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Abstract

Self-improving alignment, which leverages large language models
(LLMs) to generate synthetic preference data automatically, has
garnered significant attention as a means of reducing reliance on
human labelers. These methods typically employ LLM-as-a-judge,
where the LLM generates responses and then employs itself to judge
which response best aligns with the given prompt for curating the
binary self-preferred dataset. However, these methods encounter
two major challenges: (1) LLM-as-a-judge often produces error-
prone evaluations, resulting in low-quality preference annotation,
and (2) their optimization strategies often overlook the strength of
preferences within binary pairs, leading to overfitting. This paper
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proposes a novel method, Preference-Strength-aware Optimiza-
tion (PSO), to address these issues. Specifically, PSO frames the
preference annotation process as a judgment token prediction task
using the generative preference model to produce reliable judgments.
The predicted judgment token indicates the preferred response
and its corresponding probability reflects the disparity between
responses, referred to as preference strength. Based on this strength,
we introduce a new preference-strength-aware loss to adaptively
reweight the impact of different response pairs on optimization,
concentrating the model’s learning on high-quality response pairs.
Our experiments demonstrate that PSO significantly improves per-
formance in preference benchmarks, achieving stronger alignment
with human preferences, reducing verbose responses, and mitigat-
ing overfitting. Furthermore, PSO exhibits robust generalization
and sample efficiency, offering a scalable and promising solution
for LLM alignment without human-annotated preferences.

CCS Concepts

• Information systems → Language models; • Computing

methodologies→ Natural language processing.
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1 Introduction

The remarkable success of large language models (LLMs) in align-
ing human preference tasks such as instruction following opens
up unprecedented opportunities to advance the research and appli-
cation of information retrieval (IR) [7, 24, 29]. Human-annotated
preference data is indispensable in developing LLMs that behave
safely and act according to human values and intentions [4, 14].
Existing alignment methods, such as Reinforcement Learning from
Human Feedback (RLHF) [21] and Direct Alignment Algorithms
(DAAs) [1, 23], rely heavily on large volumes of high-quality pref-
erence data to achieve robust model performance [3]. However,
curating such data demands significant human effort, time, and
financial resources, making the acquisition of preference datasets
for target applications both resource- and labor-intensive [5].

Self-improvement has emerged as a promising strategy to ad-
dress the scarcity of human-curated preference datasets using self-
generated data [27, 28]. As illustrated in Figure 1(a), an LLM can
improve itself by serving two phases iteratively: i) following in-
structions in given prompts to generate appropriate responses, and
ii) evaluating new responses as preference data by using LLM-as-
a-judge to augment its training dataset for alignment [30]. Herein,
LLM-as-a-judge assigns a score to a given response based on how
well it aligns with the criteria specified in the given prompt, a binary
preference pair is curated by comparing the corresponding scores.
The approaches implementing this strategy have quickly gained at-
tention in both academia and industry due to their minimal reliance
on human-curated preferences [15, 16, 27, 28].

While effective, our study reveals two key limitations of the
prior self-improvement approaches. Firstly, the scores produced
by LLM-as-a-Judge are prone to errors, leading to preference judg-
ments with an error rate as high as 79.8%, as illustrated in the error
analysis in Figure 1(b). Notably, 48.5% of the reported errors are
caused by format mismatch, while 25.3% of the errors involve LLMs
inaccurately assessing preferences as ties. Secondly, existing self-
improving methods employ DAAs optimize LLMs on self-generated
response pairs with binary preferences. Such methods overlook the
extent of the differences between two responses in a preference
pair, which is prone to be overfitting [1, 22, 31]. In contrast, our
study noticed that the strength of the self-generated preferences is
proportional to their alignment with human-curated preferences,
as shown in Figure 1(c).

To overcome the above limitations, we frame the self-improvement
of LLM alignment as a judgment token prediction problem and pro-
pose the Preference-Strength-aware Optimization, abbreviated as
PSO. To alleviate the format errors and inaccurate ties caused by
LLM-as-a-Judge, we take as input a pair of self-generated response
candidates (𝐴 = 𝑦ℎ, 𝐵 = 𝑦𝑙 ) and predict a judgment token indi-
cating which candidate is preferred (𝐴 or 𝐵). The corresponding

Question:

Response A: The short answer is: no. Since…
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`MERGE` statement to delete all data …
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Figure 1: In self-improving alignment, LLM-as-a-judge is

widely adopted for generating self-improvement data with

preference labels. We evaluate the correct proportion of LLM-

as-a-judge and generative PMs in human-labeled preferences

within MT-Bench [30]. Please refer to Section 5.2 for evalua-

tion results with more advanced LLMs.

probability 𝑝 (𝑦ℎ ≻ 𝑦𝑙 ) measures the disparity between 𝑦ℎ and 𝑦𝑙 ,
referred to as preference strength. As shown in Figure 1(c), higher
preference strengths align more closely with human preferences.
Based on this observation, we propose to optimize an LLM on
self-generated preferences by introducing a novel loss function for
PSO. We leverage the preference strength information to reweight
the impact of different response pairs on optimization adaptively.
With PSO, response pairs with small preference strengths (i.e., more
likely to be inconsistent with human preferences) contribute little
to the overall preference optimization. In this way, the optimiza-
tion can concentrate on response pairs with high quality without
any explicit filtering of self-generated samples, thereby enhancing
self-improvement performance.

Experimental results demonstrate that PSO achieves significant
superiority over existing advanced self-improvement methods on
preference benchmarks. Specifically, the PSO using Llama3-8B-
Instruct shows significant improvements in AlpacaEval-2 [8], where
the win rates rise from 22.92% to 43.66%, and in Arena-Hard [17]
increasing from 22.92% to 29.2%. Compared with previous meth-
ods, our proposed preference-strength-aware loss function effec-
tively mitigates the generation of verbose responses while reducing
the risk of overfitting. Further analysis reveals that the genera-
tive PM possesses strong out-of-distribution generalization and
sample-efficient capabilities, highlighting its significant potential
for real-world applications without reliance on human-annotated
preference data. In summary, our main contributions are as follows:
• We revisit the challenge of employing LLM-as-a-judges in
self-improving alignment and introduce preference strength,
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derived from the generative PM, as a robust indicator of
alignment with human preferences.
• Experimental and theoretical analyses demonstrate that our
preference-strength-aware loss function effectively allevi-
ates verbose response generation and prevents overfitting.
• Experimental results show PSO achieves new state-of-the-art
performance compared to advanced self-improvement meth-
ods. Its robust generalization and sample efficiency high-
light its compelling potential in practical scenarios without
human-annotated preference data.

2 Related Work and Preliminaries

Aligning large language models (LLMs) with human preference
data has shown significant promise in improving their performance
on downstream natural language processing tasks [4, 14]. Align-
ment approaches fall into two broad categories: online and offline
methods. Online methods involve training a reward model from hu-
man preference data, which is then used in reinforcement learning
(e.g., PPO [25]) to guide the LLM. Offline methods, such as Direct
Preference Optimization (DPO [23]), bypass the reward model and
directly use human preference data to optimize the LLM. However,
both approaches rely heavily on high-quality, large-scale human
preference data, which is expensive and time-consuming to acquire.

Self-improving alignment [6, 13, 28] represents a promising di-
rection to alleviate the dependency on human-labeled preference
data. These methods allow LLMs to autonomously generate their
preference data autonomously, enabling the model to improve iter-
atively. Unlike traditional alignment methods, self-improvement
techniques enable an LLM to serve two roles iteratively: one as
a policy model and the other as a preference model. Specifically,
the LLM first generates multiple candidate responses for a given
prompt. Then, acting as a preference model, the LLM evaluates
these responses and assigns preference scores, typically using an
LLM-as-a-judge mechanism [30]. The model is then trained on
self-preferred data using offline alignment techniques (i.e., DPO)
to improve its performance. Building upon previous work [28], the
process of self-improving alignment can be divided into two main
steps: self-preferred data construction and preference optimization.

Step 1: Self-preferred data construction.Given a set of prompts
and an initial LLM 𝜋init. For each prompt 𝒙 , we generate 𝐾 distinct
responses {𝒚1, · · · ,𝒚𝐾 } by high-temperature sampling. Then the
judgemodel maps the number of satisfied rules to specific numerical
scores, scoring candidate responses in a point-wise LLM-as-a-judge
manner. For example, with the LLM-as-a-judge instruction given
in [28], the valid score ranges from 0 to 5. Based on the scores,
the self-preference pair {𝒙,𝒚ℎ,𝒚𝑙 } can be determined, where 𝒚ℎ

denotes highly preferred response and 𝒚𝑙 denotes less preferred
response.

Step 2: Preference optimization. The constructed preference
data can be utilized to train the LLM using DAAs. For instance, the
widely-used DPO aligns the policy model 𝜋𝜃 by solving a binary
classification problem:

LDPO (𝜋𝜃 ;𝜋init) = −E𝒙,𝒚ℎ,𝒚𝑙

[
log𝜎

(
𝛽 log( 𝜋𝜃 (𝒚

ℎ |𝒙)
𝜋init (𝒚ℎ |𝒙)

) − 𝛽 log( 𝜋𝜃 (𝒚
𝑙 |𝒙)

𝜋init (𝒚𝑙 |𝒙)
)
) ]
,

(1)

where the initial LLM 𝜋init is usually served by LLM after super-
vised fine-tuning (SFT) and can be used to normalize the logits.
The judge model and policy model are derived from the same LLM
𝜋init, thereby achieving self-improving alignment. Existing self-
improving alignment methods require multiple iterations of the
above two steps to achieve satisfactory self-improvement perfor-
mances.

While self-improvement holds promise, the LLM-as-a-judgemech-
anism often produces unreliable scoring results, leading to degraded
performance and rapid saturation during iterative training. To ad-
dress this, Self-Rewarding [28] carefully curates seed data to prime
the judgment capabilities of 𝜋init. Building on Self-Rewarding, Meta-
Rewarding [27] allows the LLM to judge its own judgments and
uses that feedback to refine its judgment skills to improve judgment
capabilities. However, the problem of unreliable scoring remains.
Self-Judge [15] refines the LLM-as-a-judge mechanism by formu-
lating a single-token instruction-following task to identify and se-
lect superior responses. Besides, designed for offline datasets with
binary preference labels, existing DAAs overlook the preference
strength information within the response pairs, which can lead to
overfitting and suboptimal alignment.

3 Methodology

To address the limitations of self-improving methods, we intro-
duce a novel approach PSO, which substitutes the LLM-as-a-judge
mechanism with a generative preference model and leverages de-
tailed preference strength to enhance alignment efficacy. Following
the self-improvement pipeline, PSO exploits the policy model to
generate 𝐾 candidate responses for each prompt and pairs these
responses in the 𝐾-fold manner. The same LLM then functions
as a generative PM to provide the preference strength of each re-
sponse pair (Section 3.1) to construct self-generated preference
pairs embedded with preference strength. Subsequently, we train
the policy model with a novel preference-strength-aware loss on
the self-preferred data (Section 3.2). Section 3.3 presents a gradient
analysis, demonstrating how PSO leverages preference strength to
mitigate overfitting.

3.1 Generative Preference Model

After obtaining the self-generated responses, the LLM subsequently
serves as a preference model to judge these responses. To address
the issue of unreliable scores in the LLM-as-a-judge mechanism,
we employ a generative PM, which treats preference tasks as pair-
wise judgments between responses. As illustrated in Figure 2, the
generative PM prompts the model to act as a selector, choosing
the superior response based on the probability associated with the
judge token (“A” or “B”). This approach naturally avoids issues such
as incorrect scoring formats and tied cases.

For each response pair, the generative PM extracts the average
probability of the judge token to determine the better response,
utilizing a position-swapped judgment template tomitigate position
bias. Formally, generative PM transfers the two generated response
pairs {𝑥,𝒚,𝒚′} to preference pairs {𝑥,𝒚ℎ,𝒚𝑙 } by:

𝒚ℎ =

{
𝒚, if 𝑝𝒚 (𝐴)+𝑝𝒚 (𝐵)2 ≥ 0.5,
𝒚′, if 𝑝𝒚 (𝐴)+𝑝𝒚 (𝐵)2 < 0.5.

(2)
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Select the RESPONSE A or RESPONSE B that is better for the given instruction. Here are some rules of the evaluation:
(1) You should prioritize evaluating whether the response honestly/precisely/closely executes the instruction, then consider its helpfulness, accuracy,
level of detail, harmlessness, etc.
(2) Responses should NOT contain more/less than what the instruction asks for, as such responses do NOT precisely execute the instruction.
(3) You should avoid any potential bias and your judgment should be as objective as possible. For example, the order in which the responses were
presented should NOT affect your judgment, as RESPONSE A and RESPONSE B are **equally likely** to be the better.

Do NOT provide any explanation for your choice.
Do NOT say both / neither are good. You should answer using ONLY "RESPONSE A" or "RESPONSE B".
Do NOT output any other words.
<1-shot example>
# Instruction: <User’s Question>
# RESPONSE A: <Response A>
# RESPONSE B: <Response B>
# Which is better, RESPONSE A or RESPONSE B? Your response should be either “RESPONSE A” or “RESPONSE B”. RESPONSE <A/B>

Figure 2: The instruction of generative preference models for self-improving alignment.

where 𝑝𝒚 (𝐴) or 𝑝𝒚 (𝐵) denotes the probability of 𝑦 being selected
as the judge token (i.e., “A” and “B”) when placed in <Response A>
or <Response B>, respectively.

Although the binary self-preferring data can be directly utilized
to optimize LLMs using DAAs, there is plenty of noise and misspec-
ification during preference annotation, resulting in self-preferring
data of varying quality and poor alignment performance (see Sec-
tion 4.1). This issue motivates us to develop a method to assess
the self-preferring provided by the generative PM. Intuitively, hu-
mans are more adept at discriminating between responses with a
clear disparity while struggling with ambiguous responses. Our
experiments also show that higher preference strength values align
more closely with human preferences, as depicted in Figure 1(c).
This result demonstrates that preference strength can contribute to
constructing self-preferred data with richer preference information.
Therefore, we propose leveraging the preference strength within
a response pair as a measure of preference uncertainty in certain
response pairs. Response pairs with strong preference strength
correspond to low preference uncertainty. Given the self-preferred
example {𝒙,𝒚ℎ,𝒚𝑙 } from Equation (2), we calculate the preference
strength via the confidence of self-preferring:

𝑝 (𝑦ℎ ≻ 𝑦𝑙 ) =
𝑝𝑦ℎ (𝐴) + 𝑝𝑦ℎ (𝐵)

2
. (3)

A higher preference strength indicates a larger gap between the
responses, making it easier for the LLM to discriminate accurately.
In practice, we observe that generative PMs have the problem of
excessive caution when providing preference strength (see Fig-
ure 6(b)), where the preference strengths for self-generated samples
tend to be lower. To address the issue, we apply a simple linear
calibration to ensure reasonable outputs, as follows:

𝑝 (𝒚ℎ ≻ 𝒚𝑙 ) ← 𝜂 + (𝑝 (𝒚
ℎ ≻ 𝒚𝑙 ) − 0.5) · (1 − 𝜂)

0.5
, (4)

where 𝜂 is the scaling factor and 𝜂 = 0.5 means no calibrating.
In practice, we can select 𝜂 from [0.5, 1] to address the excessive
caution problem of generative PMs without warming up.

3.2 Preference-Strength aware Preference

Optimization

Next, we demonstrate how to use the preference strength aware
self-preference data to train the policy model. Generally, alignment
methods aim to make the responses generated by the optimized
LLM more human-preferred than those before optimization. Given
prompt 𝒙 and the initial LLM 𝜋init, the optimization objective is:

arg max
𝜋𝜃

E𝒙∼DXE𝒚∼𝜋𝜃 ( · |𝒙 ),𝒚′∼𝜋init ( · |𝒙 )[
𝑝∗ (𝒚 ≻ 𝒚′ |𝒙 )

]
− 𝛽DKL (𝜋𝜃 | |𝜋init ),

(5)

where 𝜋𝜃 denotes the policy model to be updated and 𝑝∗ (𝒚 ≻ 𝒚′ |𝒙)
denotes the optimal preference annotated by humans. According
to [23], the closed-form solution to Equation (5) is provided by:

𝜋∗ (𝒚 |𝒙) = 1
𝑍 (𝑥) 𝜋init (𝒚 |𝒙) · exp

(
1
𝛽
𝑝∗ (𝒚 ≻ 𝜋init |𝒙)

)
, (6)

where𝑍 (𝑥) is the constant normalizing factor and 𝑝∗ (𝒚 ≻ 𝜋init |𝒙) :=
E𝒚′∼𝜋init ( · |𝒙 ) )𝑝

∗ (𝒚 ≻ 𝒚′ |𝒙). By applying this solution to the self-
preference data {𝒙,𝒚ℎ,𝒚𝑙 }:

𝜎
(
𝛽 log( 𝜋

∗ (𝒚ℎ |𝒙)
𝜋init (𝒚ℎ |𝒙)

) − 𝛽 log( 𝜋
∗ (𝒚𝑙 |𝒙)

𝜋init (𝒚𝑙 |𝒙)
)
)
=

𝜎
(
𝑝∗ (𝒚ℎ ≻ 𝜋init |𝒙) − 𝑝∗ (𝒚𝑙 ≻ 𝜋init |𝒙)

)
,

(7)

where 𝜎 : R→ [0, 1] is the sigmoid function.
The left-hand side in Equation (7) is the implicit preference

predicted by the optimal policy model 𝜋∗ and normalized by the
reference policy 𝜋init. During optimization, it can be predicted with
the current policy model 𝜋𝜃 :

𝑝 (𝒚ℎ ≻ 𝒚𝑙 |𝜋𝜃 , 𝒙) = 𝜎
(
𝛽 log( 𝜋𝜃 (𝒚

ℎ |𝒙)
𝜋init (𝒚ℎ |𝒙)

) − 𝛽 log( 𝜋𝜃 (𝒚
𝑙 |𝒙)

𝜋init (𝒚𝑙 |𝒙)
)
)
.

(8)
The right-hand side in Equation (7) denotes the expert-labeled

preference 𝑝∗ (𝒚ℎ ≻ 𝒚𝑙 ), which is unavailable because the self-
improving manner bypasses the human annotation. As discussed
above, the calibrated preference strength defined in Equation (4)
can reflect the consistency between self-preferences and human
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preferences, and thus we exploit 𝑝 (𝒚ℎ ≻ 𝒚𝑙 ) to approximately
estimate the target preference 𝑝∗ (𝒚ℎ ≻ 𝒚𝑙 ).

Since both implicit and calibrated preference strengths are prob-
abilities, we use a soft version of the logarithmic/cross-entropy loss,
which is commonly employed to measure prediction error [11] of
𝑝 (𝒚ℎ ≻ 𝒚𝑙 |𝜋𝜃 ). We define the optimization objective with prefer-
ence strength as:

LPSO (𝜋𝜃 ) = −E𝒚ℎ,𝒚𝑙 [𝑝 (𝒚ℎ ≻ 𝒚𝑙 ) log
(
𝑝 (𝒚ℎ ≻ 𝒚𝑙 |𝜋𝜃 )

)
+

(1 − 𝑝 (𝒚ℎ ≻ 𝒚𝑙 )) log
(
1 − 𝑝 (𝒚ℎ ≻ 𝒚𝑙 |𝜋𝜃 )

)
],

(9)

where we suppress the dependence on 𝒙 in preference strength to
denote the expectation of the prompt distribution. The PSO loss
aims tomake the distribution of implicit preference strength 𝑝 (𝒚ℎ ≻
𝒚𝑙 |𝜋𝜃 ) on response pairs < 𝒚ℎ,𝒚𝑙 > as close as possible to the target
preference strength 𝑝 (𝒚ℎ ≻ 𝒚𝑙 ) that is produced by the generative
PMs. Unlike previous approaches, our proposed PSO effectively
leverages rich preference information to adaptively optimize the
policy model. This preference-strength-aware optimization is more
accurate and robust in the absence of human-labeled preferences,
as will be theoretically analyzed in the following section.

3.3 Gradient Analysis of PSO

We further provide an analysis that shows how PSO, from a gradient
perspective, robustly optimizes the policy model by using prefer-
ence strength, compared to traditional direct alignment methods
(i.e., DPO and IPO). The gradient of our PSO loss is as follows:

∇𝜃LPSO (𝜋𝜃 ) =E𝒙∼DX ,𝒚ℎ,𝒚𝑙 [𝛽
(
𝑝 (𝒚ℎ ≻ 𝒚𝑙 |𝜋𝜃 )) − 𝑝 (𝒚ℎ ≻ 𝒚𝑙 )

)(
∇𝜃 log𝜋𝜃 (𝒚ℎ |𝒙) − ∇𝜃 log𝜋𝜃 (𝒚𝑙 |𝒙)

)
] .

(10)
The gradient of the PSO becomes zero when 𝑝 (𝒚ℎ ≻ 𝒚𝑙 |𝜋𝜃 )) =

𝑝 (𝒚ℎ ≻ 𝒚𝑙 ), indicating that themodel’s predicted preference strength
matches the target self-preference strength. The PSO loss is uti-
lized to train the model whenever there is a discrepancy between
them, enhancing the model’s awareness of preference strength. For
response pairs with minor preference strength, the correspond-
ing gradient is also controlled within a reasonable magnitude. In
comparison, the gradient of DPO is as follows:

∇𝜃LDPO (𝜋𝜃 ) = −E𝒙∼DX ,𝒚ℎ,𝒚𝑙 [𝛽
(
1 − 𝑝 (𝒚ℎ ≻ 𝒚𝑙 |𝜋𝜃 )

)(
∇𝜃 log𝜋𝜃 (𝒚ℎ |𝒙) − ∇𝜃 log𝜋𝜃 (𝒚𝑙 |𝒙)

)
] .

(11)

DPO trains the model until 𝑝 (𝒚ℎ ≻ 𝒚𝑙 |𝒙, 𝜋𝜃 ) reaches the max-
imum value 1, which necessitates log( 𝜋𝜃 (𝒚

ℎ |𝒙 )
𝜋𝜃 (𝒚𝑙 |𝒙 ) ) → ∞. Conse-

quently, DPO is susceptible to overfitting. To mitigate this draw-
back, IPO [1] incorporates a constant margin to mitigate overfitting
on offline datasets.

LIPO (𝜋𝜃 ;𝜋init) = −E𝒙,𝒚ℎ,𝒚𝑙

[
(
log( 𝜋𝜃 (𝒚

ℎ |𝒙)
𝜋init (𝒚ℎ |𝒙)

) − log( 𝜋𝜃 (𝒚
𝑙 |𝒙)

𝜋init (𝒚𝑙 |𝒙)
) − 1

2𝛽
)2]
.

(12)

IPO introduces a hard margin to enforce the gradient to approach
zero when the preference strength reaches a certain threshold:

∇𝜃LIPO (𝜋𝜃 ) = − E𝒚ℎ,𝒚𝑙 [
(
𝜎−1 (𝑝 (𝒚ℎ ≻ 𝒚𝑙 |𝜋𝜃 )) −

1
2𝛽

)
(
∇𝜃 log𝜋𝜃 (𝒚ℎ) − ∇𝜃 log𝜋𝜃 (𝒚𝑙 )

)
] .

(13)

However, the fixed threshold can cause sub-optimal performance
since different response pairs have different preference strengths.
In contrast, our proposed PSO loss employs a dynamic margin to
regulate the updates for different response pairs according to the
preference strength information, thereby mitigating the overfitting
issue.

4 Experiment

In this section, we evaluate the performance of LLMs trained with
the PSO method in two axes: as a policy model (their ability to
follow instructions, see Section 4.1), and as a judge model (their
ability to judge responses, see Section 4.2). Our empirical analysis
substantiates the following claims: PSO achieves new state-of-the-
art performance compared to advanced self-improvement methods
(Table 1), because (1) the generative preference model significantly
improves the reliability of self-preference data (Table 2) and demon-
strates strong generalization on out-of-distribution tasks (Figure 4);
(2) the preference-strength-aware loss effectively prevents the gen-
eration of verbose responses (Figure 3) and reduces the risk of
overfitting (Figure 5). Moreover, PSO is a parameter-efficient and
sample-efficient online algorithm (Table 3), showcasing its immense
potential in real-world resource-constrained scenarios (e.g., the ab-
sence of human preference annotations or the use of smaller LLM,
Table 4).

4.1 Alignment Evaluation

4.1.1 Experimental setup. We validate the effectiveness of PSO in
the self-improvement alignment scenario. The experimental setup
is described in detail as follows:

Dataset and Model. Building on prior work [15], we primarily
utilize UltraFeedback1 for empirical investigations. UltraFeedback
is a widely investigated alternative in scenarios where human-
annotated feedback is unavailable. It comprises 64k prompts and
focuses on the general human preference alignment. In our study,
we only exploit the prompts from UltraFeedback to simulate self-
improving scenarios.We employ Llama-3-8B-Instruct 2 as our initial
model, widely used in recent LLM alignment studies [20, 27].

Baselines. Our baselines include three self-improvement meth-
ods: Self-Rewarding [28], Meta Rewarding [27], and Self-Judge [15]
Self-Rewarding is the first study to leverage the LLM-as-a-judge
prompt to provide rewards and employ iterative DPO to enhance
alignment performance. Building upon Self-Rewarding,Meta-Rewarding
further improves the judge capabilities of LLMs during the self-
improvement process by generating additional judgment data. To
address the unreliability of LLM-as-a-judge, both methods utilize
seed data constructed with Llama-2-70B [26] to warm up the judge
capabilities of the LLM before the self-improvement. Since this
seed data is not publicly available, we directly report their best

1huggingface.co/datasets/openbmb/UltraFeedback.
2huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct.
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Table 1: Results of different self-improvement methods evaluated on AlpacaEval-2 and Arena-Hard. Our method achieves

state-of-the-art self-improvement performance along with superior length control.

Model

AlpacaEval-2 Arena-Hard

LC-WR WR Length WR 95% CI Length

Llama-3-8B-Instruct 22.92% 22.57% 1899 20.6% (-2.0, 1.8) 2485

SFT on seed data 25.47% 25.10% 1943 24.2% (-2.0, 1.8) 2444
Self-Judge [15] 36.56% 40.28% 2268 27.6% (-2.3, 1.7) 2673
Self-Rewarding [28]

Iteration 1 26.93% 27.12% 1983 23.2% (-1.7, 1.9) 2438
Iteration 4 35.49% 35.37% 2005 27.3% (-2.0, 2.2) 2448

Meta-Rewarding [27]
Iteration 1 27.85% 27.62% 1949 25.1% (-1.9, 1.8) 2395
Iteration 4 39.44% 39.45% 2003 29.1% (-2.3, 2.1) 2422

PSO 43.66% 43.30% 1993 29.2% (-2.2, 1.6) 2411

performance as stated in their experiments. Notably, our approach
does not require seed data for warm-up. Self-Judge utilizes gener-
ative PMs to prefer self-generated responses, after which DPO is
employed for optimization.

Evaluation Protocol. Following previous studies [27], our eval-
uation includes two widely used open-end benchmarks based on
GPT4-as-a-Judge: AlpacaEval-2 [8] andArena-Hard [17]. AlpacaEval-
2 comprises 805 questions drawn from five datasets, while Arena-
Hard extends MT-Bench [30] by including 500 additional technical
problem-solving queries. For AlpacaEval-2, we provide both the
raw win rate (WR) against the baseline GPT4 Turbo model and
the length-controlled win rate (LC-WR) designed to mitigate the
influence of model verbosity. For Arena-Hard, we report the WR
and the 95% confidence interval (CI) judged by GPT4 relative to the
baseline model.

Implement Details. In the self-preferred data curation, PSO
samples five responses for each prompt from UltraFeedback with
a sampling temperature of 0.8. We select the response pair with
the highest preference strength to ensure high consistency with
human preferences in the subsequent training phase. The training
process employs a cosine learning rate schedule, incorporating a
10% warm-up phase across one epoch. The AdamW optimizer is
utilized with an initial learning rate of 7 × 10−7, a batch size of
128, and a maximum sequence length of 2048. All experiments are
conducted on four Tesla A100 GPUs, each equipped with 80GB of
memory.

4.1.2 Main results. The evaluation results across two benchmarks
are presented in Table 1. Our findings are as follows:

(1) PSO significantly improves benchmark performance,

achieving state-of-the-art self-improvement alignment. On
the AlpacaEval-2 benchmark, performance notably increases from
22.92% to 43.66%, surpassing both private models (e.g., GPT-4 of
38.13% andClaude 3Opus of 40.51%) and advanced self-improvement
models. This improvement is particularly remarkable given that
the model consists of only 8 billion parameters and does not utilize
external supervision. Additionally, in the more challenging Arena-
Hard benchmark, which diverges significantly from the distribution
of UltraFeedback, we observe a substantial performance boost from

20.6% to 29.2%. These results underscore the substantial potential
of self-improvement methods in scenarios without expert-labeled
preference data, highlighting their significant practical value.

(2) PSO demonstrates appealing computation and data re-

source management compared to prior self-improvement

methods. Unlike Self/Meta-Rewarding, which requires multiple
iterative processes (e.g., Iteration 4) to reach the best performance,
PSO achieves optimal performance with a single iteration. This
makes PSO more practical and energy-efficient for real-world appli-
cations. ?? further analyzes the resource consumption of PSO.More-
over, Self/Meta-Rewarding relies on carefully constructing seed data
to improve the LLM-as-a-judge ability before self-improvement. In
comparison, PSO does not require any additional human-labeled
data, further reducing the dependency on annotated preference
data for self-improvement.

(3) PSO effectively mitigates the longstanding issue of

length explosion in self-improvement methods. As illustrated
in Table 1, although Self/Meta-Rewarding introduces a length-
control mechanism to address the length explosion challenge ex-
plicitly, this issue persists. The length explosion problem arises
from the judge model’s preference for verbose responses. While
it is theoretically possible that PSO might also exhibit length bias,
we further find that incorporating the preference strength informa-
tion with our proposed preference-aware loss functions effectively
alleviates the length bias issue (see Section 4.1.3). As a result, our
method produces more concise and high-quality responses.

4.1.3 Further analysis. We first analyze how PSO works. We con-
duct ablation studies on the AlpacaEval-2 benchmark. ScorePSO
uses the LLM-as-a-judge to annotate preference data, with the nor-
malized score difference as the preference strength. w/o PSO loss
removes PSO loss, optimizing with DPO. w/o PS calibration
uses raw generative PM outputs as preference strength without
adjustment via Equation (4). For a fair comparison, we also include
Self-Rewarding without seed data as a baseline. Results are summa-
rized in Table 2.

As shown in Table 2, we find that (1) generative PM is crucial for
self-improvement performance. When included, it significantly im-
proves alignment performance, with a 13.49 point gain compared to
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Table 2: Ablation studies on AlpacaEval-2. From the results,

we see that 1○ generative PM is crucial for self-improvement

performance; 2○ PS calibration plays an essential role in our

method; 3○ Preference-strength-aware loss effectively alle-

viates the generation of verbosity response; 4○ Introducing

preference strength further improves self-improvement.

Methods LC-WR Length

Self-Rewarding w/o seed data 28.22% 2197
ScorePSO 30.05% 2158

w/o PSO loss 41.71% 2275
w/o PS calibration 35.66% 2050
PSO 43.66% 1993

1○

2○

4○

3○

(a) Performance comparison. (b) Correlation analysis.

Figure 3: The effect of preference strength in reducing length

bias. Length bias is calculated by the average length differ-

ence between 𝒚ℎ and 𝒚𝑙 . Preference strength is the critical

factor in curbing verbose responses.

Self-Rewarding and w/o PSO loss, highlighting its role in enhanc-
ing self-alignment performance. (2) PS calibration plays an essential
role in our method. We suspect that it may mitigate excessive cau-
tion in LLM judgment, contributing to more reliable outputs. (3)
Preference-strength-aware loss effectively alleviates the generation
of verbosity response. Removing PSO loss significantly increases
response length (283 tokens on average), indicating that the PSO
loss could help LLM output more concise responses. (4) Introduc-
ing preference strength further improves self-improvement. De-
spite using less reliable preference strength, ScorePSO outperforms
Self-Rewarding (Iteration 4) after just one iteration, demonstrating
preference strength’s significant effect on self-improvement.

The PSO loss demonstrates significant potential in addressing
length explosion, motivating us to investigate the underlying rea-
sons. As shown in Figure 3(a), both IPO and PSO effectively reduce
verbose responses (orange line), suggesting that anti-overfitting
algorithms play a key role in mitigating length issues. However, IPO
experiences significant performance degradation due to its use of a
fixedmargin across all response pairs, whereas our method employs
a dynamic margin based on preference strength. We believe that
preference strength is the critical factor in curbing verbose

responses. Supporting evidence is provided in Figure 3(b), which
shows that larger preference strength is associated with reduced length
bias. Under Equation (10), preference strength adjusts the gradient

Figure 4: Reward modeling test of the generative PM and

Reward Model on ID and OOD test set.

contributions, where pairs with smaller length biases contribute
more significantly to model updates. This dynamic prioritization
helps mitigate the generation of verbose responses.

4.2 Reward Modeling Evaluation

4.2.1 Experimental Setup. Our approach leverages the generative
PM in self-improvement, effectively positioning the LLM as a judge
or reward model. We next evaluate the reward modeling perfor-
mance of PSO compared to the parameterized reward model. Pa-
rameterized reward models excel in in-distribution (ID) settings
but struggle with out-of-distribution (OOD) generalization [19].
Therefore, our experiment considers two reward modeling settings:
in-distribution (ID) performance and out-of-distribution (OOD)
generalization.

Dataset andModel.We use the Anthropic Helpful (HH) dataset
[2] for ID data, and "askbaking" and "askacademia" subsets from the
SHP dataset [9] for OOD evaluation. We chose the TinyLlama-base
model instead of an instruction-tuned variant for the following
reasons: (1) We find that Llama3-8B-Instruct has data contami-
nation [18] on downstream tasks; (2) we also test our method’s
scalability, particularly in resource-constrained scenarios where
smaller models are necessary.

Evaluation Protocol.We evaluate the reward model and our
generative PM in two main aspects, including (1) rewarding test:
training on ID data with OOD testing, and (2) downstream task test:
using the model as a reward model for self-improving downstream
OOD tasks. For (1), we assess reward modeling performance on the
test sets of three datasets and report accuracy. For (2), we use the
SteamSHP-flan-t5-xl model [10] as a gold reference for scoring, as
it shows high agreement with human preferences on these datasets.
Additionally, we evaluate alignment by measuring the win rate
against SFT models, using GPT-4 Turbo for judgment.

Baselines and Implement Details.We compare PSO against
several baselines: offline methods including SFT, and DPO [23],
IPO [1]; online methods including RLHF [21] and Self-Judge [15].
Self-Judge is chosen for its strong self-improvement capabilities,
making it a robust comparison. For all methods, we assume access
to human-labeled ID preference data and OOD data containing only
instructions. We establish the reward model using TinyLlama by
replacing the language head with a value head and use ID prefer-
ence data to train the reward model. For generative PM, we fill the
judgment prompt with paired responses to construct instructions la-
beled with one of the two judgment tokens. Specifically, the prompt
for preference augmentation data is represented as C(𝑥,𝑦ℎ, 𝑦𝑙 ),
where C denotes the function for filling the judge prompt as shown
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Table 3: Sample efficiency between reward model and gener-

ative PM. 𝑥% denotes we use 𝑥 portion of ID data for training

reward model. Generative PM is more sample-efficient than

classic reward model.

Data Portion 0% 2% 10% 50% 100%
Reward Model 41% 53% 56% 62% 62%
Generative PM 45% 57% 61% 66% 70%

in Figure 2. The corresponding response is either “A” or “B”. Then
we can conduct SFT to train generative PMs. After training the
reward model, we evaluate offline methods directly on downstream
OOD tasks. We apply a self-improvement strategy before testing
downstream tasks for online methods.

4.2.2 Rewarding test results. Reward modeling performance on ID
and OOD tasks is shown in Figure 4. First, the proposed generative
PM performs better on ID tasks than the reward model. Generative
PM formulates reward modeling as a next-token prediction task
for the instruction-following, which better suits LLMs’ autoregres-
sive text generation characteristics than the reward model. Second,
generative PM shows stronger generalization ability on OOD tasks,
which highlights its role in enabling the self-improvement success
of PSO. We also evaluate the sample efficiency of the generative
PM and reward model. As shown in Table 3, without training, the
generative PM and the reward model fail to distinguish 𝒚ℎ and 𝒚𝑙 .
With various portions available, generative PM consistently outper-
forms the reward model across various dataset portions, suggesting
that training generative PMs is more sample-efficient than training
the reward model. These results demonstrate its practical potential
for real-world downstream tasks.

4.2.3 Downstream task results. The experimental results on down-
stream OOD tasks, shown in Table 4, reveal the following findings:
First, PSO significantly outperforms all baseline methods, achieving
an average win rate improvement of 27 percentage points over the
strong baseline Self-Judge. Notably, this result is obtained using
the TinyLlama-base model, demonstrating the practical utility of
PSO in real-world downstream tasks, especially in scenarios with
constrained computational and annotation resources. Second, all
online methods consistently outperform offline methods on OOD
tasks. This aligns with the inherent advantage of online methods,
which can generalize to OOD tasks without collecting new human
preference data, leveraging the preference modeling capabilities of
generative PMs or reward models. Third, compared to RLHF, PSO
is more parameter-efficient by utilizing a single model for both the
reward and policy functions, thus reducing resource requirements
while delivering superior performance.

4.2.4 Further Analysis. To investigate the superior performance of
PSO compared to other online learning approaches, we conducted
an in-depth analysis and visualized the training process of these
methods, as shown in Figures Figures 5(a) and 5(b). The results
reveal that both RLHF and Self-Judge exhibit significant overfit-
ting tendencies. For RLHF, this can be attributed to its reliance
on a reward model with limited OOD generalization capabilities,
leading to severe reward hacking issues [12]. Specifically, reward

(a) Generalize to OOD: Askbaking. (b) Generalize to OOD: Askacademia.

Figure 5: Training curves of online methods on OOD gener-

alization tasks. The preference-strength-aware loss used in

PSO effectively mitigates overfitting.

models may assign high rewards to certain low-quality OOD sam-
ples, thereby leading to the optimization of LLMs toward learning
these undesirable behaviors. Although Self-Judge utilizes a gen-
erative PM with better OOD generalization, its subsequent DPO
training procedure makes it more susceptible to overfitting (refer
to Section 3.3 for gradient analysis). In contrast, PSO leverages a

generative PM with enhanced generalization capacity and in-

corporates a preference-strength-aware loss, which together

provide robust performance and effectively mitigate overfit-

ting challenges.

5 Discussion

5.1 Scalability of Generative PM

One of the core insights of ourwork is that thepreference strength
derived from generative PM serves as a reliable indicator

of alignment with human preferences. We next investigate
whether preference strength obtained from alternative judge mod-
els, such as the Reward Model or LLM-as-a-judge, exhibits similar
behavior. As visualized in Figures 6(c) and 6(d), we examine the
correlation between preference strength computed by these judge
methods and the correct rate with human preferences. Our results
reveal that irrespective of the type of judge model or the scale of
the underlying model, the preference strength consistently aligns
with our core insight. This observation underscores the scalability
and robustness of the proposed preference strength, demonstrating
its adaptability across various judge paradigms and model sizes.
Comparing different judgment methods, we observe that preference
strength derived from the Reward Model and LLM-as-a-judge tends
to concentrate in the lower range for most response pairs. This
suggests that these methods struggle to distinguish between self-
generated responses effectively. In contrast, our approach leverages
the finer-grained generative probabilities provided by generative
PM to achieve more precise judgments. This highlights the supe-
riority of our method in capturing nuanced differences between
responses, leading to improved alignment with human preferences.

5.2 Is improving instruction-following ability

enough for LLM-as-a-judge?

Our study identifies and systematically examines two fundamental
limitations of employing LLM-as-a-Judge: insufficient instruction-
following and limited judgment capabilities. These limitations man-
ifest as a high incidence of format mismatches and frequent tie
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Table 4: Downstream OOD task test. Experiments are repeated four times with different seeds, and we report the average scores

and standard deviations. PSO significantly outperforms all online and offline methods.

Method

Online Preference In-distribution: HH OOD: Askbaking OOD: Askacademia

Method Type score WR score WR score WR

SFT No N.A. 0.919±0.001 - 0.848±0.004 - 0.795±0.007 -
DPO No Binary 0.896±0.041 59% 0.733±0.035 31% 0.726±0.033 43%
IPO No Binary 0.925±0.004 67% 0.816±0.005 37% 0.793±0.016 51%

RLHF Yes Reward 0.932±0.007 57% 0.783±0.080 33% 0.718±0.085 46%
Self-Judge Yes Binary 0.923±0.133 63% 0.839±0.020 43% 0.780±0.069 47%

Ours Yes Strength 0.958±0.006 73% 0.925±0.005 75% 0.886±0.004 70%

(a) LLM-as-a-judge by Llama3. (b) Generative PM by Llama3.

(c) Reward model by TinyLlama. (d) Generative PM by TinyLlama.

Figure 6: Self-preferences of Llama3-8B-Instruct on Ultra-

Feedback (top line) andTinyLlama onHH (bottom line). “Cor-

rect Rate” refers to the consistency between self-preferences

and the external strong reward model. “Proportion” denotes

the fraction of samples that fall into a specific bin. preference

strength could serve as a reliable indicator of alignment with

human preferences.

cases in paired responses, as depicted in Figure 1(b). Both issues sig-
nificantly impede effective self-improvement. we next investigate
whether using larger LLMs with stronger instruction-following
abilities can yield satisfactory LLM-as-a-Judge results. The experi-
mental outcomes are summarized in Table 5.

While larger LLMs with enhanced instruction-following capabil-
ities, such as Mistral-7B-Instruct-v0.2, Llama-2-70B-Instruct (used
in the Self/Meta-Rewarding baseline [28]), and Llama-3.1-70B, miti-
gate format mismatches, our experiments reveal that LLM-as-a-

Judge with more advanced models remain inadequate for

resolving wrong tie cases effectively. In contrast, generative PM
that leverages the log probabilities of generating tokens “A” and
“B” — instead of mapping the number of satisfied rules to discrete

Table 5: Evaluation results of various LLMs using LLM-as-a-

judge on MT-Bench. Dark green text signifies correct judg-

ments, whereas dark red text highlights errors. IP means

“Incorrect Preference", and FM means “Format Mismatch".

Model Correct IP Tie FM

Llama-3-8B-Instruct 20.2% 6.0% 25.3% 48.5%
Mistral-7B-Instruct-v0.2 31.2% 11.4% 30.8% 26.6%
Llama-2-70B-Instruct 20.0% 9.27% 31.39% 39.33%
Llama-3.1-70B 55.69% 11.60% 25.47% 7.24%

numerical scores — successfully addresses these limitations. By
eliminating format mismatches and reducing tie cases, the genera-
tive PM built with Llama-3-8B-Instruct achieves a markedly higher
agreement with human judgments.

6 Conclusion

This study introduces a novel and strong self-improvement ap-
proach Preference-Strength-aware Optimization (PSO). By refram-
ing the preference task as a judgment token prediction problem,
PSO effectively mitigates the format errors and inaccurate ties
inherent in LLM-as-a-judge. Through a novel loss function that
adaptively weights optimization based on preference strength, PSO
reduces overfitting risks and verbose response generation. Our ex-
periments demonstrate that PSO achieves significant improvements
over advanced self-improvement methods, with substantial gains
in preference benchmarks such as AlpacaEval-2 and Arena-Hard.
These results show that preference strength derived from generative
PM serves as a reliable indicator of alignment with human prefer-
ences. Moreover, the generative preference model exhibits strong
out-of-distribution generalization and sample efficiency, making it
highly suitable for practical applications. Therefore, PSO represents
a crucial step forward in advancing LLM alignment while reducing
dependency on human-curated preference datasets. We hope our
method will lead to further research in this promising direction.
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