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Abstract—Recent years have witnessed the significant rise
of Deep Learning (DL) techniques applied to source code.
Researchers exploit DL for a multitude of tasks and achieve
impressive results. However, most tasks are explored separately,
resulting in a lack of generalization of the solutions. In this
work, we propose MulCode, a multi-task learning approach
for source code understanding that learns unified representation
space for tasks, with the pre-trained BERT model for the token
sequence and the Tree-LSTM model for abstract syntax trees.
Furthermore, we integrate two source code views into a hybrid
representation via the attention mechanism and set learnable
uncertainty parameters to adjust the tasks’ relationship.

We train and evaluate MulCode in three downstream tasks:
comment classification, author attribution, and duplicate function
detection. In all tasks, MulCode outperforms the state-of-the-
art techniques. Moreover, experiments on three unseen tasks
demonstrate the generalization ability of MulCode compared
with state-of-the-art embedding methods.

Index Terms—representation learning, deep learning, multi-
task learning, attention mechanism

I. INTRODUCTION

Deep neural networks [1] have achieved impressive per-
formance in various software engineering tasks associated
with source code, such as code search [2], [3], code sum-
marization [4], [5], code clone detection [6], [7], and code
completion [8], [9]. However, most studies are aimed at one
problem and deal with it as an independent task. Those
tasks are probably highly interrelated since they all need to
understand and model source code with relating artifacts (e.g.,
code comments). Thus, the rich direct and indirect correlations
among those tasks are not fully considered and exploited.
Also, the generalization ability of existing single-task models
is subject to the specific task-related datasets and learning
objectives. For example, Hong et al. [10] got a negative result
of transferring a state-of-the-art code representation model
(i.e., code2vec [11] originally trained for predicting method
names) to other tasks including code comment generation,
code authorship identification, and code clones detection.

Given the above-mentioned limitations of single-task ap-
proaches, many studies tried to solve them by integrating
multiple tasks, which have achieved impressive improvements
for source code understanding in code summarization, code
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retrieval, and code change representation tasks [4], [12]–
[14]. However, in their frameworks, each task is trained and
fitted separately. Wei et al. [15] proposed a dual training
network to optimize code generation and code summarization
simultaneously, which requires expert knowledge to define the
relationship between two tasks accurately. Hence, it is not easy
to expand to multiple tasks.

In this paper, we present a multi-task learning approach for
source code understanding to fill this gap. To improve the gen-
eralization ability of the model, we build unified code repre-
sentation layers for all tasks. All tasks share the parameters of
the representation layer; thus, there is no need to define a code
representation layer for each task, which greatly reduces the
parameters of the model. To build an understandable model,
we design task-specific attention layers to focus on and extract
important code representation information. To evaluate the
performance of our model, we select three downstream tasks
for source code, namely Comment Classification (CC) [16],
Author Attribution (AA) [17] and Duplicate function Detection
(DD) [18]. The reason for choosing these tasks is that their
existing expert datasets are too small to design a single neural
network for them. The use of multi-task learning can implicitly
increase the data for a single task and expand the room
for model improvement. We evaluate the performance of our
model against models originally designed for the considered
tasks.

There are three overarching challenges in building a multi-
task model for source code: (a) Source code is rich in
information, including sequence information and structure
information. In order to understand and model the source
code, multiple views of source code should not be ignored.
(b) Various task models have different extracted features and
convergence speeds. It is not easy to coordinate with them to
complement each other during the modeling process. Although
predefined parameters can define tasks’ relationship, it is time-
consuming and challenging to search the parameter space.
(c) It is nontrivial to verify the model’s generalization ability
in various tasks since most models are only verified on the
datasets of their own tasks.

To solve the aforementioned challenge (a), we extract in-
formation from the tokens sequence and the abstract syntax
tree (AST), which contains the hierarchical syntactic structure



of the program. Although the parameters of sequence repre-
sentation and structure representation are shared over tasks,
each task pays different attention to sequence and structure.
We assign different weights to sequence and structure rep-
resentations for each task via the attention mechanism. To
address the challenge (b), since the loss values for each task
have different granularity, we apply the task uncertainty [19]
on the calculation of the overall loss function to adjust the
relationship of different tasks, and replace the predefined pa-
rameters with the learnable parameters, which greatly reduces
the cost of parameter tuning. To solve the challenge (c), we
design experiments to verify our model’s generalization ability
in three new tasks, namely library classification, algorithm
classification, and bug detection. We fix the parameters of
sequence and structure representation layers and generate
embeddings for three new tasks. In the verification process, we
do 10-fold cross-validation on the standard machine learning
framework WEKA [20] to compare the performance with the
state-of-the-art embeddings.

On corresponding public datasets of three downstream tasks,
we show that our model significantly surpasses the state-of-
the-art approaches with a multi-task learning framework, with
36.9%, 10.6%, and 8.1% improvement in author attribution,
comment classification, and duplicated function detection,
respectively. We also do an ablation study, and it demonstrates
that structure representation and setting learnable parameters
to balance the relationship of tasks can significantly improve
the model’s performance. More impressively, without training,
the embeddings extracted from our model significantly surpass
the state-of-the-art embeddings in tasks of algorithm classifi-
cation and bug detection and have comparable performance in
the library classification task.

The main contributions of this paper are as follows:

• We propose a multi-task learning MulCode model with
generalization ability, which can be used to simultane-
ously solve multiple downstream tasks for source code.
To the best of our knowledge, it is the first work in this
direction.

• We build a sequence encoder with a pre-trained BERT
model and a structure encoder with the Tree-LSTM
model. Furthermore, we design the attention layer to
merge different representations. Experiments on three
unseen tasks demonstrate the generalization ability of our
model when compared with state-of-the-art embedding
methods.

• We evaluate MulCode in three downstream tasks. Exper-
imental results show that our model achieves the best
performance compared with the state-of-the-art models.

The rest of the paper is organized as follows. Section II
introduces the background knowledge on multi-task learning
and pre-trained models. Section III presents an overview of
the MulCode model and describes the details of each com-
ponent. Section IV presents the experimental settings and the
evaluation results. Section V describes the strengths, threats to
validity, and limitations of our model, followed by Section VI

that presents the related work. Finally, Section VII concludes
the paper.

II. BACKGROUND

In this section, we will introduce the background knowledge
on multi-task learning and pre-trained models.

A. Multi-task Learning

Multi-Task Learning (MTL) is a machine learning method
that is opposite to single-task learning. It puts multiple related
tasks together and learns multiple tasks simultaneously. MTL
provides an effective method that can utilize the supervised
data in related tasks and reduce the dependence on the task-
specific labeled data. The use of MTL can reduce over-fitting
to specific tasks and play a role similar to regularization.
Leveraging MTL to improve the performance of tasks has been
explored in many scenarios.

Hard parameter sharing and soft parameter sharing are two
commonly used multi-task learning methods based on deep
neural networks. The hard parameter sharing mechanism is
the most common method in multi-task learning. [21] It can
be applied to hidden layers of all tasks while retaining the
output layer related to the task. In this way, the hard parameter
sharing mechanism reduces the risk of over-fitting. In the soft
parameter sharing mechanism, each task has its own model and
parameters. The similarity of the parameters is guaranteed by
regularizing the distance of the model parameters.

In this paper, we employ a hard parameter sharing mecha-
nism to build universal representation layers for source code,
which is an intuitive idea that can easily be extended to
multiple tasks.

B. Pre-trained Models

When encountering a new task, it is costly to train a model
from scratch. An easy way is to employ transfer learning
[22] to get a solution to a similar task. The pre-trained
model is a saved network that was previously trained in
similar tasks. A successful pre-trained model is ELMO [23].
ELMO applies the language model for pre-training and then
extracts each layer’s word embeddings as new features to
improve performance in downstream tasks. GPT [24] employs
a unidirectional transformer [25] model for pre-training, trans-
forms downstream tasks for fine-tuning, and achieves excellent
results in nine natural language tasks. BERT [26] designs the
masked language model, and the next sentence prediction task
for pre-training and obtains the state-of-the-art results in eleven
natural language tasks.

The advantage of the pre-trained model is that it can be
quickly transferred to new tasks with a small training cost.
In this paper, we use the pre-trained BERT model to extract
the sequence representation of source code and fine-tune it
during the training process. Simultaneously, the transformer
architecture used by the sequence encoder has a powerful
capability of feature extraction and can model the long-term
dependency in code.
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Fig. 1. The architecture of our proposed MulCode model.

III. PROPOSED MODEL

In this section, we first present an overview of our MulCode
model. We then describe the details of each component of
MulCode. Finally, we show how to learn multiple tasks jointly.

A. Overall Architecture

Figure 1 shows the architecture of our proposed MulCode
model. We take three downstream tasks as examples, although
we can incorporate various code tasks. The MulCode model
consists of three submodules as follows:

• Universal representation layer. This submodule receives
input from all tasks and uses a universal sequence encoder
and structure encoder to generate representations for
tasks.

• Task-specific input layer. Various tasks pay different
attention to the sequence representation and structure
representation; therefore, this submodule will extract and
merge the above representations by attention mechanism.

• Task-specific output layer. This submodule is to calculate
task-specific output based on the representation vectors
and specific task objectives.

B. Universal Representation Layer
In this section, we extract features from multiple views

of source code for different tasks. We design two universal
encoders to represent these features, including a sequence
encoder with a pre-trained BERT model and a structure
encoder with the Tree-LSTM model [27].

a) Sequence encoder: The sequence encoder receives
source code and other task input and returns sequence repre-
sentation vectors for them. It processes the input from different
tasks, including 〈comment, code〉 pairs for the comment clas-
sification task, 〈code, author〉 pairs for author attribution task,
and 〈func A, func B〉 pairs for duplicated function detection
task respectively. Each pair is input as a whole, and the two
parts of the pair are separated by a special token “[SEP]”.

To capture the long-range dependency in the input sequence,
we use a bidirectional transformer as the sequence encoder
to map the above input into a representation vector Cseq ∈
RL×d, where L is the sequence length and d is the embedding
dimension. The sequence representations of three tasks are
calculated as follows:

Cseq
AA, C

seq
CC , C

seq
DD = Transformer(IseqAA, I

seq
CC , I

seq
DD) (1)

where Iseqtask = {t1, ..., tL} is the token sequence of length L
and represents the sequence input of the specific task.



It is worth noting that the bidirectional transformer’s
weights are pre-initialized using the pre-trained model of
BERT and will be updated with a lower learning rate during
the training process. In this way, there is enough model space
to represent all tasks while not converging too slowly.

b) Structure encoder: In this subsection, we will extract
the structure representation for the source code input. We
first extract the AST for the source code using Eclipse’s JDT
compiler1 and calculate the embeddings for each node of the
AST before building the structure representation. To avoid
introducing new embedding parameters and ensure that the
same embedding parameters are used as the sequence encoder,
we employ the pre-trained BERT model for embedding. In
this way, the initial embeddings of sequence and structure
encoders are in the same model space, making it easier
for the model to establish the relationship between the two
representations. Then we apply Tree-LSTM to represent the
AST information. For standard LSTM, only the previous step’s
hidden output will be used when calculating the output of the
current step. The Tree-LSTM will calculate the sum of the
hidden outputs of the child nodes. Simultaneously, to filter
important information among child nodes, it will construct a
forget gate for each child node. The structure representations
are calculated as follows:

h̃j =
∑

k∈Child(j)

hk

hj = TreeLSTM(h̃j , I
str)

(2)

where k is one of the child nodes of j, and the hidden state
h̃j is the sum of the child nodes’ hidden outputs. Istr, which
denotes the structure input of tasks, contains a list of node
tokens and an adjacency list representing the relationship of
nodes. hj is the structural representation of the node j.

In this paper, in order to pay attention to the global
information of all nodes, we do not take the hidden state of
root node as the structure representation, but keep the hidden
vectors of all nodes. Therefore, the structure representations
of different tasks are represented as follows:

Cstr
AA = TreeLSTM(IstrAA)

Cstr
CC = TreeLSTM(IstrCC)

Cstr
DD(Func A) = TreeLSTM(IstrDD(Func A))

Cstr
DD(Func B) = TreeLSTM(IstrDD(Func B))

(3)

where Cstr ∈ RN×d is the structure representation vectors
and N is the number of nodes. Since the DD task has the
input of two code segments, Func A and Func B, there are
two structure representation vectors in the result.

C. Task-specific Input Layer

Since various tasks pay different attention to sequence rep-
resentation and structure representation, this section introduces
the attention layer to calculate the task-specific input for each
task.

1http://www.eclipse.org/jdt

a) Sequence Attention: Different tokens contribute dif-
ferently to the overall representation due to their locations,
tasks and information contained. Therefore, we design the
sequence attention layer for each task. The layer is represented
as follows:

αseq
j =

exp(wseqCseq
j )∑

i exp(w
seqCseq

i )

Cseq =
∑

αseq
j Cseq

j

(4)

where αseq
j is the attention score of j-th token, Cseq

j is the
sequence representation of j-th token and wseq is the task-
specific parameter matrix. Finally, each task has a Cseq

task vector
as its sequence representation.

b) Structure Attention: In the previous section, we cal-
culate the representations of all nodes, but not all nodes have
the same contribution to the final representation. Therefore, we
design the attention layer to extract and merge the structure
representations. The structure attention layer is represented as
follows:

αstr
j =

exp(wstrCstr
j )∑

i exp(w
strCstr

i )

Cstr =
∑

αstr
j Cstr

j

(5)

where αstr
j is the attention score for j-th node. Cstr

j is the
structure representation of j-th node. wstr is the task-specific
parameter matrix and is randomly initialized and learned
during the training process. Finally, each task has a Cstr

task

vector as its structure representation.
Different from the author attribution and comment classifi-

cation task, the duplicated function detection task will get two
structure representation vectors due to the input. We design a
comparison layer to capture their differences after the attention
layer.

Cstr
DD = ReLU(W [Cstr

DD(Func A);Cstr
DD(Func B)]+b) (6)

where W ∈ R2d×d and b ∈ Rd are trainable parameters. “;”
denotes the concatenation operator.

c) Concatenation: We merge the above representations
into a representation vector. The output is represented as
follows:

xtask = [Cseq
task;C

str
task] (7)

where xtask is the final representation vector of the task.

D. Task-specific Output Layer

In this section, we describe the output layers of the three
downstream tasks. Although our MulCode model can be
applied to various code tasks, we choose three tasks with small
public datasets. Therefore, we can utilize the characteristics of
multi-task learning to increase data for each task implicitly and
to explore better performance in these tasks.



a) Comment Classification Task: Given the input com-
ment X1 and the code snippet X2, the final representation is
represented as xCC . We design a layer of logistic regression
network to convert it into a vector with a dimension of the
category c and apply softmax to normalize the vector. The
equation is represented as follows:

P (c | X1, X2) = softmax(WT
CC · xCC) (8)

where c ∈ {0, 1}, the value of 0 means that the comment is
inconsistent with the code, and the value of 1 means that the
comment is consistent with the code. WT

CC is the parameter
matrix of the logistic regression network.

b) Author Attribution Task: Given the code snippet X ,
the final representation is represented as xAA. The task is to
identify the author of the code snippet from the candidate set.
Since this task is a multi-classification task, we built a multi-
layer perceptron (MLP) to calculate the probability that X is
labeled with class c. The formula is represented as follows:

P (c | X) = softmax(MLP (xAA)) (9)

where c represents the category of authors, and there are 13
categories in total.

c) Duplicate Function Detection Task: Given a pair of
code snippets 〈X1, X2〉, the final representation is represented
as xDD. The task is to judge whether the two code snippets
implement the duplicated function. We use the similarity to
measure the relationship between two input code snippets:

Sim(X1, X2) =WT
DD · xDD (10)

where WT
DD is the task-specific parameter matrix. Assuming

that c is the label of the input, we use the mean squared error
(c− Sim(X1, X2))

2 as the optimization objective.

E. Model Training

In order to learn multiple tasks jointly, it is necessary to
balance each task, ensuring that the loss of each task is not
too large or small. In this way, the task-specific parameters can
be updated normally. Inspired by the research of Kendall et al.
[19], we set weight parameters for different tasks according
to the uncertainty of the task. The overall loss function of the
model is represented as:

L(W,σ) =

N∑
i=1

(
1

2σ2
i

∗ Li(Wi) + logσi) (11)

where σi is the uncertainty scalar of each subtask and is
the trainable parameter. N is the number of tasks. Wi is
the task-specific trainable parameters. When σi increases, the
contribution of the corresponding task loss Li(Wi) will be
reduced, and vice versa. At the same time, σi will be restricted
by the last term to avoid being too large.

During training, we calculate the loss for a specific task in a
batch. In an epoch, we traverse all training data of tasks so that
the model will be updated according to the overall objective
of all tasks.

IV. EXPERIMENTS AND ANALYSIS

In this paper, we consider three downstream tasks for
source code: comment classification, author attribution, and
duplicated function detection. We will introduce the objectives
of each task, the datasets we use, the corresponding baseline
methods, and the experimental settings. Finally, we propose
four research questions and design experiments to answer
them.

A. Datasets and Baselines

This section briefly describes the objectives of each task
and the datasets we use, and the corresponding baseline
methods. We first introduce three downstream tasks used in
the experiments.

a) Comment Classification Task: This task is to decide
if the quality of a code comment is reliable. It is not only the
comment itself but also the relationship between the comment
and the corresponding source code that determines the quality
of the comment. This task has many implications for code
understanding and software maintenance. In order to complete
the comment classification task, it is required to not only
model the source code but also understand comments in the
natural language form and the relationship between comments
and code.

We compare with the state-of-the-art method [28] in com-
ment classification and use the dataset they released. They
adopt the Support Vector Classification (SVM) technique
based on Radial Basis Function (RBF) kernel to classify the
comments. Their dataset contains a manual assessment of the
comments and the implementation of 3636 methods in three
open-source software applications.

b) Author Attribution Task: This task is to identify the
author of the code snippet. Authorship Attribution has been
developed substantially in natural language processing [29],
such as applications on e-mail messages, online forum mes-
sages, and blogs. However, in the field of source code research,
there are fewer studies focusing on this task. Identifying the
author of a program is a challenging but essential task in
computer security. The source code usually contains features
that range from simple artifacts in comments, code layout
to habits in the use of syntax and control flow. [30] These
characteristics reflect various coding styles and can be used to
identify programmers.

In order to compare existing methods, we choose the latest
method [31] and use the dataset they built. They design
approaches for reducing reliance on variable names by training
a code2vec model on the obfuscated data, which forces the
model to look at the structure information in the code. The
dataset is built based on Leetcode2, which is a website
designed for people to improve their coding skills by solving
questions posted on the site. The dataset contains 13 categories
and 1062 instances.

2https://leetcode.com/



c) Duplicated Function Detection Task: The last task
is to determine if a pair of code fragments implements the
duplicated function. Duplicated functions will increase the
overhead of software maintenance and increase program com-
plexity. Therefore, this task has many implications for software
development and maintenance. This task is to determine the
relationship between a pair of code segments. In this paper,
we consider the sequence and structure relationship of a pair
of code segments together.

In order to balance the size of datasets used by these tasks,
we use a hand labelled dataset [32] on GitHub shared by
software company Source{d} and compare our model with the
corresponding method. The dataset contains 1277 instances.

We also choose three downstream tasks for the validation
of the generalization ability of our model. These tasks have
datasets of different scales and are not suitable for joint learn-
ing with the above three tasks of a similar scale. Moreover,
these tasks are different in purpose and difficulty, which can
thoroughly test the performance of our model in the unseen
data.

d) Library Classification Task: This task is to distinguish
two kinds of code snippets that use different libraries. One uses
OpenCV, an open-source image processing library, and the
other uses Spring, a popular Java web application framework.
This task is quite simple and is a direct way to check whether
the embedding method is effective. This dataset was created
manually using files from GitHub and other website tutorials
by Compton et al. [31]. The dataset contains two categories
and 305 instances.

e) Algorithm Classification Task: This task is to identify
the algorithm implemented in the code snippet. Princeton
University has published many implementations of algorithms
on its Java Algorithms and Clients page3, which are divided
into their respective categories (sorting, searching, graphs etc.
). The dataset contains seven categories and 182 instances.

f) Bug Detection Task: This task is to predict whether a
given code snippet has a bug. The Public Unified Bug Dataset
for Java [33] is collected from five public datasets and hand-
labelled with the number of bugs. The dataset is converted
into two categories for evaluation, one with bugs and the other
without bugs. The dataset contains 31135 instances.

We compare our model with state-of-the-art methods
code2vec and the obfuscated code2vec [31] in the above
three tasks. The code2vec model is trained on the java-
large dataset, a larger dataset with 15.3m examples, sourced
from the code2seq GitHub repository4. In order to train the
obfuscated code2vec model, the variable names in the dataset
are obfuscated randomly. Reducing reliance on variable names
may gain an improvement of performance in some tasks.

We employ accuracy and F1-score to compare the perfor-
mance of the approaches. Accuracy is the ratio of the number
of correct predictions to that of the total predictions. F1 is the
harmonic mean between precision and recall. In the experi-
ment to verify the generalization ability, we also use the metric

3https://algs4.cs.princeton.edu/code/
4https://github.com/tech-srl/code2seq

kappa consistent with the original paper of the obfuscated
code2vec. Kappa coefficient is used to measure classification
accuracy based on the calculation of the confusion matrix.
When dealing with unbalanced datasets, kappa can reflect the
experimental results more truly than accuracy. [34]

B. Experimental Setup

The implementation of our model is based on the PyTorch
implementation of BERT. The word embedding size and the
embedding size of the tree node are set to 768. We set the
batch size to 8 and use Adamax [35] as the optimizer with a
learning rate of 5e-5. To avoid overfitting, we adopt dropout
[36] with a drop probability of 0.1. We randomly select 80%
samples for each dataset as the training set, 10% samples as
the test set, and 10% for validation. In the evaluation of the bug
detection task, we apply downsampling to keep the balance of
the two categories. To train the model, we employ the cross-
entropy loss for comment classification and author attribution
tasks and employ the mean squared error for the duplicated
function detection task. We run our experiments on a Linux
server with the NVIDIA v100 GPU and 92 GB memory.

For baseline methods, code2vec and the obfuscated
code2vec are trained with default hyperparameters using the
training script supplied in the code2vec GitHub repository5.
In the experiment to verify the model’s generalization ability,
we use the standard machine learning framework WEKA and
its implementation of sequential minimal optimization (SMO)
[37] to classify all embeddings from our model and baseline
methods. The SMO classifier is set in the default mode with
a poly kernel. The tolerance parameter is 0.001, and the batch
size is set to 100.

C. Research Questions and Results

To evaluate our proposed MulCode model, in this section,
we conduct experiments to answer the following research
questions:

RQ1: How does MulCode perform in different tasks when
compared with state-of-the-art models?

To answer this research question, we compare MulCode
with state-of-the-art models of different downstream tasks,
which are set as the baseline models in the experiment. To
demonstrate the effectiveness of learning multiple tasks to-
gether, we also compare MulCode with the single-task models.
The single-task model adopts the same architecture as the
multi-task model, including universal representation layers, a
task-specific attention layer, and an output layer. The single-
task model is trained on the dataset of a single task. Compared
with the single-task model, our MulCode model only uses data
from other tasks without increasing the parameters for each
task. The results are shown in Table I.

As can be seen from Table I, our MulCode model outper-
forms all the baselines in three downstream tasks, especially
in the author attribution task. The author attribution task is
a multi-class classification problem with 13 categories and a

5https://github.com/tech-srl/code2vec



TABLE I
COMPARISON OF THE OVERALL PERFORMANCE BETWEEN MULCODE, BASELINES AND THE SINGLE-TASK MODEL.

Model Author Attribution Comment Classification Duplicated Function Detection
ACC F1 ACC F1 ACC F1

Baseline 32.1% 35.0% 81.6% 70.3% 85.0% 84.0%
Single 70.7% 68.1% 84.9% 79.6% 87.7% 91.1%

MulCode 73.0% 71.9% 85.7% 80.9% 89.1% 92.1%

TABLE II
COMPARISON OF THE OVERALL PERFORMANCE BETWEEN MULCODE, CODE2VEC AND THE OBFUSCATED CODE2VEC.

Model Algorithm Classification Library Classification Bug Detection
ACC F1 Kappa ACC F1 Kappa ACC F1 Kappa

code2vec 74.6% 74.2% 0.695 98.0% 97.4% 0.948 66.1% 65.7% 0.309
obfuscated code2vec 83.4% 81.8% 0.779 99.7% 99.7% 0.993 65.0% 64.7% 0.288

MulCode 87.1% 86.5% 0.836 98.4% 98.4% 0.967 72.8% 72.6% 0.453

small dataset. Although it is a difficult task, MulCode achieves
the F1-score of 71.9%, which improves the baseline model by
36.9%. For the comment classification task, the improvement
to the baseline model is 10.6%. For the duplicated function
detection task, MulCode has an improvement of 8.1% over
the baseline. The last two tasks are binary classification tasks.
The tasks are simple compared to the first task, but it is not
easy to improve over the baselines.

Compared with the single-task models, MulCode has a small
improvement over them. Our model does not expand the model
capacity and introduce new parameters for each task compared
to the single-task models. Just by adding the training data from
other tasks, MulCode shows improvements over the single-task
models. We can observe that learning multiple tasks together
indeed has a positive effect. The reason may be that the
representation layer constructed from data of multiple tasks
can balance the noise in single task data and avoid falling into
the local optimal solution on the training set of a single task.

RQ2: How about the generalization ability of MulCode
model in other tasks?

To answer this question, we conduct experiments on three
new downstream tasks: library classification, algorithm clas-
sification, and bug detection. We train code2vec and the
obfuscated code2vec to generate embeddings for the above
three tasks. To generate embeddings for three tasks using our
model, we fix the trained MulCode model’s parameters. We
use the pre-trained sequence encoder and structure encoder
to generate two representation vectors for each task and then
concatenate them as their embeddings.

To further measure the quality of these embeddings, we
convert these embeddings and their corresponding labels into
a data format that can be evaluated by the framework WEKA.
Using the existing standard framework can eliminate manual
intervention and ensure the fairness and reproducibility of
comparative experiments. In the experiment, we choose the
SMO classifier implemented by WEKA, which has the best
classification performance on these embeddings. The SMO

algorithm is an improved algorithm of the original support
vector machine, and its parameter settings are shown in IV-B.
Finally, the metrics calculated by the SMO classifier reflect the
quality of embeddings. The experimental results are shown in
Table II.

As can be seen from Table II, our reproduced results of
code2vec and the obfuscated code2vec in three tasks are
almost the same as that of the original paper by Compton
et al. [31]. Our model greatly surpasses code2vec and the
obfuscated code2vec in algorithm classification and bug de-
tection tasks and has comparable performance to baseline
models in the library classification task. Although we have not
trained in these tasks, MulCode achieves better performance
than other models, indicating the generalization ability of
MulCode. Compared to other models, MulCode requires less
data to train. Furthermore, in the experiment, code2vec and
the obfuscated code2vec use 2304-dimensional vectors for
representation, while MulCode uses 1536-dimensional vectors.
Obviously, our representation vectors are denser and more
informative. As for the slightly lower performance than the
obfuscated code2vec in the library classification task, the
reason may be that our model is misled by the typos in the
variable names, which have been processed by the obfuscated
code2vec.

RQ3: What is the effectiveness of each component for our
MulCode model?

In this section, we design an experiment to test the effects
of our model’s two components: the structure encoder and
the balance mechanism that balances the relationship between
different tasks. The experimental results are shown in Table
III.

We conduct experiments with and without considering the
structure of our model and single-task models. We also con-
duct an experiment by removing the balance mechanism from
the full model. The first two rows show the single-task model
results without (w/o) and with (w/) the structure encoder. The
results of MulCode without and with the structure encoder



TABLE III
EFFECTIVENESS OF EACH COMPONENT IN MULCODE MODEL.

Model Author Attribution Comment Classification Duplicated Function Detection
ACC F1 ACC F1 ACC F1

Single w/o struct. 66.0% 62.8% 83.3% 77.0% 85.9% 90.0%
Single w/ struct. 70.7% 68.1% 84.9% 79.6% 87.7% 91.1%

MulCode w/o struct. 70.7% 66.8% 84.7% 80.1% 87.0% 90.6%
MulCode w/ struct. 73.0% 71.9% 85.7% 80.9% 89.1% 92.1%

MulCode w/o balance 70.7% 70.8% 84.9% 80.0% 82.8% 86.8%

are shown in the next two rows. The results of removing the
balance mechanism from the full model are shown in the last
row. It can be seen from the results that removing the structure
encoder from the single-task model and MulCode leads to a
drop in the accuracy and F1-score, which demonstrates that
in the field of source code research, structure information is
necessary for feature extraction.

When removing the balance mechanism from the entire
model, we notice a significant drop in accuracy and F1-
score. Especially in the DD task, the performance of MulCode
without the balance mechanism is even worse than that of
the single-task model. One possible reason is that the DD
task employs the mean squared error loss function, which
is different from the other two tasks that employ the cross-
entropy loss function. The granularity of the two functions’
loss values is different, and the loss value of the DD task
may be too small compared to the other two tasks. As a
result, the task-specific parameters of the DD task cannot be
updated normally in the training process of MulCode without
the balance mechanism. The above results show that blindly
adding multiple tasks to a single-task model cannot effectively
improve performance in specific tasks. It is of great importance
to design an understandable balance mechanism to balance the
relationship between multiple tasks. We balance the granular-
ity of the loss values by setting a learnable parameter for each
task and design a penalty term to prevent our model from
falling into the overfitting of single task data.

RQ4: What is the difference of internal behaviour between
the MulCode model and the single-task models in the learning
process?

In order to find the difference of internal behaviour between
MulCode and the single-task models, we conduct experiments
to compare their performance changes during the training
process. Figure 2 shows the changes of F1-score after each
epoch during the training process for two types of models
in three downstream tasks. In order to highlight the trend of
change, we save the trained results until the epoch where the
best performance is obtained on the test set.

As seen from the three sub-graphs, the F1-score of single-
task models is higher than that of MulCode from the beginning
to the 5th epoch. At this time, single-task models receive
single task data and optimize the single-task objectives that are
easier to converge to better performance. In contrast, MulCode
receives mixed data from multiple tasks and optimizes towards
the joint direction at a slower speed. Although the multi-task

model converges slightly slower than the single-task models,
it achieves higher performance than single-task models in the
next epochs. The difference in the three sub-graphs is that
MulCode clearly outperforms the single-task models in the
author attribution task (Figure 2(a)) and duplicated function
detection task (Figure 2(c)). At the same time, it has no
obvious advantage over the single-task model in the comment
classification task (Figure 2(b)). The possible reason is that
the model of comment classification task needs to learn the
relationship between source code and natural language, and
there is less benefit gained from other source code learning
tasks.

V. DISCUSSION

A. Strength

Our proposed model has three apparent advantages in the
learning of source code task:

(1) A general language learning way for source code. The
universal sequence encoder and structure encoder learn a
general vector space from the token sequence and AST of
source code. All tasks share the knowledge embedded in
the vector space, helping reduce the overfitting of a single
task data during the learning process. This is also the main
reason why our model can improve performance over single-
task models only by adding data from other tasks without
increasing the model capacity for each task.

(2) An understandable neural network for multiple tasks. Se-
quence representation and structure representation contribute
differently to the final representation for various tasks. There-
fore our model introduces the task-specific attention layers to
assign weights to different representations. Since the choice
of loss function may lead to a different granularity of the
loss value, some task-specific parameters cannot be updated
normally. We design learnable weight parameters to adjust the
relationship between different tasks.

(3) It is easy to expand to multiple tasks. Our model is
built with the token sequence and AST, which exist in the
most programming language. When a new task arrives, the
model only needs to add a task-specific output layer without
adding a specific embedding layer. Since the representation
layer has embedded general knowledge learned from other
tasks, the new task requires little training data to learn a usable
representation. More impressively, we extract embeddings
from the fixed sequence encoder and structure encoder and
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Fig. 2. The F1-score on the training set for the single-task models and the
MulCode model.

compare with the state-of-the-art approaches, and the results
show the generalization ability of our model.

B. Threats to Validity and Limitations

One threat to validity is the quality of the datasets we use.
All datasets are obtained from previous researches. We imple-
ment MulCode based on the existing datasets and reproduce
the state-of-the-art approaches. However, the Java datasets
currently used are of small scale, and we need to do further
research on more datasets of various tasks and languages.
In the process of reproducing the obfuscated code2vec, we
contact the authors and confirm that their scripts could not
compile a small number of constructor functions. Therefore,
our model is slightly different from their model in the number
of data instances. Another limitation is time overhead. Our
proposed model takes about 24.5 hours for three tasks. If it
is extended to tasks with larger datasets, reliable computing
power is required.

VI. RELATED WORK

A. Representation Learning for Source Code

In the process of multi-task learning, it is necessary to learn
the code representation for each task. There are many studies
on source code representation. Allamanis et al. [38] did an
understandable survey of source code representation. DeFreez
et al. [39] learned program embedding through the control
flow graphs of the source code. Gu et al. [2] combined the
embedding of plain texts and source code to improve code
search. Iyer et al. [4] combined the attention mechanism with
an LSTM network model for code summarization, and Yin
et al. [40] trained their models on natural language texts
and corresponding code from Stack Overflow. Hu et al. [41]
proposed a method of generating comments for method-level
code using a sequence-to-sequence translation model. They
also added the AST structure information of the code as
the input to the model. Alon et al. [11] used paths in the
AST to learn the representation of code. They verified their
model in the task of predicting the method name of the code
fragment. They also proposed code2seq [5]. The difference
from previous work is that this model generates a series of
word sequences instead of individual words. Wan et al. [3]
introduced the multi-modal representation of source code in
their research, that is, using token sequence, abstract syntax
tree, and control flow graph to construct code representations.
They achieved excellent results in the code search task. These
researches have gradually made full use of multiple views
of programming languages. However, LSTM is always used
when extracting sequence features. It cannot capture long-term
dependency and is time-consuming.

In recent years, large-scale pre-trained models have made
significant progress. The most representative neural network
is Transformer [25], which uses a multi-head attention mech-
anism to perform the end-to-end learning under the encoder-
decoder framework. The GPT [24] model employs language
modeling to predict the next word according to a given context
and to learn a more general context representation. BERT [26]



uses the mask mechanism for language modeling, predicts
randomly masked words in a given context, and achieves
the state-of-the-art results in 11 different natural language
tasks. Although the pre-trained model has a large enough
model capacity, it only pays attention to the input sequence
information. In this paper, we explore the fusion of a pre-
trained model for sequence and source code model that focuses
on structure.

B. Code Modeling for Multiple Tasks

In the field of source code research, many studies only
focus on a single task. However, there are also some studies
on learning of multiple tasks through reinforcement learning,
joint learning, dual learning, and adversarial learning. He et
al. [42] proposed a dual learning framework to learn machine
translation from English to French and from French to English
simultaneously. Chen et al. [12] and Iyer et al. [4] proposed
that their model can be directly applied to code retrieval and
code annotation tasks with slight modifications. However, their
training goals only consider one of the two tasks. Yao et
al. [13] employed reinforcement learning to combine tasks
of code comment generation and code retrieval and designed
rewards based on the above tasks to update the entire network.
Wang et al. [43] also combined the two tasks of code retrieval
and code comment generation, and the difference is that they
established a framework based on the transformer. The goal of
Hoang et al. [14] is to learn the distributed representation of
code changes and to optimize the three tasks of log information
generation, patch identification, and defect detection. Although
this work can achieve good results in multiple tasks, each task
is trained and fitted separately, which is different from the joint
learning of multiple tasks. Feng et al. [44] built a pre-trained
model based on the transformer using source code and natural
language as the corpus, and their model surpassed the original
natural language pre-trained model in two tasks. Wei et al. [15]
proposed a dual training network to optimize the two tasks of
code generation and code summarization simultaneously. They
designed regular term constraints based on the relationship
between the two tasks. This work requires expert knowledge
to define the relationship between the two tasks accurately,
and it is not easy to expand to multiple tasks. Liu et al. [9]
successfully solved the code completion task with the help of
the multi-task learning method for the first time. This research
focused on selecting auxiliary tasks to help the main task
achieve good results. The auxiliary task predicts the node type
and value of the AST and will help understand the hierarchical
structural information of the AST.

C. Multi-task Learning

Multi-task learning has been applied to various domains,
such as language [45]–[47], robotics [48], [49], video [50],
[51], and speech recognition [52]. Luong et al. [53] used
syntactic parsing and image caption generation as auxiliary
tasks to improve translation quality. Liu et al. [54] com-
bined pre-trained language models and multi-task learning and
have achieved state-of-the-art results in ten natural language

processing tasks. Sun et al. [55] proposed the ERNIE 2.0
framework, which is built with multiple pre-trained tasks
incrementally, and then trained the model through continuous
multi-task learning. Experimental results show that the ERNIE
2.0 model outperforms existing researches in multiple English
and Chinese tasks.

In this paper, we employ hard parameter sharing to build an
end-to-end neural network model for multiple tasks. Compared
with previous studies in natural language and other fields, we
extract code features from its multiple views, which adapts
the representation to the structural characteristics of the pro-
gramming language. Furthermore, we integrate the attention
mechanism and multi-task learning network to build a more
understandable model.

VII. CONCLUSION AND FUTURE WORK

Good code models should not only be competent for a
single task but also be applied to multiple tasks universally,
which requires that the model has sufficient capacity and
scalability to be easily extended to new tasks. To build a
code model with generalization ability and interpretability, we
propose the MulCode model based on the attentional multi-
task neural network. We employ the pre-trained BERT model
and tree-LSTM model to capture the sequence and structure
information of source code to ensure that MulCode has
sufficient capacity. We design the attention layer and balance
mechanism that adjust the relationship between different tasks
to obtain an understandable model and improve the overall
performance. Our results have shown that MulCode is effective
and outperforms all state-of-the-art approaches for multiple
downstream tasks. Furthermore, our experimental results show
that the MulCode model can be easily extended to multiple
tasks, which will help solve many tasks in the field of source
code research.

In the future, we plan to expand our model to more multi-
domain tasks and multi-language tasks and solve unlabeled
tasks with expensive labeling costs. We believe that it is
promising to build the source code model with generalization
ability in multiple tasks.

We have released the data and code used in this study on
https://github.com/wangdeze18/Mtl
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[10] H. J. Kang, T. F. Bissyandé, and D. Lo, “Assessing the generalizability
of code2vec token embeddings,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2019,
pp. 1–12.

[11] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[12] Q. Chen and M. Zhou, “A neural framework for retrieval and summariza-
tion of source code,” in 2018 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2018, pp. 826–831.

[13] Z. Yao, J. R. Peddamail, and H. Sun, “Coacor: code annotation for
code retrieval with reinforcement learning,” in The World Wide Web
Conference, 2019, pp. 2203–2214.

[14] T. Hoang, H. J. Kang, D. Lo, and J. Lawall, “Cc2vec: distributed
representations of code changes,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 518–529.

[15] B. Wei, G. Li, X. Xia, Z. Fu, and Z. Jin, “Code generation as a dual task
of code summarization,” in Advances in Neural Information Processing
Systems, 2019, pp. 6563–6573.

[16] D. Steidl, B. Hummel, and E. Juergens, “Quality analysis of source
code comments,” in 2013 21st international conference on program
comprehension (icpc). Ieee, 2013, pp. 83–92.

[17] I. Krsul and E. Spafford, “Authorship analysis: identifying the author of
a program,” Comput. Secur., vol. 16, pp. 233–257, 1997.

[18] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proceedings. International
Conference on Software Maintenance (Cat. No. 98CB36272). IEEE,
1998, pp. 368–377.

[19] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 7482–7491.

[20] G. Holmes, A. Donkin, and I. H. Witten, “Weka: A machine learning
workbench,” in Proceedings of ANZIIS’94-Australian New Zealnd Intel-
ligent Information Systems Conference. IEEE, 1994, pp. 357–361.

[21] M. Crawshaw, “Multi-task learning with deep neural networks: A
survey,” arXiv preprint arXiv:2009.09796, 2020.

[22] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.

[23] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” in
Proceedings of NAACL-HLT, 2018, pp. 2227–2237.

[24] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018.

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[27] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” arXiv
preprint arXiv:1503.00075, 2015.

[28] A. Corazza, V. Maggio, and G. Scanniello, “Coherence of comments
and method implementations: a dataset and an empirical investigation,”
Software Quality Journal, vol. 26, no. 2, pp. 751–777, 2018.

[29] E. Stamatatos, “A survey of modern authorship attribution methods,”
Journal of the American Society for information Science and Technology,
vol. 60, no. 3, pp. 538–556, 2009.

[30] E. Quiring, A. Maier, and K. Rieck, “Misleading authorship attribution
of source code using adversarial learning,” in 28th {USENIX} Security
Symposium ({USENIX} Security 19), 2019, pp. 479–496.

[31] R. Compton, E. Frank, P. Patros, and A. Koay, “Embedding java classes
with code2vec: Improvements from variable obfuscation,” arXiv preprint
arXiv:2004.02942, 2020.

[32] vmarkovtsev, “Duplicates dataset,” [EB/OL], https://github.com/src-d/
datasets/tree/master/Duplicates Accessed June 3, 2020.
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