
Transferring Well-Trained Models for Cross-Project Issue
Classification: A Large-Scale Empirical Study

Yue Yu
Laboratory of Software Engineering for Complex Systems,

National University of Defense Technology
Changsha, Hunan, China

yuyue@nudt.edu.cn

Yarong Zeng
College of Computer,

National University of Defense Technology
Changsha, Hunan, China

zengyarong16@nudt.edu.cn

Qiang Fan
College of Computer,

National University of Defense Technology
Changsha, Hunan, China
fanqiang09@nudt.edu.cn

Huaimin Wang
College of Computer,

National University of Defense Technology
Changsha, Hunan, China
hmwang@nudt.edu.cn

ABSTRACT

In modern software engineering practices, various kinds of auto-

mated and intelligent methodologies have been proposed to im-

prove the efficiency of collaborative development. However, most

of those approaches are heavily dependent on supervised or semi-

supervised learning technologies, which would be restricted by the

lack of training data. Inspired by the theories and techniques of

transfer learning, cross-project approaches have been proposed,

but hard to achieve a consistent and desirable performances. In

this paper, we conduct an extensive empirical study to capture the

determinants that affect the performances of transferring reusable

models across projects in the context of issue classification. Start-

ing from a large-scale dataset, containing 799 OSS projects and

more than 795,000 issues, we have extracted 28 attributes grouped

into 4 different dimensions. The results show that the performance

of cross-project issue classification based on model transferring

is sensitive and unstable, which is influenced by multiple factors

spreading among transferred model training, project construction,

and technical and socail relations between source and target.

CCS CONCEPTS

• Software and its engineering → Software maintenance;

KEYWORDS

Cross-Project, Transfer Learning, Issue Classification;

ACM Reference Format:

Yue Yu, Yarong Zeng, Qiang Fan, and Huaimin Wang. 2018. Transferring

Well-Trained Models for Cross-Project Issue Classification: A Large-Scale

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Internetware ’18, September 16, 2018, Beijing, China

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6590-1/18/09. . . $15.00
https://doi.org/10.1145/3275219.3275237

Empirical Study. In The Tenth Asia-Pacific Symposium on Internetware (Inter-

netware ’18), September 16, 2018, Beijing, China. ACM, New York, NY, USA,

6 pages. https://doi.org/10.1145/3275219.3275237

1 INTRODUCTION

With the development of distributed software development, var-

ious kinds of automated and intelligent methodologies based on

supervised or semi-supervised learning technologies have been

proposed, to reduce the burden of project management, such as

recommender systems for locating the qualified bug fixers [1, 8] or

code reviewers [17, 23, 24], and automated management approaches

for detecting duplicate issues [13, 20, 21]. However, a comprehen-

sive and high-quality dataset for those training-based approaches

is often not available, which restricts their performances in prac-

tise. Inspired by the theory and technique of transfer learning [14],

cross-project approaches have been investigated in two aspects, i.e.,

data transferring and model transferring. In terms of data-reusing,

the main idea of transferring [11, 12, 19] is to learn transformation

fuctions that mapping sufficient data from source projects (i.e., the

well-developed projects with plenty of historical data) onto a uni-

form distribution of target projects; then a intelligent model can be

trained by using the selected data or features. Although the trans-

formations vary from individual to individual, i.e., run the training

process for every target project according to the data characteristics,

it is extremely hard to estimate the real distribution from the limited

amount of samples in the target projects. Hence, the transfer models

are hard to achieve a consistent and desirable performance, unless

the models are frequently retrained or updated by continuously

adding newly received data of the target project. Compared to data

transferring with high learning cost, other researches [9, 10, 28] are

tried to directly reuse (i.e., transfer) well-trained models learned

from source projects in targeted projects. However, those studies,

restricted to relative small or median scale data sets, only focus

on transferring one single model, e.g., using the defect prediction

model trained from Firefox in Internet Explorer [28], which leads

to discouraging and inconsistent results [16].

In this paper, we conduct an extensive empirical study of trans-

ferring reusable models across projects in the context of issue clas-

sification [5, 7, 26, 27] (i.e., distinguishing real bugs from nonbugs

among all issues). Thus, we develop themain research question:RQ:

Internetware ’18, September 16, 2018, Beijing, China Yue Yu, Yarong Zeng, Qiang Fan, and Huaimin Wang

What factors affect the performances of transferring well-

trainedmodels for cross-project issue classification? Starting

from the state-of-the-art classification approach [5], we investigate

how the software project characteristics (measured by 28 metrics

extracted from four different dimensions) affects the performance

of model transferring. Although our study scenarios is different

from the most of existing cross-project work about defect predic-

tion [9–12, 19, 28], we argue that most of investigated factors (as

discussed in Section 2.2) are widely discussed in various contexts,

e.g., contribution evluation [18, 22] and defect prediction [15, 28],

so the empirical results of this paper probably can be extendted to

other application scenarios.

In particular, the key contributions of this paper include:

• We collect a comprehensive dataset of 232,200 transferring

pairs generated from 799 projects in GitHub.

• We design a comprehensive regression model containing 28

widely used softawre metrics (as shown in Table 1), which

could reveal the in-depth correlations among source and

target projects.

• We claim that the performance of cross-project issue classifi-

cation based on model transferring is sensitive and unstable,

which is influenced by multiple factors of the relations be-

tween source and target projects, in terms of model training,

project construction, social and technical aspects.

2 METHODS

2.1 Two-stage Issue Classification

In the modern issue tracking system (e.g., GitHub Issue 2.0), devel-

opers are only required a short textual abstract to submit a new

issue report. There are many types of issues in the IST, including

bug, feature request, enhancement, documentation, and so on. For

each received issue, the core team needs to understand the con-

tributor’s purpose, identify the type and filter out the duplicate

and undesirable one. To reduce the human cost and hasten the

management process, automated and intelligent categorization ap-

proaches based on text mining [5] has been receiving increasing

attention from the research community. In this paper, we use the

two-stage classification model (state-of-the-art [5]) to build the

issue classifiers within projects. In the first stage, we use free text

of issue report (i.e., title and description) to train the SVM classifier

and get semantic probability and perplexity. In the second stage,

we combine the structured developer imformation and the outputs

from the first stage to train the final prediction model by using

logistic regression.

2.2 Regression Analysis

We aims to determine the factors that influence the performances of

cross-project classification. Supposing that there is a project set C ,
for Pi , Pj (i � j) in C , we consider a combination (Pi , Pj) to train a

classification model using Pi , and test howwell it works in Pj . Then,
we collect a set of measures between cross-project pairs which can

represent the association relationships between the source projects

and target projects. Finally, we use multiple linear regression to

analyze the factors that affect the performance of cross-project

classification. Our models are fitted using the lme41 package in R.

The outcome of the regression model is the performance of cross-

project classification, the predictors are those measures between

cross-project pairs.

In regression analysis, all numeric variables are first log trans-

formed (plus 0.5) to stabilize variance and reduce heteroscedastic-

ity [4]. We compute the variance inflation factors (VIFs) for each

predictor to check whether there exist multicollinearity problems or

not (all remained well below 5, indicating absence of multicollinear-

ity) [4]. For eachmodel predictor, we report its coefficients, standard

error, and significance level. We consider coefficients important

if they are statistically significant (p < 0.05). In addition to the

coefficients, we get effect sizes (Sum square) of each predictor from

ANOVA analyses. The goodness-of-fit of regression models can be

evaluated by pseudo R-squareds, i.e., conditional R2 coefficient of

determination for generalized mixed-effects models (i.e., the higher

R2 value is, the better the fitting effect is), which is implemented in

the MuMIn 2 package of R.

2.3 Predictors

Our predictors of regression analysis cover training model-level,

project-level, social-level, and technical-level.

2.3.1 Model-level measures.

Model issue num: The number of the training samples of the

classification model. As more training samples are available, the

model corpus is richer, then the generalization performance of the

model may be better.

Local model performance: The classification performance of the

training project on their own test data sets. We use favд (see Equa-
tion 1) to evaluate the model performance to consist with cross-

project effect validation.

Model issue Gini coefficient: A measure of statistical dispersion,

which intends to represent the issue distribution of a project’s

contributors. The value zero indicates that all values are the same,

namely all contributors of a project submit the same number of

issues. The value one represents the maximal inequality among

values, when one person submits almost all the issues, and there are

only a few other people, the Gini coefficient will be very close to one.

We suspect that the degree of confusion in the issue distribution

may have an impact on the cross-project classification performance.

2.3.2 Project-level measures.

Project popularity: The popularity of the project. We use the

number ofWatch to measure the popularity of project in GitHub.

Project age: The time from project creation to the current time

in months, which is used as a proxy for maturity.

Same Owner Type: Whether the owner type of the two projects

are the same or not. Owner type in GitHub can be divided into two

types, Organization and User. Organizations are shared accounts

where businesses and open-source projects can collaborate across

many projects at once [6]. Users indicate a personal account.

Same License:Whether the open source license of the two projects

are the same or not. There are some popular licenses, e.g.,MIT, GPL,

Apache-2.0.

1https://cran.r-project.org/web/packages/lme4/lme4.pdf
2https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf

Transferring Well-Trained Models for Cross-Project Issue Classification Internetware ’18, September 16, 2018, Beijing, China

Same Language: Whether the programming language of the two

projects are the same or not. A project may have a variety of de-

velopment languages. We only consider the first language which

covers the largest amount of code.

Similarity of Readme File: The similarity of README file between

two projects, We remove the markdown tags of readme file and

extracted text information. Then use Term frequency-inverse doc-

ument frequency(TF-IDF) technique to convert the raw text to a

features vector, and we calculate cosine similarity between the two

vectors.

root

src

module1 module 2 module 3 module 4

root

src

module1 module 2

sub-module1 sub-module2

T_A T_B

Figure 1: The directory structure of two projects

2.3.3 Social-level measures.

Core members: The number of core members in project. The core

members refer to someone who have extensive permissions, include

the repository owner and collaborators in GitHub.

External contributors: The number of external contributors who

have contributed to the project. The common contribution activ-

ities include contribute code, submit issue reports, or just report

comment.

Coremembers difference: The difference in the number of project’s

core member.

External contributors difference: The difference in the number of

project’s external contributors.

Participants intersection: The intersections in the number of

project’s participants(include core member and external contribu-

tors). The same group has contributed to two projects, the devel-

opment activity data they generated will be very similar, and the

correlation between projects is stronger.

Similarity of National distribution for participants: The similarity

of national distribution of all participants between two projects.

We use unidimensional vector to represent the national distribu-

tion of a project, the vector length is the number of countries, and

the number of participants in each country of the project is repre-

sented by the value of the status bit. We extract the participants

information of projects in GitHub from Ghtorrent3 user table. For
participants with incomplete nationality information, such as have

city and location but no state information, we use state and city re-

lations table provided byMaxmind 4 to complement the nationality

information.

3http://www.ghtorrent.org
4https://www.maxmind.com/en/free-world-cities-database

2.3.4 Technical-level measures.

Code size: The code size of project, counted by bytes.

Code size difference: The code size difference between two projects.

Code dependency: The number of dependencies(code library or

package) of proejct. We extracted project dependencies which

hosted in GitHub through libraries.io5, and complemented depen-

dency through parsing GitHub dependency graph web pages.

Code commen dependency: The number of common dependencies

between two projects.

Code dependency difference: The difference in the number of code

dependencies between two projects.

Similarity of Project structure: The similarity of directory struc-

ture between two projects. First, We use JSON tree to portray the

project directory structure, then calculate the edit distance between

trees using the algorithm proposed by Zhang et al [25]. The smaller

the distance, the more similar the projects structure. The tree edit

distance is defined as follows. An edit script S between two treesT 1
andT 2 is a sequence of edit operations turningT 1 intoT 2, the cost
of S is the sum of the costs of the operations in S . The minimum

cost between T1 and T2 called the tree edit distance [2]. Figure 1

gives an example. TreesT_A andT_B represent the directory struc-

ture of project A and project B, respectively. The figure shows the

way to turn T_A into T_B, it corresponds to the sequence (delete
(node with module 3,module 4), insert (node with sub-module1,sub-

module2)). Thus, the tree edit distance between these two projects

is equal to 4.

Comment cross-references: The number of direct links between

two projects which appear in issue comments. Cross-references to

other projects appearing in GitHub comments indicate the existence

of a technical dependency [3].

3 EXPERIMENT SETUP

3.1 Dataset

By using the 2017-05 GHTorrent 6 dump, we filter out the 12,797

projects that have at least 100 issues in total. Then, we do a fur-

ther data cleaning by removing: 1) forked and pure documenta-

tion projects; 2) the projects using non-Engilish to report issues

to avoids the bias of language deviation; 3) projects have less than

500 labeled issues to guarantees that the classification models have

enough training and testing data.

Finally, we collect issues data for each project through GitHub

public API, and get a relative desired dataset contains 779 projects,

and 795,284 issues. The smallest project has 502 issues and the

largest project has 13,793 issues in total. The mean number of

issues per project is 1020 and the median is 672.

3.2 Experimental Design

In order to explore what can make cross-project issue classification

work, we run a large-scale experiment based on 779 projects. Firstly,

we separate our dataset into two groups. One group is a set of

projects S (|S | = 465) which have sufficient issues data (i.e., at least

500 issues received before 2016-10-01) to train a good classification

model within the project. The other group is a set of projects T
(|T | = 500) which have at least 50 issues received after 2016-10-01,

5https://libraries.io
6http://ghtorrent.org/downloads.html

Internetware ’18, September 16, 2018, Beijing, China Yue Yu, Yarong Zeng, Qiang Fan, and Huaimin Wang

Table 1: Summary of measures for our dataset

Levels Statistics Mean St. Dev. Min Median Max

Model-level

model_issue_num 1037 724.61 500 775 5523

model_issue_gini 0.67 0.18 0 0.72 0.96

local_model_acc 0.80 0.05 0.61 0.81 0.95

Project-level

prjA_popularity 255.1 374.26 3 122 2777

prjB_popularity 247.4 363.35 2 117 2777

prjA_age 49.56 19.61 9 47 103

prjB_age 43.26 19.1 4 41 103

same_owner_type 0.64 0.48 0 1 1

same_license 0.18 0.50 0 0 1

readme_sim 0.08 0.05 0 0.07 0.75

same_language 0.13 0.34 0 0 1

Social-level

prjA_core_num 9.827 12.04 1 7 142

prjB_core_num 9.62 11.51 1 6 142

prjA_external_num 994.1 1362.54 2 426 7888

prjB_external_num 944.2 1293.99 1 425 7888

abs(core_num_diff) 9.25 13.87 0 5 141

abs(external_num_diff) 1215 1436.1 0 681 7887

participant_intersection 3.35 13.52 0 2 1625

national_distribution_sim 0.6489 0.30 0.00 0.76 1

Technical-level

prjA_code_size 7186000 9435694 4177 3814000 63500000

prjB_code_size 6867000 8689209 4177 3771000 65470000

prjA_code_depen 68.08 149.70 0 7 1404

prjB_code_depen 84.37 170.79 0 12 1404

abs(codesize_diff) 7890000 10125680 33 4263000 65460000

abs(code_depen_diff) 121.1 193.02 0 38 1404

code_commen_depen 2.73 20.70 0 0 795

project_structure_sim 538.2 667.38 0 293 4558

comment_cross_reference 0.03 1.37 0 0 241

to verify the performance of the cross classifiers. For A ∈ S and

B ∈ T , we consider a cross-project pair (A, B) to train a model

from A to predict B, if and only if A � B. Thus we can get 232, 200

combinations based on our dataset. Figure 2 shows the classification

performance of one-to-one cross-project in these combinations, as

well as the corresponding classification performance within the

project. From the classification results, we can infer that there

is still a gap between the one-to-one cross-project and within-

project. This also confirmed the findings of previous study [28]

that directly transferring one single model leads to discouraging

and inconsistent results. Next, we collect measures between these

cross-project pairs according to the method described in Section 2.3.

The summary of our measures are shown in Table 1, where the

prefix pr jA indicates the source project, and the pr jB indicates the

target project. Finally, we use multiple linear mixed effect models to

investigate the determinants that affect cross-project classification

performance as mentioned in Section 2.2.

4 RESULTS

Table 2 shows the result of regression analysis. The regression

model achieves a good fit (R2 = 49.27%). In our model, the VIFs of all

the predictors are well below three, thereby indicating the absence

of multicollinearity [4]. From Table 2, we find the performance of

cross-project classification is affected by the measures from four

dimensions. Next, we discuss the effects of these measures.

Classification Performance

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

00
10

00
0

15
00

0

����������	�

��
�������	�

Figure 2: Distribution of classification performance of one-

to-one cross-project and within-project

All model-level measures are highly significant and positive

for the performance of cross-project classification. Increasing the

Transferring Well-Trained Models for Cross-Project Issue Classification Internetware ’18, September 16, 2018, Beijing, China

Table 2: Regression Analysis of Cross-project Transferabil-

ity

Coeffs(Errors) Sum Sq

(Intercept) 0.3256(7.37)***

log(model_issue_num) 2.188(0.707) ** 689.7 **

log(model_issue_gini + 0.5) 12.37(2.408) *** 2254.1 ***

log(local_model_acc) 21.31(5.370) *** 1345.5 ***

log(prjA_popularity) -0.191(0.534) 11.0

log(prjB_popularity) 0.302(0.386) 52.6

log(prjA_age) 0.981(0.933) 94.6

log(prjB_age) 0.394(0.536) 46.4

same_owner_type TRUE 0.318(0.057) *** 2592.2 ***

same_license TRUE 0.440(0.080) *** 2580.0 ***

log(readme_sim + 0.5) 2.172(0.403) *** 2482.1 ***

same_language TRUE 0.727(0.067) *** 9925.7 ***

log(prjA_core_num) 0.239(0.441) 25.3

log(prjB_core_num) -0.041(0.311) 1.5

log(prjA_external_num) 0.691(0.473) 182.8

log(prjB_external_num) -0.505(0.328) 202.5

log(abs(core_num_diff) + 0.5) 0.087(0.026) ** 892.6 **

log(abs(external_num_diff) + 0.5) -0.209(0.019) *** 9509.9 ***

log(participant_intersection + 0.5) 0.701(0.052) *** 15354.8 ***

log(national_distribution_sim) 1.912(0.471) *** 1406.7 ***

log(prjA_code_size) 0.268(0.261) 89.9

log(prjB_code_size) 0.656(0.214) ** 800.2 **

log(prjA_code_depen) 0.060(0.143) 15.2

log(prjB_code_depen) 0.087(0.106) 59.0

log(abs(codesize_diff)) -0.182(0.020) *** 6973.7 ***

log(abs(code_depen_diff) + 0.5) -0.064(0.018) *** 991.7 ***

(code_commen_depen > 0) TRUE 0.164(0.087) . 305.5 .

log(project_structure_sim + 0.5) -0.128(0.038) *** 966.0 ***

(comment_cross_reference > 0) TRUE 0.579(0.293) * 333.4 *

Conditional R-squared 0.4927

signif.: p < 0.001 ‘***’, p < 0.01 ‘**’, p < 0.05 ‘*’

number of training samples of source project can improve the clas-

sification effect. And if the model is good at categorizing its own

issue data, it can also perform well for other projects. Perhaps un-

expectedly, we find the greater the difference between the number

of issues reported by each contributor, the model can classify better

on target project.

For project-level measures, the same_lanдuaдe is a strong pre-

dictor for cross-project classification, explaining 16% of the vari-

ance explained (calculated as: the percentage of SumSq. of above
variables accounting for the whole SumSq. of regression model).

Because the two projects have same grammatical structure and def-

inition when having same language, we infer that their issue texts

are similar. Thus the cross-project issue classifier can perform well.

The same goes for readme_sim. The pr j_aдe and pr j_popularity
are not significant in the model. Therefore, we can infer that the

maturity of the project and its popularity have no effect on cross-

project classification. In addition, some obvious measures, such as

same_license , same_owner_type are significant, which means that

if two projects have same license,owner type or similar project

structure, the performance of cross-project classification will be

better.

For social-level measures, we confirm that social variables play

an importance role on the success of cross-project issue classifica-

tion, as all measures of this level together account for 43.5% of the

variance explained. Among them, the participant_intersection has

the greatest impact on cross-project classification over the other

variables in our model. We argue that the development activity

data (including issue data) generated by same participants are very

similar. Thus, for projects which have big participant_intersection
with the target project tends to perform well because of the simi-

lar issue structure. With the difference in the number of external

contributors between projects increase, the performance of cross-

project classification will decrease. But this is the opposite for core

member, albeit with little influence. Moreover, The similarity of

national distribution of participants between two projects has a pos-

itive effect on the classification performance. We infer that people

in different nationals tend to have different ways of expression.

There are three technical-level measures that exert significant

and negative effects on cross-project transferability. If there are

great differences in the code size and number of code dependen-

cies between projects, the cross-project classification result will be

bad. If two projects have similar organizational stucture, the per-

formance of cross-project classification will be better. One thing to

note is the similarity of project structure (project_structure_sim)

in Table 2 is negative, that is because we use the edit distance [25] to

test the structural similarity in our model, the smaller the distance,

the more similar the structure. Additionally, whether there exist

common code dependencies or cross reference between projects has

small significant effect on cross-project classification. All variables

in this level together account for 17.17% of the variance explained.

5 CONCLUSION AND FUTUREWORK

In this paper, we investigate the performances of transferring well-

trained models from source projects to target projects in the con-

text of issue classification. Regression analysis is used to identify

determinants that affect the performance of cross-project issue

classification. We find many factors have significant influence on

the success of cross-project issue classification, among which the

intersection of participants is the dominant one.

In future, we plan to design a novel cross-project approach based

on our empirical results. In addition, we will investigate the effec-

tiveness of our cross-project approach in different software engi-

neering scenarios, e.g., defect prediction, developer recommenda-

tion and effort estimation.

ACKNOWLEDGMENT

This research is supported by National Science Foundation of China

(Grant No.61702534, 61432020, 61472430 and 61502512) and Na-

tional Key R&D Program of China (2016-YFB1000805).

REFERENCES
[1] John Anvik, Lyndon Hiew, and Gail C Murphy. 2006. Who should fix this bug?.

In Proceedings of the 28th international conference on Software engineering. ACM,
361–370.

[2] Philip Bille. 2005. A survey on tree edit distance and related problems. Theoretical
computer science 337, 1 (2005), 217–239.

[3] Kelly Blincoe, Francis Harrison, and Daniela Damian. 2015. Ecosystems in
GitHub and a method for ecosystem identification using reference coupling. In

Internetware ’18, September 16, 2018, Beijing, China Yue Yu, Yarong Zeng, Qiang Fan, and Huaimin Wang

Proceedings of the 12th Working Conference on Mining Software Repositories. IEEE
Press, 202–207.

[4] Jacob Cohen, Patricia Cohen, Stephen G West, and Leona S Aiken. 2013. Applied
multiple regression/correlation analysis for the behavioral sciences. Routledge.

[5] Qiang Fan, Yue Yu, Gang Yin, Tao Wang, and Huaimin Wang. 2017. Where Is
the Road for Issue Reports Classification Based on Text Mining?. In Empirical
Software Engineering and Measurement (ESEM), 2017 ACM/IEEE International
Symposium on. IEEE, 121–130.

[6] Github Help. 2018. About organizations. https://help.github.com/articles/
about-organizations/. (2018).

[7] KimHerzig, Sascha Just, and Andreas Zeller. 2013. It’s not a bug, it’s a feature: how
misclassification impacts bug prediction. In Proceedings of the 2013 international
conference on software engineering. IEEE Press, 392–401.

[8] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. 2009. Improving bug
triage with bug tossing graphs. In Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering. ACM, 111–120.

[9] Rahul Krishna and Tim Menzies. 2017. Simpler Transfer Learning (Using" Bell-
wethers"). arXiv preprint arXiv:1703.06218 (2017).

[10] Rahul Krishna, Tim Menzies, and Wei Fu. 2016. Too much automation? The
bellwether effect and its implications for transfer learning. In Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering. ACM,
122–131.

[11] Ying Ma, Guangchun Luo, Xue Zeng, and Aiguo Chen. 2012. Transfer learning for
cross-company software defect prediction. Information and Software Technology
54, 3 (2012), 248–256.

[12] Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. 2013. Transfer defect learning.
In Proceedings of the 2013 International Conference on Software Engineering. IEEE
Press, 382–391.

[13] Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N Nguyen, David Lo, and Cheng-
nian Sun. 2012. Duplicate bug report detection with a combination of information
retrieval and topic modeling. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. ACM, 70–79.

[14] Sinno Jialin Pan and Qiang Yang. 2010. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22, 10 (2010), 1345–1359.

[15] Foyzur Rahman and Premkumar Devanbu. 2013. How, and why, process metrics
are better. In Software Engineering (ICSE), 2013 35th International Conference on.
IEEE, 432–441.

[16] Foyzur Rahman, Daryl Posnett, and Premkumar Devanbu. 2012. Recalling the
imprecision of cross-project defect prediction. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering. ACM,
61.

[17] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula,
Norihiro Yoshida, Hajimu Iida, and Ken-ichiMatsumoto. 2015. Who should review
my code? A file location-based code-reviewer recommendation approach for
modern code review. In Software Analysis, Evolution and Reengineering (SANER),
2015 IEEE 22nd International Conference on. IEEE, 141–150.

[18] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of social and
technical factors for evaluating contribution in GitHub. In Proceedings of the 36th
international conference on Software engineering. ACM, 356–366.

[19] Burak Turhan, Tim Menzies, Ayşe B Bener, and Justin Di Stefano. 2009. On the
relative value of cross-company and within-company data for defect prediction.
Empirical Software Engineering 14, 5 (2009), 540–578.

[20] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. 2008. An ap-
proach to detecting duplicate bug reports using natural language and execution
information. In Software Engineering, 2008. ICSE’08. ACM/IEEE 30th International
Conference on. IEEE, 461–470.

[21] Yue Yu, Zhixing Li, Gang Yin, Tao Wang, and Huaimin Wang. 2018. A dataset of
duplicate pull-requests in github. In Proceedings of the 15th International Confer-
ence on Mining Software Repositories. ACM, 22–25.

[22] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan
Vasilescu. 2015. Wait for it: Determinants of pull request evaluation latency
on GitHub. In Mining software repositories (MSR), 2015 IEEE/ACM 12th working
conference on. IEEE, 367–371.

[23] Yue Yu, Huaimin Wang, Gang Yin, and Charles X Ling. 2014. Reviewer recom-
mender of pull-requests in GitHub. In IEEE International Conference on Software
Maintenance and Evolution. IEEE, 609–612.

[24] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. 2016. Reviewer recommenda-
tion for pull-requests in GitHub: What can we learn from code review and bug
assignment? Information and Software Technology 74 (2016), 204–218.

[25] Kaizhong Zhang and Dennis Shasha. 1989. Simple fast algorithms for the editing
distance between trees and related problems. SIAM journal on computing 18, 6
(1989), 1245–1262.

[26] Y. Zhou, Y. Tong, R. Gu, and H. Gall. 2014. Combining Text Mining and Data
Mining for Bug Report Classification. In 2014 IEEE International Conference on
Software Maintenance and Evolution. IEEE Press, 311–320.

[27] Yu Zhou, Yanxiang Tong, Ruihang Gu, and Harald Gall. 2016. Combining text min-
ing and data mining for bug report classification. Journal of Software: Evolution
and Process 28, 3 (2016), 150–176.

[28] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and
Brendan Murphy. 2009. Cross-project defect prediction: a large scale experiment
on data vs. domain vs. process. In Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering. ACM, 91–100.

