
Birder: Communication-Efficient 1-bit Adaptive
Optimizer for Practical Distributed DNN Training

Hanyang Peng1∗, Shuang Qin1∗, Yue Yu1†, Jin Wang1, Hui Wang1, Ge Li2 †
1Peng Cheng Laboratory, Shenzhen, China

2School of Electronic and Computer Engineering,
Shenzhen Graduate School, Peking University, Shenzhen, China
penghy@pcl.ac.cn, qinsh@pcl.ac.cn, yuy@pcl.ac.cn

wangj05@pcl.ac.cn, wangh06@pcl.ac.cn, geli@ece.pku.edu.cn

Abstract

Various gradient compression algorithms have been proposed to alleviate the
communication bottleneck in distributed learning, and they have demonstrated ef-
fectiveness in terms of high compression ratios and theoretical low communication
complexity. However, when it comes to practically training modern deep neural
networks (DNNs), these algorithms have yet to match the inference performance
of uncompressed SGD-momentum (SGDM) and adaptive optimizers (e.g., Adam).
More importantly, recent studies suggest that these algorithms actually offer no
speed advantages over SGDM/Adam when used with common distributed DNN
training frameworks (e.g., DistributedDataParallel (DDP)) in the typical settings,
due to heavy compression/decompression computation or incompatibility with the
efficient All-Reduce or the requirement of uncompressed warmup at the early stage.
For these reasons, we propose a novel 1-bit adaptive optimizer, dubbed Binary
randomization adaptive optimizer (Birder). The quantization of Birder can be
easily and lightly computed, and it does not require warmup with its uncompressed
version in the beginning. Also, we devise Hierarchical-1-bit-All-Reduce to further
lower the communication volume. We theoretically prove that it promises the same
convergence rate as the Adam. Extensive experiments, conducted on 8 to 64 GPUs
(1 to 8 nodes) using DDP, demonstrate that Birder achieves comparable inference
performance to uncompressed SGDM/Adam, with up to 2.5× speedup for training
ResNet-50 and 6.3× speedup for training BERT-Base. Code is publicly available
at https://openi.pcl.ac.cn/c2net_optim/Birder.

1 Introduction

With the rapid development of computational power, "bigger" and "bigger" deep neural network
(DNN) models are proposed for expect better performance, from the early classical models, such as
AlexNet(61 million parameters) [15], and ResNet (ResNet-50: 20.5 million parameters) [12] to the
current large language models (LLMs), such as BERT (BERT-Lagre: 340 million parameters)[10],
and GPT (GPT-3: 176 billion parameters)[5]. Scalable parallelism across distributed computing
workers for training these large-scale models becomes a necessity. During training, millions to
billions of parameters need to be communicated among workers at each iteration, so distributed
large-scale DNN training almost invariably suffers from the communication bottleneck.

To address the communication bottleneck, a wide variety of lossy gradient compression algorithms
have been proposed to lower the communication overhead. The algorithms can be broadly divided
∗Equal Contribution.
†corresponding author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

into three categories based on the compression techniques, including low-precision approximation
(e.g., SignSGD[4], TernGrad [31], and QSGD [3], 1-bit Adam [28]), low-rank simplification (e.g.,
ATOMO[30], PowerSGD [29], and GradZip [9]), and sparsification (e.g., Random-k [27], Top-k [2],
and MSTop-k [24]). In addition to the specific compression techniques, some other works, such
as Error Feedback(EF) [23][26], EF21 [21], DIANA [19] and MARINA [11], focus on changing the
compression objects from the gradient to the gradient and delayed error summation, or the gradient
differences to mitigate compressing errors and/or accelerate the convergence rate.

Gradient compression algorithms have demonstrated promising results with a high compression ratio
and low oracle/communication complexity in theory. However, when practically training DNNs, they
are still inferior to uncompressed SGDM/Adam in terms of inference performance. This is because,
these gradient compression algorithms are SGD-type optimizers, which will be commonly reduced to
vanilla SGD without momentum if compression is not employed. The performance for a compressed
optimizer is commonly upper bounded by its uncompressed counterpart, while vanilla SGD is typically
less effective than SGDM for training DNNs. Particularly , SGD-type optimizers are known to be
substantially inferior to adaptive optimizers (e.g., Adam) for training Transformer-based networks
[17] [34] [7], which have become predominant in the DNN community. Supporting empirical
evidences for this phenomenon can be found in Section B in the Appendix. Furthermore, if we apply
the techniques of gradient compression algorithms to compress and communicate the gradients, and
subsequently utilize the compressed gradients to construct adaptive optimizers in the local nodes, the
final performance will be degraded [28]. Therefore, designing native communication-compression
adaptive optimizers is an underexplored problem that requires further research.

As for the system-level speed, recent studies ([33],[1]) pointed out, when distributedly training
typical DNN models (e.g., ResNet-50 and BERT-Base) with off-the-shelf DistributedDataParallel
(DDP) at typical bandwidths (e.g., 10Gbps), existing gradient compression algorithms are still slower
than uncompressed SGDM/Adam. This is because, the compressor for these algorithms are either
quantization or sparsification or low-rank simplification, which exhibit one or more weaknesses below.
(i) Vector-wise quantization and low-rank simplification compressors are commonly computationally
heavy, and their time cost, in some cases, is close to and even larger than the savings from the reduces
communications, as empirical evidence has shown in [33] ; (ii) Sparsification compressors and bias
quantization compressor are not naively combatable with the efficient communication primitiveAll-
Reduce due to their inherent structures, and they have to utilize All-Gather for aggregation in stead,
which will significantly slow down the communication speed, as empirically shown in [1] ; (iii) Some
low-rank simplification compressors [29] and quantization compressors [28] [18] need to harness their
uncompressed counterparts for warm-up at the early stage to stabilize the convergence, and the warm-
up time is commonly nontrivial which to some extent renders their high compression ratios vacuous.
Therefore, from a system-level perspective, the design ethos of a system-efficient communication-
compression algorithm is that we should guarantee that the compression/decompression of the
algorithm is computationally light and takes less time, and it should also be friendly to efficient
collective communication primitives. Additionally, there is no need to resort to an uncompressed
optimizer for warm-up.

To this end, we propose a 1-bit adaptive optimizer, called Binary randomization adaptive optimizer
(Birder), which use the following updating rule is xt+1 = xt−αtQ

(
mt

bt

)
wheremt = βmt−1+(1−

β)gt , bt = βbt−1 + (1−β)|gt| and gt is the gradient, andQ(·) is a element-wise binary quantization
operator. The main difference between Birder and existing gradient-quantization algorithms is that we
directly quantize the entire adaptive update mt

bt
rather than quantize the gradient gt or the momentum

mt. Because −1 ≤ (mt)j
(bt)j

≤ 1, where (mt)j , (bt)j are the jth element of mt, bt respectively, each
element of mt

bt
is easy to be randomly quantized to 1 or −1 in probability, making the quantization

computationally light. Another advantage of Birder is that it does not require a full-precision optimizer
to warm up at the early stage to ensure stable convergence. We also demonstrate Birder’s convergence
rate can match that of Adam. Moreover, taking into accost the nature of Birder, we devise an efficient
hierarchical communication scheme to further speed up communication, which sufficiently leverages
the ultra-high intra-bandwidth among GPUs within the same node.

In particular, we make the following key contributions:

• We propose a novel 1-bit optimizer, dubbed Birder, which is a native communication-
compression adaptive algorithm that element-wise quantizes the entire model update

2

and does not need to leverage its uncompressed counterpart for warm-up, making
compression/decompression computationally light and the extreme quantization ratio exert
its best function (Section 2).

• We theoretically prove that despite emolying extreme 1-bit quantization is employed, Birder
still promise the same convergence speed as the full-precision Adam (Section 3).

• We develop a new communication scheme for 1-bit communication, called Hierarchical-1-
bit-All-Reduce, which sufficiently harnesses the ultra-fast intra-connects to accelerate
the local communication, and utilize more efficient commutation primitives to further
reduce the communication overhead (Section 4).

• We perform extensive distributed training experiments to demonstrate the effectiveness
of the proposed algorithm. As far as we know, running with DDP, our algorithm is
the first work to consistently trump SGDM/Adam in terms of entire running time at
little/no inference performance cost, reaching up to 2.47× speedup for ResNet-50 and
6.26× speedup for BERT-Base on 64 GPUs. (Section 5).

2 One-Bit Adaptive Optimizer Birder

In this section, we focus on solving the following problem for distributed training :

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x; ξ(i)) (1)

where x is the d-dimensional model parameter, n is the number of distributed workers. ξ(i) is the
sampled min-batch data on the i-the worker. The sampled min-batch data on all the workers is
independent and identically distributed (i.i.d.). fi(x; ξ(i)) is the loss function. Note that fi(x; ξi) is
commonly abbreviated as fi(x) in the following.

When distributedly training large-scale DNN models, using vanilla full-precision optimizers can
cause communication bottleneck issues in gradient communication among workers at each iteration.
To alleviate this problem, elegant SignSGD[4] was proposed, which merely takes the sign of each
coordinate of the gradients. While this algorithm can substantially reduce the communication
overhead, its practical performance is still inferior to popular adaptive optimizers, such as Adam.
Fortunately, we observe that the mathematical formulations of SignSGD and Adam have close
connections, providing an opportunity to propose a new optimizer that can combine their merits. This
new optimizer can considerably reducing the communication volume with light computation, while
maintaining fast convergence speed and high inference performance.

The mathematical updating rule of SignSGD can be formulated as:

xt+1 ← xt − αtSign(gt) = xt − αt
gt
|gt|

(2)

where αt is the learning rate, gt denotes the estimated unbias noisy gradient of f(xt) with random
samples, Sign(·) is a element-wise signum, and | · | is an element-wise absolute operator.

Whereas the updating rule of vanilla Adam [14] can be expressed as:

mt ← β1mt−1 + (1− β1)gt,

vt ← β2vt−1 + (1− β2)g2t ,

xt+1 ← xt − αt
mt√
vt
,

(3)

where β1 and β2 represents the exponential moving average factors 3.

If taking β1 and β2 to zero, β1, β2 → 0 in Eq. (3), Adam will be reduced to SignSGD.

3For simplicity, we omit the bias correction for mt and vt and the small constant in the numerator.

3

Given the observations above, we propose a new optimizer that is an intermediate between SignSGD
and Adam, referred to as Birder, i.e.,

mt ← βmt−1 + (1− β)gt,

bt ← βbt−1 + (1− β)|gt|,

xt+1 ← xt − αtQ
(
mt

bt

)
,

(4)

where the j-th elements of mt, bt rigorously satisfies −1 ≤ (mt)j
(bt)j

≤ 1, Q(·) is an element-wise
quantization operator, and it quantizes the j-th element of mt

bt
as follows:

Q
(

(mt)j
(bt)j

)
=

{
1, with probability p = 1

2 (
(mt)j
(bt)j

+ 1)

−1, with probability 1− p
, (5)

where E
(
Q
(

mt

bt

))
= mt

bt
, so Q(·) is unbiased, and proof is provided in Section A of the appendix.

The detailed implementation of Birder in a parameter-server model is illustrated in Algorithm 1.

Algorithm 1. Birder
1: Input: all workers’s model parameter x0, x1 , the ith worker’s momentum m

(i)
0 = 0 ,

b
(i)
0 = 0, the ith worker’s local error e(i)0 = 0, server’s global error ē0 = 0, exponential

moving average factor β, the threshold T0, and the learning rate sequence {αt}.
2: for t = 1, ..., T do
3: (On the ith worker)
4: Randomly sample ξ(i)t and compute local gradient: g(i)t = ∇fi(xt; ξ(i)t)

5: Update the local m(i)
t : m(i)

t = βm
(i)
t−1 + (1− β)g

(i)
t

6: Update the local b̂(i)t : b̂(i)t = βb̂
(i)
t−1 + (1− β)|g(i)t |

7: Update the local b(i)t : if t > T0 { b(i)t = max(b
(i)
t−1, b̂

(i)
t)} else {b(i)t = b̂

(i)
t } *

8: Quantize the local update: u(i)
t = Q(

m
(i)
t

b
(i)
t

+ e
(i)
t−1)

9: Update the local error feedback e(i)t : e(i)t = e
(i)
t−1 +

m
(i)
t

b
(i)
t

− u(i)
t

10: Send u(i)
t to the server

11: (On server)
12: Average all received qt and quantize it: ūt = Q(1

n

∑n
i=1 u

(i)
t + ēt−1)

13: Update the global error feedback ēt : ēt = ēt−1 + 1
n

∑n
i=1 u

(i)
t − ūt

14: Send back ūt to all workers
15: (On the ith worker)
16: Update the local model parameter xt+1: xt+1 = xt − αtūt
17: end for
* This step follows the technique in AMSGrad [20]. It is more about theoretical significance, and we commonly do not implement

it in practice.

The appealing characters of Birder are summarized in the following:

• Compared to SGD-type optimizers, Adam provides a fast convergence rate in practice by
adaptively preconditioning the gradients with vt. Birder inherits this feature to accelerate
convergence speed. On the other hand, unlike Adam, Birder employs the same exponential
moving average factor β for both mt and bt. This eliminates the need for bias correction
and reduces the amount of tuning work required.
• Existing quantization optimizers are built upon vector-wise quantization [3][19][22]4 Be-

sides the quantization, they also require heavy computations to compute the norm of a vector

4The typical gradient-quantized optimizer QSGD quantizes the gradient as follows:

Q ((gt)j) =

{
‖gt‖psign((gt)j) · rs , with probability pi =

s|(gt)j |
‖gt‖p − r

‖gt‖psign((gt)j) · r+1
s
, with probability 1− pi

where ‖gt‖p = (
∑
j |(gt)j |

p)
1
p (p ≥ 1), 0 ≤ r < s (r, l ∈ N) and s|(gt)j |

‖gt‖2
∈ [r

s
, r+1

s
].

4

and estimate the sign of each element, which will renders the saved communication time cost
somewhat meaningless. In contrast, Birder element-wise quantizes the update, and the subtle
design for mt and bt ensures the unquantized update is strictly bounded in the range [−1, 1],
allowing quantization is computed easily and lightly. Further, unlike most quantization
optimizers that only compress the gradients [6], Birder performs the quantization for the
entire adaptive update, which further streamlines the optimization process.

Remark. We have noticed that the prior works 1-bit Adam ([28]) and its variants ([16], [18]) are
also categorized as 1-bit adaptive optimizers. However, the design ethos of 1-bit Adam and Birder
differ significantly. 1-bit Adam is still built on gradient quantization and and essentially functions as a
preconditioned SGDM. 1-bit Adam runs full-precision Adam in the beginning (warm-up phase) and
utilizes it as a fixed precondition for SGDM during the rest of training (compression phase). There
are three aspects that influence 1-bit Adam to indeed accelerate communication. First, the warm-up
stage constitutes approximately 15%-25% of the total steps, which to some extent discounts the high
quantization ratio. Second, the vector-wise quantization employed by 1-bit Adam necessitates extra
computations, including the calculation of vector norms and estimation of element signs, which are
then transmitted as additional data. These factors diminish the time savings achieved through reduced
communication bits. Third, the vector-wise quantization technique employed by 1-bit Adam is not
compatible with the common-used distributed framework DDP (system-level engineered distributed
framework). In DDP, communication data is uniformly divided into buckets of equal size on the
sender’s side to enhance communication efficiency. Consequently, when vector-wise quantization
is used, communication data from a single layer may be divided into different buckets, resulting in
substantial errors during restoration on the receiver’s end.

3 Theoretical Analysis

In this section, we present the theoretical convergence guarantee for Birder (Algorithm 1). We first
introduce some necessary assumptions.

Assumption 1.[Bounded infimum] For any x and a constant f∗, we have the objective value
f(x) ≥ f∗.
Assumption 2. [Lipschitz continuous gradient] The gradient ∇f(·) is L-Lipschitz continuous, i.e., ,
‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖2, ∀x, y ∈ Rd.

Assumption 3. [Unbias and indpendent noisy gradient] The gradient with respect to the random
samples on each worker and at a different time is independent identically distributed (i.i.d.), i.e.,
E[g

(i)
t] = ∇f(xt),∀t ≥ 1, g(i)t is independent of g(j)t for i 6= j, and g(i)t1 is independent of g(j)t2 for

t1 6= t2.

Assumption 4. [Bounded gradient] The noisy gradient and the full-set gradient are bounded i.e.,
‖g(i)t ‖ ≤ G, ‖∇ft(x)‖ ≤ G, ∀t ≥ 1.

Under the assumptions above, we then present the theoretical convergence for Birder in Algorithm 1.

Theorem 1. For Birder in Algorithm 1, under Assumption 1-4, assuming (b
(i)
t)j ≥ ρ > 0 , ∀j ∈

[1, 2, ..., d]5, choosing αt = c√
t
, ∀t ∈ [1, 2, ..., T] and α0 = α1 , and defining z1 = x1 +α1(δ1− e1)

where δ1= 1
n

∑n
i=1

m
(i)
1

b
(i)
1

−
∑n

i=1 m
(i)
1∑n

i=1 b
(i)
1

and e1= 1
n

∑n
i=1 e

(i)
1 + ē1, we then have the following

E

[
1

T

T∑
t=1

‖∇f(xt)‖

]2
≤ C1√

T
+
C2(1 + log T)√

T
, (6)

where

C1 = cG

(
E[f(z1)− f∗] +

3c2dL

16
+

βcdG2

(1− β)ρ
+

4cdG2

ρ
+
c2β2LG2d

ρ2(1− β)2

)
,

C2 = c3G

(
(8β2 + 10β + 5)L2d

(1− β)2
+
G2(1 + L)

2ρ2
+ 2dL

)
.

5We commonly add a small constant to bt to avoid zero denominators for numerical stability, which guarantees
this assumption holds in practice.

5

Figure 1: Paradigm of Hierarchical-1-bit-All-Reduce

The theoretical results suggested that 1-bit Birder essentially achieve the same convergence rate
(O(1√

T
)) as the uncompressed Adam [14][8].

4 Hierarchical-1-bit-All-Reduce

The data communication for Birder is one-bit, which cannot be directly aggregated using the efficient
All-Reduce. Additionally, there is a significant imbalance between the intra-node and inter-node
bandwidths. If we attempt to aggregate the data uniformly from both intra-nodes and inter-nodes, the
communication process will be hindered by the inter-node data exchanges, resulting in slower overall
communication.

In light of the problems above, we propose a hierarchical communication scheme called Hierarchical-
1-bit-All-Reduce. This scheme efficiently aggregates our 1-bit data by leveraging the ultra-high
intra-node bandwidth and reducing the inter-node communication overhead. Assuming we have n
nodes, each containing m GPUs, and the overall volume for each GPU needs to be communicated
is P ,as visually depicted in Figure 1, the steps of Hierarchical-1-bit-All-Reduce are as follows: (i)
Each GPU performs Reduce-Scatter to locally aggregate and scatter the data within its node. The
communication volume for each GPU in this step is (m−1)P

m . (ii)Each GPU then applies Birder to
quantize the data, resulting in a reduced volume of P

32m on each GPU. (iii) The GPU proceeds with 1-
bit-All-Reduce to inter-aggregate the data. This step consists of two sub-steps: 1) Each GPU performs
All-to-All to collect the corresponding data from GPUs in other nodes, with a communication volume
of (n−1)P

32mn . 2) Each GPU averages and re-quantizes the data, followed by All-Gather operation to
gather the data. The communication volume in this sub-step is also (n−1)P

32mn . (iv)Finally, each GPU
performs All-Gather to intra-aggregate the data, with a communication volume of (m−1)P

32m .

Compared to the time cost of inter-node communication, the time cost of intra-node communication
is relatively insignificant. Thus, when utilizing Hierarchical-1-bit-All-Reduce, the majority of the
communication cost arises from the 1-bit All-Reduce step in Step (iii). The communication volume
across nodes for all GPUs in this scheme is approximately 2(n−1)P

32 . In contrast, if we were to simply
employ the original All-Gather to aggregate data, the communication volume across nodes for all
GPUs would be approximately m2n(n−1)P

32 . Consequently, Hierarchical-1-bit-All-Reduce proves
significantly more efficient than the original All-Gather.

Notably, the work [32] also introduces a 1-bit data communication scheme among nodes, but it can
only guarantee the expected value of the gathered 1-bit data equals to the average of the original
1-bit data among nodes, thereby it will bring performance deterioration. In contrast, All-to-All in
Hierarchical-1-bit-All-Reduce ensures the final data exactly equals to the average of the original data.

6

(a) Epoch-wise, ResNet-50, batch size=32× 64 (b) Time-wise, ResNet-50, batch size=32× 64

(c) Epoch-wise, ResNet-50, batch size=128× 64 (d) Time-wise, ResNet-50, batch size=128× 64

(e) Epoch-wise, Bert-Base, batch size=3× 64 (f) Time-wise, Bert-Base, batch size=3× 64

Figure 2: Epoch-wise and time-wise convergence speed for training ResNet-50 with 32 samples per GPU,
ResNet-50 with 128 samples per GPU, and fine tuning BERT-Base with 3 samples per GPU with 64 GPUs.

5 Experiments

Table 1: System throughput and Test Accuracy of SGDM, 1-bit Adam and Birder for training ResNet-50 on
ILSVRC2012 from scratch with 8, 16, 32, 64 GPUs.

Optimizer #GPUs 32 samples per GPU 128 samples per GPU
Throughput
(samples / s)

Top-1 Acc. (%) Throughput
(samples / s)

Top-1 Acc.(%)

SGDM
8

3693 (1.00×) 76.19 5272 (1.00×) 75.05
1-bit Adam 3243 (0.83×) 75.55 5229 (0.99×) 75.42
Birder 3462 (0.94×) 75.98 5251 (0.99×) 75.45
SGDM

16
2959 (1.00×) 75.96 6189 (1.00×) 74.61

1-bit Adam 4745 (1.60×) 75.33 8836 (1.42×) 75.05
Birder 6015 (2.03×) 75.53 9633 (1.56×) 75.09
SGDM

32
4270 (1.00×) 75.47 9909 (1.00×) 74.54

1-bit Adam 7268 (1.70×) 75.18 13827 (1.40×) 74.62
Birder 9416 (2.21×) 75.27 15950 (1.61×) 74.82
SGDM

64
6189 (1.00×) 75.37 16640 (1.00×) 74.22

1-bit Adam 5546 (0.89×) 75.54 16426 (0.99×) 74.14
Birder 15253 (2.47×) 75.30 23727 (1.43×) 74.24

Recently, several works [33],[1] have shown that when utilizing the system-level engineered distribut-
ed data-parallel framework DDP, the existing communication-compression optimizers (excluding
1-bit Adam) still perform slower than the uncompressed SGDM/Adam. Therefore, in our evaluation,
we focus on assessing the performance of Birder, the uncompressed SGDM/Adam, and the closely
related algorithm 1-bit Adam through distributed training experiments using the benchmark models
ResNet-50 (CNN) and BERT-Base (Transformer). More extensive experiments can be founded in
Section B of the appendix.

7

Table 2: System throughput and F1-Score / Excat-Match of BertAdam, 1-bit Adam and Birder for fine tuning
BERT-base on SQuAD 1.1 with 8, 16, 32, 64 GPUs.

Optimizer #GPUs Throughput
(samples/s)

F1-Score (%) Exact Match (%)

BertAdam
8

413 (1.00×) 88.13 80.59
1-bit Adam 358 (0.87×) 88.05 80.06
Birder 412 (1.00×) 88.71 81.18
BertAdam

16
84 (1.00×) 88.47 81.07

1-bit Adam 213 (2.54×) 87.87 80.31
Birder 431 (5.13×) 88.31 80.80
BertAdam

32
119 (1.00×) 88.38 80.94

1-bit Adam 274 (2.30×) 87.78 80.08
Birder 730 (6.13×) 88.08 80.50
BertAdam

64
158 (1.00×) 88.13 80.94

1-bit Adam 252 (1.59×) 87.33 79.67
Birder 990 (6.26×) 88.28 80.75

5.1 Experimental Settings

Our experiments were conducted on a testbed consisting of 1, 2, 4, 8 nodes interconnected via
10Gbps Ethernet. Each node was equipped with 8 Nvidia Tesla A100-80GB GPUs. The hardware
and software configurations were identical across all instances, with Ubuntu 20.04.4 LTS serving
as the operating system. PyTorch 1.11.0 was used as the primary framework, accompanied by
CUDA-11.6, cuDNN-8.2, NCCL-2.10.3, and PyTorch 1.11.0 for other relevant libraries. Notably,
to ensure compatibility with PyTorch’s DDP, certain components of Birder and our hierarchical
communication scheme were implemented within the customized communication hook of DDP.

Training details. For the experiments over ResNet-50, we evaluate the convergence and performance
of SGDM, 1-bit Adam and Birder on ILSVRC2012. The batch size per GPU is set to 32 or 128 with
the standard input resolution 224× 224. When employing SGDM (baseline), the learning rate starts
at 0.1× batch size

256 with momentum of 0.9 and weight decay of 0.0001. When employing 1-bit Adam
and Birder, the learning rate starts at 0.001× batch size

256 with weight decay of 0.0001, and [β1, β2] for
1-bit Adam is set to [0.9, 0.999] and β for Birder is set to 0.95. Then, the learning rate is divided by 10
after 30, 60 and 90 epochs, and training is finally terminated after 100 epochs. Specifically, the first
15 epochs are used as the warmup stage for 1-bit Adam. For the experiments over BERT-Base, we
access the convergence and performance of BertAdam (baseline), 1-bit Adam and Birder for SQuAD
1.1 fine-tuning task using a pre-trained BERT-Base model checkpoint from HuggingFace 6. The batch
size per GPU is set to 3. We perform fine-tuning for 2 epochs. The learning rate linearly increases to
1× 10−4 steps in the early 500 steps and then linearly decreases to 0 in the rest iteration. Specifically,
the first 0.2× steps are used as the warmup stage for 1-bit Adam. [β1, β2] for BertAdam, and 1-bit
Adam is set to [0.9, 0.999] and β for Birder is set to 0.9.

5.2 Experimental Results

Figure 2 shows the convergence behaviors of epoch-wise and time-wise training for SGDM / BertAdam
(baseline), 1-bit Adam, and Birder using ResNet-50 and BERT-Base models running on 64 GPUs. The
experimental results clearly demonstrate that Birder achieves a similar epoch-wise convergence rate
compared to the baseline. However, the actual training speed of Birder surpasses both the baseline
and 1-bit Adam by a significant margin.

Figure 3 illustrates the system throughput of different optimizers when running ResNet-50 and
BERT-Base on 8 GPUs to 64 GPUs (1 node to 8 nodes). When training on 8 GPUs (1 node), where
computation takes precedence over communication, the throughput of Birder is slightly lower than that
of SGDM and BertAdam. However, as the number of GPUs increases, Birder consistently outperforms
its counterparts, and this superiority becomes increasingly evident with more GPUs. Additionally,
the system throughput for SGDM, BertAdam, and 1-bit Adam occasionally decreases as the number of
GPUs increases, whereas the throughput of Birder steadily grows. This observation indicates that
Birder offers better scalability efficiency.

6https://github.com/huggingface/transformers

8

(a) ResNet-50, 32 samples / GPU (b) ResNet-50, 128 samples / GPU (c) BERT-Base, 3 samples / GPU

Figure 3: System throughput of optimizers for training (a) ResNet-50 with 32 samples per GPU, (b)ResNet-50
with 128 samples per GPU, and (c) fine tuning BERT-Base with 3 samples per GPU with 8, 16, 32, 64 GPUs.

(a) ResNet-50, 32 samples / GPU (b) ResNet-50, 128 samples / GPU (c) BERT-Base, 3 samples / GPU

Figure 4: Computation time, communication time and compression/decompression time per iteration of
optimizers for training (a) ResNet-50 with 32 samples per GPU, (b)ResNet-50 with 128 samples per GPU, and
(c) fine tuning BERT-Base with 3 samples per GPU with 8, 16, 32, 64 GPUs.

In terms of inference performance for ResNet-50, we evaluate the Top-1 accuracy after training on
ILSVRC2012 from scratch. For BERT-Base, we measure the F1-score and exact-match score after
fine-tuning on SQuAD 1.1. Table 1 shows that when the batch size is set to 32 samples per GPU, the
accuracy of Birder is slightly lower than that of SGDM. It has been suggested in some works ([13],
[35]) that adaptive optimizers generally yield worse generalization compared to SGDM for CNN
architectures. However, as the batch size increases (Table 2), both 1-bit Adam and Birder achieve
better accuracy. This can be attributed to the beneficial effect of introducing a certain level of noise
for generalization ([25]), which biases the optimizer towards wider valleys. Table 2 demonstrates that
Birder achieves similar or higher F1-score and exact-match score compared to BertAdam and 1-bit
Adam, validating the effectiveness of Birder for inference tasks.

5.3 Communication Efficiency Analysis

As shown in Figure 4, training on a single node demonstrates that the baseline SGDM and BertAdam
algorithms are slightly faster compared to Birder and 1-bit Adam. In this scenario, the inter-GPU
bandwidth within a node is extremely high, rendering communication time negligible. However, the
newly introduced compression/decompression process by Birder and 1-bit Adam adds extra time due
to its implementation. Thanks to light-computation quantization, the compression/decompression
time for Birder with ResNet-50 and BERT-Base is significantly reduced to approximately 15ms and
8ms respectively.When conducting distributed training across two nodes, the bandwidth between
them is relatively limited (10Gbps in our experiment), making communication time a critical factor.
In the case of uncompressed SGDM and BertAdam, the communication time substantially exceeds
the computation time for ResNet with 32 samples per GPU and BERT-Base. Consequently, the
system throughput is lower compared to a single node (as depicted in Figure 2). However, the extreme
1-bit quantization implemented in Birder effectively reduces communication overhead, resulting in
only a marginal increase in the total time required for Birder. As the number of nodes continues to
increase, the importance of an efficient communication scheme becomes paramount. By leveraging
our proposed Hierarchical-1-bit-All-Reduce, the overall inter-node communication volume exchanged
scales proportionally with the number of nodes. In contrast, the Compressed-All-Reduce method
employed by 1-bit Adam [28] results in the overall communication volume exchanged among nodes
being proportional to the number of GPUs (eight times larger than the number of nodes in our

9

experiments). Consequently, as the number of nodes increases, the communication time for Birder
exhibits a gradual rise, while the communication time for 1-bit Adam experiences a sudden surge.

6 Conclusion

In this study, we introduce a novel 1-bit adaptive optimizer for distributed training. Our optimizer
offers the advantages of being lightweight in terms of computation while employing extreme 1-bit
quantization for the communication data. Furthermore, we provide theoretical evidence demonstrating
that Birder can achieve convergence rates comparable to the uncompressed Adam. To enhance
communication speed, we propose a novel communication scheme tailored specifically for Birder,
replacing the inefficient naive All-Gather approach. Through extensive experiments on benchmark
models such as ResNet-50 and BERT-Base, we validate the effectiveness and efficiency of Birder in
comparison to uncompressed methods like SGDM/Adam as well as the relevant 1-bit Adam.

Acknowledgments

This work is partially supported by the National R&D Program of China (Grant No. 2022ZD0115301),
the Major Key Project of PCL (Grant No. PCL2023AS7-1), and the National Natural Science
Foundation of China (Grant No. 61806128).

References
[1] Saurabh Agarwal, Hongyi Wang, Shivaram Venkataraman, and Dimitris Papailiopoulos. On the utility of

gradient compression in distributed training systems. In Proceedings of Machine Learning and Systems,
volume 4, pages 652–672, 2022.

[2] Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent. arXiv
preprint arXiv:1704.05021, 2017.

[3] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-
efficient sgd via gradient quantization and encoding. In Advances in neural information processing systems,
volume 30, 2017.

[4] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. Signsgd:
Compressed optimisation for non-convex problems. In International Conference on Machine Learning,
pages 560–569, 2018.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

[6] Congliang Chen, Li Shen, Haozhi Huang, and Wei Liu. Quantized adam with error feedback. ACM
Transactions on Intelligent Systems and Technology (TIST), 2021.

[7] Jacques Chen, Frederik Kunstner, and Mark Schmidt. Heavy-tailed noise does not explain the gap between
sgd and adam on transformers. In 13th Annual Workshop on Optimization for Machine Learning, 2021.

[8] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
algorithms for non-convex optimization. arXiv preprint arXiv:1808.02941, 2018.

[9] Minsik Cho, Vinod Muthusamy, Brad Nemanich, and Ruchir Puri. Gradzip: Gradient compression using
alternating matrix factorization for large-scale deep learning. In Advances in Neural Information Processing
Systems, 2019.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[11] Eduard Gorbunov, Konstantin P Burlachenko, Zhize Li, and Peter Richtárik. Marina: Faster non-convex
distributed learning with compression. In International Conference on Machine Learning, 2021.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

10

[13] Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching from adam
to sgd. arXiv preprint arXiv:1712.07628, 2017.

[14] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations (ICLR), 2015.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Communications of the ACM, 60(6):84–90, 2017.

[16] Conglong Li, Ammar Ahmad Awan, Hanlin Tang, Samyam Rajbhandari, and Yuxiong He. 1-bit lamb:
Communication efficient large-scale large-batch training with lamb’s convergence speed. arXiv preprint
arXiv:2104.06069, 2021.

[17] Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the difficulty of
training transformers. arXiv preprint arXiv:2004.08249, 2020.

[18] Yucheng Lu, Conglong Li, Minjia Zhang, Christopher De Sa, and Yuxiong He. Maximizing communication
efficiency for large-scale training via 0/1 adam. arXiv preprint arXiv:2202.06009, 2022.

[19] Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning with
compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

[20] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In International
Conference on Learning Representations, 2018.

[21] Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better, and
practically faster error feedback. In Advances in Neural Information Processing Systems, 2021.

[22] Mher Safaryan and Peter Richtárik. Stochastic sign descent methods: New algorithms and better theory. In
International Conference on Machine Learning, 2021.

[23] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech dnns. In Fifteenth annual conference of the
international speech communication association, 2014.

[24] Shaohuai Shi, Xianhao Zhou, Shutao Song, Xingyao Wang, Zilin Zhu, Xue Huang, Xinan Jiang, Feihu
Zhou, Zhenyu Guo, Liqiang Xie, et al. Towards scalable distributed training of deep learning on public
cloud clusters. In Proceedings of Machine Learning and Systems, volume 3, pages 401–412, 2021.

[25] Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic gradient descent.
In International Conference on Learning Representations (ICLR), 2018.

[26] Sebastian Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for sgd with
delayed gradients and compressed communication. arXiv preprint arXiv:1909.05350, 2019.

[27] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. In Advances
in Neural Information Processing Systems, volume 31, 2018.

[28] Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Conglong Li, Xiangru Lian,
Ji Liu, Ce Zhang, and Yuxiong He. 1-bit adam: Communication efficient large-scale training with adam‘s
convergence speed. In International Conference on Machine Learning, pages 10118–10129, 2021.

[29] Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient com-
pression for distributed optimization. In Advances in Neural Information Processing Systems, volume 32,
2019.

[30] Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and Stephen
Wright. Atomo: Communication-efficient learning via atomic sparsification. In Advances in Neural
Information Processing Systems, volume 31, 2018.

[31] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad: Ternary
gradients to reduce communication in distributed deep learning. In Advances in neural information
processing systems, volume 30, 2017.

[32] Feijie Wu, Shiqi He, Song Guo, Zhihao Qu, Haozhao Wang, Weihua Zhuang, and Jie Zhang. Sign bit is
enough: a learning synchronization framework for multi-hop all-reduce with ultimate compression. In
Proceedings of the 59th ACM/IEEE Design Automation Conference, 2022.

11

[33] Hang Xu, Chen-Yu Ho, Ahmed M Abdelmoniem, Aritra Dutta, El Houcine Bergou, Konstantinos Karat-
senidis, Marco Canini, and Panos Kalnis. Compressed communication for distributed deep learning:
Survey and quantitative evaluation. Technical report, 2020.

[34] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv Kumar,
and Suvrit Sra. Why are adaptive methods good for attention models? In Advances in Neural Information
Processing Systems, 2020.

[35] Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards theoretically
understanding why sgd generalizes better than adam in deep learning. Advances in Neural Information
Processing Systems, 33:21285–21296, 2020.

12

Appendix

A Theoretical Analysis for Algorithm 1

In practice, we implement Birder in a non-parameter-server model to further reduce the communication overhead,
but the data exchange is essentially equivalent to that in a parameter-server prototype. Hence, we provide the
theoretical analysis for Birder in a parameter-server model as shown in Algorithm 1.

According to Algorithm 1, the update ūt can be recursively formulated as

ūt =Q

(
1

n

n∑
i=1

u
(i)
t + ēt

)

=
1

n

n∑
i=1

u
(i)
t + ēt − ēt+1

=
1

n

n∑
i=1

Q

(
m

(i)
t

b
(i)
t

+ e
(i)
t

)
+ ēt − ēt+1

=
1

n

n∑
i=1

(
m

(i)
t

b
(i)
t

+ e
(i)
t − e

(i)
t+1

)
+ ēt − ēt+1

=
1

n

n∑
i=1

m
(i)
t

b
(i)
t

+
1

n

n∑
i=1

(
e
(i)
t − e

(i)
t+1

)
+ ēt − ēt+1

(7)

Denote

gt
4
=

1

n

n∑
i=1

g
(i)
t , (8)

mt
4
=

1

n

n∑
i=1

m
(i)
t = βmt−1 + (1− β)gt, (9)

bt
4
=

1

n

n∑
i=1

b
(i)
t , (10)

δt
4
=

1

n

n∑
i=1

m
(i)
t

b
(i)
t

− mt

bt
, (11)

et
4
=

1

n

n∑
i=1

e
(i)
t + ēt (12)

(13)

Hence, the updating rule can be summarized as
xt+1 = xt − αtūt

=xt − αt
(
mt

bt
+ δt + et − et+1

)
(14)

A.1 Auxiliary Lemmas

Lemma 1. Let ut = mt
bt

, the element-wise quantization function is defined in Eq.(5) can be reformulated as

Q ((ut)j) =

{
1, with probability p =

(ut)j+1

2

−1, with probability 1− p
(j ∈ {1, 2, ..., d}, − 1 ≤ (ut)j ≤ 1). (15)

We have et = ut −Q (ut), and then the following holds true

E [et] = 0, E
[
‖et‖2

]
≤ d. (16)

Proof. From Eq.(15), we know
E [(et)j] = E [ut −Q (ut)]

=
1

2
((ut)j + 1) ((ut)j − 1) + (1− 1

2
((ut)j + 1))((ut)j + 1) = 0,

(17)

13

and,

E
[
(et)

2
j

]
= E

[
((ut)j −Q ((ut)j))

2]
=

1

2
((ut)j + 1) ((ut)j − 1)2 + (1− 1

2
((ut)j + 1))((ut)j + 1)2

= 1− ((ut)j)
2 ≤ 1.

(18)

Hence,
E [et] = 0, E

[
‖et‖2

]
≤ d. (19)

Lemma 2. Let x0 = x1 and α0 = α1 in Algorithm 1, defining the sequence

z1 = x1 + α1(δ1 − e1) (20)

zt = xt +
β

1− β (xt − xt−1) +
αt−1

1− β (δt−1 + βet−1 − et), ∀t ≥ 2. (21)

Then the following equality will hold, i.e.,

zt+1 = zt +
β

1− β

(
αt−1

bt−1
− αt
bt

)
�mt−1 − αt

gt
bt
− αt−1δt−1 − (αt − αt−1)et. (22)

Proof. For t = 1, we have

z2 − z1 = x2 +
β

1− β (x2 − x1) +
α1

1− β (δ1 + βe1 − e2)− (x1 + α1(δ1 − e1))

= (
β

1− β + 1)(x2 − x1) +
α1

1− β (δ1 + βe1 − e2)− α1(δ1 − e1)

= − α1

1− β

(
(1− β)g1

b1
+ δ1 + e1 − e2

)
+

α1

1− β (δ1 + βe1 − e2)− α1(δ1 − e1)

= −α1
g1
b1
− α0δ1

(23)

where the second equality follows the updating rule in Eq.(14).

For t ≥ 2, following the updating rule in Eq.(14), we have

xt+1 − xt + αt(δt + et − et+1) =− αt
mt

bt

=− αt
βmt−1 + (1− β)gt

bt
=β (xt − xt−1 + αt−1(δt + et−1 − et))

+ β

(
αt−1

bt−1
− αt
bt

)
�mt−1 − (1− β)αt

gt
bt

(24)

We know xt+1 − xt +αt(et − et+1) = (1− β)(xt+1 +−αt(et+1 − δt))− (1− β)(xt −αtet) + β(xt+1 −
xt + αt(δt + et − et+1)), so Eq. (24) can be rearranged as

(1− β)(xt+1 + αt(δt − et+1)) + β(xt+1 − xt + αt(δt + et − et+1))

=(1− β)(xt − αtet) + β (xt − xt−1 + αt−1(δt−1 + et−1 − et))

+ β

(
αt−1

bt−1
− αt
bt

)
�mt−1 − (1− β)αt

gt
bt

(25)

Divided both sides by 1− β, we obtain

xt+1 + αt(δt − et+1) +
β

1− β (xt+1 − xt + αt(δt + et − et+1))

=xt + αt−1(δt−1 − et) +
β

1− β (xt − xt−1 + αt−1(δt−1 + et−1 − et))

+
β

1− β

(
αt−1

bt−1
− αt
bt

)
�mt−1

− αt
gt
bt
− αt−1δt−1 − (αt − αt−1)et

(26)

14

Rearranging Eq. (26), we have

xt+1 +
β

1− β (xt+1 − xt) +
αt

1− β (δt + βet − et+1)

=xt +
β

1− β (xt − xt−1) +
αt−1

1− β (δt−1 + βet−1 − et)

+
β

1− β

(
αt−1

bt−1
− αt
bt

)
�mt−1

− αt
gt
bt
− αt−1δt−1 − (αt − αt−1)et

(27)

Define the sequence

zt = xt +
β

1− β (xt − xt−1) +
αt−1

1− β (δt−1 + βet−1 − et) (28)

We finally obtain

zt+1 = zt +
β

1− β

(
αt−1

bt−1
− αt
bt

)
�mt−1 − αt

gt
bt
− αt−1δt−1 − (αt − αt−1)et. (29)

Recalling x1 = x0 and α1 = α0, we have α1
b1

= α0
b0

. Then, combining Eq.(23) and Eq.(29), we obtain the
conclusion.

A.2 Proof of Theorem 1

Proof. By the the gradient Lipschitz continuous in Assumption 2 and Lemma 2, we obtain

E[f(zt+1)− f(zt)] ≤ E〈∇f(zt), zt+1 − zt〉+
L

2
E‖zt+1 − zt‖2

=E
[

β

1− β 〈∇f(zt),

(
αt−1

bt−1
− αt
bt

)
�mt−1〉

]
− E

[
〈∇f(zt), αt

gt
bt
〉
]

− E [〈∇f(zt), αt−1δt−1〉]− E [〈∇f(zt), (αt − αt)et−1〉]

+ E

[
L

2

∥∥∥∥ β

1− β

(
αt−1

bt−1
− αt
bt

)
�mt−1 − αt

gt
bt
− αt−1δt−1 − (αt − αt−1)et−1

∥∥∥∥2
]

=E
[

β

1− β 〈∇f(zt),

(
αt−1

bt−1
− αt
bt

)
�mt−1〉

]
− E

[
〈∇f(zt), αt

gt
bt
〉
]

+ E

[
L

2

∥∥∥∥ β

1− β

(
αt−1

bt−1
− αt
bt

)
�mt−1 − αt

gt
bt
− αt−1δt−1 − (αt − αt−1)et−1

∥∥∥∥2
]

≤E
[

β

1− β 〈∇f(zt),

(
αt−1

bt−1
− αt
bt

)
�mt−1〉

]
− E

[
〈∇f(zt), αt

gt
bt
〉
]

+ LE

[∥∥∥∥ β

1− β

(
αt−1

bt−1
− αt
bt

)
�mt−1

∥∥∥∥2
]

+ LE

[
α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

+
L

2
E
[
‖αt−1δt−1‖2

]
+
L

2
E
[
‖(αt−1 − αt)et‖2

]
(30)

where the second equality holds due to E [δt−1] = 0 and E [et−1] = 0. The last inequality holds owing to
E[‖a + b‖2] = E[‖a‖2] + E[‖b‖2] if E[a] = 0 or E[b] = 0, and E[‖a + b‖2] ≤ 2E[‖a‖2] + 2E[‖b‖2] if
E[a] 6= 0 and E[b] 6= 0.

15

Taking telescope sum from 1 to T on the both sides of Eq.(30) , we then have

E[f(zT)− f(z1)] ≤ β

1− βE

[
T∑
t=1

〈∇f(zt),

(
αt−1

bt−1
− αt
bt

)
�mt−1〉

]
︸ ︷︷ ︸

T1

−E

[
T∑
t=1

〈∇f(zt), αt
gt
bt
〉

]
︸ ︷︷ ︸

T2

+ LE

[
T∑
t=1

∥∥∥∥ β

1− β

(
αt−1

bt−1
− αt
bt

)
�mt−1

∥∥∥∥2
]

︸ ︷︷ ︸
T3

+ LE

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

+
L

2
E[

T∑
t=1

‖αt−1δt−1‖2] +
L

2
E[

T∑
t=1

‖(αt−1 − αt)et‖2]︸ ︷︷ ︸
T4

(31)

Now we focus on bounding T1 below. From Assumption 4, we know ‖gt‖ ≤ G (t = 1, 2, ..., T) and
‖∇f(zt)‖ ≤ G . Due to mt = βmt−1 + (1− β)gt and m1 = g1, it is easy to obtain ‖mt‖ ≤ G by complete
induction.

Since ‖∇f(zt)‖ ≤ G and ‖mt‖ ≤ G, we have

T1 =
β

1− βE

[
T∑
i=1

〈∇f(zi),

(
αt−1

bt−1
− αt
bt

)
�mi−1〉

]
(i)

≤ β

1− βE

[
T∑
i=1

‖∇f(zt)‖‖mt‖
∥∥∥∥αt−1

bt−1
− αt
bt

∥∥∥∥
1

]
(ii)

≤ β

1− βG
2E

[
T∑
i=1

∥∥∥∥αt−1

bt−1
− αt
bt

∥∥∥∥
1

]
(iii)
=

β

1− βG
2E

[∥∥∥∥∥
T∑
i=1

(
αt−1

bt−1
− αt
bt

)∥∥∥∥∥
1

]

≤ β

1− βG
2E
[∥∥∥∥α0

b0

∥∥∥∥
1

]
(iv)

≤ α0βd

(1− β)ρ
G2,

(32)

where (i) holds sice ‖a� b‖ ≤ ‖a‖maxj |(b)j | ≤ ‖a‖‖b‖1, (ii) holds due to ‖∇f(zt)‖ ≤ G and ‖mt‖ ≤ G,
(iii) holds because αt−1

(bt−1)j
− αt

(bt)j
≥ 0 for any j ∈ [1, 2, ..., d], (iv) holds due to minj(bt)j ≥ ρ > 0 for any

j ∈ [1, 2, ..., d].

Let us turn to bound T2,

T2 = −E

[
T∑
t=1

〈∇f(zt), αt
gt
bt
〉

]

= −E

[
T∑
t=1

〈∇f(zt)− f(xt), αt
gt
bt
〉

]
︸ ︷︷ ︸

T5

−E

[
T∑
t=1

〈∇f(xt), αt
gt
bt
〉

]
︸ ︷︷ ︸

T6

(33)

16

We now analyze T5 below,

T5 = −E

[
T∑
t=1

〈∇f(zt)− f(xt), αt
gt
bt
〉

]
(i)

≤ 1

2
E

[
T∑
t=1

‖f(zt)− f(xt)‖2
]

+
1

2
E

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

(ii)

≤ L2

2
E

[
T∑
t=1

‖zt − xt‖2
]

+
1

2
E

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

(iii)
=
L2

2
E

[
T∑
t=1

∥∥∥∥ β

1− β (xt − xt−1) +
αt−1

1− β (δt−1 + βet−1 − et)
∥∥∥∥2
]

+
1

2
E

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

(iv)

≤ β2L2

(1− β)2
E

[
T∑
t=1

‖xt − xt−1‖2
]

+
L2

(1− β)2
E

[
T∑
t=1

‖αt−1δt−1‖2
]

+
β2L2

(1− β)2
E

[
T∑
t=1

‖αt−1et−1‖2
]

+
L2

(1− β)2
E

[
T∑
t=1

‖αt−1et‖2
]

+
1

2
E

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

(v)
=

β2L2

(1− β)2
E

[
T∑
t=1

α2
t−1

∥∥∥∥(mt−1

bt−1
+ δt−1 + et−1 − et

)∥∥∥∥2
]

+
L2

(1− β)2
E

[
T∑
t=1

‖αt−1δt−1‖2
]

+
β2L2

(1− β)2
E

[
T∑
t=1

‖αt−1et−1‖2
]

+
L2

(1− β)2
E

[
T∑
t=1

‖αt−1et‖2
]

+
1

2
E

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

=
β2L2

(1− β)2
E

[
T∑
t=1

∥∥∥∥αt−1mt−1

bt−1

∥∥∥∥2
]

+
β2L2

(1− β)2
E

[
T∑
t=1

‖αt−1δt−1‖2
]

+
β2L2

(1− β)2
E

[
T∑
t=1

‖αt−1et−1‖2
]

+
β2L2

(1− β)2
E

[
T∑
t=1

‖αt−1et‖2
]

+
L2

(1− β)2
E

[
T∑
t=1

‖αt−1δt−1‖2
]

+
β2L2

(1− β)2
E

[
T∑
t=1

‖αt−1et−1‖2
]

+
L2

(1− β)2
E

[
T∑
t=1

‖αt−1et‖2
]

+
1

2
E

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

=
β2L2

(1− β)2
E

[
T∑
t=1

α2
t−1

∥∥∥∥mt−1

bt−1

∥∥∥∥2
]

+
(1 + β2)L2

(1− β)2
E

[
T∑
t=1

α2
t−1 ‖δt−1‖2

]

+
2β2L2

(1− β)2
E

[
T∑
t=1

α2
t−1 ‖et−1‖2

]
+

(1 + β2)L2

(1− β)2
E

[
T∑
t=1

α2
t−1 ‖et‖2

]
+

1

2
E

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

(vi)

≤
(
β2L2d

(1− β)2
+

4(1 + β2)L2d

(1− β)2
+

2β2L2d

(1− β)2
+

(1 + β2)L2d

(1− β)2
+
G2

2ρ2

) T∑
t=1

α2
t−1

=

(
(8β2 + 10β + 5)L2d

(1− β)2
+
G2

2ρ2

) T∑
t=1

α2
t−1

(34)
where (i) holds by following 〈a, b〉 ≤ 1

2
‖a‖2 + 1

2
‖a‖2, (ii) holds due to Assumption 1, (iii) holds due to

Assumption 1 owing to Eq.(21), (iii) holds since E[‖a+ b‖2] = E[‖a‖2] + E[‖b‖2] if E[a] = 0 or E[b] = 0,

(v) holds resulting from the updating rule in Eq. (14), (vi) holds due to
∣∣∣ (mt)j
(bt)j

∣∣∣ ≤ 1, |(δ)j | ≤ 2 (the definition

of δtin Eq. (11)), E[‖et‖2] ≤ d in Lemma 1, ‖gt‖ ≤ G in Assumption 2 and minj(bt)j ≥ ρ > 0.

17

We then bound T6

T6 =− E

[
T∑
t=1

〈∇f(xt), αt
gt
bt
〉

]

=− E

[
T∑
t=1

〈∇f(xt), αt
∇f(xt)

bt
〉

]
− E

[
T∑
t=1

〈∇f(xt), αt
gt −∇f(xt)

bt
〉

]
(i)

≤ − 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ E

[
T∑
t=1

〈∇f(xt), αt
∇f(xt)− gt

bt
〉

]

=− 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ E
[
〈∇f(x1), α1

∇f(x1)− g1
b1

〉
]

+ E

[
T∑
t=2

〈∇f(xt),∇(f(xt)− gt)�
(
αt
bt
− αt−1

bt−1

)
〉

]
+ E

[
T∑
t=2

〈∇f(xt), αt−1
∇f(xt)− gt

bt−1
〉

]
(ii)
= − 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ E
[
〈∇f(x1), α1

∇f(x1)− g1
b1

〉
]

+ E

[
T∑
t=2

〈∇f(xt), (∇f(xt)− gt)�
(
αt
bt
− αt−1

bt−1

)
〉

]
(iii)

≤ − 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ E
[
‖∇f(x1)‖‖∇f(x1)− g1‖

∥∥∥∥α1

b1

∥∥∥∥
1

]

+ E

[
T∑
t=2

‖∇f(xt)‖‖∇f(xt)− gt‖
∥∥∥∥αtbt − αt−1

bt−1

∥∥∥∥
1

]
(iv)

≤ − 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ 2G2E

[∥∥∥∥α1

b1

∥∥∥∥
1

+

T∑
t=2

∥∥∥∥αtbt − αt−1

bt−1

∥∥∥∥
1

]
(v)
= − 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ 2G2E

[∥∥∥∥∥α1

b1
+

T∑
t=2

αt−1

bt−1
− αt
bt

∥∥∥∥∥
1

]
,

=− 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ 4G2E
[∥∥∥∥α1

b1

∥∥∥∥
1

]
,

(vi)

≤ − 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+
4G2α1d

ρ

(35)
where (i) holds due to maxj(bt)j ≤ ‖bt‖ ≤ G , (ii) holds owing to E[∇f(xt)− gt] = 0 in Assumption 2 and
gt, bt−1 are independent, (iii) holds sice ‖a � b‖ ≤ ‖a‖maxj |(b)j | ≤ ‖a‖‖b‖1, (iv) holds resulting from
‖∇f(xt)‖ ≤ G and ‖∇f(xt)− gt‖ ≤ ‖∇f(xt)‖+ ‖gt‖ ≤ 2G, and (v) holds because αt−1

(bt−1)j
− αt

(bt)j
≥ 0

for any j ∈ [1, 2, ..., d], (vi) holds due to minj(bt)j ≥ ρ > 0 for any j ∈ [1, 2, ..., d].

18

Then, we pay attention to T3,

T3 = LE

[
T∑
t=1

∥∥∥∥ β

1− β

(
αt−1

bt−1
− αt
bt

)
�mt−1

∥∥∥∥2
]

(i)

≤ β2L

(1− β)2
E

[
T∑
t=1

∥∥∥∥αt−1

bt−1
− αt
bt

∥∥∥∥2 ‖mt−1‖2
]

(ii)

≤ β2LG2

(1− β)2
E

[
T∑
t=1

∥∥∥∥αt−1

bt−1
− αt
bt

∥∥∥∥2
]

(iii)

≤ β2LG2

(1− β)2
E

[
T∑
t=1

max
j

∣∣∣∣ αt−1

(bt−1)j
− αt

(bt)j

∣∣∣∣ ∥∥∥∥αt−1

bt−1
− αt
bt

∥∥∥∥
1

]
(iv)

≤ α0β
2LG2

ρ(1− β)2
E

[
T∑
t=1

max
j

(
αt−1

(bt−1)j

)∥∥∥∥αt−1

bt−1
− αt
bt

∥∥∥∥
1

]
(v)

≤ α0β
2LG2

ρ(1− β)2
E

[
T∑
t=1

∥∥∥∥αt−1

bt−1
− αt
bt

∥∥∥∥
1

]
(vi)

≤ α0β
2LG2

ρ(1− β)2
E

[
T∑
t=1

∥∥∥∥αt−1

bt−1

∥∥∥∥
1

−
∥∥∥∥αtbt

∥∥∥∥
1

]
(vii)

≤ α0β
2LG2

ρ(1− β)2
E
[∥∥∥∥α0

b0

∥∥∥∥
1

−
∥∥∥∥αTbT

∥∥∥∥
1

]
(viii)

≤ α2
0β

2LG2d

ρ2(1− β)2
,

(36)

where (i) holds due to ‖a � b‖ ≤ ‖a‖‖b‖, (ii) holds owing to ‖mt−1‖ ≤ G, (ii) holds due to ‖a‖2 ≤
maxj |(a)j |‖a‖1 , (iv) holds due to αt−1

(bt−1)j
− αt

(bt)j
≥ 0 and αt

(bt)j
> 0 for any j ∈ [1, 2, ..., d], (v) holds

resulting from minj(bt)j ≥ ρ > 0 for any j and αt is non-increasing, (vi) holds resulting from αt−1

(bt−1)j
−

αt
(bt)j

≥ 0 for any j ∈ [1, 2, ..., d], (vii) holds due to telescoping sum, and (viii) holds due to minj(bt)j ≥
ρ > 0 for any j ∈ [1, 2, ..., d]..

Now we turn attention to T4,

T4 = LE

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

+
L

2
E[

T∑
t=1

‖αt−1δt−1‖2] +
L

2
E[

T∑
t=1

‖(αt−1 − αt)et‖2]

≤
(
L
G2

ρ2
+ 2dL

) T∑
t=1

α2
t +

dL

2

T∑
t=1

(αt−1 − αt)2,

(37)

where the inequality holds owing to ‖mt−1‖ ≤ G and minj(bt)j ≥ ρ > 0, ‖(δt−1)j‖ ≤ 2, and E[‖et‖2] ≤ d.

Combining Eq.(31-37), we can obtain

E[f(zT)− f(z1)] ≤ α0βd

(1− β)ρ
G2 +

(
(8β2 + 10β + 5)L2d

(1− β)2
+
G2

2ρ2

) T∑
t=1

α2
t−1

− 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+
4G2α1d

ρ
+
α2
0β

2LG2d

ρ2(1− β)2

+

(
L
G2

ρ2
+ 2dL

) T∑
t=1

α2
t +

dL

2

T∑
t=1

(αt−1 − αt)2.

(38)

19

Reformulating Eq.(38), we then have

1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]
≤E[f(z1)− f(zT)]

+

(
(8β2 + 10β + 5)L2d

(1− β)2
+
G2(1 + L)

2ρ2
+ 2dL

) T∑
t=1

α2
t−1

+
dL

2

T∑
t=1

(αt−1 − αt)2

+
α0βd

(1− β)ρ
G2 +

4G2α1d

ρ
+
α2
0β

2LG2d

ρ2(1− β)2

(39)

It is known the learning rate saftifies αt = c√
t
,∀t ≥ 1 and α0 = α1 = c. Utilizing non-increasing

αt and Cauchy-Schwarz inequality, we know E
[∑T

t=1 αt‖∇f(xt)‖2
]
≥ TαTE

[
1
T

∑T
t=1 ‖∇f(xt)‖

]2
=

√
T
c
E
[

1
T

∑T
t=1 ‖∇f(xt)‖

]2
.
∑T
t=1 α

2
t−1 =

∑T
t=1

c2

t
≤ c2(1 +

∫ T−1

1
1
t
dt) ≤ c2(1 + log T), and∑T

t=1(αt−1−αt)2 =
∑T
t=2(αt−1−αt)2 ≤

∑T
t=2

c2

4(t−1)3
≤ c2

4
(1+

∫ T−2

1
t−3dt) = c2

4
(3
2
− 1

2(T−2)
) ≤ 3c2

8
,

we further have

E

[
1

T

T∑
t=1

‖∇f(xt)‖

]2
≤ C1√

T
+
C2(1 + log T)√

T
, (40)

where we define

C1 = cG

(
E[f(z1)− f∗] +

3c2dL

16
+

βcdG2

(1− β)ρ
+

4cdG2

ρ
+
c2β2LG2d

ρ2(1− β)2

)
, (41)

C2 = c3G

(
(8β2 + 10β + 5)L2d

(1− β)2
+
G2(1 + L)

2ρ2
+ 2dL

)
. (42)

B Experiments for Comparing Vanilla SGD, SGDM, Adam, Birder and
SoftSignSGD

To address the bottleneck in communication during distributed training, numerous gradient compression al-
gorithms have been proposed, aiming to reduce the communication volume. Most of these algorithms can
be reduced to Vanilla SGD without momentum if compression is not performed. Generally speaking, the
epoch-wise convergence rate and inference performance a compressed algorithms is upper bounded by its
uncompressed counterpart. In the experiments, we conducted empirical experiments to evaluate the training and
inference performance of of Vanilla SGD, SGDM, Adam, Birder and its uncompressed version in training
typical CNN-base, LSTM-base and Transformer-base DNNs.

Algorithm 1. SoftSignSGD
1: Input: model parameter x0, x1 , the momentum m

(i)
0 = 0, b(i)0 = 0, the

exponential moving average factor β, the learning rate sequence {αt}
2: for t = 1, ..., T do
3: Randomly sample ξt and compute the gradient: gt = ∇f(xt; ξt)
4: Update the momentum mt: mt = βmt−1 + (1− β)gt
5: Update the momentum bt: bt = βbt−1 + (1− β)|gt|
6: Update the model parameter xt+1: xt+1 = xt − αt mt

bt

7: end for

We refer to the uncompressed Birder as SoftSignSGD. The implementation details for SoftSignSGD are
presented in Algorithm 1. When comparing SoftSignSGD to Adam, there are two key differences. First,
instead of using the square root of the exponential moving average of the squared gradient, denoted as

√
vt =√

(1− β2)vt−1 + (1− β2)g2t , SoftSignSGD utilizes the exponential moving average of the absolute gradient,
represented as bt = (1− β)bt−1 + |gt|. Second, in SoftSignSGD, the exponential moving factors for both the
numerator mt and the denominator bt are the same. These differences ensure that each element of the updating
amount in SoftSignSGD satisfies the condition −1 ≤ (mt

bt
)j ≤ 1.

20

B.1 Experimental Results for training ResNet-20

We evaluated the performance of five optimization algorithms: Vanilla SGD, SGDM, AdamW, Birder and
SoftSignSGD, for training ResNet-20 on CIFAR100. Each batch consisted of a set of 128 examples sampled
with replacement. For SGDM, we set the momentum parameter β to 0.9, while for SoftSignSGD and Birder, it
was set to 0.95. For AdamW, the parameters β1 and β2 were set to 0.9 and 0.999, respectively. The weight decay
was uniformly set to 0.0005 for Vanilla SGD and SGDM, and 0.05 for AdamW, Birder and SoftSignSGD.
To simplify the tuning process and ensure fair comparisons, we initialized the learning rates at 0.1 for Vanilla
SGD and SGDM, and 0.005 for AdamW, Birder and SoftSignSGD. We divided the learning rates by 10 after
75 and 130 epochs, and terminated the training after 150 epochs.

Figure 5 visually demonstrates that Vanilla SGD exhibits slower convergence speed and lower test accuracy
compared to SGDM. In contrast, both Birder and SoftSignSGD show comparable training and inference
performance to the commonly used SGDM and AdamW. This observation suggests that Birder outperforms
existing gradient compression algorithms when training CNN-based ResNet-20 models.

(a) Train Loss (b) Test Accuracy

Figure 5: Training loss and test accuracy for ResNet-20 on CIFAR100.

B.2 Experimental Results for training LSTM

We conducted experiments to train a 3-layer LSTM model on the Penn TreeBank dataset to evaluate the
performance of five optimization algorithms: Vanilla SGD, SGDM, AdamW, Birder and SoftSignSGD.
Our implementations were built upon the code provided in the AdaBelief paper7, and we used the default
experimental settings for SGDM and AdamW. For Vanilla SGD, we used the experimental settings of SGDM
with the exception that we set the momentum parameter β to 0. For Birder and SoftSignSGD, we adopted the
experimental settings of AdamW, except that we set the momentum parameter β to 0.99.

As visually illustrated in Figure 6, Vanilla SGD is still less effective than SGDM in terms of the convergence
speed and the test accuracy, while the training and inference performance of SoftSignSGD and Birder are
comparative to common-used SGDM and AdamW. It indicates the Birder is superior to exiting gradient
compression algorithms for training LSTM.

B.3 Experimental Results for training ViT

We train ViT-B with Vanilla SGD, SGDM, AdamW, SoftSignSGD and Birder on the ILSVRC2012 with 32
GPUs (4 nodes). We use the Pytorch official implementation for ViT 8. For AdamW, SoftSignSGD and Birder,
we followed the recommended experimental settings, with the exception that we set the momentum parameter β
to 0.95 for SoftSignSGD and Birder. As for Vanilla SGD and SGDM, we set the basic learning rate to 0.1 and
the weight decay to 0.001, while keeping other settings the same as AdamW. Instead of the default 300 epochs,
we uniformly set the total number of epochs to 150 for all optimizers

As visually illustrated in Figure 7, Vanilla SGD is still less effective than SGDM in terms of the convergence
speed and the test accuracy, while the training and inference performance of SoftSignSGD and Birder are
comparative to common-used SGDM and AdamW. Notably, the performance of SGD-type optimizers are
substantially inferior to that of adaptive optimizers.

7https://github.com/juntang-zhuang/Adabelief-Optimizer
8https://github.com/pytorch/vision/tree/main/references/classification

21

(a) Train Loss (b) Test Perplexity

Figure 6: Training loss and test perplexity (the lower, the better) for 3-layer LSTM on Penn TreeBank.

(a) Train Loss (b) Test Accuracy

Figure 7: Training loss and test accuracy for ViT-B-16 on ILSVRC2012.

C Experimental Results for pre-training BERT-Base

We employed BertAdam and Birder to pre-train BERT-Base on Wikipedia using 64 GPUs (8 nodes). The
sequence length was set to 512, and the batch size per GPU was set to 16. The training process consisted of
37, 000 iterations. The learning rate started at 4 × 10−4 and linearly increased in the first 12, 500 iterations,
after which it linearly decreased to 0 for the remaining iterations. ForBertAdam, the parameter values [β1, β2]
were set to [0.9, 0.999], and for Birder, the momentum parameter beta was set to 0.9.

As depicted in Figure 8,Birder demonstrates a comparable iteration-wise convergence rate to BertAdam.
However, in terms of time-wise convergence, Birder achieves a 4.2x faster convergence rate compared to
BertAdam.

D Experiments with InfiniBand connections

To further evaluate the communication efficiency of SGDM/Adam, SoftSignSGD and Birder with high
bandwidth connections, we implement experiments for training ResNet-50 and BERT-Base with distributed
nodes connected with 200Gbps InfiniBand. All the experimental settings are the same as we perform experiments
with Ethernet in Subsection 5.1, and the experimental results are listed in Table 3 and Table 4.

As shown in Table 3 and Table 4, compared with the baseline SGDM/Adam, Birder can still reach up to 1.45×
speedup for ResNet-50 on ILSVRC2012 and 2.85× speedup for BERT-Base on SQuAD 1.1, although the speed
advantage is not so obvious as that with lower-bandwidth Ethernet connections. An interesting phenomenon

22

(a) Iteration-wise, BERT-Base, batch size=16× 64 (b) Time-wise, BERT-Base, batch size=16× 64

Figure 8: Iteration-wise and time-wise convergence speed for pre-training BERT-Base with 16 samples per
GPU with 64 GPUs.
Table 3: System throughput (samples/s) of SGDM, 1-bit Adam and Birder for training ResNet-50 on
ILSVRC2012 with 10Gbps Ethernet and 200Gbps InfiniBand.

#GPUs Optimizer Ethernet (10Gbps) InfiniBand (200Gbps)
Throughput
(samples/s)

Speedup Scale
Efficiency

Throughput
(samples/s)

Speedup Scale
Efficiency

8
SGDM 3693 1.00× 100% 3693 1.00× 100%
1-bit Adam 3243 0.83× 100% 3243 0.83× 100%

Birder 3462 0.94× 100% 3462 0.94× 100%

16
SGDM 2959 1.00× 40.1% 4673 1.00× 63.2%
1-bit Adam 4715 1.60× 72.7% 5708 1.22× 88.0%

Birder 6015 2.03× 86.9% 6784 1.45× 97.9%

32
SGDM 4270 1.00× 28.9% 9063 1.00× 61.3%
1-bit Adam 7268 1.70× 56.0% 10249 1.13× 79.0%

Birder 9416 2.21× 68.0% 12131 1.34× 87.6%

32
SGDM 6189 1.00× 20.9% 16608 1.00× 56.2%
1-bit Adam 5546 0.89× 21.3% 16920 1.02× 65.2%

Birder 15253 2.47× 55.1% 19956 1.21× 72.1%

Table 4: System throughput (samples/s) of BertAdam, 1-bit Adam and Birder for fine tuning BERT-Base on
SQuAD 1.1 with 10Gbps Ethernet and 200Gbps InfiniBand.

#GPUs Optimizer Ethernet (10Gbps) InfiniBand (200Gbps)
Throughput
(samples/s)

Speedup Scale
Efficiency

Throughput
(samples/s)

Speedup Scale
Efficiency

8
BertAdam 413 1.00× 100% 413 1.00× 100%
1-bit Adam 358 0.87× 100% 358 0.83× 100%
Birder 412 1.00× 100% 412 0.94× 100%

16
BertAdam 84 1.00× 10.1% 272 1.00× 32.9%
1-bit Adam 213 2.54× 29.7% 522 1.92× 72.9%
Birder 431 5.13× 52.3% 776 2.85× 94.1%

32
BertAdam 119 1.00× 7.20% 543 1.00× 32.8%
1-bit Adam 274 2.30× 19.1% 903 1.66× 63.1%
Birder 730 6.13× 44.2% 1365 2.51× 82.9%

32
BertAdam 158 1.00× 4.78% 998 1.00× 30.2%
1-bit Adam 252 1.59× 8.80% 1496 1.50× 52.2%
Birder 990 6.26× 30.0% 2299 2.30× 69.8%

is that the system throughput of Birder with 10Gbps Ethernet can match that of SGDM/Adam with 200Gbps
InfiniBand.

The experimental results in Table 3 and Table 4 also show that as the number of GPUs is increasing, the scale
efficiency of SGDM/Adam, SoftSignSGD and Birder becomes lower. The reason for this phenomenon can
be summarized in the following. When the number of GPUs doubles, the number of communication trips also
multiplies. We take the communication scheme All-Reduce for example. If the number of GPUs is n, each
GPU requires 2(n− 1) trips across the network confections. When the number is non-trivial, the computation
time of the communication primitives may exceed the time of the pure communication itself and dominate

23

the overall communication time, since the total communication overhead does not change with the number of
GPUs. Notably, All-reduce is more efficient than All-to-All which is the core of our Hierarchical-1-bit-All-
Reduce. Hence, as shown in in Table 3 and Table 4, the scale efficiency of Birder decreases more quickly than
SGDM/Adam with the number of GPUs growing.

E Discussion

The original paper on 1-bit Adam reports a significant speed advantage (up to 3.8×) for 1-bit Adam compared to
full-precision Adam, with the advantage becoming more prominent as the number of GPUs increases. However,
in our experiments, we did not observe clear speed advantages for 1-bit Adam over the original Adam. In
fact, when running on 64 GPUs, 1-bit Adam was not only slower than the original Adam, but its throughput
rate was even lower than that on 32 GPUs. There are several reasons for this phenomenon. First, the speedup
of 1-bit Adam is obtained by comparing the throughput of the compression phase with that of the warm-up
phase. However, in our experiments, we evaluated the overall average throughput of both the warm-up phase
and the compression phase for 1-bit Adam. Second, the baseline Adam did not run with system-level efficient
DDP. Third, the authors of 1-bit Adam customized highly efficient communication primitives specifically for
their optimizer, whereas we utilized off-the-shelf communication primitives in PyTorch for all the optimizers to
ensure fairness.

As shown in Figure 4, as the number of GPUs increases, the communication time for Birder also grows
superlinearly. One of the reasons for this is that the communication primitive All-to-All accounts for an
increasing portion of the communication time. However, the native All-to-All in Step (iii) of the Hierarchical-
1-bit-All-Reduce is not less efficient than the native All-Reduce. Therefore, we plan to further optimize the
All-to-All and All-Gather primitives to accelerate Birder.

When training large-scale DNNs, the mixed-precision technique is commonly used to reduce memory con-
sumption, allowing for larger model sizes. While optimizers still utilize full-precision states and computations,
which typically contribute to 33-75% of the total memory footprint, Birder does not require full-precision states
or computations. Moreover, due to the random quantization of updates to 1 or -1, Birder can leverage lower
precision than FP16 gradients to estimate the update. Therefore, Birder shows promise for applications that focus
on reducing memory usage, as highlighted in recent research on 8-bit optimizers via block-wise quantization
(Tim Dettmers et al., ICLR 2022).

24

	Introduction
	One-Bit Adaptive Optimizer Birder
	Theoretical Analysis
	Hierarchical-1-bit-All-Reduce
	Experiments
	Experimental Settings
	Experimental Results
	Communication Efficiency Analysis

	Conclusion
	Theoretical Analysis for Algorithm 1
	Auxiliary Lemmas
	Proof of Theorem 1

	Experiments for Comparing Vanilla SGD, SGDM, Adam, Birder and SoftSignSGD
	Experimental Results for training ResNet-20
	Experimental Results for training LSTM
	Experimental Results for training ViT

	Experimental Results for pre-training BERT-Base
	Experiments with InfiniBand connections
	Discussion

