𝑟 (𝑥𝑖 𝑗 ) by combing the global and local contexts
into trace representation.

3.3 UNITE with Influence Semantics

We can observe that the global and local contexts are constructed from statement coverage information. Although the
statement coverage information is useful and effective, an occurrence of a statement in a test case does not necessarily
mean that the execution of the statement will influence the output of the test case. For example, for a statement 𝑠𝑡𝑚, its
execution does not influence the incorrect output. Even if the statement 𝑠𝑡𝑚 has a high value of 𝐺𝐿𝑜𝑐𝑐𝑢𝑟 , the statement
𝑠𝑡𝑚 should have the lowest weight because its execution is independent of the incorrect output. Thus, the new trace
representation (i.e.,𝐺𝐿𝑜𝑐𝑐𝑢𝑟 (𝑥𝑖 𝑗 )) still relies on the ‘occurrence’ semantics (i.e., the occurrence frequency of a statement
or a test case), and thus cannot capture such ‘influence’ semantics (i.e., whether the execution of a statement influences
the output or not). To further improve FL effectiveness, this motivates us to integrate ‘influence’ semantics into the
trace representation via using program slicing [2, 61] to capture whether the execution of a statement influences the
output or not. Therefore, UNITE uses program slicing [2, 61] to elaborate the trace representation by upgrading the
‘occurrence’ into the ‘influence’ semantics.

Program slicing [2, 61] extracts the data and/or control dependencies of program statements to identify a subset
of statements whose execution affects the output. It names the subset of statements as a slice. A slice is a program
dependency graph showing how those statements influence the output according to data and/or control dependencies.
Therefore, UNITE uses dynamic slicing [2, 61] on the output statement whose output value is incorrect to identify those
statements affecting the faulty output value as an influential slice. Thus, an influential slice is defined as follows:

An influential slice: statements that directly or indirectly affect the computation of the faulty output value of a
failure through chains of dynamic data and/or control dependencies.

For the computation of an influential slice, we use the following slicing criterion.

𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝑆𝐶 = (𝑜𝑢𝑡𝑆𝑡𝑚, 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑉𝑎𝑟, 𝑓 𝑎𝑖𝑙𝐸𝑥) (8)

Where, 𝑜𝑢𝑡𝑆𝑡𝑚 is an output statement whose value of a variable (i.e., 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑉𝑎𝑟 ) is incorrect in the execution of a
failing test case (i.e., 𝑓 𝑎𝑖𝑙𝐸𝑥 ). Dynamic slicing collects runtime information along the execution path of a test case, i.e.,
the set of the executed statements of a test case. It means that a test case with a smaller set of executed statements is
usually easier for a dynamic slicing tool to perform efficient instrumentation and produce compressed traces for space
optimization. Thus, for multiple failing test cases, the one with the least executed statements usually is beneficial for
the efficiency of constructing an influential slice. From the efficiency aspect, UNITE chooses the failing test case having
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Program P (maximal value of a,b,c) Bug information 

       s1: Read(a);                                     s7: max = a; 
       s2: Read(b);                                     s8: else {max = b;} 
       s3: Read(c) ; 
       s4: if(c>a)and (c>b){ 
       s5: max = c;}  
       s6: else if (a<b){ 

s6 is faulty. 
Correct form: 
else if (a>b){ 

T a,b,c s1 s2 s3 s4 s5 s6 s7 s8 T s1 s2 s3 s4 s5 s6 s7 s8 R 

t1 1,2,3 1 1 1 1 1 0 0 0 t1 0 0 0 0 0 0 0 0 0 

t2 -2,-7,5 1 1 1 1 1 0 0 0 t2 0 0 0 0 0 0 0 0 0 

t3 5,-6,-8 1 1 1 1 0 1 0 1 t3 0 0 0 0 0.06 0 0 0 1 

t4 5,4,3 1 1 1 1 0 1 0 1 t4 0 0 0 0 0.06 0 0 0 1 

t5 4,7,1 1 1 1 1 0 1 1 0 t5 0 0 0 0 0.06 0.17 0 0 1 

t6 -1,2,1 1 1 1 1 0 1 1 0 t6 0 0 0 0 0.06 0.17 0 0 1 

MLP-FL 
value 0.62 0.64 0.61 0.69 0.57 0.59 0.60 0.58 MLP-FL 

(UNITE) 
0.56 0.28 0.19 0.46 0.79 0.95 0.97 0.88 

rank 3 2 4 1 8 6 5 7 5 7 8 6 4 2 1 3 

ER5 
value 0.67 0.67 0.67 0.67 0 0.67 0.33 0.33 ER5 

(UNITE) 
0 0 0 0 0 0.11 0.08 0 

rank 1 2 3 4 8 5 6 7 6 7 8 4 5 1 2 3 

The influential slice with t5: 
{s1, s2, s3, s4, s5, s6} 

Fig. 5. An Example illustrating our approach.

the least executed statements to construct a slicing criterion in the Eq. (8), and inputs this slicing criterion into program
slicing technique to construct an influential slice.

Based on the influential slice, UNITE defines Eq. (9) to combine influential semantics into trace representation.

𝐺𝐿𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒
(
𝑥𝑖 𝑗

)
= GLoccur

(
𝑥𝑖 𝑗

)
∗ 𝑆𝐿𝐼𝐶𝐸

(
𝑥𝑖 𝑗

)
(9)

Where, 𝑆𝐿𝐼𝐶𝐸 (𝑥𝑖 𝑗 ) = 1 if the statement 𝑠 𝑗 ∈ 𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝑆𝐶; and 0 otherwise. Eq. (9) assigns the lowest value to those
statements not in the influential slice because their executions do not influence the faulty output.

Finally, as shown in Fig. 4, UNITE defines 𝐺𝐿𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 (𝑥𝑖 𝑗 ) to replace the original 𝑥𝑖 𝑗 , and models a new trace
representation (i.e., a new matrix) with influential global and local contexts. FL techniques (e.g., SFL and DLFL in
Section 2) take as input the UNITE representation to analyze and evaluate the suspiciousness of a statement of being
faulty.

3.4 An Illustrative Example

Fig. 5 shows an example illustrating how UNITE is applied. As shown in Fig. 5, we have a program 𝑃 with a fault at
the statement 𝑠6, and its function is to calculate the maximal value of three variables. The left six cells below each
statement represent whether the statement is covered by the test case (1 for covered and 0 otherwise), evaluated by
the original trace representation. The right six cells represent the 𝐺𝐿𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 values of each statement in each test
case, evaluated by UNITE (see Eq. (9)). The rightmost cells below 𝑅 indicate whether the test case is failing or not (1 for
failing and 0 otherwise). In this illustrative example, we choose MLP-FL and ER5 as the representative for DLFL and
SFL, which are described in Section 2. MLP-FL(UNITE) and ER5(UNITE) mean that MLP-FL and ER5 use the UNITE
trace representation. UNITE uses the failing test case 𝑡5 to calculate the influence slice. Here, we can observe that
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UNITE representation is more concise and precise than binary representation by purifying uninfluenctial statements
and showing a magnitude of the importance of a statement in a test case.

After acquiring the trace representation, FL techniques take as input the representation to analyze and evaluate the
suspiciousness of each statement of being faulty. For example, MLP-FL(UNITE) takes as input UNITE representation
and its concrete process is as follows: first, UNITE constructs the MLP model with the number of input layer nodes
being eight, three hidden layers with the number of each one’s nodes being 10, and the number of output layer nodes
being 1; then, we input the vector 𝑡1 (0,0,0,0,0,0,0,0) and its result 0, then vector 𝑡2 (0,0,0,0,0,0,0,0) and its result 0 into
the input layer until all the vectors of UNITE representation are all inputted into the network. After that, we train
the network iteratively to acquire the relationship between the execution influence of a statement and the test results.
Thirdly, we construct the virtual test set which is an eight dimensional unit matrix, then put it into the network, and
finally obtain the suspiciousness values. Based on these information, MLP-FL(UNITE) outputs a ranking list of all
statements in descending order. The original MLP-FL uses the binary representation to perform a similar process to
evaluate the suspiciousness of each statement of being faulty. The results show that the faulty statement 𝑠6 is ranked
2nd by UNITE and ranked 6th by the original MLP-FL.

Based on the binary representation and UNITE representation, ER5 and ER5(UNITE) both output a ranking list of
all statements in descending order. The results show that the faulty statement 𝑠6 is ranked 1st by UNITE and ranked
5th by the original ER5 using the binary representation. It should be noted that when the statements have the same
suspiciousness value, we adopt the widely strategy by ranking them in the ascending order of their line numbers. As
shown in Fig. 5, although 𝑠1, 𝑠2, 𝑠3, 𝑠4 and 𝑠6 have the same highest suspiciousness value in ER5, 𝑠6 is ranked 5th for
its larger line number. Thus, for different strategies of breaking the tie, the ranks of those statements with the same
suspiciousness value may be slightly different.

We can first observe that global and local contexts of UNITE work. Since the statements 𝑠1, 𝑠2, 𝑠3 and 𝑠4 are executed
by all the 6 test cases, their𝐺𝐿𝑜𝑐𝑐𝑢𝑟 values are 0 in comparison to the other statements, and thus their𝐺𝐿𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 are
0. Furthermore, the statement 𝑠6 and 𝑠7 acquire a decimal value, rather than a binary value, showing how important
of a statement is in a test case. Then, the influence semantics of UNITE works. Due to using the influential slice, the
execution of 𝑠5 and 𝑠8 do not influence the faulty output of 𝑡5, their 𝑆𝐿𝐼𝐶𝐸 values are 0 and thus their𝐺𝐿𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 are 0
Thus, based on this illustrative example, we can observe that the two parts of UNITE (i.e., global and local contexts,
and influential semantics) both contribute to FL effectiveness, leading to better FL effectiveness over the original trace
representation. Section 4.3.2 offers an evaluation on the contribution of each part of UNITE to FL effectiveness.

4 EXPERIMENTS

4.1 Experimental Setup

Benchmarks The experiments choose the subject programs for the two reasons: (1) they are the widely used
large-sized programs (e.g., [24, 33, 35–37, 39, 42, 55, 66, 67]) in fault localization; (2) they are easy to be acquired for
enabling comparable and reproducible studies. Table 2 summarizes the 22 subject programs. For each program, it
provides a brief functional description (column ‘Description’), the number of faulty versions used (column ‘Versions’),
the number of thousand lines of statements (column ‘KLOC’), the number of test cases (column ‘Test’) and the type of
the faults (column ‘Type’). The first four programs are real faults, among which python, gzip and libtiff are collected
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Table 2. Subject programs.

Program Description Versions KLOC Test Type
python General-purpose language 8 407 355 Real
gzip Data compression 5 491 12 Real
libtiff Image processing 12 77 78 Real
space ADL interpreter 35 6.1 13585 Real
spoon Java code analysis & transformation 31 76 1114 Real
dubbo Apache incubator dubbo 1 0.6 90 Real

jackson-databind General data binding 13 99 1711 Real
oak Apache jackrabbit oak 1 1.8 2403 Real

debezium Platform for change data capture 4 53 508 Real
byte-buddy Runtime code generation for the JVM 3 140 8066 Real

AutomatedCar Passenger vehicle behavior simulator 1 2 48 Real
cash-count Accounting software back-end 2 0.7 16 Real
nanoxml v1 XML parser 7 5.4 206 Seeded
nanoxml v2 XML parser 7 5.7 206 Seeded
nanoxml v3 XML parser 10 8.4 206 Seeded
nanoxml v5 XML parser 7 8.8 206 Seeded

chart JFreeChart 26 96 2205 Real
math Apache commons math 106 85 3602 Real
lang Apache commons-lang 65 22 2245 Real
time Joda-Time 27 53 4130 Real

from ManyBugs3, and space is acquired from the SIR4. The next seven programs are real faults from BEARS5. Then,
the next four programs are seeded faults of the four sperate releases of nanoxml acquired from the SIR. The last four
programs (i.e., chart, math, lang and time) are acquired from Defectcs4J6. As a reminder, since the recent studies [10, 72]
have identified over-fitting benchmarks (e.g., Defects4J) for FL, we use the recently recommended benchmarks [29]
(e.g., BEARS) to alleviate this problem. Therefore, we do not include the experimental results of Defects4J in Section 4.3
and provide a discussion on the effect of benchmarks over-fitting on our approach using Defects4J in Section 5.1.

We use JSlice7 and Javaslicer8 for slicing Java programs, and WET9 for slicing C Programs. Due to running environ-
ments, the tools cannot slice some faulty versions, and we remove these versions in our evaluation.
Baselines According to the extensive existing studies [26, 28, 31, 32, 39, 43, 51, 59, 60, 63, 66, 67], the experiments
use the 12 state-of-the-art FL approaches as the baselines, i.e., ER5, GP02, GP03, Dstar, ER1’, GP19, Ochiai, MLP-FL,
CNN-FL, BiLSTM-FL, ProFL and DeepRL4FL. We implement the 12 baselines including the parameters as described in
their publications.
Environment The physical environment of the experiments is on a computer containing a CPU of Intel I5-2640 with
128G physical memory, and two 12G GPUs of NVIDIA TITAN X Pascal. The operating system is Ubuntu 16.04.3. We
conducted the experiments on the MATLAB R2016b.

3ManyBugs, https://repairbenchmarks.cs.umass.edu/ManyBugs/.
4SIR, http://sir.unl.edu/portal/index.php.
5BEARS, https://github.com/bears-bugs/bears-benchmark.
6Defects4J, http://defects4j.org.
7http://jslice.sourceforge.net/.
8https://github.com/hammacher/javaslicer/.
9http://wet.cs.ucr.edu/.
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4.2 Evaluation Metrics

We adopt four widely used metrics to evaluate the effectiveness of UNITE, namely Top-N accuracy [17, 38], Mean

Average Rank (MAR) [24], Mean First Rank (MFR) [24] and Relative Improvement (RImp) [4, 7, 21]. A higher value of
Top-N Accuracy means better localization effectiveness, while a lower value denotes better localization effectiveness for
the other four metrics.
Top-N Accuracy It denotes the percentage of faults located within the first N position of a ranked list of all statements
in descending order of suspiciousness returned by a FL approach.
Mean Average Rank (MAR) It is the mean of the average rank of all faults using a FL approach.
Mean First Rank (MFR) For a fault with multiple faulty statements, locating the first one is critical since the others
may be located after that. MFR is the mean of the first faulty statement’s rank of all faults using a localization approach.
Relative Improvement (RImp) It is to compare the total number of statements that need to be examined to find all
faults using UNITE versus the number that need to be examined by without using UNITE.

4.3 Experimental Results

4.3.1 RQ1. What is the FL effectiveness of UNITE compared with the original state-of-the-art FL baselines?
We compare 12 state-of-the-art FL baselines using UNITE with the original ones to answer RQ1.

Table 3. Top-N, MAR and MFR comparison of 13 FL approaches using UNITE over without using UNITE

Comparison top-1 top-3 top-5 top-10 MAR MFR
ER5 1.09% 5.46% 9.29% 11.95% 421 263

ER5(UNITE) +1.64% +9.84% +8.20% +9.91% 134 125
GP02 1.09% 6.01% 8.20% 11.29% 464 289

GP02(UNITE) +2.19% +8.74% +11.47% +11.66% 124 111
GP03 1.09% 5.76% 10.14% 12.57% 417 251

GP03(UNITE) +1.64% +11.18% +7.11% +7.66% 131 119
Dstar 2.73% 6.56% 14.27% 23.50% 386 243

Dstar(UNITE) +0.55% +5.94% +3.76% +4.92% 125 113
ER1’ 2.73% 5.21% 7.10% 11.29% 425 317

ER1’(UNITE) +0.00% +5.72% +7.11% +10.63% 127 115
GP19 2.73% 6.56% 12.57% 13.11% 417 278

GP19(UNITE) +0.55% +6.98% +6.18% +10.39% 126 121
Ochiai 2.73% 6.56% 13.70% 19.13% 397 227

Ochiai(UNITE) +0.55% +9.29% +4.01% +7.1% 122 112
MLP-FL 1.09% 4.32% 6.56% 9.29% 471 335

MLP-FL(UNITE) +1.10% +7.16% +8.19% +11.48% 137 129
CNN-FL 2.73% 6.01% 11.48% 17.53% 407 251

CNN-FL(UNITE) +0.55% +10.93% +6.55% +3.78% 123 117
BiLSTM-FL 1.09% 3.28% 6.15% 8.74% 493 354

BiLSTM-FL(UNITE) +1.10% +7.65% +8.06% +14.18% 133 124
ProFL 3.54% 7.64% 16.75% 25.95% 365 227

ProFL(UNITE) +0.78% +9.85% +6.75% +4.1% 122 107
DeepRL4FL 7.10% 15.41% 22.95% 26.23% 323 219

DeepRL4FL(UNITE) +0.00% +4.81% +3.83% +6.56% 103 96

Top-N Accuracy, MAR and MFR Parnin and Orso [38] conducted a user study of evaluating the usefulness of fault
localization techniques in assisting developers, and recommended using the rank of the faulty statement to evaluate
Manuscript submitted to ACM
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Fig. 6. RImp comparison of 12 FL baselines using UNITE vs without using UNITE.

fault localization effectiveness. Since then, Top-N, MAR and MFR are widely used in fault localization. Afterwards
many comprehensive user studies (e.g., [17, 58]) show that it is useful to help developers in debugging by using these
metrics. Thus, our experiments use Top-N, MAR, and MFR to compare the 12 baselines between using UNITE and
using the original representation. Table 3 presents their distribution among 12 fault localization approaches using
original trace representation and UNITE representation, respectively. As shown in Table 3, UNITE achieves promising
best localization effectiveness in all 12 scenarios in comparison to the baselines without using UNITE. Take one FL
technique ER5 as an example. UNITE shows an increase of 1.64%, 9.84%, 8.20% and 9.91% improvement over ER5 for
the Top-1, Top-3, Top-5 and Top-10 metrics respectively. The MAR and MFR are 134 and 125 respectively, achieving
(421-134)/421=68.17% and (263-125)/263=52.47% relative improvement over ER5 respectively.
RImp distribution For a detailed improvement, we adopt RImp to evaluate UNITE. Fig. 6 shows the RImp distribution
of UNITE: the RImp on the 12 FL baselines without using UNITE. As shown in Fig. 6, the RImp score is less than 100% in
all approaches, meaning that UNITE improves localization effectiveness of all the 13 FL baselines. The statements that
need to be examined decrease ranging from 14.10% in MLP-FL to 70.47% in DeepRL4FL. It also means that UNITE, obtains
a maximum saving of 85.90% (100%-14.10%=85.90%) in MLP-FL and the minimum saving is 29.53% (100%-70.47%=48.68%)
in DeepRL4FL, which indicates that UNITE can save from 29.53% to 85.90% of the number of statements examined
among the fault localization approaches. Based on the RImp scores, we can observe that there is a significant saving
after using UNITE, showing that UNITE is effective to improve fault localization.
Statistical comparison To investigate whether the difference between the baselines using UNITE and without using
UNITE is statistically significant, we adopt Wilcoxon-Signed-Rank Test [5], with a Bonferroni correction [1], which is
a non-parametric statistical hypothesis test for testing the differences between pairs of measurements F(x) and G(y).
The experiments performed 12 paired Wilcoxon-Signed-Rank tests by using the ranks [30] of the faulty statements as
the pairs of measurements F(x) and G(y). Each test uses left-tailed p-value checking at the 𝜎 level of 0.05. Specifically,
we use the list of the ranks of the faulty statements using UNITE in all faulty versions of all programs as the list of
measurements of F(x), while the list of measurements of G(y) is the list of the ranks of the faulty statements without
using UNITE in all faulty versions of all programs. If p<0.05, 𝐻1 that the ranks of using UNITE significantly tends to be
smaller than that of without using UNITE is accepted, meaning that UNITE has BETTER effectiveness than without
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Table 4. Wilcoxon-Signed-Rank Test results of the six of 12 FL approaches using UNITE vs without using UNITE (part 1).
Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion

ER5
(UNITE)

vs
ER5

gzip 0.008 0.997 5.00e-04 BETTER

GP02
(UNITE)

vs
GP02

gzip 0.027 0.899 0.018 BETTER
libtiff 0.018 0.978 0.005 BETTER libtiff 0.011 0.969 0.009 BETTER
python 0.010 0.958 0.012 BETTER python 0.018 0.963 0.003 BETTER
space 4.38e-04 1.000 2.41e-04 BETTER space 4.38e-04 1.000 2.41e-04 BETTER

nanoxml_v1 0.017 0.929 0.010 BETTER nanoxml_v1 0.045 0.707 0.048 BETTER
nanoxml_v2 0.018 0.963 0.019 BETTER nanoxml_v2 0.039 0.789 0.041 BETTER
nanoxml_v3 0.008 0.989 0.003 BETTER nanoxml_v3 0.46 0.705 0.039 BETTER
nanoxml_v5 0.013 0.985 0.007 BETTER nanoxml_v5 0.009 0.985 3.01e-04 BETTER

spoon 0.008 0.997 5.0e-04 BETTER spoon 0.011 0.995 6.43e-03 BETTER
dubbo 0.008 0.997 0.003 BETTER dubbo 0.014 0.950 0.009 BETTER

jackson-databind 0.013 0.929 0.009 BETTER jackson-databind 0.025 0.896 0.023 BETTER
oak 0.018 0.963 0.009 BETTER oak 0.011 0.969 0.009 BETTER

debezium 0.011 0.969 0.007 BETTER debezium 0.018 0.966 0.003 BETTER
byte-buddy 0.012 0.989 0.003 BETTER byte-buddy 0.011 0.969 0.009 BETTER

AutomatedCar 0.017 0.977 0.008 BETTER AutomatedCar 0.018 0.963 0.019 BETTER
cash-count 0.013 0.981 0.009 BETTER cash-count 0.046 0.705 0.039 BETTER

total 4.20e-12 1.000 2.15e-12 BETTER total 2.99e-09 1.000 1.53e-09 BETTER

GP03
(UNITE)

vs
GP03

gzip 0.012 0.899 0.013 BETTER

Dstar
(UNITE)

vs
Dstar

gzip 0.012 0.899 0.013 BETTER
libtiff 0.011 0.969 0.009 BETTER libtiff 0.011 0.969 0.09 BETTER
python 0.018 0.967 4.00e-04 BETTER python 0.018 0.963 3.00e-04 BETTER
space 4.38e-04 1.000 2.41e-04 BETTER space 4.38e-04 1.000 2.41e-04 BETTER

nanoxml_v1 0.045 0.707 0.046 BETTER nanoxml_v1 0.045 0.707 0.046 BETTER
nanoxml_v2 0.011 0.969 0.009 BETTER nanoxml_v2 0.043 0.789 0.039 BETTER
nanoxml_v3 0.047 0.663 0.042 BETTER nanoxml_v3 0.047 0.663 0.042 BETTER
nanoxml_v5 0.013 0.985 0.003 BETTER nanoxml_v5 0.013 0.985 0.003 BETTER

spoon 0.008 1.000 4.58e-04 BETTER spoon 0.008 0.962 0.007 BETTER
dubbo 0.008 0.970 0.005 BETTER dubbo 0.045 0.728 0.041 BETTER

jackson-databind 0.012 0.989 0.003 BETTER jackson-databind 0.024 0.896 0.035 BETTER
oak 0.011 0.961 0.009 BETTER oak 0.015 0.909 0.010 BETTER

debezium 0.018 0.963 0.003 BETTER debezium 0.007 0.985 0.003 BETTER
byte-buddy 0.011 0.969 0.014 BETTER byte-buddy 0.045 0.707 0.048 BETTER

AutomatedCar 0.011 0.969 0.009 BETTER AutomatedCar 0.018 0.963 0.003 BETTER
cash-count 0.046 0.705 0.039 BETTER cash-count 0.047 0.663 0.042 BETTER

total 2.32e-08 1.000 1.25e-08 BETTER total 1.61e-07 1.000 8.19e-08 BETTER

ER1’
(UNITE)

vs
ER1’

gzip 0.017 0.899 0.016 BETTER

GP19
(UNITE)

vs
GP19

gzip 0.008 0.978 0.007 BETTER
libtiff 0.011 0.969 0.009 BETTER libtiff 0.11 0.969 0.009 BETTER
python 0.018 0.963 0.003 BETTER python 0.018 0.963 0.003 BETTER
space 4.38e-04 1.000 2.41e-04 BETTER space 4.38e-04 1.000 2.41e-04 BETTER

nanoxml_v1 0.045 0.707 0.047 BETTER nanoxml_v1 0.011 0.966 0.011 BETTER
nanoxml_v2 0.011 0.969 0.009 BETTER nanoxml_v2 0.011 0.969 0.009 BETTER
nanoxml_v3 0.045 0.663 0.042 BETTER nanoxml_v3 0.012 0.953 0.009 BETTER
nanoxml_v5 0.003 0.985 0.008 BETTER nanoxml_v5 0.003 0.985 0.008 BETTER

spoon 0.008 0.962 0.004 BETTER spoon 0.008 0.997 0.005 BETTER
dubbo 0.045 0.702 0.041 BETTER dubbo 0.015 0.911 0.014 BETTER

jackson-databind 0.25 0.896 0.042 BETTER jackson-databind 0.013 0.929 0.010 BETTER
oak 0.015 0.909 0.009 BETTER oak 0.019 0.789 0.039 BETTER

debezium 0.009 0.985 0.003 BETTER debezium 0.012 0.953 0.010 BETTER
byte-buddy 0.010 0.969 0.009 BETTER byte-buddy 0.010 0.969 0.009 BETTER

AutomatedCar 0.007 0.989 0.003 BETTER AutomatedCar 0.012 0.963 0.003 BETTER
cash-count 0.025 0.896 0.043 BETTER cash-count 0.046 0.705 0.039 BETTER

total 3.25e-08 1.000 1.66e-08 BETTER total 4.79e-11 1.000 2.45e-11 BETTER

using UNITE; otherwise, 𝐻0 that ranks of using UNITE does not significantly tend to be smaller than that of without
using UNITE is accepted, meaning that using UNITE does not perform better than without using UNITE.

Table 4 and Table 5 show the Wilcoxon-Signed-Rank Test results on this relationship, where the cells show the
p values of Wilcoxon-Signed-Rank Tests. The results show that the ranks of the faulty statements of all the 12 FL
approaches using UNITE are significantly smaller than those of all the 12 baselines using original trace representation
in all programs, yielding BETTER results in all cases.

To further assess the difference quantitatively, we leverage the nonparametric Vargha-Delaney A-test, which is
recommended in [3], to evaluate the magnitude of the difference by measuring effect size (scientific significance). For
A-test, the bigger deviation of A-statistic is from the value of 0.5, the greater difference is between the two studied
groups. Vargha and Delaney [50] suggest that A-test of greater than 0.64 (or less than 0.36) is indicative of “medium”
effect size, and of greater than 0.71 (or less than 0.29) can be indicative of a promising “large” effect size.
Manuscript submitted to ACM
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Table 5. Wilcoxon-Signed-Rank Test results of the other six of 12 FL approaches using UNITE vs without using UNITE (part 2).

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion

Ochiai
(UNITE)

vs
Ochiai

gzip 0.008 0.978 0.007 BETTER

MLP
(UNITE)

vs
MLP

gzip 0.008 0.978 0.005 BETTER
libtiff 0.011 0.969 0.004 BETTER libtiff 0.011 0.966 0.009 BETTER
python 0.002 0.993 0.002 BETTER python 0.012 0.963 0.009 BETTER
space 4.38e-04 1.000 2.41e-04 BETTER space 4.38e-04 1.000 2.41e-04 BETTER

nanoxml_v1 0.042 0.707 0.047 BETTER nanoxml_v1 0.009 0.971 0.009 BETTER
nanoxml_v2 0.033 0.789 0.039 BETTER nanoxml_v2 0.013 0.961 0.011 BETTER
nanoxml_v3 0.034 0.853 0.020 BETTER nanoxml_v3 0.012 0.989 0.003 BETTER
nanoxml_v5 0.005 0.985 0.003 BETTER nanoxml_v5 0.005 0.985 0.003 BETTER

spoon 0.006 0.971 0.004 BETTER spoon 0.015 0.909 0.011 BETTER
dubbo 0.045 0.819 0.029 BETTER dubbo 0.017 0.943 0.019 BETTER

jackson-databind 0.013 0.949 0.010 BETTER jackson-databind 0.008 0.970 0.005 BETTER
oak 0.019 0.789 0.039 BETTER oak 0.018 0.963 0.009 BETTER

debezium 0.010 0.969 0.009 BETTER debezium 0.012 0.965 0.003 BETTER
byte-buddy 0.010 0.969 0.009 BETTER byte-buddy 0.005 0.989 0.002 BETTER

AutomatedCar 0.010 0.923 0.013 BETTER AutomatedCar 0.002 0.991 0.002 BETTER
cash-count 0.024 0.896 0.025 BETTER cash-count 0.006 0.985 0.003 BETTER

total 3.90e-09 1.000 1.99e-09 BETTER total 3.55e-10 1.000 1.83e-10 BETTER

CNN
(UNITE)

vs
CNN

gzip 0.008 0.978 0.005 BETTER

BiLSTM
(UNITE)

vs
BiLSTM

gzip 0.007 0.978 0.005 BETTER
libtiff 0.011 0.969 0.004 BETTER libtiff 0.011 0.969 0.004 BETTER
python 0.012 0.952 0.003 BETTER python 0.002 0.998 3.25e-04 BETTER
space 4.36e-04 1.000 2.41e-04 BETTER space 4.38e-04 1.000 2.41e-04 BETTER

nanoxml_v1 0.011 0.957 0.006 BETTER nanoxml_v1 0.011 0.957 0.006 BETTER
nanoxml_v2 0.011 0.956 0.010 BETTER nanoxml_v2 0.011 0.956 0.010 BETTER
nanoxml_v3 0.011 0.953 0.007 BETTER nanoxml_v3 0.011 0.953 0.007 BETTER
nanoxml_v5 0.006 0.985 0.003 BETTER nanoxml_v5 0.006 0.985 0.003 BETTER

spoon 0.010 0.969 0.004 BETTER spoon 0.009 0.909 0.011 BETTER
dubbo 0.008 0.951 0.019 BETTER dubbo 0.008 0.972 0.003 BETTER

jackson-databind 0.036 0.791 0.029 BETTER jackson-databind 0.004 0.985 0.006 BETTER
oak 0.008 0.942 0.019 BETTER oak 0.008 0.981 0.003 BETTER

debezium 0.004 0.985 0.003 BETTER debezium 0.011 0.964 0.003 BETTER
byte-buddy 0.008 0.970 0.005 BETTER byte-buddy 0.006 0.978 0.004 BETTER

AutomatedCar 0.006 0.971 0.005 BETTER AutomatedCar 0.018 0.913 0.003 BETTER
cash-count 0.004 0.985 0.003 BETTER cash-count 0.006 0.978 0.005 BETTER

total 9.50e-10 1.000 4.88e-10 BETTER total 4.19e-10 1.000 2.15e-10 BETTER

ProFL
(UNITE)

vs
ProFL

gzip 0.008 0.978 0.007 BETTER

DeepRL4FL
(UNITE)

vs
DeepRL4FL

gzip 0.009 0.969 0.011 BETTER
libtiff 0.009 0.969 0.011 BETTER libtiff 0.003 0.989 0.004 BETTER
python 0.011 0.963 0.009 BETTER python 0.035 0.859 0.021 BETTER
space 4.36e-04 1.000 2.41e-04 BETTER space 4.36e-04 1.000 2.41e-04 BETTER

nanoxml_v1 0.009 0.969 0.011 BETTER nanoxml_v1 0.35 0.708 0.043 BETTER
nanoxml_v2 0.009 0.978 0.004 BETTER nanoxml_v2 0.007 0.973 0.003 BETTER
nanoxml_v3 0.011 0.953 0.007 BETTER nanoxml_v3 0.025 0.814 0.015 BETTER
nanoxml_v5 0.004 0.985 0.003 BETTER nanoxml_v5 0.015 0.896 0.027 BETTER

spoon 0.009 0.987 0.003 BETTER spoon 0.035 0.789 0.039 BETTER
dubbo 0.035 0.789 0.039 BETTER dubbo 0.004 0.989 0.002 BETTER

jackson-databind 0.015 0.896 0.024 BETTER jackson-databind 0.005 0.969 0.010 BETTER
oak 0.005 0.969 0.010 BETTER oak 0.008 0.981 0.003 BETTER

debezium 0.008 0.978 0.006 BETTER debezium 0.008 0.972 0.009 BETTER
byte-buddy 0.003 0.979 0.007 BETTER byte-buddy 0.003 0.989 0.002 BETTER

AutomatedCar 0.003 0.989 0.002 BETTER AutomatedCar 0.042 0.705 0.043 BETTER
cash-count 0.015 0.896 0.015 BETTER cash-count 0.012 0.911 0.004 BETTER

total 1.31e-07 1.000 7.35e-08 BETTER libtiff 1.65e-07 1.000 6.36e-08 BETTER

Table 6. A-Test results of 12 FL approaches using UNITE vs without using UNITE.

Comparison A-Test Comparison A-Test Comparison A-Test Comparison A-Test
ER5(UNITE) vs ER5 0.86 GP02(UNITE) vs GP02 0.87 GP03(UNITE) vs GP03 0.91 Dstar(UNITE) vs Dstar 0.85
ER1’(UNITE) vs ER1’ 0.88 GP19(UNITE) vs GP19 0.91 Ochiai(UNITE) vs Ochiai 0.88 MLP(UNITE) vs MLP 0.93
CNN(UNITE) vs CNN 0.89 BiLSTM(UNITE) vs BiLSTM 0.96 ProFL(UNITE) vs ProFL 0.83 DeepRL4FL(UNITE) vs DeepRL4FL 0.81

Table 6 shows the A-Test results of 12 FL approaches using UNITE vs without using UNITE. We could observe
that UNITE arrives at the promising “large” effect size, thus showing better performance. Therefore, it is statistically
significant that UNITE outperforms FL without using UNITE.

Summary for RQ1 In RQ1, we explore the effectiveness of UNITE over original 12 FL baselines. We can safely conclude

that the 12 techniques with UNITE significantly outperform the original ones, showing that incorporating influential

global and local contexts guided trace representation into FL is potential to improve FL effectiveness.
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Table 7. Statistical results of the 12 FL approaches using each part of UNITE vs using original representation.

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test

UNITE
(Influence)

vs
original

representation

ER5 0.010 0.978 0.009 BETTER 0.83

UNITE
(GLContexts)

vs
original

representation

ER5 0.018 0.968 0.009 BETTER 0.73
GP02 0.012 0.785 0.018 BETTER 0.78 GP02 0.014 0.917 0.003 BETTER 0.74
GP03 0.026 0.865 0.004 BETTER 0.67 GP03 0.015 0.935 0.003 BETTER 0.74
Dstar 0.027 0.893 0.031 BETTER 0.65 Dstar 0.034 0.746 0.026 BETTER 0.63
ER1’ 0.009 0.903 0.004 BETTER 0.81 ER1’ 0.034 0.743 0.029 BETTER 0.63
GP19 0.015 0.899 0.028 BETTER 0.64 GP19 0.031 0.824 0.046 BETTER 0.63
Ochiai 0.015 0.912 0.005 BETTER 0.64 Ochiai 0.012 0.876 0.009 BETTER 0.76
MLP-FL 0.011 0.969 0.009 BETTER 0.87 MLP-FL 0.043 0.785 0.030 BETTER 0.65
CNN-FL 0.013 0.902 0.018 BETTER 0.62 CNN-FL 0.028 0.897 0.029 BETTER 0.76

BiLSTM-FL 0.010 0.974 0.002 BETTER 0.81 BiLSTM-FL 0.016 0.894 0.008 BETTER 0.78
ProFL 0.017 0.929 0.014 BETTER 0.67 ProFL 0.038 0.770 0.037 BETTER 0.62

DeepRL4FL 0.026 0.893 0.025 BETTER 0.63 DeepRL4FL 0.045 0.812 0.039 BETTER 0.61

Table 8. Statistical results of the 12 FL approaches using UNITE vs using each part of UNITE.

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test

UNITE
vs

UNITE
(Influence)

ER5 0.013 0.909 0.004 BETTER 0.74

UNITE
vs

UNITE
(GLContexts)

ER5 0.016 0.913 0.005 BETTER 0.71
GP02 0.018 0.903 0.009 BETTER 0.82 GP02 0.011 0.869 0.041 BETTER 0.73
GP03 0.029 0.859 0.021 BETTER 0.71 GP03 0.015 0.835 0.038 BETTER 0.74
Dstar 0.023 0.893 0.020 BETTER 0.73 Dstar 0.014 0.846 0.036 BETTER 0.71
ER1’ 0.039 0.824 0.043 BETTER 0.71 ER1’ 0.014 0.885 0.039 BETTER 0.72
GP19 0.016 0.906 0.009 BETTER 0.81 GP19 0.011 0.895 0.009 BETTER 0.81
Ochiai 0.015 0.903 0.005 BETTER 0.78 Ochiai 0.012 0.911 0.016 BETTER 0.73
MLP-FL 0.010 0.969 0.008 BETTER 0.82 MLP-FL 0.013 0.907 0.012 BETTER 0.71
CNN-FL 0.031 0.864 0.046 BETTER 0.72 CNN-FL 0.018 0.847 0.036 BETTER 0.71

BiLSTM-FL 0.017 0.915 0.014 BETTER 0.73 BiLSTM-FL 0.013 0.902 0.014 BETTER 0.78
ProFL 0.013 0.919 0.009 BETTER 0.72 ProFL 0.019 0.886 0.046 BETTER 0.72

DeepRL4FL 0.017 0.899 0.024 BETTER 0.72 DeepRL4FL 0.017 0.878 0.045 BETTER 0.73

4.3.2 RQ2. Does each part of UNITE contribute to FL effectiveness?
UNITE has two major parts: combining global and local contexts into representation and incorporating influential

semantics into representation. It is desirable to see whether each part of UNITE contributes to FL effectiveness. Therefore,
We implement UNITE with each part as UNITE(GLContexts) and UNITE(Influence), respectively. There are two cases:
(1) we compare UNITE(GLContexts) and UNITE(Influence) with the original trace representation to check whether each
part improves the original one; (2) we compare UNITE with each part (i.e., UNITE(GLContexts) and UNITE(Influence))
to check whether UNITE successfully combines two parts to achieve better effectiveness than each part. We use the
ranks of the faulty statements as measurements, and conduct Wilcoxon-Signed-Rank Test with a Bonferroni correction
at the 𝜎 level of 0.05 for each comparison of the above two cases. Furthermore, for each comparison of the above two
cases, we adopt the nonparametric Vargha-Delaney A-test to evaluate the magnitude of their difference by measuring
effect size.

Table 7 and Table 8 show the statistical results of each one of the above two cases, respectively. As shown in Table 7,
the ranks of the faulty statements of all the 12 FL baselines using each part of UNITE (i.e., UNITE(GLContexts) and
UNITE(Influence)) are significantly smaller than those of all the original FL approaches, yielding BETTER results in
all scenarios. Furthermore, each part of UNITE (i.e., UNITE(GLContexts) and UNITE(Influence)) acquire “medium”
and “large” effect sizes over those of all original FL approaches. Similarly, as show in Table 8, UNITE significantly
outperforms its each part (i.e., UNITE(GLContexts) and UNITE(Influence)), yielding BETTER results and “large” effect
sizes in all scenarios.
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Summary forRQ2 In RQ2, we explore the contribution of each part of UNITE to FL effectiveness. Based on the above results,

we can conclude that (1) each part of UNITE (i.e., UNITE(GLContexts) and UNITE(Influence)) significantly contributes to FL
effectiveness; (2) UNITE successfully combines the contributions of UNITE(GLContexts) and UNITE(Influence), significantly

outperforming each separated part.

4.3.3 RQ3. Why is UNITE better than original state-of-the-art FL baselines?
The experimental results show that UNITE outperforms the original trace representation. It is natural to seek why is

UNITE better than original trace representation. Let us use the definitions (e.g., 𝑥𝑖 𝑗 and 𝐺𝐿𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 (𝑥𝑖 𝑗 )) in Section 3.
For a statement 𝑠 𝑗 , we first define the following four formulas:

𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 (𝑠 𝑗 ) =
∑︁

𝑖∈{𝑖 |𝑒𝑖=1}
𝑥𝑖 𝑗

𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 (𝑠 𝑗 ) =
∑︁

𝑖∈{𝑖 |𝑒𝑖=1}
𝐺𝐿𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 (𝑥𝑖 𝑗 )

𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 (𝑠 𝑗 ) =
∑︁

𝑖∈{𝑖 |𝑒𝑖=0}
𝑥𝑖 𝑗

𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 (𝑠 𝑗 ) =
∑︁

𝑖∈{𝑖 |𝑒𝑖=0}
𝐺𝐿𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 (𝑥𝑖 𝑗 )

(10)

𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 (𝑠 𝑗 ) and 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 (𝑠 𝑗 ) denote the cumulative weights of the statement 𝑠 𝑗 acquired in all failing
test cases by using original representation andUNITE, respectively. Similarly, 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 (𝑠 𝑗 ) and 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 (𝑠 𝑗 )
represent the cumulative weights of the statement 𝑠 𝑗 acquired in all passing test cases by using original representation
and UNITE, respectively. For a statement, a high 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 means that it is strongly related to failing test cases whereas a
high 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 represents it is strongly related to passing test cases10. Thus, it desirable to design a trace representation
that will always assign the faulty statements with a high 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 and a low 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 . This may be the reason why
UNITE outperforms the original trace representation. In other words, the values of the ranks and exam of the faulty
statements in descending order of 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 should be smaller than those in descending order of 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 ,
and the values of the ranks of the faulty statements in descending order of 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 should be higher than those
in descending order of 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 .

To verify the above analysis, based on the four formulas in Eq. (10), we calculate the 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 and 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 of each
statement in all faulty versions of a program using the original representation and UNITE, respectively. We conduct
two paired Wilcoxon-Signed-Rank tests with a Bonferroni correction by using the pairs of measurements F(x) and G(y),
and each test uses left-tailed p-value checking at the 𝜎 level of 0.05. One test adopts the ranks and exam of the faulty
statements using 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 in all faulty versions of a program as the list of measurements of F(x), while the list
of measurements of G(y) is the list of the ranks and exam of the faulty statements using 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 in all faulty
versions of the program. The other test utilizes the ranks of the faulty statements using 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑔𝑖𝑛 in all faulty
versions of a program as the list of measurements of F(x), while the list of measurements of G(y) is the list of the ranks
and exam of the faulty statements using 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 in all faulty versions of the program. For each of the above
comparison, we further adopt the nonparametric Vargha-Delaney A-test to evaluate the magnitude of their difference
by measuring effect size.

10This analysis excludes those statement whose 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 and 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 are both 0 because they have nothing with failing and passing test cases
and will be first excluded by FL techniques.
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Table 9. Statistical results of the comparison between UNITE and the original representation using 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 and 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 .

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test

𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸

vs
𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑔𝑖𝑛

gzip 0.014 0.939 0.001 BETTER 0.81
libtiff 0.016 0.921 0.007 BETTER 0.78
python 0.007 0.965 0.001 BETTER 0.82
space 0.012 0.914 0.003 BETTER 0.76

nanoxml_v1 0.011 0.951 0.007 BETTER 0.77
nanoxml_v2 0.012 0.916 0.008 BETTER 0.76
nanoxml_v3 0.011 0.903 0.009 BETTER 0.78
nanoxml_v5 0.010 0.925 0.008 BETTER 0.76

spoon 0.004 0.985 0.003 BETTER 0.85
dubbo 0.011 0.924 0.008 BETTER 0.78

jackson-databind 0.018 0.892 0.026 BETTER 0.76
oak 0.017 0.914 0.002 BETTER 0.74

debezium 0.008 0.970 0.003 BETTER 0.82
byte-buddy 0.012 0.893 0.022 BETTER 0.77

AutomatedCar 0.016 0.907 0.012 BETTER 0.76
cash-count 0.017 0.879 0.029 BETTER 0.76

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test

𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸

vs
𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛

gzip 0.012 0.953 0.007 BETTER 0.74
libtiff 0.033 0.865 0.037 BETTER 0.71
python 0.018 0.906 0.009 BETTER 0.76
space 0.029 0.899 0.038 BETTER 0.72

nanoxml_v1 0.025 0.883 0.046 BETTER 0.72
nanoxml_v2 0.025 0.894 0.041 BETTER 0.74
nanoxml_v3 0.023 0.917 0.024 BETTER 0.74
nanoxml_v5 0.020 0.953 0.006 BETTER 0.76

spoon 0.012 0.957 0.007 BETTER 0.77
dubbo 0.033 0.889 0.038 BETTER 0.72

jackson-databind 0.036 0.846 0.037 BETTER 0.71
oak 0.016 0.908 0.007 BETTER 0.76

debezium 0.018 0.917 0.014 BETTER 0.75
byte-buddy 0.037 0.802 0.043 BETTER 0.71

AutomatedCar 0.028 0.835 0.038 BETTER 0.72
cash-count 0.034 0.849 0.045 BETTER 0.71

Table 9 shows the statistical results of the comparison between UNITE and original trace representation using failing
and passing cumulative weights, respectively. As shown in Table 9, the values of the ranks of the faulty statements using
𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 and 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑔𝑖𝑛 are significantly smaller than 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 and 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 , respectively,
yielding BETTER results and “large” effect sizes in all programs.

Summary for RQ3 In RQ3, we explore the reason of why UNITE performs better than original FL techniques. The results

show that the reason of UNITE outperforms the original trace representation may lie in that UNITE will always assign the

faulty statements with a high 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 and a low 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 .

5 DISCUSSION

5.1 Benchmark Over-fitting Effect on UNITE

Does benchmark over-fitting effect impact UNITE? Recent work [10] shows that the widely-used benchmark
Defects4J (i.e., chart, math, lang and time in the Table 2) is over-fitting for SFL including the seven state-of-the-art FL
baselines (i.e., ER5, GP02, GP03, Dstar, ER1’, GP19 and Ochiai) used by our experiments. In other words, SFL shows
inconsistencies between the benchmark Defects4J and other benchmarks in terms of FL effectiveness. For example,
34.8% and 47.8% of bugs in Defects4J are localized at top 10 using Ochiai and Dstar while only a few bugs in other
benchmarks can be localized even in top 100 [10, 72]. It is interesting to see whether UNITE still effectively works
under the effect of benchmark over-fitting.
Manuscript submitted to ACM
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Table 10. The statistical results of the 12 FL approaches on Defects4J using UNITE vs without using UNITE.

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test

UNITE
vs

original
representation

ER5 0.017 0.914 0.017 BETTER 0.78
GP02 0.019 0.895 0.038 BETTER 0.76
GP03 0.022 0.879 0.014 BETTER 0.74
Dstar 0.010 0.913 0.013 BETTER 0.75
ER1’ 0.013 0.902 0.012 BETTER 0.76
GP19 0.012 0.914 0.018 BETTER 0.77
Ochiai 0.013 0.927 0.010 BETTER 0.76
MLP-FL 0.016 0.925 0.014 BETTER 0.75
CNN-FL 0.012 0.894 0.026 BETTER 0.77

BiLSTM-FL 0.009 0.966 0.008 BETTER 0.82
ProFL 0.025 0.843 0.046 BETTER 0.74

DeepRL4FL 0.027 0.834 0.047 BETTER 0.72

Table 11. Statistical results of the comparison between UNITE and the original representation using 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 and 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 on
Defects4J.

Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion A-Test

𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸

vs
𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛

chart 0.012 0.906 0.009 BETTER 0.79
𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸

vs
𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛

chart 0.024 0.879 0.034 BETTER 0.74
math 0.010 0.916 0.008 BETTER 0.79 math 0.022 0.898 0.014 BETTER 0.76
lang 0.008 0.946 0.003 BETTER 0.78 lang 0.011 0.967 0.009 BETTER 0.81
time 0.011 0.906 0.009 BETTER 0.78 time 0.008 0.963 0.006 BETTER 0.78

We apply UNITE to the 12 FL techniques on Defects4J, and compare their FL effectiveness. Specifically, we perform 12
paired Wilcoxon-Signed-Rank tests by using the ranks and exam of the faulty statements as the pairs of measurements
F(x) (i.e., UNITE) and G(y) (i.e., each of 12 original FL baselines). Each test uses left-tailed p-value checking at the 𝜎
level of 0.05.

Table 10 shows the statistical results on this relationship. As shown in Table 10, the p-values are all less than 0.05 and
the A-test values are all greater than 0.71. It means that the ranks of the faulty statements of all the 12 FL approaches
using UNITE are significantly smaller than those of all the original FL approaches on Defects4J, yielding BETTER
results and “large” effect sizes in all scenarios. Thus, UNITE can still effectively work under the effect of benchmark
over-fitting.
Does the reason of a high 𝒇𝑾𝒆𝒊𝒈𝒉𝒕𝒔 and a low 𝒑𝑾𝒆𝒊𝒈𝒉𝒕𝒔 still work for UNITE under the benchmark over-fitting
effect? In RQ3, the results show that the reason of UNITE outperforms the original trace representation may lie in
that UNITE will always assign the faulty statements with a high 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 and a low 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 . This reason may still
work for explaining that the effect of benchmark over-fitting does not impact UNITE. Thus, we also conduct two paired
Wilcoxon-Signed-Rank tests with a Bonferroni correction on Defects4J by using left-tailed p-value checking at the 𝜎
level of 0.05. One test adopts the ranks of the faulty statements using 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 in all faulty versions of Defects4J
as the list of measurements of F(x), while the list of measurements of G(y) is the list of the ranks of the faulty statements
using 𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 in all faulty versions of Defects4J. The other test utilizes the ranks of the faulty statements using
𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑜𝑟𝑔𝑖𝑛 in all faulty versions of Defects4J as the list of measurements of F(x), while the list of measurements of
G(y) is the list of the ranks of the faulty statements using 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠𝑈𝑁𝐼𝑇𝐸 in all faulty versions of Defects4J.

Table 11 shows the statistical results of the comparison between UNITE and original trace representation using
𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 and 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 on Defects4J, respectively. As shown in Table 11, the p-values are all less than 0.05 and the
A-test values are all greater than 0.71, yielding BETTER results and “large” effect sizes in all programs of Defects4J.
Thus, under the effect of benchmark over-fitting, UNITE will still always assign the faulty statements with a high
𝑓𝑊𝑒𝑖𝑔ℎ𝑡𝑠 and a low 𝑝𝑊𝑒𝑖𝑔ℎ𝑡𝑠 .

Manuscript submitted to ACM



989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Zhang and Lei, et al.

Table 12. Average time cost of using UNITE and without using UNITE.

Comparison ER5(UNITE)/ER5 GP02(UNITE)/GP02 GP03(UNITE)/GP03 Dstar(UNITE)/Dstar
Time Cost 35.7s/4.7s 31.8s/4.2s 41.2s/5.3s 32.3s/4.4s
Comparison ER1’(UNITE)/ER1’ GP19(UNITE)/GP19 Ochiai(UNITE)/Ochiai MLP-FL(UNITE)/MLP-FL
Time Cost 44.7s/5.9s 45.3s/6.2s 36.1s/4.9s 3.5h/2.1h
Comparison CNN-FL(UNITE)/CNN-FL BiLSTM-FL(UNITE)/BiLSTM-FL ProFL(UNITE)/PRoFL DeepRL4FL(UNITE)/DeepRL4FL
Time Cost 5.9h/4.1h 18.7h/11.3h 3.6h/2.3h 6.2h/4.6h

5.2 Efficiency of UNITE

Due to the use of both global and local contexts with influential semantics, it is necessary to evaluate the efficiency of
UNITE. Table 12 shows the average time cost of 12 baselines using and without using UNITE, where s and h denote
seconds and hours respectively. As shown in Table 12, for the seven baselines (i.e., ER5, GP02, GP03, Dstar, ER1’, GP19
and Ochiai), even if the time cost changes from several seconds into dozens of seconds after using UNITE, the time
cost is still low. For the other baselines (i.e., MLP-FL, CNN-FL, BiLSTM-FL, ProFL, DeepFL4FL), the time costs of using
UNITE and without using UNITE are within the same order of magnitude. Thus, the time cost of UNITE is acceptable
in comparison to the original baselines.

5.3 Application of UNITE in Automated Program Repair

Automated program repair (APR) [19] is a concrete software engineering task by automatically repairing programs.
APR usually consists of three phases: fault localization, patch generation and patch validation. Being the first step, fault
localization provides a suspicious rank list of statements for APR. Specifically, the APR techniques generate patches
in the suspicious rank list from top to down and many APR techniques [12, 27, 62] set clear time limitation. It means
that, after using UNITE, the improvement of Top-N and MFR metrics could help the APR techniques, since the APR
techniques relay on the suspicious rank list and have limited time for each bug during the repair. Thus, we adopt the
concrete software engineering task(i.e., APR) to illustrate meaningful improvement of our approach.

We use two typical APR techniques (i.e., Nopol [62] and Tbar [27]) and apply UNITE to their fault localization
modules (i.e., Ochiai [35]). We adopt Defects4J, widely used by the existing APR studies including Nopol [62] and
Tbar [27], to conduct the comparison. We further exclude those faulty versions which the slicing tools cannot slice, and
apply Nopol and Tbar to these faulty versions, where Nopol generated plausible patches for the programs of chart, lang
and math and Tbar produced plausible patches for the programs of chart, lang, math and time. Thus, we perform 100
repeated repairs for each of those faulty versions which are finally fixed by Nopol [62] or Tbar [27].

To evaluate the effect of UNITE on APR efficiency, we adopt twowidely used metrics (i.e., repair time andNPC) [27, 62].
We show different parts of repair time in seconds: fault localization time (i.e., the time cost of fault localization), patch
acquisition time (i.e., the time cost of patch generation and validation), total time (i.e., the time cost of the whole APR
process including fault localization time and patch acquisition time). NPC denotes the number of patch candidates
generated by an APR technique until the first plausible patch is found. Table 13 shows the efficiency distribution of
APR techniques with and without using UNITE. As shown in Table 13, for repair time, although our approach increases
fault localization time, the patch acquisition time decreases and the total time decreases except for two programs using
Nopol; for NPC, our approach reduces the NPC in Tbar and keeps the same NPC in Nopol. These results show that
UNITE can improve the APR efficiency.
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Table 13. Efficiency distribution of repair time and NPC among the original APR techniques and the ones using UNITE.

Comparison Fault Localization Time (s) Patch Acquisition Time (s) Total Time (s) NPC

Nopol
chart 13.15 5.69 19.84 1
lang 15.38 29.30 44.68 1
math 69.84 293.45 363.29 1

Nopol(UNITE)
chart 47.37 3.25 50.62 1
lang 52.64 18.67 71.31 1
math 121.43 238.91 360.34 1

TBar

chart 15.79 783.75 799.54 587.25
lang 16.54 848.49 865.03 714.75
math 86.81 798.09 884.90 79.60
time 12.08 7244.91 7256.99 6812.63

Tbar(UNITE)

chart 56.23 542.61 598.84 327.39
lang 57.19 585.83 643.02 485.92
math 142.25 505.78 648.03 61.37
time 47.85 4473.38 4521.23 2341.25

Table 14. Effectiveness distribution of plausibly fixed bugs among the original APR techniques and the ones using UNITE.

Comparison Fixed Bugs

Nopol
chart 5,9,13,17
lang 44,51,58
math 40

Nopol(UNITE)
chart 5,9,13,17
lang 44,51,58
math 40,50

TBar

chart 1,4,7,8,9,11,12,13,14,15,19,20,24,25
lang 7,10,22,33,39,43,44,45,47,51,58,59,63
math 2,3,4,5,6,8,11,15,22,28,30,32,33,34,35,49,50,57,58,59,60,62,63,65,70,73,75,77,79,80,82,85,89,95,96,98
time 7,11,17

Tbar(UNITE)

chart 1,4,7,8,9,11,12,13,14,15,19,20,24,25,26
lang 7,10,22,33,39,43,44,45,47,51,58,59,63, 13, 18, 27
math 2,3,4,5,6,8,11,15,22,28,30,32,33,34,35,49,50,57,58,59,60,62,63,65,70,73,75,77,79,80,82,85,89,95,96,98,52,88,94
time 7,11,17,2,19

To evaluate the effect of UNITE on the APR effectiveness, we adopt the widely used metric, i.e., the number of
plausibly fixed bugs generated by an APR technique [27, 62]. Table 14 shows the specific fixed bugs of the original APR
techniques and the ones using UNITE. As shown in Table 14, after applying UNITE, for Nopol, it has plausibly fixed
one more bug (i.e., math_50); for Tbar, it has plausibly fixed nine more bugs (i.e., chart_26, lang_13, lang_18, lang_27,
math_52, math_88, math_94, time_2 and time_19). Thus, UNITE can improves the APR effectiveness.

5.4 An Example ofQualitative Analysis for UNITE

To show whether the difference is meaningful after applying UNITE, we demonstrate a qualitative example to show the
detailed information of 12 FL approaches locating the faults. Specifically, we use the faulty version two of the program
nanoxml_v2 whose faulty statement is the line 309 as the qualitative example, showing the faulty program with call
relationship and the locations where the 12 FL approaches locate the faults.

Table 15 summarized the detailed results of 12 FL approaches with and without UNITE, where the column ‘Ranking
List’ is the ranking list of the statements in descending order of suspiciousness until finding the faulty statement and
the column ’Rank’ denotes the rank of faulty statement in the ranking list. As shown in Table 15, after applying UNITE,
the length of the ranking list decreases and the rank of the faulty statement increases, showing UNITE is more effective.
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Table 15. Detailed FL results of the qualitative example.

Comparison Ranking list Rank

ER5 52 58 64 96 97 98 99 100 101 125 126 147 148 191 192 218 220 221 239 240 243 245 246 253 256 263 277 279 285 286 40289 290 292 331 333 344 345 348 349 390
ER5(UNITE) 344 390 2

GP02 348 349 344 345 390 5
GP02(UNITE) 344 390 2

GP03 348 349 344 345 390 5
GP03(UNITE) 344 390 2

Dstar 348 349 344 345 390 5
Dstar(UNITE) 344 390 2

ER1’ 348 349 344 345 390 5
ER1’(UNITE) 344 390 2

GP19 52 58 64 96 97 98 99 100 101 125 126 147 148 191 192 239 240 243 277 279 453 455 456 457 459 464 467 473 475 292 58484 485 489 491 505 507 256 590 592 594 348 349 245 246 479 480 481 600 602 605 606 289 290 476 522 344 345 390
GP19(UNITE) 344 390 2

Ochiai 348 349 344 345 390 5
Ochiai(UNITE) 344 390 2

MLP-FL 125 126 191 218 220 221 239 240 453 455 456 457 459 243 344 345 390 17
MLP-FL(UNITE) 218 220 239 240 243 344 390 7

CNN-FL 239 240 243 277 279 344 345 390 8
CNN-FL(UNITE) 243 277 279 344 390 5

BiLSTM-FL 52 64 58 220 239 246 253 240 221 147 148 169 158 202 243 245 256 277 278 279 281 304 305 307 308 312 313 316 289 37286 285 290 291 292 344 345 390
BiLSTM-FL(UNITE) 239 240 243 245 277 279 285 344 390 9

ProFL 348 349 344 345 390 5
ProFL(UNITE) 344 390 2
DeepRL4FL 243 245 246 344 345 390 6

DeepRL4FL(UNITE) 243 245 344 390 4

Although Table 15 shows the ranking list, we cannot visually see the locations of the ranking list and call relationship
in the faulty program. Thus, Fig 7 shows visual FL results of the 12 FL approaches with and without UNITE. In Fig 7, for
each of the 12 FL approaches, we use the same symbol (i.e., a colored rectangle with a solid or dotted line) to mark the
locations (i.e., the statements) of the ranking list (i.e., the one in Table 15) in the faulty program. In addition, when there
is a call between different functions, we use an arrow with a solid line to denote the call action. As a reminder, for those
FL approaches with the same ranking list, we use the symbol to represent their ranking list, e.g., GP02, GP02, ER1’,
Dstar, Ochiai, ProFL. Taking ER5 as an example, Table 15 shows that its ranking list has 40 statements, meaning that
the faulty statement is ranked 40th. Therefore, in Fig 7, the 40 statements are marked with the same yellow and solid
line rectangle, showing the distribution of the locations of the ranking list in the program via using ER5. As shown in
Fig 7, after applying UNITE, we can visually see that the searching scope of locating the fault is significantly reduced.

Thus, based on the FL results of the qualitative example, we can safely conclude that UNITE significantly improves
FL effectiveness. For enabling the qualitative analysis on other programs, we include the complete information about
UNITE, faulty locations and the subject programs in the online package11.

5.5 Threats to Validity

Threats to internal validity. Threats to internal validity relate to potential errors in our implementation. First,
one potential threat to validity is the potential errors in the implementation of UNITE and 12 baselines. To mitigate
the threat, for eight SFL techniques, we implement them based on the widely used SFL source code GZoltar 12; for
four DLFL techniques, we use and enhance the source code from the previous studies to implement them on source

11https://github.com/oy-sarah/UNITE/tree/master/subjectPorgrams.
12https://gzoltar.com/
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Faulty line

ER5 GP19 GP02, GP03, ER1', Dstar, Ochiai, ProFL CNN-FL MLP-FL BiLSTM-FL DeepRL4FL

ER5(UNITE),GP19(UNITE),GP02(UNITE), GP03(UNITE), ER1'(UNITE), Dstar(UNITE), Ochiai(UNITE), ProFL(UNITE)

CNN-FL(UNITE) MLP-FL(UNITE)

BiLSTM-FL(UNITE) DeepRL4FL(UNITE)

Fig. 7. Visual FL results of the qualitative example.

code [66, 67]. We also double-checked the implementation and fully tested our code, but there could be errors that we
did not notice.
Threats to external validity. Threats to external validity relate to generalizability of our results.We use FL techniques
using neural networks (i.e., MLP-FL, CNN-FL, BiLSTM-FL and DeepRL4FL), whose outputs are not stable, meaning that
the localization results are not the same through different training times. That drawback is caused by characteristic
of deep learning technology. To make the results more reliable, we follow the convention strategy by repeating the
experiments ten times and using the average score as the experimental results.
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Another threat to external validity is the subject programs used for our experiments. Our subject programs are
commonly used in the field of software debugging, which are all from the real-life development. However, the experi-
mental results may not apply to all programs because there are still many unknown and complicated factors in realistic
debugging that could affect the experiment results. For example, in our approach, a specific failing test case is needed
for the obtain of an influential slice to exclude irrelevant statements for a smaller inspecting scope. However, such a
choice strategy is suitable for single-fault scenarios since the chosen failing test case can only reveal its own root cause.
Consequently, if there are more than one fault contained in a program, the remaining faults will be ignored, i.e., our
approach can be affected by multiple-faults scenarios. Specifically, for multiple faults, we have two typical problems.
The one is that dynamic information is partially related to multiple faults, i.e., a failing test case only executes part
of all the faulty statements of multiple faults. Dynamic FL approaches including UNITE cannot obtain the dynamic
information of unexecuted faulty statements, and thus it is difficult for dynamic approaches to be effective at locating
those faulty statements not executed by the failing test case. The other one is that multiple faults have complicated
effect (e.g., fault interference and coupling effect [6, 8, 64]), which is still difficult to be accurately analyzed. Dynamic
slicing used by our approach UNITE also suffer from this problem, and may miss part of all the faulty statements of
multiple faults. Consequently, UNITE is ineffective at locating those faulty statements of multiple faults missed by
dynamic slicing. To alleviate the problem, we may leverage clustering technology (e.g., [14]) to alleviate the effect by
transforming the context of multiple faults into that of single faults. Thus, it is worthwhile to incrementally extend our
study to more applications (e.g., multiple-faults programs) to seek additional insights.
Threats to construct validity. Threats to construct validity relate to the suitability of our evaluation. We adopt
the widely used metrics (i.e., TopN, MAR, MFR and RImp) to evaluate UNITE. According to the extensive use of the
measurements, the threat is acceptably mitigated.

6 CONCLUSION AND FUTUREWORK

In this paper, we propose UNITE: an inflUential coNtext-GuIded Trace rEpresentation, to represent the trace from both
global and local contexts with influential semantics for effective FL. UNITE embodies two key ideas: (1) not only local
context but also global context is useful for FL trace representation. (2) program dependencies are potential for upgrading
‘occurrence’ semantics. To implement the two key ideas UNITE uses the widely-used weighting capability of information
retrieval to combine global and local contexts, and further leverages program slicing to incorporate influence semantics
into the trace representation through program dependencies. We apply UNITE to 12 state-of-the-art FL techniques and
conduct large-scale experiments on 22 benchmark programs. The results show that UNITE significantly improves 12 FL
techniques, e.g., the average relative improvement for the most important Top-N metric [17], i.e., Top-1, Top-3, Top-5
and Top-10, achieves 35.58%, 119.90%, 47.43% and 50.66%, respectively.

In the future, we plan to design sophisticated weighting functions for a further optimization on global and local
contexts. We also plan to compose influence semantics with other solutions proposed in the literature to improve FL
effectiveness (e.g., feature selection).
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