Wait For It: Determinants of Pull Request
Evaluation Latency on GitHub

Yue Yu*T, Huaimin Wang*, Vladimir Filkov!, Premkumar Devanbuf, and Bogdan Vasilescu®
*College of Computer, National University of Defense Technology, Changsha, 410073, China
TDepartment of Computer Science, University of California, Davis, Davis, CA 95616, USA
{yuyue, hmwang} @nudt.edu.cn, {vfilkov, ptdevanbu, vasilescu}@ucdavis.edu

Abstract—The pull-based development model, enabled by git
and popularised by collaborative coding platforms like BitBucket,
Gitorius, and GitHub, is widely used in distributed software
teams. While this model lowers the barrier to entry for potential
contributors (since anyone can submit pull requests to any repos-
itory), it also increases the burden on integrators (i.e., members
of a project’s core team, responsible for evaluating the proposed
changes and integrating them into the main development line),
who struggle to keep up with the volume of incoming pull
requests. In this paper we report on a quantitative study that tries
to resolve which factors affect pull request evaluation latency
in GitHub. Using regression modeling on data extracted from
a sample of GitHub projects using the Travis-CI continuous
integration service, we find that latency is a complex issue,
requiring many independent variables to explain adequately.

I. INTRODUCTION

The pull-based development model [1] is widely used in
distributed software teams to integrate incoming changes into
a project’s codebase [14]. Enabled by git, the distributed
version control system, pull-based development implies that
contributors to a software project need not share access to a
central repository anymore. Instead, anyone can create forks
(i.e., local clones of the central repository), update them locally
and, whenever ready, request to have their changes merged
back into the main branch by submitting a pull request.
Compared to patch submission and acceptance via mailing
lists and issue tracking systems, the traditional model of col-
laboration in open source [3], [9], the pull-based model offers
several advantages, including centralization of information and
process automation: the contributed code (the patch) resides
in the same version control system, albeit in a different branch
or fork, therefore authorship information is effortlessly main-
tained; modern collaborative coding platforms (e.g., BitBucket,
Gitorius, GitHub) provide integrated functionality for pull
request generation, automatic testing, contextual discussion,
in-line code review, and merger.

Pull requests are used in many scenarios beyond basic patch
submission, e.g., conducting code reviews, discussing new
features [14]. On GitHub alone, currently the largest code host
in open source, almost half of the collaborative projects use
pull requests exclusively (i.e., all contributions, irrespective of
whether they come from core developers with write access to
the repository or from outside contributors, are submitted as
pull requests, ensuring that only reviewed code gets merged)
or complementarily to the shared repository model [14].

While the pull-based model offers a much lower barrier to
entry for potential contributors, it also increases the burden on
core team members who decide whether to integrate them into
the main development branch [14], [17]. In large projects, the
volume of incoming pull requests is quite a challenge [14],
[21], e.g., Ruby on Rails receives upwards of three hundred
pull requests each month. Prioritizing pull requests is one of
the main concerns of integrators in their daily work [14].

From a perspective of increasing numbers of pull requests,
in this paper we report on a preliminary quantitative study
that tries to resolve which factors affect pull request evalu-
ation latency in GitHub. Using regression modeling on data
extracted from a sample of GitHub projects using the Travis-
CI continuous integration service, we find that:

¢ latency is a complex issue, requiring many independent
variables to explain adequately;

« the presence of CI is a strong positive predictor;

o the number of comments is the best single predictor of
the latencys;

o as expected, the size of a pull request (lines added,
commits) is a positive, strong predictor.

II. THE PULL REQUEST EVALUATION PROCESS

Continuous Integration: The principal mechanism through
which integrators ensure that pull requests can be handled
efficiently without compromising quality is automatic testing,
as supported by continuous integration (CI) services [14],
[17]. Whenever a new contribution is received by a project
using CI, it is merged automatically into a testing branch, the
existing test suites are run, and the submitter and integrators
are notified of the outcomes. If tests fail, the pull request is
typically rejected (closed and not merged in GitHub parlance)
by one of the integrators, who may also comment on why
the contribution is inappropriate and how it can be improved.
If tests pass, core team members proceed to do a team-wide
code review by commenting inline on (parts of) the code, and
including requests for modifications to be carried out by the
submitter (who can then update the pull request with new
code), if necessary. After a cycle of comments and revisions,
and if everyone is satisfied, the pull request is closed and
merged. In rare cases, pull requests are merged even if (some)
tests failed. Only core team members (integrators) and the
submitter can close (to merge or reject—integrators, and to
withdraw—submitter) and reopen pull requests.

CI is becoming widely used on GitHub: 75% of projects
that use pull requests heavily also use CI, either in hosted
services (e.g., Travis-CI [25]) or in standalone setups [14].

Pull Request Evaluation: As described above, evaluating
pull requests is a complex iterative process involving many
stakeholders. Recently, researchers have started investigating
the pull request workflow in GitHub [11], [14], [21], [22],
trying to understand which factors influence pull request ac-
ceptance (i.e., decision to merge) and latency (i.e., evaluation
time). However, (i) these effects are not yet well understood
(e.g., results from different studies often diverge, as discussed
below); and (ii) pull request evaluation has not been studied
in the context of CI.

Pull request acceptance has been studied by Gousios et
al. [11], [14] and Tsay et al. [21], [22]. For example, using
machine learning techniques, Gousios et al. [11] found that
pull requests touching actively developed (hot) parts of the
system are preferentially accepted. In contrast, based on results
from a regression modeling study, Tsay et al. [21] argue that
the strength of the social connection between the submitter and
integrators is the determining factor of pull request acceptance.
In a follow-up qualitative study, Gousios et al. [14] found that
target area hotness, existence of tests, and overall code quality
are recognized as important determinants of pull request
acceptance by GitHub integrators taking part in their survey.

In the same qualitative study [14], the authors also asked
survey respondents to: (i) rate several predefined factors by
perceived importance to pull request latency; and (ii) list
additional determinants of latency, if any. The following
ranking of predefined factors emerged (in decreasing order):
project area hotness, existence of tests in the project, presence
of tests in the pull request, pull request churn (i.e., number
of changed lines), the submitter’s track record, number of
discussion comments, and number of commits. Among the
many other self-identified factors, only reviewer availability
and pull request complexity are recognized by at least 5%
of their respondents. These factors, perceived to be important,
differ significantly from those data mined in an earlier machine
learning experiment (three classes: merged within one hour;
one day; the rest) by the same authors [11], i.e., the submit-
ter’s track record, the project size and its test coverage, and
the project’s openness to external contributors (in decreasing
importance order).

Hypotheses: In this paper we focus on pull request latency, the
understudied and arguably more complex of the two facets of
pull request evaluation. The literature reviewed above revealed
that maintaining software quality and handling a high volume
of incoming pull requests are the top priorities of integrators,
who subscribe to a complex evaluation process, involving code
review and automatic testing. Even though prior work [11],
[14], [21], [22] has identified several social and technical
factors that influence pull request evaluation, as discussed
above, we believe the intricacies of this process are not yet
accurately captured. Still, to establish a baseline (and replicate
previous results), we hypothesize:

H1. Previously-identified social and technical factors influ-
ence pull request latency in expected ways.

There is recurring support for the importance of process
factors to team outcomes in the empirical software engineering
literature, e.g., [2], [16]. Focusing on the integrator workflow,
we expect a multitude of process-related factors to influence
pull request latency, e.g., current workload and availability of
reviewers, pull request description quality (akin to the quality
of issue reports said to impact the issues’ resolution time [7],
[27]), and the integrators’ responsiveness (in recent work [23]
we found that pull request submitters may become discour-
aged by unresponsive integrators, leading to communication
breakdown and conflict). We hypothesize:

H2. Process-related factors have a significant impact on pull
request latency.

The general literature on CI suggests that the continuous
application of quality control checks speeds up overall de-
velopment, and ultimately improves software quality [8]. On
GitHub, the integration of CI in the pull request workflow
should enable project members to find integration errors more
quickly, tightening the feedback loop. Based on reported
widespread use of CI and the importance of testing related
factors [14], [17], [21], we expect that CI will play a prominent
role in the pull request evaluation process, enabling integrators
to better deal with general issues of scale. We posit:

H3. CI is a dominant factor of pull request latency.

III. METHODS AND DATA

Dataset and Preprocessing: We compose a sample of GitHub
projects that make heavy use of pull requests and CI. In this
preliminary study we only consider projects using Travis-CL,!
the most popular CI service on GitHub, integrated into the pull
request workflow [25]. Using the 10/11/2014 GHTorrent [10],
[12] dump, we identify candidate non-forked projects that
received at least 1000 pull requests in total, and were written
in Ruby, Python, JavaScript, Java, and C++, the most popular
languages on GitHub.? Then, we identify which of these
projects use Travis-CI, with our previous techniques [25].
Finally, in trying to assemble a relatively balanced data set, we
further select, from among these, the top ten projects (ranked
by number of pull requests) for each programming language.’
For each project, we further extract data about incoming pull
requests, received after 01/01/2010 and closed by the time of
data collection (January 2015; i.e., we ignore pull requests
that are still open), from GHTorrent (metadata, e.g., number
of comments) and the GitHub API (description title, body, and
actual contents of the pull request, i.e., diffs). For each pull
request, we extract data about the automatic builds from the
Travis-CI API [25]. Lastly, we identify the integrators as those
project members that closed others’ issues or pull requests,
using GHTorrent. We also perform identity merging [24].

Uhttps://travis-ci.com
Zhttp://githut.info/
3We only select five projects for C++ and Java due to insufficient samples.

Table 1
BASIC STATISTICS FOR OUR DATA SET. WE ONLY MODEL THE EVALUATION
TIME OF PULL REQUESTS (PRS) TESTED BY CI AND MERGED.

Attributes Ruby Python JavaScript Java/C++ Total
#Integrators 220 177 190 103 690
#PRs received 28,409 28,903 26,983 18,989 103,284
#PRs merged 20,755 24,039 17,920 13,456 76,170
#PRs merged&Cl-tested 11,562 11,955 11,821 5,510 40,848

Table I presents basic statistics about our dataset. In total,
we collected 103,284 pull requests from 40 different projects.
We found that 74% of pull requests have been merged (using
heuristics similar to those in [13]), and that 59% have been
submitted after CI was adopted (measured, per project, as the
date of the earliest pull request tested by Travis-CI). In this
preliminary study we only model the evaluation time of pull
requests that have been tested by Travis-CI and eventually
merged. Rejected pull requests and pull requests that do
not undergo automatic testing may be subject to different
processes; we will address these in future work.

Measures:

1) Outcome: The outcome measure is the pull request
latency, i.e., the time interval between pull request creation and
closing date, in minutes (in case of “reopened” pull requests,
we only consider the date when they are first closed).

2) Predictors: We compute project-level, pull-request level,
and submitter-level measures, as discussed in Section II.
Project age: At time of pull request creation, in minutes. Older
projects are likely to have different contribution dynamics.
Team size: Number of integrators active (i.e., closed at least
one issue/pull request, not their own) during the three months
prior to pull request creation. Larger teams may be better
prepared to handle higher volumes of incoming pull requests.
Project area hotness: Median number of commits to files
touched by the pull request relative to all project commits
during the last three months.

Commits: Total number of commits part of the pull request.
Travis-ClI tests each commit separately.

Churn: Total number of lines added and deleted by the pull re-
quest. Bigger changes may require longer code reviews/testing.
Test inclusion: Binary variable measuring if the pull request
touched at least one test file (based on file name/path regular
expressions). Integrators prefer pull requests containing tests.
Comments: Total number of overall and inline comments
part of a pull request discussion. Pull requests with lots of
comments tend to signal controversy [6].

Submitter’s success rate: Fraction of previous pull requests
merged, relative to all previous pull requests by this submitter.
Integrator: True if the submitter is an integrator.

Strength of social connection: The fraction of team members
that interacted with the submitter in the last three months
(computed using comment networks [26]). Integrators may
favor contributors more strongly connected to them.
Followers: Total number of GitHub developers following the
submitter at pull request creation, as a measure of reputation.
Description complexity: Total number of words in the pull
request title and description. Longer descriptions may indicate

higher complexity (longer evaluation), or better documentation
(facilitating evaluation akin to issue reports [27]).

Workload: Total number of pull requests still open in each
project at current pull request creation time.

Integrator availability: The minimum number of hours
(0...23) until either of the top two integrators (by number
of pull requests handled the last three months) are active, on
average (based on activity in the last three months), during
24 hours. Two reviewers find an optimal number of defects
during code review [18], [19], hence our choice for top two.
Friday effect: True if the pull request arrives Friday [20].
#Issue tag and @mention tag: Binary variables to encode the
presence of “#” tags (links to issues) and “@” tags (to notify
integrators directly) in the pull request title or description.
First human response: Time interval in minutes from pull
request creation to first response by reviewers, as a measure
of the project team’s responsiveness.

Total CI latency: Time interval in minutes from pull request
creation to the last commit tested by CI. The team-wide code
review typically starts after all commits have been tested.

CI result: Binary variables to encode the presence of errors
while running Travis-CI (most often, branch already deleted)
and test failures across the different pull request commits.
Analysis: We use multiple linear regression to model the
latency of evaluating pull requests. We build three models,
the first only with predictors previously used in the literature
(HI), and the subsequent two by adding groups of variables
corresponding to H2 and H3. The age of the project, the team
size, and their interaction were added to all models as control
variables. All numeric variables were first log transformed
(plus 0.5) to stabilize variance and reduce heteroscedastic-
ity [5], then standardized (mean 0, standard deviation 1). To
test for multicollinearity, we computed the variance inflation
factors (VIFs) for each predictor (all remained well below 3,
indicating absence of multicollinearity). We use the adjusted
R? statistic to evaluate the goodness-of-fit of our models. For
each model variable, we report its coefficients, standard error,
and significance level. We consider coefficients important if
they were statistically significant (p < 0.05). We obtain effect
sizes from ANOVA analyses. The resulting multivariate linear
regression models are shown in Table II.

IV. RESULTS

Model 1 has a relatively low goodness of fit (R? = 36.2%).
As expected, the pull request churn, size, and length of discus-
sion play a dominant role in explaining the variance in the data.
All three effects are highly significant, and together account
for 85% of the variance explained. Pull requests with more
discussion, consisting of more commits, and adding more lines
of code are associated with longer evaluation latencies. Effects
related to the submitter’s track record, reputation, and social
connection to project members are also highly significant, with
smaller but still sizeable contributions to explaining the data
variance. Pull requests by the core team members, contributors
with more followers, more ties to project integrators, and
higher previous pull request success rates are associated with

Table 11

PULL REQUEST LATENCY MODELS

Model 1 Model 2 Model 3
Coeffs(Errors) Sum Sq. Coeffs(Errors) Sum Sq. Coeffs(Errors) Sum Sq.

(Intercept) 0.072 (0.009)**F 0.045 (0.009)*F 0.155 (0.008)***
scale(log(proj_age)) 0.022 (0.004)*** 276.96*** —0.014 (0.004)** 276.96*** | —0.028 (0.004)*** 276.96***
scale(log(team_size)) —0.055 (0.004)*** 7.92%** —0.108 (0.004)*** 7.92*** | —0.108 (0.004)*** 7.92%**

scale(log(n_additions + 0.5))
scale(log(n_deletions + 0.5))
scale(log(n_commits + 0.5))
scale(log(hotness + 0.5))
pr_includes_testsTRUE
scale(log(n_comments + 0.5))
scale(submitter_success_rate)
scale(strength_social_connection)
scale(log(n_followers + 0.5))
submitter_is_integratorTRUE

0.064 (0.005)*** 3354.64***

—0.016 (0.005)**

54.92***

0.147 (0.005)*** 3789.65***

0.016 (0.004)***
0.108 (0.010)***

74.31%**
194.91***

0.409 (0.005)*** 5482.16***

—0.037 (0.005)***
—0.072 (0.005)***
—0.090 (0.004)***
—0.129 (0.011)***

0.065 (0.005)*** 3354.64***
0.001 (0.005) 54.92%*
0.130 (0.005)*** 3789.65***
0.001 (0.004) 74.31%%
0.076 (0.009)*** 194.91%**
0.189 (0.005)*** 5482.16***

0.035 (0.004)*** 3354.64***

—0.000 (0.004

0.016 (0.003)***
0.009 (0.008

)
)
0.028 (0.004)*** 3789.65***
)
)

54.92***

74.31%**
194.91***

0.037 (0.005)*** 5482.16***

scale(log(proj_age)):scale(log(team_size))
scale(log(description_complexity))
scale(log(availability + 0.5))
scale(log(n_open_pr + 0.5))
Friday_effectTRUE

issue_tagTRUE

mention_tagTRUE

scale(log(first_rsp + 0.5))
scale(log(team_size)):scale(log(workload+0.5))
scale(log(total_ci_time))

ci_errorTRUE

—0.074 (0.004)*** 234.23***

432.86*** | —0.023 (0.004)*** 432.86*** | —0.016 (0.004)*** 432.86™**
494.32°** | —0.037 (0.005)*** 494.32*** | —0.052 (0.004)*** 494.32%**
358.74*** | —0.108 (0.004)*** 358.74*** | —0.064 (0.004)*** 358.74%**
56.10*** | —0.095 (0.010)*** 56.10*** | —0.078 (0.009)*** 56.10***
—0.012 (0.004)** 107.07*** | —0.016 (0.004)*** 70.27***
0.115 (0.004)*** 960.00*** | 0.087 (0.004)*** 960.00***

0.037 (0.004)*** 124.96***
0.166 (0.005)*** 908.33***

0.033 (0.003)*** 124.96***
0.151 (0.004)*** 908.33***

)
0.068 (0.010)*** 34.68*** 0.062 (0.009)*** 34.68***
0.096 (0.009)*** 56.72%** 0.081 (0.008)*** 56.72***
—0.060 (0.013)*** 14.11*** | —0.020 (0.012) 14.11%%*
)

0.243 (0.004)*** 1892.64***
—0.041 (0.004)*** 60.39***
0.481 (0.005)*** 3855.79***
—0.401 (0.009)*** 977.41%**

0.274 (0.005)*** 1892.64***
—0.071 (0.004)*** 163.80***

ci_failTRUE —0.016 (0.009) 0.27
scale(log(first_rsp+0.5)):scale(log(total_ci_time)) —0.102 (0.003)™** 434.71***
Adjusted R-squared 0.362 0.461 0.587

¥ p < 0.001, “*p < 0.01, *p < 0.05

shorter evaluation latencies. Perhaps more surprisingly, project
area hotness and test case inclusion have highly significant
positive effects, i.e., pull requests touching active parts of
the system, and including tests, are associated with longer
evaluation latencies. Since all predictors suggested by prior
work are highly significant, we confirm HI.

Model 2 offers a significantly better fit (R? = 46.1%).
Pull request churn, size, and length of discussion, all highly
significant, remain the most prominent predictors, together
explaining 67% of the variance explained. However, the new
process-related factors are all highly significant, and have
sizeable effects. Pull requests with later initial reactions from
integrators (10% of the variance explained) tend to also be
closed later, suggesting that the initial priorities integrators
assign to pull requests very early in the evaluation process (the
median first comment time is 16min) are already indicative of
the (much later) closing time (median 11.2h). The description
length (5%) seems indicative of a pull request’s complexity
(impact) rather than its legibility, since the effect is positive
(longer closing time). The integrators’ workload is another
sizeable positive effect (5%), moderated by team size. Other
positive, albeit smaller, effects are integrator availability (pull
requests submitted outside “business hours” and on Fridays
tend to be closed later) and links to issue reports; @mention
tags have a small negative effect (pull requests assigned to
reviewers early in the process, i.e., at creation, tend to be
processed quicker). Therefore, H2 is confirmed.

Model 3 achieves the best fit among our models (R? =
58.7%). The Cl-related factors are highly significant and cover
more than 20% of the variance explained, on par with the
main social and technical effects (pull request churn, size, and

length of discussion). The prominence of the total CI latency
effect (16%) supports the process description in Section II:
integrators wait for the automatic testing phase to end (median
39min) before proceeding to do a team-wide code review and
eventually close the pull request. The total CI latency effect
is moderated by first human response. As discussed above,
CI errors will occur when the pull request has already been
merged (then the branch has been deleted), hence the negative
significant effect on latency. Therefore, H3 is confirmed.

V. CONCLUSIONS AND FUTURE WORK

Allowing greater inclusivity in contributions can result in a
deluge of pull requests, which, if unchecked, can significantly
increase the burden on integrators in distributed software
development projects. Our preliminary models show that pull
request review latency is complex, and depends on many
predictors. Naturally, the size of the pull request matters: the
shorter it is the faster it will be reviewed. Other actionable
strong predictors are the delay to the first human response
and the availability of the CI pipeline. Improving on both may
hasten the review process.

This preliminary study suffers from at least the similar
threats that other preliminary studies do [4], [15]: possible is-
sues with data gathering, no validation, and unrefined models.
We are working on addressing all of these in a more mature
study of this subject, that will also elaborate on the impact of
CI on the distributed software development process.

VI. ACKNOWLEDGEMENTS

YY and HW acknowledge support from NSFC (grants
61432020, 61472430). VF, PD, and BV are partially supported
by NSF (grants 1247280, 1414172).

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

REFERENCES

E. T. Barr, C. Bird, P. C. Rigby, A. Hindle, D. M. German, and
P. Devanbu. Cohesive and isolated development with branches. In
International Conference on Fundamental Approaches to Software En-
gineering, FASE, pages 316-331. Springer, 2012.

N. Bettenburg and A. E. Hassan. Studying the impact of social
structures on software quality. In International Conference on Program
Comprehension, ICPC, pages 124-133. IEEE, 2010.

C. Bird et al. Open borders? immigration in open source projects.
In International Working Conference on Mining Software Repositories,
MSR, page 6. IEEE, 2007.

C. Bird, P. Rigby, E. Barr, D. Hamilton, D. German, and P. Devanbu.
The promises and perils of mining git. In Working Conference on Mining
Software Repositories, MSR, pages 1-10. IEEE, 2009.

J. Cohen, P. Cohen, S. G. West, and L. S. Aiken. Applied multiple
regression/correlation analysis for the behavioral sciences. Routledge,
2013.

L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in GitHub:
Transparency and collaboration in an open software repository. In ACM
Conference on Computer Supported Cooperative Work, CSCW, pages
1277-1286. ACM, 2012.

N. Duc Anh, D. S. Cruzes, R. Conradi, and C. Ayala. Empirical
validation of human factors in predicting issue lead time in open source
projects. In International Conference on Predictive Models in Software
Engineering, page 13. ACM, 2011.

P. M. Duvall, S. Matyas, and A. Glover. Continuous integration:
improving software quality and reducing risk. Pearson Education, 2007.
M. Gharehyazie, D. Posnett, B. Vasilescu, and V. Filkov. Developer
initiation and social interactions in OSS: A case study of the Apache
Software Foundation. Empirical Software Engineering, pages 1-36,
2014.

G. Gousios. The GHTorrent dataset and tool suite. In Working
Conference on Mining Software Repositories, MSR, pages 233-236.
IEEE, 2013.

G. Gousios, M. Pinzger, and A. v. Deursen. An exploratory study of the
pull-based software development model. In International Conference on
Software Engineering, ICSE, pages 345-355. ACM, 2014.

G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman. Lean
GHTorrent: GitHub data on demand. In Working Conference on Mining
Software Repositories, MSR, pages 384-387. ACM, 2014.

G. Gousios and A. Zaidman. A dataset for pull-based development
research. In Working Conference on Mining Software Repositories,
MSR, pages 368-371. ACM, 2014.

G. Gousios, A. Zaidman, M.-A. Storey, and A. Van Deursen. Work
practices and challenges in pull-based development: The integrator’s

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

perspective. In International Conference on Software Engineering,
ICSE. IEEE, 2015. to appear.

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian. The promises and perils of mining github. In Working
Conference on Mining Software Repositories, MSR, pages 92-101.
ACM, 2014.

N. Nagappan, B. Murphy, and V. Basili. The influence of organizational
structure on software quality: An empirical case study. In International
Conference on Software Engineering, 1CSE, pages 521-530. ACM,
2008.

R. Pham, L. Singer, O. Liskin, and K. Schneider. Creating a shared
understanding of testing culture on a social coding site. In International
Conference on Software Engineering, ICSE, pages 112-121. IEEE,
2013.

P. C. Rigby and C. Bird. Convergent contemporary software peer review
practices. In SIGSOFT Foundations of Software Engineering, FSE, pages
202-212. ACM, 2013.

C. Sauer, D. R. Jeffery, L. Land, and P. Yetton. The effectiveness
of software development technical reviews: A behaviorally motivated
program of research. [EEE Transactions on Software Engineering,
26(1):1-14, 2000.

J. éliwerski, T. Zimmermann, and A. Zeller. When do changes induce
fixes? ACM Sigsoft Software Engineering Notes, 30(4):1-5, 2005.

J. Tsay, L. Dabbish, and J. Herbsleb. Influence of social and technical
factors for evaluating contribution in GitHub. In International Confer-

ence on Software Engineering, ICSE, pages 356-366. ACM, 2014.
J. Tsay, L. Dabbish, and J. Herbsleb. Let’s talk about it: Evaluating

contributions through discussion in GitHub. In ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE, pages
144-154. ACM, 2014.

B. Vasilescu, V. Filkov, and A. Serebrenik. Perceptions of diversity on
GitHub: A user survey. unpublished, 2015.

B. Vasilescu, D. Posnett, B. Ray, M. G. J. van den Brand, A. Serebrenik,
P. Devanbu, and V. Filkov. Gender and tenure diversity in GitHub teams.
In CHI Conference on Human Factors in Computing Systems, CHIL
ACM, 2015. to appear.

B. Vasilescu, S. van Schuylenburg, J. Wulms, A. Serebrenik, and
M. G. J. van den Brand. Continuous integration in a social-coding
world: Empirical evidence from GitHub. In International Conference
on Software Maintenance and Evolution, ICSME, pages 401—405. IEEE,
2014.

Y. Yu, H. Wang, G. Yin, and C. Ling. Reviewer recommender of
pull-requests in GitHub. In International Conference on Software
Maintenance and Evolution, ICSME, pages 609-612. IEEE, 2014.

T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss. What makes a good bug report? [EEE Transactions on
Software Engineering, 36(5):618-643, 2010.

