
Multi-Intention Aware Configuration Selection for Performance
Tuning

Haochen He
hehaochen13@nudt.edu.cn

National University of Defense
Technology, China

Zhouyang Jia∗
jiazhouyang@nudt.edu.cn

National University of Defense
Technology, China

Shanshan Li†
shanshanli@nudt.edu.cn

National University of Defense
Technology, China

Yue Yu†
yuyue@nudt.edu.cn

National University of Defense
Technology, China

Chenglong Zhou
zhouchenglong15@nudt.edu.cn
National University of Defense

Technology, China

Qing Liao
liaoqing@hit.edu.cn

Harbin Institute of Technology,
Shenzhen, China

Ji Wang
wj@nudt.edu.cn

National University of Defense
Technology, China

Xiangke Liao
xkliao@nudt.edu.cn

National University of Defense
Technology, China

ABSTRACT

Configuration tuning can improve software performance. Pre-select-
ing performance-related parameters can significantly reduce the
search space during tuning. These works, however, are both limited
by the specific workloads chosen to train their models. More impor-
tantly, they are unaware of user intentions other than performance
but are also important (e.g., reliability, security). Given these limi-
tations, we find that the configuration document often (even if it
does not always), contains rich information about the parameters’
relationship with many user intentions. However, documents might
also be long and domain specific. Thus, we focus on guiding users
in selecting performance-related parameters while warning about
side-effects on non-performance intentions via mining documents.

In this paper, we first conduct a comprehensive study on 13 repre-
sentative software containing 7,325 configuration parameters, and
derive six types of ways in which configuration parameters may
affect non-performance intentions. Guided by this study, we design
SafeTune, a workload-independent method that pre-selects impor-
tant performance-related parameters and warns about their side-
effects on non-performance intentions. Evaluation on target soft-
ware shows that SafeTune correctly identifies 6-22 performance-
related parameters that are missed by state-of-the-art tools but have
significant performance impacts (up to 14.7x). Furthermore, our
case study demonstrates that SafeTune can successfully help the
∗Co-first author
†Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-1111-2222-3/44/55. . . $15.00
https://doi.org/10.1145/1122445.1122456

existing auto-tuner to warn about eight critical side-effects, such
as data corruption.

CCS CONCEPTS

• Software and its engineering→ Software performance.

KEYWORDS

Performance tuning, User intention, Software documentation

ACM Reference Format:

Haochen He, Zhouyang Jia, Shanshan Li, Yue Yu†, Chenglong Zhou, Qing
Liao, Ji Wang, and Xiangke Liao. 2021. Multi-Intention Aware Configuration
Selection for Performance Tuning. In Proceedings of The 44th International

Conference on Software Engineering (ICSE 2022). ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Configuration can change software behavior and thus enable cus-
tomization to meet different user intentions. Among many possible
user intentions, improving performance is one of the most com-
mon purposes. While modern software systems are often equipped
with a large number of configuration parameters (e.g., HDFS [42]
has 560 parameters, GCC [1] has 1,353). To address this problem,
many existing works have applied various techniques to perform
automatic configuration tuning [16, 17, 19, 24, 32, 37–39, 45, 47, 54].
However, these auto-tuners have two major challenges. First, they
are extremely limited by the large number of parameters (the huge
search space) [51, 54]. Second, they only consider performance
improvement while being unaware of user intentions other than
performance (e.g., reliability, security and functionality). However,
one configuration parameter may impact multiple user intentions at
the same time. For example, using a parameter to sacrifice reliability
to gain performance is a common practice applied by software [3].
But users of safety-critical systems (e.g., industrial control system)
may also intend to keep their systems reliable while improving

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
何浩辰

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Haochen He and Zhouyang Jia, et al.

innodb_flush_log_at_trx_commit:
“Controls the balance between strict ACID compliance for commit operations

and higher performance... The default setting of 1 is required for full ACID

compliance. Logs are written and flushed to disk at each transaction commit.

With a setting of 0, logs are written and flushed to disk once per second. You

can achieve better performance by changing the default value but then

you can lose transactions in a crash.”

Figure 1: Configuration documents of MySQL

performance. In such cases, the parameter that affects the corre-
sponding intentions should not be tuned.

Many recent works have been proposed to reduce the search
space for those auto-tuners by pre-selecting important parameters.
These works run dynamic performance experiments to measure per-
formance changes that occur following changes of parameters, and
use statistical [23] or machine-learning [34] methods to pre-select
parameters that have significant impacts on performance. Though
working in some scenarios, these methods still have two limita-
tions: 1) The effectiveness of dynamic methods depends strongly
on both workloads and environment, which often differ by cases.
Moreover, these methods are difficult to deploy due to the expensive
performance experiments. 2) These black-box methods still focus
only on the performance impact of the parameters, but do not take
impacts on other user intentions into account. Therefore, a tool
that helps auto-tuners to pre-select important performance-related
parameters in general, particularly one that pays strong attention
to the side-effects on other user intentions, is needed.

In this paper, we propose SafeTune, a workload-independent
and lightweight approach that provides tuning guidance, includ-
ing identifying performance-related configuration parameters and
warning about potential side-effects on non-performance user in-
tentions to change the parameters. The key insight is that con-
figuration parameters are often well-documented, especially in
widely used software. SafeTune leverages configuration docu-
ments to understand the relationship between performance and
other user intentions. For example, in Fig. 1, the document of pa-
rameter innodb_flush_log_at_trx_commit explains if and how
the parameter affects performance in general, and warns about the
potential side-effect (lose transaction) on the intention of reliability.

There are three main challenges in SafeTune. First, how con-
figuration parameters affect performance and cause side-effects
on non-performance intentions are unknown. Second, building a
model to learn information from documents (which are written in
natural language) requires large-scale training data, but there is
no such public dataset exists. Third, the side-effect information is
usually described implicitly, and documents can be very long and
domain-specific. For the example shown in Fig. 1, expert knowl-
edge is required to understand that "lose transaction" means hurting
reliability in this context.

Therefore, we first conduct an empirical study to comprehen-
sively understand how the configuration parameters can affect
performance and cause side-effects on non-performance intentions
such as reliability. To determine the general result from the study,
we choose 13 software from four categories, including 7,325 parame-
ters, as shown in Table 1. From this study, we obtain three heuristics
to precisely filter out parameters unrelated to performance, and

derive a categorization that contains six types of ways in which
parameters can cause side-effects on non-performance intentions.

Based on these findings, SafeTune predicts the tuning guidance
of a parameter for the given configuration document of the param-
eter. In light of the last two challenges, SafeTune takes two major
steps: 1) We design a semi-supervised data expansion approach,
which automatically expands the manually labeled training dataset.
We manually assign the type of side-effect for parameters in a
small-scale training data set during the study. Next, SafeTune uses
association rule mining techniques in a progressive manner to mine
natural language patterns from the dataset, then uses the patterns
to enlarge this dataset with high precision. This step is necessary
because manually inspecting all parameters is extremely expensive.
2) SafeTune trains a learning-based hierarchical model to capture
important information from the document based on the expanded
dataset and provide the final performance tuning guidance.

We evaluate SafeTune on software that has neither previously
appeared in our study nor in the model training set. The results
show that SafeTune can accurately identify performance-related
parameters and their side-effects, scoring 81.3-85.1% in precision
and 67.6-67.7% in recall. Compared with the state-of-the-art pre-
selectingmethod [34], SafeTune can correctly find 117 performance-
related parameters that are missed by the method, and some of the
these parameters have huge (up to 14.6x) performance impacts.
Moreover, SafeTune correctly covers 29/32 performance-related
parameters that identified by the method. The false positive rate
is 12.7%. Furthermore, we conduct a case study in which we ap-
ply SafeTune with a state-of-art and popular auto-tuner, Otter-
Tune [43], which has 1.1k GitHub stars. The results show that Safe-
Tune can help to prevent eight side-effects (covering four types)
caused by OtterTune that lead to severe consequences.

Our main contributions can be summarized as follows:

• We conclude six types of ways in which performance-related
parameters can affect non-performance user intentions from
an empirical study of 13 open-source software.

• We design and implement a workload-independent and light-
weight approach, SafeTune, to identify performance-related
parameters and their side-effects. All data (including more
than 7,325 annotated parameters) and source code can be
found in our public repository:

https://github.com/Anonymous-user-2021/SafeTune
• We evaluate SafeTune on the target software. The results
show that SafeTune finds 6-22 performance-related parame-
ters that have large performance impacts (up to 14.7x) but are
missed by state-of-the-art works. Furthermore, SafeTune
helps the state-of-the-art auto-tuner prevent eight critical
side-effects on other user intentions.

2 UNDERSTANDING PERFORMANCE-

RELATED CONFIGURATION

To comprehensively understand which configuration parameters
affect software performance, along with what side-effects those
performance-related parameters may have on non-performance
intentions, we conduct an empirical study on 7,325 parameters from
13 open-source software systems. From this study, we first derive

https://github.com/Anonymous-user-2021/SafeTune

Multi-Intention Aware Configuration Selection for Performance Tuning ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

Table 1: Studied Software and Configuration Parameters

Category Software Popularity‡ # Params†

Database
MySQL 6.8k 919

Cassandra 6.8k 116
MariaDB 3.9k 274

Web Service Apache Httpd 2.7k 571
Nginx 14.5k 710

Distributed
Service

Hadoop Common 11.8k 313
MapReduce 11.8k 198
Apache Flink 16.8k 441

HDFS 11.8k 560
Keystone 4.4k 394
Nova 2.7k 844

Developer
Tool

GCC 5.3k 1,335
Clang 2.8k 650
Total 7,325

†The number of configuration parameters. ‡ Github stars

three heuristic strategies to help filter out parameters unrelated
to performance. We then conclude six different types of ways in
which those performance-related parameters may cause side-effects.
These findings are used to guide the design of SafeTune.

2.1 Data Collection

We study the configuration documents of the software. The config-
uration document explains the detailed semantics and their rela-
tionships with user intentions (e.g., performance). It has two unique
advantages. First, it provides a general but comprehensive under-
standing of configuration parameters that does not rely on specific
workloads; then, it contains multiple user intentions (e.g., text in
bold in the box shown in §1). We studied 13 open-source software
systems from four different domains, as shown in Table 1. These
four categories are chosen from the most popular products provided
by famous cloud vendors [7, 9, 11] and are representative among
highly-configurable software systems [28, 33, 43, 44, 52, 54]. More-
over, these software systems are: 1) usually located in server-side
and accordingly have higher demands in terms of performance,
reliability, etc; 2) mature and widely used, with at least 2.7k Github
stars; 3) highly configurable (each has more than 100 configuration
parameters) with well-maintained configuration documents. We
collected configuration parameters and their documents from two
main sources: the official websites and the configuration files (e.g.
XML-based configuration files). Each of the collected data point is
in the form of <parameter name, description>. We filter out param-
eters without description. Finally, we collected 7,325 from these
software systems.

Identifying Performance-related Parameters. To understand
the side-effects of performance-related parameters, we manually
studied the documentation of configuration parameters. Studying
all parameters is extremely expensive; accordingly, we conclude
three heuristic strategies to filter out parameters that have no im-
pact on the performance of software. 1) Parameters indicating the
location of resources. Descriptions of these parameters contain
phrases such as "path of", "port of", "address of", and "location of".
These typically have little impact on performance. 2) Parameters

Table 2: Side-effects on non-performance intentions

Type of Side-effects # Params

Lower reliability 33
Lower security 46

Reduced functionality 138
Lower performance (other users) 68

Higher cost 114
Limited side-effect 126

Total 525

marked as "unused" or "deprecated" in the documentation. 3) Param-
eters set for compatibility reasons. These parameters are usually
designed to support old behavior in old versions of software. Pa-
rameters in this category are filtered by the keywords "version",
"compatibility" and "legacy". We apply these heuristics to all 7,325
parameters and filter out 1,071 parameters. Note that these heuris-
tics are set to quickly filter out some of parameters unrelated to
performance so that the others still need to be further filtered out
by SafeTune. We then randomly sample 1,292 (20%) of the 6,254 pa-
rameters to study. Two authors with at least three years of research
experience in configuration independently identified each parame-
ter as either performance-related or not according to its description.
Once a disagreement occurred, a third author was involved until a
consensus is reached. Finally, we obtained 525 performance-related
parameters for further study.

2.2 Side-effects on Non-performance

Intentions

We study the 525 performance-related parameters to understand
the side-effects they may cause. We follow the same manual cross-
check methodology as the above section; additionally, to make the
results more consistent, the rest of the authors randomly review a
fifth of the parameters studied in weekly meetings. This process
took 200 working hours and lasted for eight weeks. Finally, we
conclude six different types of ways in which these performance-
related parameters may cause side-effects on non-performance user
intentions.

As a result, we find majority (76.0%, 399/525) of performance-
related parameters have side-effects on non-performance inten-
tions. These parameters can affect common user intentions, such
as reliability, security and functionality. Table 2 shows the number
of parameters falling into each types of side-effects. This result
indicates a strong demand for tuning tools to warn about these
side-effects for end users. Subsequently, we describe each type and
the criteria used to classify it in our study.

Lower reliability. These parameters improve performance at
the cost of decreasing the level of reliability protection. For exam-
ple, innodb_flush_log_at_trx_commit controls the ACID level
of MySQL, the value of "1" ensures strict data protection by exe-
cuting fsync at every commit. Changing this value to "2" improves
the performance by reducing the calls to fsync at the risk of losing
data during a power loss. To avoid affecting user intention of re-
liability, tuning tools should warn users about the risk associate
with improving performance. Criteria to classify: These parameters
are usually related to the way data are persistent to the hard drive
and policies to protect data from single-point failure, and they are

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Haochen He and Zhouyang Jia, et al.

usually documented as "replication level", "update interval", "write
to disk", etc.

Lower security. These parameters improve performance at the
cost of a lower level of security protection. For example, the param-
eter PrivilegesMode in Apache Httpd controls the way requests
are processed. The value "SECURE" means that all requests are run
in a secure sub-process, but with more overhead. When changing
to "FAST", requests are run in-process, speeding up the software
but opening up the chance for malicious attackers to utilize the
in-process module to escalate privileges. To avoid affecting user
intention regarding security, such parameters should be warned
about. Criteria to classify: These parameters are usually related
to common security policies such as encryption, authentication
and privacy protection, and they are usually documented as "en-
able/disable authentication", "enable/disable SSL", "whether (a kind
of data) should be encrypted", etc.

Reduced functionality.These parameters improve performance
at the cost of reduced functionality. For example, the parameter
adl.feature.ownerandgroup.enableupn controls whether an ad-
ditional process should be performed to convert users and groups
in FileStatus/AclStatus response to a user-friendly name. Disabling
this function saves a large amount of computation (as documented:
"for optimal performance, false is recommended"); however users
intending to enable this function should be provided with warnings.
Criteria to classify: These parameters are usually documented as
"enable/disable (a feature)", "control output", "collect information of
(a component)", etc.

Lower performance (other users). These parameters can im-
prove performance only for specific workloads run by some users,
and may hurt others run by other users. Taking the parameter
max_seeks_for_key in MariaDB as an example, it controls the es-
timated maximum cost for look-ups on table’s index. Decreasing
the value makes MariaDB prefer index scan than full table scan.
But the index scan is only faster than the full table scan when the
cost for index look-ups is low in actual (i.e., low cardinality of the
index), which is completely workload-dependent. If another user
runs a different workload, the inappropriate value may cause the
performance problem [2]. So these parameters should be tuned
with caution. Criteria to classify: These parameters typically control
the internal argument of a specific algorithm, data structure and
model, and they are usually documented as "threshold of", "ratio
of", "upper/lower bound of", etc.

Higher cost. These parameters improve performance at the cost
of consumingmore system resources (e.g. CPU cores, memory, band-
width). For example, dfs.image.parallel.threads in HDFS sets
the number of threads used to load the image. A higher value of this
parameter results in higher parallelism and reduced loading time,
while more CPU cores may be used. In Amazon Web Services [7],
four more CPU cores for a 32GB memory instance can cost 72$
per month. In cases where a user’s budget or hardware resources
are limited, changing these parameters may still indirectly affect
user intentions (e.g., unexpected bill charges). Criteria to classify:
These parameters usually control the system resources allocated to
the software, and they are usually documented as "size of buffer",
"number of workers", etc.

Limited side-effects. These parameters improve performance
with limited side-effect on non-performance intentions. First, some

Studied
Parameters

Un-studied
Parameters

Expanded	
Parameters

Learning
Based	
Model

Forest-2

Perf.	Related	
Parameters
&	Side-effects

Data	Expansion

Rule Mining

NLP Pre-
processing

Data	
Balancing

NLP
rules

…	 Side-effects

Perf.	
UnrelatedForest-1

Perf.	Related

Figure 2: Overview of SafeTune.

parameters improve performance by applying certain optimization
strategies. For example, when index_merge in MySQL is turned
on, MySQL can better utilize index and read from a single table
rather than across multiple tables. Such optimization has a limited
impact on the system, thereby causing limited side-effects on user
intentions. It is recommended for tuning tools to tune such param-
eters in the first place. Criteria to classify: These parameters usually
control optimization strategies such as caching, load balancing and
compression, and they are usually documented as "enable (a kind
of optimization)", "whether to (do optimization)", etc.

3 SEMI-SUPERVISED DATASET EXPANSION

Given the side-effects summarized in the study, our goal is to build
a model that can automatically identify the performance-related
parameters and warn about their side-effects on non-performance
intentions. Training a model to get information from natural lan-
guage requires data at a large scale. We refer to the configuration
parameters and their side-effect types (labels) as training data;
hence, SafeTune has seven labels (including six side-effects and
performance unrelated parameters). However, the training data
obtained from the study is insufficient (i.e., does not exceed 100 for
some types), and manual labeling of the unstudied data is extremely
expensive.

During the empirical study process in §2, we find that descrip-
tions of parameters of the same type share certain linguistic pat-
terns. For example, descriptions of parameters that may lead to
higher cost usually contain phrases like "size of buffer" or "num-
ber of threads". With these patterns, we will be able to enlarge
the dataset with less manual effort. We therefore design a semi-
supervised data expansion approach that utilizes natural language
processing (NLP) and association rule mining (ARM) techniques
to automatically mine the patterns (i.e., association rules) in a pro-
gressive manner in order to enlarge the amount of labeled data in
the study. As shown in the left part of Fig. 2, the data expansion
process contains three main steps: First, SafeTune uses NLP to
pre-process the manually studied configuration documents and
normalizes words to highlight the most informative words. Second,
it mines the pre-processed documents to obtain a set of rules us-
ing ARM. With these rules, it matches configuration documents
that are not involved in the study to increase the available training
data. The above two steps proceed iteratively until no configuration
documents can be enlarged by the rules. At the third step, Safe-
Tune balances the data of each type of side-effect to avoid a biased
training set.

Multi-Intention Aware Configuration Selection for Performance Tuning ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: The rule examples of each side-effect types mined by SafeTune

Side-effect type Rule example Support Confidence Matched description

Lower reliability (NOUN, write), (NOUN, level) 7 0.875 Sets the current transaction’s synchronization† level.

Lower security (VERB, check), (NOUN, security) 6 0.857
Sets how deeply mod_ssl should verify before deciding
that the clients do not have a valid certificate.

Reduced
functionality

(NOUN, level), (NOUN, information) 6 0.857
Verbosity of SQL debugging information: 0=None, 100=Ev-
erything.

Lower perfor-
mance (other users)

(NOUN, time), (ADP, for), (NOUN, re-
source) 6 0.857 The time for which retry cache entries are retained.

Higher cost (VERB, set), (NOUN, amount), (NOUN,
resource) 12 0.923 This value controls the number of cache directives that the

NameNode will send over the wire in response to ...
Limited side-effect (VERB, enable), (NOUN, optimization) 12 0.857 Enables or disables genetic query optimization.

† words underlined are those matched by rules.

3.1 Pre-processing

The goal of pre-processing is to normalize words and highlight im-
portant information in the description of parameters. Pre-processing
contains three steps: lemmatization, reduction, and substitution.

At the lemmatization step, since we are not interested in the
grammar features contained in the documents, we transform each
token to its original form to eliminate possible third-person or plu-
ral format effects; for instance, the word "specified" is transformed
into "specify". In the reduction step, we remove the words that are
not likely to convey useful information and retain the informative
ones. During our study, we find that 4 kinds of words play an impor-
tant role in deciding the possible side-effects. These are: 1) nouns,
which directly point out the entities on which parameters will have
an effect; 2) verbs, which are actions related to parameters and tend
to directly lead to the impact; 3) adverbs/adjectives, which describe
the effects of parameter value changes. We therefore extract the
part-of-speech (POS) information of each word and retain works
with POS of noun, verb, adv, and adj. In the substitution step, we
replace special words to prevent the model from being distracted
by unrelated information. For example, we replace the parameter
names that appeared in the documentation with "CONFIG" and
replace numbers with a fixed number. Moreover, to highlight the
semantic knowledge in the documents, we replace words that ap-
pear in our manually collected synonyms list, which is obtained by
referring to domain-specific resources [4, 5, 22]. For example, the
words "commit", "update" and "sync" are replaced with "write", since
they have similar meanings. We implement the pre-processing part
using spaCy [30]. We provide an example to demonstrate the above
process: the description "Sets the current transaction’s synchroniza-

tion level" will be converted to [(VERB, set), (ADJ, current),
(NOUN, transaction), (NOUN, write), (NOUN, level)].

3.2 Mining Association Rules

The goal of this step is to find the sub-sequences that appear ex-
clusively and frequently in descriptions of the specific type of side-
effect of performance-related parameters. These sub-sequences are
association rules that distinguish different types of side-effect. For
the pre-processed sentences obtained from § 3.1, we utilize the
FEAT algorithm [25] to mine association rules for each type of
side-effect. SafeTune utilizes it by adding the label to the end
of the description and mining the most frequent sub-sequences
(rules) co-occurring with the label. For example, a rule mined by

the algorithm is [(NOUN, write), (NOUN, level)], which is a
sub-sequence of the example above. Also, SafeTune outputs the
support and confidence of each association rule, and they are defined
as follows:

support = |rulesi | where the rulei matches the document
of the type of the ithside-effect, and

confidence =
support

|rules∗i |
where the rulei matches the document
of any type of the side-effect.

The support of the rulei is defined as the number of occurrences of
the rule matching ith type given that the rule appears. Moreover, its
confidence is the conditional probability that a document is the ith
type of side-effect when matching this rule. For example, the rule
above has a support of 7 and confidence of 0.857, which represents
a strong signal of its side-effect type (i.e. Lower reliability). Table 3
presents rule examples mined for each type.

In the mining stage, SafeTune may obtain millions of rules. As
this set may contain rules with low quality, we retain only the rules
that are sub-sequences of other rules with the same support, since
shorter rules are more general and are thus more likely to expand
more data. Moreover, this expanded training data will be directly
used to train the SafeTune model. Thus, the soundness of the ex-
panded training data is important. Furthermore, we do not expect
the expansion process to expand all parameters to the training data
(completeness). Therefore, we drop out the rules whose confidences
are lower than 0.85. As we will show in §5.2, with this level of con-
fidence, the data expansion method can achieve an optimal balance
between precision and recall.

3.3 Expanding Dataset Progressively

The goal of this step is to use rules mined from the studied data to
match configuration documents to the greatest extent possible to
enlarge the training data. For parameters not involved in the study,
SafeTune pre-processes their documents as in §3.1. SafeTune then
matches rules mined in the previous step to identify the candidate
to be expanded. Note that one parameter document may match
multiple rules of different types. SafeTune calculates the sum of
matched rules’ confidence of each type respectively and take the
label with the highest score. If no rule is matched, the parameter
will not be expanded. If the two steps described in §3.1 and §3.2
are applied only once, the data expanded may still be insufficient.

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Haochen He and Zhouyang Jia, et al.

SafeTune expands the dataset in a progressive manner. The process
terminates when there is no data remaining that can be expanded.

3.4 Balancing Data

The goal of this step is to make the training data balanced in order
to avoid the model being biased towards the majority classes. After
the data expansion via rules matching, the parameters have no
impact on the performance account for 72.2% of the entire dataset,
while the performance-related parameters that cause Lower security
contain only 4.1%. This unbalance causes the model to be easily
biased towards the performance-unrelated parameters. To avoid
this bias, SafeTune over-samples the parameters in the minority
types of side-effects to ensure that they are the same as the number
of performance-unrelated parameters. Since the soundness of the
expanded data is our main concern, we need to lower the probability
of incorporating false data. Borderline-SMOTE [27] is a widely
used over-sampling method for unbalanced data. Compared with
other methods, it can effectively avoid generating samples from
the "danger area" (i.e., samples near the borderline of different
classes). After balancing the training data, SafeTune applies the
pre-processing step as in § 3.1 to the data set to normalize words
and highlight important information in the training set.

4 IDENTIFYING PERFORMANCE-RELATED

PARAMETERS AND SIDE-EFFECTS

In this section, we introduce how SafeTune predicts the tuning
guidance for configuration parameters. As shown in the right part
of Fig. 2, SafeTune takes configuration documents that have been
expanded and pre-processed from the data expansion step as in-
put, then outputs tuning guidance including performance-related
parameters and their side-effects on non-performance intentions.

Random forest (RF for short) [20] is an appropriate algorithm for
the text classification task. It can precisely capture the difference
between types of side-effects and is more robust than a single
decision tree. It is alsomore lightweight andmore interpretable than
deep learning models like CNN. More importantly, neural networks
usually demand millions of data for training, which is not accessible
for configuration documents. The labels of input data in our task
are hierarchical (i.e., level-1: performance-related/unrelated; level-2:
six different side-effects only for performance-related parameters).
Moreover, the classic RF algorithms do not account for hierarchical
datasets. Inspired by [26], we build a two-level hierarchical random
forest model, as shown in the bottom right part of Fig. 2. RF-1 is used
to identify the performance related parameters from unrelated ones.
All training data are used to train RF-1. Moreover, RF-2 is used to
predict side-effects (among the six side-effects) for the performance-
related parameters, while only the performance-related parameters
in the training set are used to train RF-2. The label of the data to
be predicted is decided by the multiplication of the probabilities
given by the two RFs. For example, if the probabilities given by the
two RFs of a configuration parameter are RF-1 : [0.3, 0.7] and RF-2 :
[0.04, 0.2, 0.1, 0.5, 0.1, 0.06], then the parameter will be labeled as
"performance-related" (since 0.7 > 0.3), as well as the "Higher cost"
label (0.7 · 0.5 = 0.35, which is greater than all the others).

RF requires embedding of the input documents written in natural
language. SafeTune embeds each parameter’s document using TF-
IDF [41], a widely-used method in information retrieval. For its
part, TF-IDF treats each document as bag-of-words, ignoring the
sequence information. In our task, "write the data" and "...data.Write
the..." can express completely different meanings. Hence, SafeTune
considers at most three consecutive words (i.e., unigram, bigram
and trigram) when calculating the TF-IDF embedding. Note that
the embedding may be sparse (e.g., 2,000 dimensions, with 1,990
zeros), and the RF algorithm only selects several dimensions each
time to train a decision tree [20]. Thus, SafeTune applies principal
component analysis (PCA) [13] for the TF-IDF embedding. We
ensure that the PCA preserves 99% of the information from the
initial TF-IDF embedding.

5 EVALUATION

We implement SafeTunewith sklearn [21] and randomForest(R) [36].
All experiments are conducted on machines with a 48-core Intel-
Xeon 2.2GHz processor, Tesla V100 GPU, 64GB RAM, and 1TB hard
disk, with Ubuntu 18.04 LTS, and Python 3.6.8. We evaluate the
effectiveness of SafeTune by answering the following questions:

• RQ1: Accuracy of predicting tuning guidance and data

expansion.How accurate is SafeTune in identifying perfor-
mance-related parameters and predicting their side-effects
on non-performance intentions? How accurate is the auto-
matically expanded data?

• RQ2: Comparison between SafeTune and the state-

of-the-art tool. Can SafeTune cover performance-related
parameters that identified by the existing tool? Can Safe-
Tune identify performance-related parameters that aremissed
by the existing tool?

• RQ3: Effectiveness of SafeTuneonhelping performance

tuning. Does the existing auto-tuner produces potential
side-effects on other user intentions? Can SafeTune help
the tool to prevent those side-effects? How severe are these
side-effects?

5.1 RQ1: Accuracy of Predicting Tuning

Guidance and Data Expansion

To answer RQ1, we evaluate the accuracy of SafeTune in iden-
tifying performance-related parameters and predicting their side-
effects. To avoid over-fitting, we conduct experiments on software
that are neither studied nor included in the training set. Since Safe-
Tune automatically expands the training set, we also evaluate the
accuracy of the expanded data.

5.1.1 Accuracy of Tuning Guidance. We evaluate SafeTune on
PostgreSQL [40], Squid [46] and Apache Spark [50]. These soft-
ware are not included in our study, but are also popular (at least 1k
GitHub stars) and from different domains, written in different pro-
gramming languages. Thus, we believe they can provide sufficient
generality. The three software have 252, 266 and 217 parameters
respectively. We follow the same methodology as in § 2.1 to manu-
ally label the parameters and use them as the test set. We use the
1,292 studied parameters as the initial training set. SafeTune then
expands the training set and obtain 14,528 pieces of training data.

Multi-Intention Aware Configuration Selection for Performance Tuning ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

Table 4: Precision and recall in predicting performance-related parameters and their side-effects

Software

SafeTune SafeTunew/o exp. SafeTuneideal
PR SE PR SE PR SE

preci. recall preci. recall preci. recall preci. recall preci. recall preci. recall
PostgreSQL 0.873 0.764 0.812 0.629 0.713 0.545 0.623 0.481 0.873 0.777 0.847 0.685

Squid 0.872 0.602 0.830 0.623 0.693 0.426 0.589 0.439 0.891 0.632 0.868 0.652
Spark 0.801 0.669 0.792 0.651 0.611 0.532 0.510 0.389 0.855 0.662 0.820 0.648
Overall 0.851 0.677 0.813 0.676 0.498 0.577 0.553 0.439 0.881 0.691 0.847 0.662

PR: effectiveness of predicting performance related parameters. SE: effectiveness of predicting side-effects. precis.: precision. w/o exp.: only use studied data
to train SafeTune. ideal: replacing labels of expanded data (may contain incorrect ones) in the training data set with manually checked labels.

Each item in this dataset is in the form of <parameter name, descrip-

tion (embedded), label
level-1

, label
level-2

>, where label
level-1

is one
of the two values {"Performance-related", "Performance-unrelated"},
and label

level-2
is one of the following: {"Lower reliability", "Lower

security", "Reduced functionality", "Lower performance (other users)",
"Higher cost", "Limited side-effects"}. Last, SafeTune is trained by
this dataset.

To measure the accuracy of predicting performance-related pa-
rameters (PR for short in Table 4), we use precision and recall.
To assess the accuracy of predicting side-effects (SE for short in
Table 4), we calculate the averaged precision and recall of each
type (i.e., Micro-precision/recall [6] of six side-effects) to measure
SafeTune as a whole. SafeTune applies data expansion to improve
the accuracy. To evaluate the usefulness of this component, we
remove it (using only the initial 1,292 parameters as the training
set) and conduct experiments with identical test data to draw a
comparison. This is denoted as SafeTunew/o exp. in Table 4.

Result and Analysis. First, SafeTune can identify performance-
related parameters with a precision of 85.1% and a recall of 67.7%.
The false negatives occur because many of them contain technical
terms in documents that are difficult for SafeTune to understand.
For example, ssl_ecdh_curve is documented as "sets the curve to use
for ECDH ", but this does not explain that "ECDH" is an agree-
ment protocol that allows two parties to establish a shared secret,
which affects performance. Worse yet, these technical terms rarely
appear in the dataset. The false positives occur mainly because
some expressions mislead SafeTune. For example, the document of
spark.eventLog.overwrite is "whether to over write any existing files",
but whether or not "overwrite" is performed does not affect perfor-
mance in this case; however the word "write" misleads SafeTune
into identifying the parameter as related with persisting data to
disk, thereby affecting performance. Moreover, technical terms are
one of the main causes of false positives.

Table 4 demonstrates the results of predicting side-effects on the
non-performance intentions of these performance-related parame-
ters. Overall, SafeTune can reach a precision of 81.3% and a recall
of 67.6%. These false positives occur because many parameters
have very complex logic described in the long document, making
it challenging even for human to identify the type of side-effect.
Another reason is that some expert knowledge cannot be precisely
captured by SafeTune. For example, wal_writer_flush_after controls
"amount of WAL written out by WAL writer that triggers a flush";
this parameter is falsely identified as lower reliability, but it actually
controls the frequency of WAL flush, and the optimal frequency is

workload-dependent (side-effect: lower performance for other user).
The expert knowledge is that the WAL loss during power loss
would not corrupt data (not lower reliability). The false negatives
are mainly because the descriptions may miss context. For exam-
ple, cpu_tuple_cost is described as "sets the planner’s estimate of the

cost of processing each row during a query", but the context of this
description is that the "planner" is a component that will choose
the quickest query plan, and the "cost" is a workload-dependent
argument of the choosing algorithm. Without such context, Safe-
Tune fails to identify it with the side-effect of lower performance

(other user).
The 6th - 9th columns of Table 4 show the results after removing

the data expansion component from SafeTune. Without the data
expansion, SafeTune cannot fully learn features in parameter doc-
uments, the precision drop by 26.0-35.3% and the recall drop by 10.0-
23.7% respectively. Therefore, the data expansion is essential for
SafeTune. In conclusion, the result indicates SafeTune can achieve

good precision and acceptable recall in pre-selecting performance-

related parameters and predicting side-effects.

5.1.2 Accuracy of Data Expansion. SafeTune uses data expansion
to enlarge training data. So the quality of enlarged data may affect
the effectiveness of final tuning guidance provided by SafeTune.
Therefore, we also evaluate the correctness of the data expanded by
the expansion method. To achieve this, we need the ground truth
of these data. So we manually label all the 7,325 parameters and
cross-checked them in the same way as described in § 2.2. This
process took 400 working hours and last 10 weeks. We make all
these data publicly available in the repository. Note that this manual
work is only needed in this paper to evaluate SafeTune, but not for
users of SafeTune. We use precision to measure the correctness
of the data expanded by the expansion step, and expansion rate to
measure the rate of the data that can be correctly expanded to all the
unlabeled data (100% expansion rate means all the unlabeled data
can be correctly expanded). Also, we use Micro-precision [6] and
averaged expansion rate to measure the overall result. Further, we
evaluate the impact of the incorrectly-expanded data on SafeTune.
So we replace the labels of expanded data in the training set in
§ 5.1 with manually annotated labels (ground truth), and keep other
experiment settings the same. We denote the model trained by this
data set as SafeTuneideal in Table 4.

As described in § 3, SafeTune only keeps rules whose confi-
dences are higher than a threshold to improve precision. Therefore,
we evaluate the influence of different thresholds (from 0.10 to 0.95,
a step of 0.05) on the precision and recall of the expanded data.

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Haochen He and Zhouyang Jia, et al.

Table 5: Precision and expansion rate of the expanded data

Data Label Precision Expansion rate

Lower reliability 0.847 0.393
Lower security 0.808 0.372

Reduced functionality 0.832 0.585
Lower performance (other users) 0.819 0.552

Consuming more resource 0.910 0.670
Limited side-effect 0.801 0.464

Performance-unrelated 0.931 0.702
Overall 0.864 0.594

Another interesting question is how much studied (labeled) data do
we need to conduct the expansion? Obviously, it is less useful if the
expansion approach needs a majority of studied data and can only
expand the rest minority. Therefore, we evaluate the influence of
proportion on the precision and recall of the expanded data. Note
that in our evaluation, all data are manually labeled to provide the
ground truth, so we can simulate any proportion of studied data
against those need to be expanded. For each sampling proportion
p, we apply the approach in § 3 to expand the rest 1 − p data. This
process is repeated 10 times to eliminate the occasionality caused
by the random sampling. We use Micro-precision and Micro-recall
of the 1 − p expanded data.

Result and Analysis. Table 5 shows the precision and recall of the
expanded data of each type of side-effects. SafeTune performs well
in expanding the performance-unrelated parameters and those may
consume more resource. For the rest types like Lower reliability and
Lower security, the number of parameters in these types are fewer
in the initially studied data set and thus do not have many distinct
features compared with other types. The result of the impact on
SafeTune of those incorrectly-expanded data is shown in the last 4
columns in Table 4. The incorrectly-expanded data only cause about
3.0-3.4% degradation to precision (comparing the SafeTune with
SafeTuneideal series), but without the data expansion approach,
the precision will reduce significantly . And with the expansion, we
can reduce about 63.0% expensive manual effort. This significantly
outweighs the drawback of the incorrectly expanded data.

The result of choosing a proper threshold for rule confidence and
proportion of studied data is shown in Fig. 3. First, Fig. 3a shows the
Micro-precision/recall changes against different threshold values.
As expected, the precision increases as the confidence threshold
of the mined rules increases, and the recall is the opposite. As de-
scribed in § 3, SafeTune honors precision rather than recall. When
the threshold increase from 0.85 to 0.9, the precision increases by
5.1% while suffering a recall drop of 16.8%, which means about 700
parameters can not be automatically expanded but the precision
improvement is small. Therefore, we set the confidence threshold
as 0.85 in SafeTune. Fig. 3b shows the Micro-precision and Micro-
recall of different proportions p of studied data. It is shown that,
generally, with more data studied, the precision of the mined rules
will slightly drop while the recall will increase. This is because that
with more studied data, the variety increases accordingly, more
rules can be generated and more unlabeled parameters can be ex-
panded. This improves the recall but becomes more likely to make
mistakes. Also, SafeTune honors more precision than recall. So,
we use p = 0.2.

0.3 0.5 0.7 0.9
0.6

0.8

1

0

0.2

0.4

0.6

Pr
ec
is
io
n

(a) Confidence threshold

0.2 0.4 0.6 0.8
0.7

0.75

0.8

0.85

0.5

0.55

0.6

0.65

Re
ca
ll

(b) Proportion(p) of studied data

Figure 3: The influence of confidence threshold and propor-

tion of studied data on the precision and recall of the ex-

panded data.

5.2 RQ2: Comparing with State-of-the-art Tool

We compare SafeTune with [34], a state-of-the-art tool to select
important parameters by running performance experiments and
choosing parameters that leads to significant performance change
via machine learning techniques. This prior work [34] opens their
results which include the Top-n important parameters (32 in total) in
PostgreSQL and Cassandra predicted by them. So we evaluate Safe-
Tune in these two software to compare with the prior work [34].
The two software has 252 and 117 configuration parameters respec-
tively. We train SafeTune on the same data set (does not include
PostgreSQL) as in § 5.1 but excluding Cassandra. To get the ground
truth of performance related parameters in the two software, we
manually label the parameters in the same way as 2.1. Note that
this manual work is only for the evaluation, but is not needed for
users of SafeTune.

Note that the prior work [34] predicts the performance related pa-
rameters by concrete performance experiments. While SafeTune
is based on configuration documents. To prove that the perfor-
mance related parameters predicted by SafeTune do have impact
on performance, we run performance tests under different values
of parameters. And we measure the performance impact by the fac-
tor of performance change before and after the parameter’s value
change. We collect the performance tests from popular benchmarks
including: TPC-C [14], TPC-H [15] and ca-stress [8]. Each test is
repeatedly run 10 times to get stable results. We refer to the per-
formance as the 99%/100% latency (tail latency), mean throughput
and single query execution time.

Result and Analysis. Experiment results show that SafeTune
can identify 117 performance related parameters that are missed

by the prior work [34]. Among the 117 parameters, 28 show signif-
icant performance impacts (up to 14.6x) in our performance testing.
Table 6 shows the Top-3 parameters that have big performance im-
pact for each software. For example, changing enable_sort from
1 to 0 makes the execution time of TPC-H.q17 degrades from 19.1
seconds to 279 seconds (14.6x). However, this parameter even never
appears in the rank-list of the prior work [34]. This happens because
enable_sort only affect queries that both contain GROUP BY and
ORDER BY operations, but the workload used by the prior work [34]
does not contains that. Another interesting thing is, the top-ranked
parameter fsync given by the prior work [34] only has 1.7x per-
formance impact and gets rank-12 during our testing. The reason
is similar with above. Note-worthily, SafeTune gets this result
without any heavy performance experiments (the prior work [34]
consumes 3,750 machine hours). The performance testing in our

Multi-Intention Aware Configuration Selection for Performance Tuning ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

Table 6: Part of performance related parameters missed by

state-of-the-art tool (full result in public repository).

Parameter Missed Workload Chg. Metric

PG.enable_sort TPC-H.q17 14.6x Exe. Time†

PG.enable_nestloop TPC-H.q2 6.4x Exe. Time†

PG.enable_indexscan TPC-H.q13 3.6x Exe. Time
CA.native_transport_max_concurrent ca-stress.w 13.5x Tail Lat.
CA.hinted_handoff_throttle_in_kb ca-stress.w 6.7x Tail Lat.‡

CA.allocate_tokens_for_keyspace ca-stress.rw 1.2x Throughput

Chg.: Performance change before and after parameter change; PG: Post-
greSQL; CA: Cassandra; †Query Execution Time; ‡Tail Latency.

evaluation cost about 700 machine hours while the time consumed
by SafeTune is only 2 hours for the one-time-effort training step
and less than 10 seconds for the prediction step.

SafeTune can successfully cover 29 out of 32 (90.6%) parameters
given by the prior work [34]. In total, SafeTune produces 17 false
positives (precision: 87.3%), and misses 45 out of 191 parameters (re-
call: 76.4%) that are manually confirmed from the documents to be
performance related. Most of the false positives are parameters that
have long description to explain the domain knowledge behind the
parameter, rather than what turning on/off the parameter will affect.
And the explanations may contain phrases that appear frequently in
performance related parameters, thereby misleading SafeTune. For
example, turning on zero_damaged_pages only reports a warning
(performance unrelated), but its description explain a lot why this
warning happens. The 3 cases that the prior work [34] identifies but
missed by SafeTune are: 1) commitlog_segment_size_in_mb which con-
trols commitlog file segments, needing strong domain knowledge
to understand but there are rare similar cases in the training set.
2) compaction_throughput_mb_per_sec, whose description is too brief
to be understood by SafeTune. 3) default_statistics_target whose
description contains too much performance unrelated explanations
that distract SafeTune.

Note that both the prior work [34] and our evaluation are limited
by the workload. Some parameters do not trigger big performance
change under the selected workload. For example, max_logical_re
plication_workers controls maximum workers a logical replication
transaction can use. This parameter affects performance only when
PostgreSQL is in a replication process, but this workload does not
included in any of selected benchmarks. In the evaluation, we use
richer types of workloads so we observe more performance related
parameter than the prior work [34].

In conclusion, SafeTune can identify many performance related

parameters with big performance impact that the state-of-art tool [34]

fails to detect, and covering most of that identify by the prior work.

Also, SafeTune is more efficient and lightweight.

5.3 RQ3: Effectiveness Study in Helping

Performance Tuning

SafeTune can help tuning tools (e.g., OtterTune [43], BestCon-
fig [54]) avoid potential side-effects on other user intentions. To
prove the effectiveness of SafeTune, we conduct a case study on
one of the auto-tuners and manually validate the result. Among
these publicly available auto-tuners, OtterTune [43] is the most
popular one with 1.1k Github stars. OtterTune supports MySQL

(a) Lower reliability

(b) More cost

(c) Reduced functionality

(d) Lower performance (other user)

-- Start MySQL with default configuration (innodb_buffer_pool_size=128M)

Bash# top -p [mysqld-pid]

PID USER PR NI VIRT RES SHR %CPU %MEM COMMAND

4329 mysql 20 0 1.165g 0.041g 0.015g S 0.0 0.0 mysqld

-- run OtterTune and startup MySQL with the configuration suggested
by OtterTune (innodb_buffer_pool_size=16.4G)

Bash# top -p [mysqld-pid]

PID USER PR NI VIRT RES SHR %CPU %MEM COMMAND

4919 mysql 20 0 18.301g 1.340g 15152 S 0.0 1.1 mysqld

More Cost (30 $USD/month for single node, ecs.hfc7.xlarge)

Show the data files MySQL is monitoring (performance_schema=ON):

mysql> SELECT * FROM performance_schema.file_instances LIMIT 3;

+--------------------------------------+-------------------------+------------+
| FILE_NAME | EVENT_NAME | OPEN_COUNT |
+--------------------------------------+-------------------------+------------+
/var/lib/mysql/ibdata1	innodb/innodb_data_file	3
/var/lib/mysql/ib_logfile0	innodb/innodb_log_file	2
/var/lib/mysql/mysql/engine_cost.ibd	innodb/innodb_data_file	3
+--------------------------------------+-------------------------+------------+

-- Run OtterTune and startup MySQL with the configuration suggested
by OtterTune (performance_schema=OFF)

-- Then, user may want to monitor the status of data files via:

mysql> SELECT * FROM performance_schema.file_instances LIMIT 3;

Empty set (0.00 sec) # Reduced Functionality

(performance schema monitoring not work)

-- Startup PostgreSQL with the default configuration (fsync=ON)

Bash# ./tpcc_run.lua & # TPC-C, which is write intensive

Bash# kill -9 [postgresql-pid]

-- Then, restart PostgreSQL, clear cache to force reading from disk.

postgres=# SELECT * FROM test_table LIMIT 10000;

...... (10000 rows successfully returned)

(Disk: Intel P4510 SSD, with disk-failure guard)

-- run OtterTune and startup PostgreSQL with the configuration
suggested by OtterTune (fsync=OFF)

Bash# ./tpcc_run.lua & # TPC-C, which is write intensive

Bash# kill -9 [postgresql -pid]

-- Then, restart PostgreSQL, clear cache to force reading from disk.

postgres=# SELECT * FROM test_table LIMIT 10000;

WARNING: page verification failed, calculated checksum 39438 but expected 39327

ERROR: invalid page in block 1 of relation base/13425/6892 (Data corruption)

-- Startup MySQL with the default configuration (innodb_flush_method=fsync)

Bash# ./tpcc_run.lua # User A: TPC-C workload

Transactions: 250.26 per second

Latency (ms) avg: 31.90

mysql> source tpch/query-14.sql; # User B: TPC-H workload

Query OK, 1 row in set (21.81 sec)

-- run OtterTune and startup MySQL with the configuration suggested
by OtterTune (innodb_flush_method=O_DIRECT)

Bash# ./tpcc_run.lua

Transactions: 340.94 per second

Latency (ms) avg: 23.40 1.36x faster for TPC-C workload

mysql> source tpch/query-14.sql;

Query OK, 1 row in set (1 min 29.21 sec)

4.09x performance drop for TPC-H workload

(user 2)

(user 1)

Figure 4: Side-effects on other intentions caused by Otter-

Tune without the aid of SafeTune.

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Haochen He and Zhouyang Jia, et al.

and PostgreSQL, so we run OtterTune in these two software under
default tool setting and apply SafeTune to check if SafeTune can
warn potential side-effects. Further, to prove those side-effects on
other user intentions do have severe consequences, we manually
validate if the corresponding intentions are violated. In the case
study, we assume 4 users who want to leverage OtterTune to im-
prove performance (with their non-performance intention shown
in the end):

• User A: military communication service provider who is
obligated to preserve data reliably. – High reliability

• User B: free service provider who uses free cloud instances
with limited resources. – Low cost (resource)

• User C: system administrator who is responsible to monitor
unexpected behavior of the database. – Functionality

• User D: social network application provider who faces many
different user requests. – Good performance (all users)

Result and Analysis. Overall, SafeTune warns 8 side-effects (cov-
ering 4 types, excluding "lower security" and "limited side-effect",
OtterTune does not touch any security related parameters) on other
user intentions caused by OtterTune. We discuss how the intentions
of User A-D are violated by the 4 out of 8 side-effects in detail, and
we put the other 4 cases in the public repository. ForUser A, fsync
is the parameter to be affected. It is turned off by OtterTune during
tuning, whose document [12] is written as: "While turning off fsync

is often a performance benefit, this can result in unrecoverable data
corruption in the event of a power failure or system crash. Thus it is

only advisable to turn off fsync if you can easily recreate your entire

database from external data." Though the workload performance
improved by ∼70% after tuning by OtterTune, the database get unre-
liable. As shown in the Fig. 4(a), we simulate an occasionally power
loss when PostgreSQL is serving request normally by issuing kill
-9 to the postgres server process and clear the system cache which
would not survive during a power loss. After restarting the pro-
cess, we observe the User A’s data is corrupted (yellow/red text in
Fig. 4(a)) This is because by turning off this parameter, PostgreSQL
will only persist data once the buffer is full. We also observed that
when fsync is turned on, the simulated power loss never causes the
data corruption. By applying SafeTune, this parameter is warned
clearly to have reliability impact.

Running OtterTune in MySQL, the parameter innodb_buffer_
pool_size used by User B is increased from 128MB to 16.4GB as
shown in Fig. 4(b). This is because using the large innodb buffer,
more data can be cached, improving the performance.WhileUser B
may use MySQL in a free cloud virtual machine. Using big amount
of memory leads to extra budget for ∼30$ per month (depending on
the cloud platform provider). While such consequence is warned
by using SafeTune in prior.

ForUserC, OtterTune suggests to turn of parameter performance
_schema because by doing so, the performance improves by ∼25%.
This parameter enables MySQL monitoring on various entities, in-
cluding events, opened files, status information and etc. User C
monitors unexpected behavior (e.g., too many contentions on data
files) by this functionality. But after turning it off, as shown in
Fig. 4(c), any monitoring action (i.e., monitor which files are being
opened by how many entities) does not work. Hurting User C’s
initial intention.

UserD is affected by innodb_flush_method. As shown in Fig. 4(d),
after running OtterTune, this parameter is tuned from fsync to
O_DIRECT. The former value allows each data write first touch the
kernel’s cache. Since MySQL implements buffering (in user mode)
itself (especially for write [10]), the kernel level caching may con-
flict with the MySQL buffering. And the latter value makes MySQL
bypass the kernel cache. So if User D uses the configuration set-
ting suggested by OtterTune, the write workload (green text in
Fig. 4(d)) can be improved by ∼36%. But User D is facing many
kinds of users (i.e., workload). As the red text shown in Fig. 4(d),
the read performance degrades dramatically by this configuration
setting. The reason lies in the kernel cache can keep more hot data
in memory, bringing speed up for read.

In conclusion, auto-tuners may cause critical side-effects on other

intentions, SafeTune is complementary with them that helps to pre-

vent the bad consequences.

6 RELATEDWORK

Configuration Tuning. Some works target improving software
performance by tuning configurations. They can be classified into
model-based tuning [16], measurement-based tuning [24], search-
based tuning [19, 37, 38, 45, 47, 54] and learning-based tuning [18,
32, 39]. These tuning tools tune the parameters by some heuris-
tics and measure software performance to build a model that can
find the fastest configuration. They only consider the performance
impact of configurations, so they may cause side-effects such as
reducing reliability. While SafeTune can help these tools by both
accelerating them by reducing the search space and warning these
side-effects to prevent severe consequences.

Pre-selectingPerformance-relatedParameters. Someworks
target per-selecting important parameters to accelerate the con-
figuration tuning process. They use performance experiments to
dynamically choose parameters that have a significant influence
on performance using statistic [34] or machine learning [23] tech-
niques. These works only focus on the performance of software
and pay no attention to non-performance intentions of users like
reliability, security, and functionality. While SafeTune covers their
targets and aware of multi-intentions additionally. It fully leverages
the document of parameters to predict the performance-related
parameters and potential non-performance side-effects.

UnderstandingRelationship betweenPerformance andCon-

figuration. Some works target understanding the relationship
between performance and configuration parameters. A group of
works understands the relationship from code. They use static
or dynamic code analysis [31, 35, 49]. While they ignore the non-
performance impact of the configuration parameters, and we under-
stand this relationship in the end-user’s view – SafeTune considers
both performance and non-performance user intentions. The other
group of works mines useful information related to configuration
to help both developers and users improve software performance.
Some works mine configuration documents to detect performance
bugs [29] and to identify main intentions [53], Some works mine
performance constraints that are related to configuration to prevent
users from performance misconfigurations [48]. Compared with
all these works, SafeTune has a different focus. It utilizes con-
figuration documents to obtain multi-intentions of configuration

Multi-Intention Aware Configuration Selection for Performance Tuning ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

parameters to pre-select performance-related parameters and warn
potential side-effects.

7 DISCUSSION

Ability of Generalization. The six types of side-effects on non-
performance intentions are concluded from the studied software. To
make SafeTune as generalized as possible, we selected 13 widely-
used open-source software systems from 4 representative categories
as targets. And our evaluation in §5.1 and §5.2 shows SafeTune can
achieve good results on un-studied software. But we still cannot
claim that our approach can be generalized to all software domains.
SafeTune leverages configuration documents to predict tuning
guidance. So the tuning guidance that SafeTune provides relies on
the quality of the configuration documents of the target software
systems. Since the inaccuracy of SafeTune is related to the low
quality, We suggest that the documents can 1) explain the context of
parameters’ functionality, 2) tell user what will result in by changing
parameters’ value, 3) split the description of parameter and the
additional information (e.g., recommendations, constraints with
other parameters) into different paragraphs. Our future work will
extend SafeTune by using more information (i.e., source code)
as additional input and techniques (e.g., static analysis) to further
understand the side-effects on non-performance intentions.

Effectiveness on Reducing the Search Space for Tuning.

SafeTune may produces many performance related parameters
(e.g., occupying 38.9% of all parameters in §5.2) for performance
tuning, directly using them may still make the search space big
during tuning. However, parameters suggested by SafeTune are
labeled with side-effects so that many of the parameters may not
be actually tuned in tuning (given some of other user intentions as
input). In fact, there are only small proportion (8.4% of all parame-
ters in §5.2) of performance related parameters that have limited or
no side-effects. Also, we argue SafeTune identifies performance
related parameters in general and independent of workload. So
users can further choose parameters according their workload. One
of our future works lies in automatically identifying workloads that
a given performance related parameter affect.

Triggering Conditions of the Side-effects. Tuning parame-
ters with side-effects may not necessarily violate user intentions. If
User A of §5.3 turns off fsync but he/she has battery-backed RAM
in the event of power failure, the intention of high reliability would
not be violated. Such conditions (e.g., with/without battery-backed
RAM) may come from system environment, production workload,
malicious attacks, etc. SafeTune is not able to extract all triggering
conditions, and we claim SafeTune warns potential side-effects on
other user intentions.

8 CONCLUSION

Users change configuration parameters to satisfy their intentions
like better performance, reliability, etc. Existing works automati-
cally pre-select & tune the parameters to improve performance but
only for specific workloads and are unaware of other user inten-
tions. We argue that configuration document has rich information
and can be leveraged to provide guidance on pre-select important
parameters in general while keeping other non-performance in-
tentions. We conclude six types of non-performance side-effect of

the performance-related parameters from an empirical study on 13
software systems. Based on the finding, we design and implement
SafeTune to predict the tuning guidance. The experiments show
that SafeTune can identify 28 performance related parameters that
with big performance impacts but missed by state-of-the-art tools.
And SafeTune can help the auto-tuner prevent 8 potential side-
effects on other user intentions that can cause severe consequences.

ACKNOWLEDGMENTS

This paper is supported by National Key R&D Program of China
(Project No.2018YFB0204301); National Natural Science Foundation
of China (Project No.61872373); Guangdong Major Project of Ba-
sic and Applied Basic Research (Project No.2019B030302002); The
Major Key Project of PCL.

REFERENCES

[1] 1988. GCC, the GNU Compiler Collection. Retrieved 2021 from http://gcc.gnu.
org/

[2] 2014. StackOverFlow #27176623. https://stackoverflow.com/questions/27176623/
[3] 2016. MySQL 8.0 Reference Manual :: 15.14 InnoDB Startup Options and System

Variables. Retrieved 2021 from https://dev.mysql.com/doc/refman/8.0/en/innodb-
parameters.html#sysvar_innodb_flush_log_at_trx_commit

[4] 2017. ISO/IEC/IEEE International Standard - Systems and software engineering–
Vocabulary. ISO/IEC/IEEE 24765:2017(E) (2017), 1–541.

[5] 2020. Category:Computing - Wikipedia. Retrieved 2021 from https://en.
wikipedia.org/wiki/Category:Computing

[6] 2021. sklearn.metrics.average_precision_score–scikit-learn 0.24.2 documentation.
Retrieved 2021 from https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.average_precision_score.html

[7] Accessed 2021. AWS Cloud Products. https://aws.amazon.com/products
[8] Accessed 2021. The cassandra-stress tool. https://cassandra.apache.org/doc/4.0/

cassandra/tools/cassandra_stress.html
[9] Accessed 2021. Google Cloud products. https://cloud.google.com/products
[10] Accessed 2021. Optimizing InnoDB Disk I/O: store system tablespace files on

Fusion-io devices. https://dev.mysql.com/doc/refman/8.0/en/optimizing-innodb-
diskio.html

[11] Accessed 2021. Oracle Cloud Infrastructure Products by Category. https:
//www.oracle.com/cloud/products.html

[12] Accessed 2021. PostgreSQL documentation. https://www.postgresql.org/docs/
13/index.html

[13] Accessed 2021. Principal component analysis. https://en.wikipedia.org/wiki/
Principal_component_analysis

[14] Accessed 2021. Transaction Processing Performance Council Benchmark C
(TPC-C). http://www.tpc.org/tpcc/

[15] Accessed 2021. Transaction Processing Performance Council Benchmark H
(TPC-H). http://www.tpc.org/tpch/

[16] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni.
2004. Model-based performance prediction in software development: A survey.
IEEE Transactions on Software Engineering 30, 5 (2004), 295–310.

[17] Liang Bao, Xin Liu, Fangzheng Wang, and Baoyin Fang. 2019. ACTGAN: au-
tomatic configuration tuning for software systems with generative adversarial
networks. In Proceedings of the 2019 34th IEEE/ACM International Conference on

Automated Software Engineering (ASE 19). IEEE, 465–476.
[18] Liang Bao, Xin Liu, Ziheng Xu, and Baoyin Fang. 2018. Autoconfig: Automatic

configuration tuning for distributed message systems. In Proceedings of the 2018

33rd IEEE/ACM International Conference on Automated Software Engineering (ASE

18). IEEE, 29–40.
[19] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter

optimization. The Journal of Machine Learning Research 13, 1 (2012), 281–305.
[20] L Breiman. 2001. Random Forests. Machine Learning 45 (2001), 5–32.
[21] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas

Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël
Varoquaux. 2013. API design for machine learning software: experiences from
the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining

and Machine Learning. 108–122.
[22] Andrew Butterfield, Gerard Ekembe Ngondi, and Anne Kerr. 2016. A dictionary

of computer science. Oxford University Press.
[23] Zhen Cao, Geoff Kuenning, and Erez Zadok. 2020. Carver: Finding important pa-

rameters for storage system tuning. In Proceedings of the 18th USENIX Conference

on File and Storage Technologies (FAST 20). 43–57.

http://gcc.gnu.org/
http://gcc.gnu.org/
https://stackoverflow.com/questions/27176623/
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit
https://en.wikipedia.org/wiki/Category:Computing
https://en.wikipedia.org/wiki/Category:Computing
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://aws.amazon.com/products
https://cassandra.apache.org/doc/4.0/cassandra/tools/cassandra_stress.html
https://cassandra.apache.org/doc/4.0/cassandra/tools/cassandra_stress.html
https://cloud.google.com/products
https://dev.mysql.com/doc/refman/8.0/en/optimizing-innodb-diskio.html
https://dev.mysql.com/doc/refman/8.0/en/optimizing-innodb-diskio.html
https://www.oracle.com/cloud/products.html
https://www.oracle.com/cloud/products.html
https://www.postgresql.org/docs/13/index.html
https://www.postgresql.org/docs/13/index.html
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
http://www.tpc.org/tpcc/
http://www.tpc.org/tpch/

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Haochen He and Zhouyang Jia, et al.

[24] Bihuan Chen, Yang Liu, and Wei Le. 2016. Generating performance distributions
via probabilistic symbolic execution. In Proceedings of the 38th International

Conference on Software Engineering (ICSE 16). 49–60.
[25] Chuancong Gao, Jianyong Wang, Yukai He, and Lizhu Zhou. 2008. Efficient

mining of frequent sequence generators. In Proceedings of the 17th international

conference on World Wide Web (WWW 08). ACM, 1051–1052.
[26] Yoni Gavish, Jerome O’Connell, Charles J Marsh, Cristina Tarantino, Palma

Blonda, Valeria Tomaselli, and William E Kunin. 2018. Comparing the perfor-
mance of flat and hierarchical Habitat/Land-Cover classification models in a
NATURA 2000 site. ISPRS Journal of Photogrammetry and Remote Sensing 136
(2018), 1–12.

[27] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. 2005. Borderline-SMOTE: A
New over-Sampling Method in Imbalanced Data Sets Learning. In Proceedings of

the 2005 International Conference on Advances in Intelligent Computing (ICIC 05).
878–887.

[28] Xue Han, Tingting Yu, and David Lo. 2018. PerfLearner: Learning from Bug
Reports to Understand and Generate Performance Test Frames. In Proceedings of

the 33rd ACM/IEEE International Conference on Automated Software Engineering

(ASE 18). 17–28.
[29] Haochen He, Zhouyang Jia, Shanshan Li, Erci Xu, Tingting Yu, Yue Yu, Ji Wang,

and Xiangke Liao. 2020. CP-Detector: Using Configuration-related Performance
Properties to Expose Performance Bugs. In Proceedings of the 2020 35th IEEE/ACM

International Conference on Automated Software Engineering (ASE 20). IEEE, 623–
634.

[30] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd.
2020. spaCy: Industrial-strength Natural Language Processing in Python. https:
//doi.org/10.5281/zenodo.1212303

[31] Yigong Hu, Gongqi Huang, and Peng Huang. 2020. Automated Reasoning and
Detection of Specious Configuration in Large Systems with Symbolic Execution.
In Proceedings of the 14th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 20). 719–734.
[32] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner, Akshay

Patel, and Yuvraj Agarwal. 2017. Transfer learning for performance modeling of
configurable systems: An exploratory analysis. In Proceedings of the 2017 32nd

IEEE/ACM International Conference on Automated Software Engineering (ASE 17).
IEEE, 497–508.

[33] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012. Un-
derstanding and Detecting Real-World Performance Bugs. In Proceedings of the

33rd ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI 12). 77–88.
[34] Konstantinos Kanellis, Ramnatthan Alagappan, and Shivaram Venkataraman.

2020. TooMany Knobs to Tune? Towards Faster Database Tuning by Pre-selecting
Important Knobs. In Proceedings of the 12th USENIX Workshop on Hot Topics in

Storage and File Systems (HotStorage 20).
[35] Chi Li, Shu Wang, Henry Hoffmann, and Shan Lu. 2020. Statically inferring

performance properties of software configurations. In Proceedings of the Fifteenth

European Conference on Computer Systems (EuroSys 20). 1–16.
[36] Andy Liaw and Matthew Wiener. 2002. Classification and Regression by ran-

domForest. R News 2, 3 (2002), 18–22.
[37] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. 2017. Using bad

learners to find good configurations. In Proceedings of the 2017 11th Joint Meeting

on Foundations of Software Engineering and Symposium on the Foundations of

Software Engineering (ESEC/FSE 17). 257–267.
[38] Rafael Olaechea, Derek Rayside, Jianmei Guo, and Krzysztof Czarnecki. 2014.

Comparison of exact and approximate multi-objective optimization for soft-
ware product lines. In Proceedings of the 18th International Software Product Line

Conference (SPLC 14). 92–101.

[39] Cheng Peng, Canqing Zhang, Cheng Peng, and Junfeng Man. 2017. A rein-
forcement learning approach to map reduce auto-configuration under networked
environment. International Journal of Security and Networks 12, 3 (2017), 135–140.

[40] PostgreSQL Global Development Group. 2008. PostgreSQL. http://www.
postgresql.org.

[41] Gerard Salton and Christopher Buckley. 1988. Term-weighting approaches in
automatic text retrieval. Information processing & management 24, 5 (1988),
513–523.

[42] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The hadoop distributed file system. In Proceedings of the 26th symposium on mass

storage systems and technologies (MSST 10). IEEE, 1–10.
[43] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.

Automatic Database Management System Tuning Through Large-scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management

of Data (SIGMOD 17). 1009–1024. https://github.com/cmu-db/ottertune
[44] ShuWang, Chi Li, HenryHoffmann, Shan Lu,William Sentosa, andAchmad Imam

Kistijantoro. 2018. Understanding and Auto-Adjusting Performance-Sensitive
Configurations. In Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS 18). 154–168.

[45] Tiantian Wang, Mark Harman, Yue Jia, and Jens Krinke. 2013. Searching for
better configurations: a rigorous approach to clone evaluation. In Proceedings of

the 2013 9th Joint Meeting on Foundations of Software Engineering and Symposium

on the Foundations of Software Engineering (ESEC/FSE 13). 455–465.
[46] Duane Wessels, Henrik Nordström, Amos Jeffries, Alex Rousskov, Francesco

Chemolli, Robert Collins, and Guido Serassio. 1996. Squid: Optimising Web
Delivery. http://www.squid-cache.org/.

[47] Fan Wu, Westley Weimer, Mark Harman, Yue Jia, and Jens Krinke. 2015. Deep
parameter optimisation. In Proceedings of the 2015 Annual Conference on Genetic

and Evolutionary Computation (GECCO 15). 1375–1382.
[48] Chengcheng Xiang, Haochen Huang, Andrew Yoo, Yuanyuan Zhou, and Shankar

Pasupathy. 2020. PracExtractor: Extracting Configuration Good Practices from
Manuals to Detect Server Misconfigurations. In Proceedings of the 2020 USENIX

Annual Technical Conference (USENIX ATC 20). 265–280.
[49] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and

Shankar Pasupathy. 2016. Early detection of configuration errors to reduce failure
damage. In Proceedings of the 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 16). 619–634.
[50] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,

Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, JosephGonzalez, Scott Shenker, and Ion Stoica. 2016. Apache
Spark: A Unified Engine for Big Data Processing. Commun. ACM 59, 11 (2016),
56–65.

[51] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, et al. 2019. An end-to-end automatic
cloud database tuning system using deep reinforcement learning. In Proceedings

of the 2019 International Conference on Management of Data (ICMD 19). 415–432.
[52] Yuanliang Zhang, Haochen He, Owolabi Legunsen, Shanshan Li, Wei Dong, and

Tianyin Xu. 2021. An Evolutionary Study of Configuration Design and Imple-
mentation in Cloud Systems. In Proceedings of the 43rd International Conference

on Software Engineering (ICSE 21). 175–176.
[53] Chenglong Zhou, Haoran Liu, Yuanliang Zhang, Zhipeng Xue, Qing Liao, Jinjing

Zhao, and Ji Wang. 2021. Deep Understanding of Runtime Configuration Inten-
tion. International Journal of Software Engineering and Knowledge Engineering
30, 05 (2021), 1–28.

[54] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue
Liu, Kunpeng Song, and Yingchun Yang. 2017. Bestconfig: tapping the perfor-
mance potential of systems via automatic configuration tuning. In Proceedings of

the 2017 Symposium on Cloud Computing (SoCC 17). 338–350.

https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
http://www.postgresql.org
http://www.postgresql.org
https://github.com/cmu-db/ottertune
http://www.squid-cache.org/

	Abstract
	1 Introduction
	2 Understanding performance- related Configuration
	2.1 Data Collection
	2.2 Side-effects on Non-performance Intentions

	3 Semi-supervised Dataset Expansion
	3.1 Pre-processing
	3.2 Mining Association Rules
	3.3 Expanding Dataset Progressively
	3.4 Balancing Data

	4 Identifying performance-related Parameters and Side-effects
	5 Evaluation
	5.1 RQ1: Accuracy of Predicting Tuning Guidance and Data Expansion
	5.2 RQ2: Comparing with State-of-the-art Tool
	5.3 RQ3: Effectiveness Study in Helping Performance Tuning

	6 Related Work
	7 Discussion
	8 Conclusion
	Acknowledgments
	References

