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Abstract
Bug reports, as a frequently consulted software asset, are maintained and evolved in soft-
ware communities. A large number of bug reports with complex discussions are accumu-
lated during the software evolution. It has been proven that an accurate and concise summary
can help developers reduce the time effort spent going through the entire content of bug
reports. Prior works select salient sentences that contain the most semantic information
to form summaries. Their performance is limited due to the lack of consideration of con-
troversial standpoints among developers’ comments and the redundancy in sentences. In
this paper, we study the possibility of assessing comments’ opinions from discussions, and
which kind of sentences are more likely to have redundant information. Based on these
studies, we propose two new factors, Believability and Informativeness. The former mea-
sures the degree of approved or disapproved to a sentence within discussions, and the latter
assesses the amount of information contained in the summary. Accordingly, we design
BugSum, a supervised approach to generate summaries with a two-phase method. In the
measuring phase, we propose a classification method that combines the advantages of Deep
Pyramid CNN and Random Forest to assess the believability of sentences in bug reports.
In the selection phase, BugSum integrates an auto-encoder network for semantic feature
extraction with the believability of sentences, and optimizes the informativeness of gener-
ated summaries through a dynamic selection of salient sentences. Extensive experiments
show that our approach outperforms 8 comparative approaches over two public datasets and
one customized dataset. In particular, the probability of adding controversial sentences that
are clearly disapproved by other developers into the summary is reduced by up to 64.7%.
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1 Introduction

With the increasing recognition of open source communities, to share and improve the
quality of projects and codes, many individual programmers and commercial compa-
nies (Kalliamvakou et al. 2015) tend to manage their development tasks using online bug
repositories (e.g., Bugzilla1) or issue tracking systems (e.g., Issue Tracker in GitHub2). A
large number of bug reports and discussions are accumulated due to the surge of open-source
processes. These bug reports and discussions are regarded as valuable resources for software
development (Casalnuovo et al. 2015) and long-term maintenance (Bettenburg et al. 2008).

On these online communities, a bug report is usually organized as an open post with a
discussion section akin to that on social web sites (Kim et al. 2010). When finding a new
issue, contributors may post it as a bug report, and describe it in the description section of
the post using a natural language (Bettenburg et al. 2008; Zimmermann et al. 2010; Fan
et al. 2017). Subsequently, other stakeholders, including project managers, maintainers, or
external contributors, discuss and likely put forward different standpoints to the issue in the
form of comments. This process evolves dynamically along with the development of the
project, i.e. the original bug report and all discussions can be read by any stakeholder, who
may reply to those standpoints with their own opinions based on the development status,
also in the form of comments. Therefore, the scale of a bug report increases rapidly through
continuously iterative discussion (Rastkar et al. 2010). According to our study, 25.9% of bug
reports contain more than 15 comments, while each comment contains 39 words on average.
Therefore, an accurate and concise summary can effectively reduce the time consumed in
wading through all posted comments (Rastkar et al. 2010). While modern bug repositories
(e.g., Debian3) encourage contributors to manually write a summary for each bug report,
only 2.80% of the bug reports in our dataset were found to have been equipped with artifact
summaries using 29 words on average, which is insufficient to furnish stakeholders with the
required information.

Automatically generating summaries for bug reports has been proven to be a promising
method (Rastkar et al. 2014) to solve this problem. Previous works are based on super-
vised (Rastkar et al. 2014; Jiang et al. 2017) or unsupervised (Li et al. 2018; Zhu et al.
2007; Mei et al. 2010)methods, and constitute a summary by selecting salient sentences.
The performance of traditional supervised approaches relies heavily on the quality of the
training corpus (Lotufo et al. 2015), which requires massive manual efforts and annotators
with certain expertise. Additionally, existing unsupervised approaches rely excessively on
word frequency, which tends to introduce extra bias for two main reasons: 1) bug reports are
conversation-based texts, the discussions are cross-validated among different stakeholders
according to their own experiences, and some comments will be disapproved by other par-
ticipators; 2) a group of comments supporting the same topic has similar semantic features,
so word frequency-based approaches would be more likely to introduce redundant sen-
tences (i.e. sentences that are different but represent a similar topic) into the auto-generated
summary, which will decrease its informativeness due to the word length limitation.

In this paper, we conduct studies on 34,140 bug reports from 8 popular open-source projects.
We find that discussions existed in 71.6% of bug reports. In these bug reports, 20.6% of
sentences have explicit opinions, and 15.4% of sentences are approve or disapproved by

1https://www.bugzilla.org/
2https://help.github.com/en/github/managing-your-work-on-github/about-issues
3https://www.debian.org/Bugs/server-control#summary
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other sentences. This study suggests that the evaluation behaviors (Lotufo et al. 2015) are
pervasive in bug reports, and we may be able to assess whether sentences are believable by
developers’ discussions and their opinions. Our studies also show that, 78.2% of sentences
that discussing the same topic share at least one topic-related word, and 17.4% of them
contain similar information. It indicates that selecting sentences within the same discussion
to form a summary is more likely to include redundant information.

Based on these studies, we propose two new factors, Believability and Informativeness.
Believability measures the degree that a sentence has been supported against disapproved
among the interactive discussions, and informativeness assess the amount of information
in summaries while considering the redundancy in sentences. Accordingly, we propose a
supervised approach of bug report summarization, called BugSum. BugSum generates sum-
maries according to the following two phases. In phase one, Sentence believability scores
are assessed by a classification model that combines the advantage of Deep Pyramid CNN
(DPCNN) (Johnson and Tong 2017) and random forest (Surhone et al. 2010). In phase
two, BugSum uses a trained auto-encoder network to extract semantic features by convert-
ing the sentences to vectors. For each sentence, we combine the believability score with
its semantic features to reduce the possibility of controversial sentences being selected into
the summary. The informativeness of generated summaries is optimized using a dynamic
selection strategy.

We compared BugSumwith eight comparative summarization approaches over two pub-
lic datasets and one dataset that we manually constructed. Experimental results demonstrate
that our approach outperforms comparative approaches in terms of metrics that have been
widely used in previous studies.

The main contributions of this paper include:

– We design two novel factors, i.e., believability and informativeness. For believability, a
combination of convolutional neural networks and traditional classification algorithms
are applied to optimize the accuracy.

– We propose a supervised bug summarization approach BugSum by integrating the auto-
encoder network, sentence believability assessment and dynamic selection effectively.
To facilitate the reproduction, we make the source code of BugSum public available4

– The probability of adding controversial sentences, which are clearly disapproved by
other developers during discussion, into the summary is reduced by up to 64.7%
according to our careful manual evaluation.

– We construct a dataset contains 39 annotated bug reports and 62 controversial sen-
tences. It can be used to evaluate the model’s ability of handling controversial sentences.
To facilitate the community, we make this new dataset public available5.

– We design extensive evaluations on two public datasets and one our manually con-
structed dataset to demonstrate that our approach achieves the state-of-the-art perfor-
mance. Our approach outperforms the state-of-the-art approach by 8.1% and 6.7% in
terms of F-score and Rouge-1 metrics, respectively.

This paper is an extension of our ICPC 2020 paper “BugSum: Deep Context Understand-
ing for Bug Report Summarization”. Compared with the prior work, our new contributions
include mitigation of two critical threats from the prior work, improving the model
performance from two perspectives, and more detailed experiments and discussions.

4https://github.com/HaoranLiu14/BugSum
5https://github.com/HaoranLiu14/Controversial-Dataset

https://github.com/HaoranLiu14/BugSum
https://github.com/HaoranLiu14/Controversial-Dataset
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First, to alleviate the vagueness of the definition and assessment of summaries’ infor-
mativeness, we propose a novel method to evaluate and enhance the informativeness of
generated summaries (Section 3.5). While helping to better understand the factor of infor-
mativeness, this method can improve the recall of the summary generation method by up
to 2.4% while maintaining similar accuracy (Section 4.4). Second, we expand our dataset
by manually constructing 39 annotated bug reports from Launchpad (Section 4.1.1) to miti-
gate the threat posed by the lack of data on the evaluation of model performance, especially
of the ability to handle controversial sentences. Third, in order to evaluate the sentence
believability in the bug report more accurately, we improve our evaluation identify method
by taking ambiguous replies into consideration based on the empirical rules extracted from
developers’ behaviors (Section 3.2.1). Experimental results in Section 4.3 show that our
model can be improved by 14.1% in the aspect of handling controversial sentences. Fourth,
to further improve the performance of BugSum, we design a novel classification model
using the combination of convolutional neural networks and the traditional classification
algorithm in sentence opinion assessment (Section 3.2.2). This method improves the accu-
racy of sentence opinion classification by 10.1%, and improves the BugSum’s ability of
handling controversial sentences by 15.3% (Section 4.5). Finally, we carry out more com-
prehensive experiments and analyses in this paper, including BugSum’s performance, the
impacts brought by the classification model (Sections 4.2, 4.3, and 4.5), and the influence
of factor believability and informativeness (Sections 4.4.1 and 4.4.2). All experiment data
has been revised accordingly.

The rest of the paper is organized as follows: Section 2 introduces some performance
limitation prone observations about bug report. Section 3 shows the overall design of Bug-
Sum and implementation details. Section 4 experiments the performance of BugSum based
on five research questions. Related works are introduced in Section 6. Lastly, we conclude
our work in Section 7.

2 Motivation

In modern software development, a bug report records the discussion of software bugs
according to the following process. A contributor first describes the issue and submits
it as the description part of a bug report using a natural language. Subsequently, other
stakeholders, including project managers, maintainers, or external contributors, discuss the
reproduction, location, and possible solutions of the proposed issue in the form of com-
ments. These valuable information make bug reports a frequently accessed resource for
both software developers and researchers. According to our statistics, 23,650 comments
out of 34,140 bug reports references other bug reports, and 7,048 of these referenced bug
reports have been Closed. Meanwhile, the reading of bug reports is needed for many post-
hoc tasks (Zhang et al. 2021; He et al. 2020; Han et al. 2020; Arya et al. 2019; Lotufo
et al. 2015; Bishnu and Bhattacherjee 2012; John et al. 2011; Anvik et al. 2006), such as the
reproduction of historical bugs or familiarization with the evolutionary history of software.
Although the description of the bug report contains the observed behavior of the bug when
it was discovered, some valuable information such as solutions or detailed reproduction
steps are intertwined with the developer’s discussion, and therefore need to be identified
and summarized.

During the discussion in the bug report, different standpoints are likely to be proposed,
e.g., comment#8 and comment#11 in Fig. 1. These standpoints can be read by other stake-
holders, who may evaluate and directly reply to these standpoints to express their own
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Fig. 1 Evaluation behaviors among sentences. (Bug #349467 of deconf from launchpad)

opinions (i.e. evaluation behaviors), also in the form of comments. Such interaction struc-
ture has been referred to as conversation-based text in previous studies (Jiang et al. 2017;
Rastkar et al. 2014). In this paper, we refer to a group of comments interconnected by
evaluation behaviors as a conversation.

In order to develop a thorough understanding of conversations in the bug report, we
analyzed 34,140 bug reports from 8 popular open-source projects ( 6,954 Hadoop, 1,177
ZooKeeper, 5,705 Derby, 1,826 Yarn, 8,876 Flink, 3,710 HDFS, 2,907 Hive and 2,985
Launchpad). To observe the complete life-cycle information of bug reports, all those bug
reports are selected with the status of “Closed”. We summarize our findings in the following
two aspects, i.e. believability and redundancy of the sentences among conversations.

2.1 Salience and believability

For the purpose of selecting sentences containing more information, previous summariza-
tion approaches identify salient sentences based on word frequency (Radev et al. 2004),
predefined structure (Lotufo et al. 2015) and so on. These methods assume that a sen-
tence with more high-frequency words or a specific structure is more likely to contain more
important information, while a sentence with more important information is more salient.
Based on such assumptions, typical summarization approaches determine and select salient
sentences to form a summary. However, in our dataset, there are 71.6% of the bug reports
contain evaluation behaviors. Each bug report, on average, contains 20.6% of sentences that
evaluate other sentences with an opinion of approval or disapproval, and 15.4% of sentences
that are evaluated. In this paper, we refer to The extent to which a sentence is approved dur-
ing the discussion in the entire bug report as Believability. It reflects the extent to which a
statement is supported in these evaluation behaviors. It is a significant challenge to leverage
the salience and believability of these highly discussed sentences.

For example, as shown in Fig. 1, the report describes a system bug reading ”Resource
temporarily unavailable” in the last sentence. Each comment is assigned a number from 1
based on the order in which it was posted (i.e. comment number). Subsequently,Comment#8
proposes a solution, which is approved byComment#10 but disapproved byComment#9 and
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Comment#11. Moreover, Comment#11 explains the reason for the disapproval and proposes
another solution, which is approved by Comment#13. In brief, the standpoint in Comment#8
is controversial in the conversation. The more a standpoint (comment) is disapproved by
others, the lower believability it has, and vice versa. In addition, we define such comments
that are disapproved by at least one comment as controversial comments, and the sen-
tences within these comments as controversial sentences. Words and sentences related to
the controversial comments have a relatively high appearance in the bug report, as stake-
holders may discuss the standpoint being proposed by the controversial comment for several
rounds. Thus, controversial sentences are highly preferred by previous word frequency-
based approaches, e.g. Centroid (Radev et al. 2004), which would introduce a significant
bias into the summary.

Therefore, when attempting to generate a high-quality summary, the salience of a candi-
date sentence should be determined not only by the information it contains, but also by the
extent to which the standpoint is believable.

2.2 Redundancy in Sentences

As a conversation-based text, bug reports contain numerous conversations that are formed
based on developers’ discussion (i.e., evaluation behaviors). Sentences in the same conver-
sation that discuss relevant standpoint usually contain information of the same type, such as
bug reproduction or solution discussion. A high-quality summary should contain all types
of information, so that it can help stakeholders establish a comprehensive understanding
of the bug report. Sentences in the same conversation, however, tend to contain redundant
semantic features, such as specific words related to the discussed standpoint. Therefore,
over selection of sentences of a specific information type may introduce redundancy into
the summary, thereby reducing its quality.

We find that, there are 78.2% of sentences in the same conversation share at least one
topic-related word, and the information contained in them is more similar. To measure the
semantic similarity between these sentences, in our dataset, we vectorize sentences using the
Bag-of-Words strategy, and calculate the cosine similarity between sentence vectors. The
result shows that, on average, sentences in the same conversation are 17.4% more similar
than sentences spread in different conversations. This means that sentences within the same
conversation have relatively high semantic redundancy. If one sentence in a conversation
has been assigned a relatively high salient weight (e.g. measured by word frequency Radev
et al. 2004; Li et al. 2018), the other sentences in the same conversation may also have
similar high weights due to the semantic similarity. Since previous approaches prefer to
select sentences with high weights, under the word amount limitation, summaries generated
by previous approaches may select too many sentences from the same conversation (i.e.
sentences containing the same type of information), and may not comprehensive enough to
conclude the entire bug report because of the semantic redundancy (Hampe 2002).

We refer to the extent to which a summary can contain information of all types as
Informativeness. The summary should be generated while considering its informativeness.

3 BugSumDesign

Based on the studies in Section 2, we propose two new factors. Assessing salient sentences
while considering the believability of sentences can reduce the probability of selecting
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controversial sentences into the summary. Meanwhile, considering the informativeness of
summary during its generation can reduce the semantic redundancy in the summary.

Accordingly, we propose a supervised approach BugSum. BugSum consists of two
phases, the measuring phase and the selection phase. The measuring phase assesses the
believability of sentences, which is based on the evaluation behaviors in bug reports and the
combination of DPCNN and random forest. The selection phase extracts domain seman-
tic features in sentences through an auto-encoder network, and uses a dynamic selection of
believable sentences and informativeness enhancement to generate summaries under certain
word amount limitation while considering its informativeness.

As illustrated in Fig. 2. The measuring phase includes Bug Report Pre-processing and
Sentence Believability Assessment, while the selection phase includes Sentence Feature
Extraction and Summary Generation. In the measuring phase, bug report pre-processing
divides bug reports into sentences and removes the noises, while sentence believability
assessment assigns believability scores to each sentence. In the selection phase, sentence
feature extraction compresses the semantic information in sentences into sentence vectors.
It uses the sentence believability scores as weights and constructs a full-text vector through
weighted combining all sentence vectors. The summary generation step dynamically selects
part of sentences from the bug report to reconstruct the full-text vector, and uses the sentence
set with the smallest reconstruction loss as the salient sentence set. The set is expanded by
the informativeness enhancement and used to form the summary.

3.1 Bug Report Pre-processing

Sentences in a bug report contain a considerable amount of noises (Xuan et al. 2014), which
means that a pre-processing step for noise removal is necessary.

During the pre-processing step, a bug report is divided into sentences based on punctu-
ation marks such as ‘.’, ‘!’, ‘?’, and ‘;’, except for when the punctuation is used as a part
of a string. Function names such as “system.reboot”, which includes common words “sys-
tem” and “reboot”, are tokenized using the software-specific regular expression (Lotufo

C. Sentence Feature Extraction

B. Sentence Believability 
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A. Bug Report Pre-Processing

Bug Report

Processed 

Sentences
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Fig. 2 The framework of BugSum
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et al. 2015). Doing so can preserve the majority of the function and variable names instead
of treating them as new words. BugSum further removes the stop words and stems these
tokens using the poster stemmer (Porter 1980).

After this step, each bug report is split into sentences, and the word frequencies are also
counted to facilitate the subsequent process.

3.2 Sentence Believability Assessment

As discussed in Section 2.1, the salience of a sentence should not only be determined by the
amount of information it contains, but also by its believability. BugSum assesses sentence
believability scores using evaluation behaviors, which consist of evaluation relationships
(i.e. which sentence is the evaluator and which one is being evaluated) and evaluation opin-
ions (i.e. support or disapprove). BugSum further uses the obtained believability scores as
weights to construct a full-text vector, which combines the believability of sentences and
domain semantic features in the entire bug report.

3.2.1 Evaluation Behavior Identification

Evaluation behaviors in bug reports have different expressions. Some evaluation behaviors
are in the form of explicit replies, which are obvious and easy to be identified. Some evalu-
ation behaviors are in the form of ambiguous replies, which do not have explicit comment
targets. Evaluation behaviors related to ambiguous replies need to be speculated based on
the content and context. As illustrated in Fig. 1. Arrows 1, 2, and 3 demonstrate the evalua-
tion behaviors of explicit replies, and arrows 4 and 5 demonstrate the evaluation behaviors
of ambiguous replies. Although ambiguous replies are not easy to be identified, according
to our study, evaluation behaviors related to ambiguous replies affect 16.2% of comments
in bug reports. BugSum identifies both types of evaluation behaviors based on their unique
expressions, and uses them to identify sentence evaluation relationships.

Explicit replies often clearly indicate the author’s name or the comment number of the
evaluated comment, or even quote the sentences being evaluated. Quoted sentences usually
have special labels (e.g. in Fig. 1, the symbol “>” at the beginning of the quoted sentence in
comment#13). The ambiguous replies usually appear because authors think that comments
they are replying to can be easily inferred, so the explicit indications are not necessary.
Therefore, the ambiguous replies usually occur between comments that are close together,
or between a comment and the description that are discussing the same topic. For example,
as shown in Fig. 1, Comment #9 contains the sentence “the proposed solution didn’t work”.
Since it has an explicit opinion, the “the proposed solution” should refer to one of the
previous comments.

Therefore, we assume that most of ambiguous replies exist between one comment and
the description, or two comments that are close to each other. These two comments should
be discussing the same topic, and the later comment should have a clear opinion. Since such
behaviors are prevalent during the study, based on the features above, we established three
rules as follows to capture these behaviors.

– Rule 1, the comment posted later in thr bug report contains a sentence, which expresses
an explicit opinion of support or disapprove.

– Rule 2, these two comments share at least one topic-related word.
– Rule 3, the distance between these two comments is within a selection distance, except

for when the evaluator comment is replying to the description.
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BugSum assesses words through the TF-IDF (Ramos et al. 2003) method, and selects
words with their TF-IDF scores exceeding a threshold as topic-related words. We denote
the threshold as θT F−IDF , which will be tuned in Section 4.6.2.

As for the selection distance in Rule 3, we conduct two investigations based on the dataset
we mentioned in Section 2.

The first investigation is carried out on 1000 bug reports. We count the number of evalua-
tion behaviors identified based on ambiguous replies with different selection distances, and
the results are illustrated in Fig. 3a. There are a considerable amount of evaluation behaviors
that can be identified by BugSum based on our rules. The number of identified evaluation
behaviors decreases significantly as the selection distance increases.

We carry out the second investigation to check whether these identified behaviors
actually exist.

We randomly select 100 sentences from the evaluation behaviors under different selec-
tion distance, and manually check their accuracy. The results are shown in Fig. 3b. The
accuracy drops dramatically as the selection distance increases. In order to ensure the accu-
racy of our method, we set the selection distance to 1, under which we can still obtain many
reliable evaluation behaviors.

After the above steps, we can construct the evaluation relationships in bug reports. Bug-
Sum uses an evaluation adjacency list to store the evaluation relationships. For each sentence
i, BugSum stores the set of sentences that evaluates sentence i in the evaluation adjacency
list, and denotes this set as EAdji .

3.2.2 Believability Score Assignment

Sentences in a bug report are supported or disapproved by other sentences during the discus-
sion, which causes sentences to have differing believability. Sentences supported by other
sentences are more believable, while controversial sentences are likely to be incorrect. Bug-
Sum uses evaluation behaviors to assess how believable a sentence is to be selected into the
summary.

Believability is counted based on the evaluation behavior in the discussion and the opin-
ion of the evaluator sentence. The main idea is that sentences with more support are more
believable, and vice versa. The believability score of sentence i is denoted as Bscorei ,
which is further modified base on its associated evaluation behaviors. Since multiplication is

Fig. 3 Number and accuary of evaluation behaviors using different selection distance
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used in the calculation of sentence believability scores, we initialize the believability score
of each sentence to 1 so that it remains neutral during the calculation.

Bscorei =
{
1 + ∑

j∈EAdji

(Bscorej ∗ OPscorej ), |EAdji | > 0

1, |EAdji | = 0
(1)

As we introduced in Section 3.2.1, the set of sentences evaluating sentence i is stored in
an evaluation adjacency list and denoted asEAdji . We denote the size ofEAdji as |EAdji |.
When |EAdji | = 0, it indicates that sentence i is not evaluated by any other sentences, so its
believability score remains 1. When |EAdji | > 0, Bscorei is modified based the evaluator
sentences in EAdji . For each sentence in EAdji , the weight of its influence is decided by
its believability score and its opinion towards the evaluated sentence. BugSum uses opinion
scores to measure the opinions of evaluator sentences. The opinion score of sentence i is
denoted asOPscorei , which is assigned via a pre-trained classification model. The value of
OPscorei is between -1 and 1, which indicates the extent to which the evaluator sentence
expresses support or disapprove. When the sentence i is evaluated by sentence j , and the
value of OPscorej is less than 0, it means that the sentence i is possibly disapproved
by sentence j . Therefore, sentence i is a controversial sentence, and its believability score
Bscorei will decrease according to Formula 1. Otherwise, Bscorei will increase.

If sentences are disapproved by most of its evaluator sentences, their believability scores
may be lower than 0. Under these circumstances, we set their believability scores to 0. The
reason is that, if sentence j that has a low believability (Bscorej < 0) also has a negative
opinion (OPscorej < 0) regarding sentence i, the value of formula Bscorej ∗OPscorej will
be greater than 0, meaning that Bscorei will increase according to Formula 1. It is incorrect
because a sentence disapproved by an incorrect sentence is not necessarily correct.

Bscorei = max(Bscorei, 0) (2)

Measuring the opinion score of a sentence can be regarded as a binary classification
problem, positive or negative. It has been proven that convolutional neural networks (CNN)
have a good performance on binary classification (LeCun et al. 1998). The convolutional
neural networks, such as TextCNN (Kim 2014) and DPCNN, compress the input features
through multiple layers, and use a fully connected layer to combine the compressed fea-
tures to predict the probability of each category. These compressed features can be more
accurate and concise than the initial input. Meanwhile, traditional classification methods,
such as random forest, logistic regression (Kianifard and Kleinbaum 1995), and support
vector machines (Vapnik 2000), classify inputs based on their original features. These clas-
sification methods perform more detailed use of the input features compared with the
fully connected layer. To combine the advantages of these two models, BugSum uses their
combination to predict sentence opinion scores.

We denote classification models that are used to assess sentence opinion scores as SO-
Model. During the training process of the SO-Model of BugSum, we first train DPCNN
until it achieves its maximum accuracy and remains stable. Subsequently, we take the input
vectors of the fully connected layer in DPCNN, and treat them as the input of random forest.
We then train the random forest until the maximum accuracy remains stable. The learning
rate of the DPCNN model is set to 0.01 (Krizhevsky et al. 2012), the size of its embedding
layer varies according to the feature size of BugSum, and so do the number of its filters. The
parameter “min samples split” of the random forest is set to 5, and “n estimators” is set to 10.
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The training process of SO-Model is implemented in a dataset containing 3,000 manually
labeled sentences. We recruit 5 experienced programmers, who have at least four years
of programming experience. They label sentences based on whether they express negative
opinions. In order to ensure the accuracy of the labeled data, we refer to the card sorting
method during the process. The card sorting method recommends that all annotators should
work on a certain number of data jointly first, so that all annotators can reach a consensus
on the definition of every label. The five annotators first worked on 500 sentences together.
After that, they worked in pairs to label the remaining sentences. Each labeled sentence is
checked by at least two annotators. To ensure the balance of data with different labels, we
labeling until the number of sentences of both types reaches 1,500, and use it as the training
set of SO-Model.

The classification model takes a sentence as an input and predicts the possibility that it
expresses a negative opinion, taking a value between 0 and 1. To facilitate the calculation,
we subtract the possibility from 0.5 and then multiply by 2, and use it as the sentence opinion
score, whose value is between -1 and 1.

3.3 Sentence Feature Extraction

In order to measure the informativeness of sentences, BugSum uses a trained auto-encoder
network to generate sentence vectors, which are used to represent the semantic features
of sentences. The auto-encoder consists of an encoder and a decoder. The encoder takes a
sentence as input and encodes it into a vector, after which the sentence vector is decoded by
the decoder to rebuild the original input sentence. The more consistent the input is with the
output, the more precisely the vector can express the semantic features of the sentence.

In each iteration, the auto-encoder network takes one sentence as the input. The words
in the sentence are first embedded into word vectors, after which the recurrent units of the
encoder encode the word vectors into a hidden state sequentially. BugSum uses the last state
of the encoder as the feature vector of the input sentence.

BugSum employs bidirectional GRU (Bi-GRU) (Cho et al. 2014) as the recurrent unit,
which consists of a forward GRU and a backward GRU, to preserve both the forward and
backward contextual features of sentences. BugSum concatenates the last hidden states of
both the forward and backward GRU to form a sentence vector. We denote the sentence
vector of sentence i as Si .

We use 200,000 sentences processed by the pre-processing step in Section 3.1 to build
the training set of the auto-encoder network. These sentences are selected from the dataset
we discussed in Section 2. In the training process, we optimize the parameters of the auto-
encoder network by minimizing the MSE loss (Christoffersen and Jacobs 2004) between the
input sentences and corresponding output sentences. The widely used SGD optimizer (Bot-
tou 2010) is applied to adjust the model’s parameters, and the learning rate of the model is
set to 0.01 (Krizhevsky et al. 2012). The training process of the model continues until the
MSE loss reaches the minimum value and remains stable.

For each bug report, BugSum takes the sentence believability scores as weights, and
sums the weighted sentence vectors to obtain the full-text vector i.e., DF .

DF =
n∑

i=1

Bscorei ∗ Si (3)
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n is the number of sentences in the bug report, and Si is the sentence vector of sentence i.
DF represents the domain features of the bug report, as it combines the domain semantic
features of all sentences and their believability scores.

3.4 Dynamic Selection

Since it is simpler and more effective to apply the extractive technique (Lotufo et al.
2015), we apply this technique for Bugsum, which selects salient sentences from the bug
report to form a summary. As discussed in Section 2.2, the generated summary should
include sentences with various information, so that it can help stakeholders establish a com-
prehensive understanding of the bug report. Due to the semantic redundancy in sentences of
the same information type, a smaller semantic redundancy represents a richer information
type in the summary. In other words, the informativeness of a summary during summary
generation can be counted according to the semantic redundancy.

We use the feature vectors generated by the autoencoder to represent the semantic infor-
mation in sentences, and count the informativeness of generated summary based on the
difference (i.e. reconstruction loss) between the generated summary and the full-text. The
smaller the difference, the less semantic redundancy in the summary, and the higher its
informativeness. The set of selected sentences is denoted as Chosen, which contains k
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sentences used to form the summary. BugSum uses the sentences in Chosen to reconstruct
the full-text vector D̃F , and subsequently uses the Mean Squared Error (MSE) between D̃F

and DF to represent the reconstruction loss, which is indicated as δ.

D̃F =
∑

i∈Chosen

Bscorei ∗ Si (4)

MSE =

d∑
i=1

(yi − ỹi )
2

d
(5)

δ = |MSE(DF, D̃F )| (6)

A lower value of δ indicates that, the selected sentence set contains more domain features
of the entire bug report, i.e., the selected sentence set contains less semantic redundancy
and has a higher informativeness. BugSum aims to find the optimal set of sentences that
minimizes δ under the word amount limitation θ . This can be seen as a generalization of
the knapsack problem, which has been proven to be NP-hard (Lin and Bilmes 2010). A bug
report with n sentences can generate 2n different summaries, making it extremely inefficient
to evaluate all possible combinations. Greedy algorithms (e.g. beam search algorithm) are
effective approximate approaches to solve NP-hard problem. The beam search algorithm
greedily traverses the entire candidate set recurrently, and looks for the top-b choices that
can maximize the improvement in each iteration. It can significantly reduce the time effort
compared to evaluate all possible combinations.

The reconstruction loss δ can leverage the informativeness of selected sentences during
the selection process. For example, in Fig. 4, the bug report contains 4 sentences, and the
dimension of the feature vectors is 2. We denote their sentence vectors as S1 = [3, 0],
S2 = [0, 2], S3 = [2, 0] and S4 = [0, 1]. All of them have the same believability score,
which is 1. The full-text vector can be calculated according to Formula 3, from which we
can get DF = [5, 3]. The feature represented by the first dimension of the vector appears
more frequently in the bug report, which means that it is likely to be more important. When
the candidate set is (S1), the reconstructed full-text vector can be calculated as D̃F1 =
[3, 0] based on Formula 4. The reconstruction loss δ between these two full-text vectors can
also be calculated as 6.5 based on Formula 5 and Formula 6. We add S2 and S3 into the

Fig. 4 An example of beam search
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candidate set, and find that the value of δ is 2.5 and 4.5 when the candidate sets are (S1, S2)
and (S1, S3), respectively. Although the amount of information in S2 and S3 is the same,
adding S3 results in a higher reconstruction loss compares to S2. This is because, despite
the fact that the feature represented by the first dimension of the vector is more important,
the selected sentence set (S1) already contains some of this feature, and continuing to select
sentences containing this feature will lead to redundancy. In this case, BugSum tends to
select sentences that contain other features to maintain the informativeness of the selected
sentence set.

The process of the beam search algorithm is illustrated in Algorithm 1. We use lists Lnew

and Lold to store the candidate sentence sets for the current iteration and next iteration,
respectively. In each iteration, for each candidate sentence set li in list Lold , a new sentence
is added into li to form a new candidate sentence set lnew . If lnew can be further extended
under the word amount limitation θ , it will be added into list Lnew . Otherwise, it will be
added to list LChosen as one of the promising sentence sets used to form the summary. List
Lnew and LChosen are maintained to retain b sentence sets with the highest δ. b is the beam
size of the beam search algorithm. After all iterations are complete, the sentence set in list
LChosen with the highest δ will be selected to form the summary. We denote this sentence
set as the salient sentence set Chosen.

3.5 Informativeness Evaluation and Enhancement

During the dynamic selection process, we count the informativeness of a summary through
the mean-square loss between feature vectors of the summary and the full-text. As intro-
duced in Section 1, the bug report contains valuable information of various types, so the
ideal summary should contain each type of information comprehensively. We assume that
the proportion of each type of information in the summary should be similar to that in the
full-text. If we select too many sentences representing a certain type into summary, it will
lead to redundancy i.e., reduce informativeness. Therefore, we evaluate the informative-
ness of the summary by comparing the proportion of different information types contained
between the summary and the full-text. The closer the proportion of each type of information
in the summary to the full-text, the higher its informativeness remained. For example, if the
proportion of sentences related to Bug Reproduction, Solution Discussion and Others in the
full-text account for 30%, 30% and 40%, respectively. Then the summary with proportions
of 20% ,40%, 40% can be regarded as less informative than the summary with proportions
of 30% and 30%, 40%. This is because although the number of sentences related to Solu-
tion Discussion in the first summary occupies 40%, since it is also 10% higher than that in
the full-text, it is likely that these additional 10% sentences will bring redundancy to the
summary. Meanwhile, the first summary contains only 20% of the sentences related to Bug
Reproduction, which is 10% lower than that of the full text, and could leads to a reduction
in informativeness.

In order to obtain the percentage of various information types in the summary and the
full-text, we need to classify the information types representing by the sentences. It has been
proven that bug reproduction and solution discussion are the two types of information that
stakeholders are most interest (Zhang et al. 2021; He et al. 2020; Han et al. 2020). There-
fore, we divide the information in the bug report into three categories, bug reproduction,
solution discussion, and others. Arya et al. (2019) uses a dataset containing 4,656 annotated
sentences as training data, and classifies the information type of sentences by features such
as time interval, sentence length and position using SVM and random forest algorithms.
Since sentence information type classification is also a text classification task, we apply the
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structure and training process of SO-Model directly to this task. We find that our method
can improve the accuracy of classification from 0.69 to 0.77. By doing so, we can obtain
the proportion of each information type in the full text and in the summary, and calculate
the informativeness of the summary subsequently based on the difference between these
proportions.

Besides being easier to understand intuitively, such a method can also help enhance
the informativeness of the summary. When the proportion of a certain type of informa-
tion in the summary is lower than that of the full-text, we increase it to improve the
informativeness of the summary. Since we cannot reduce sentences that have been selected
into the summary, we select more sentences of that type accordingly. After dynamic
selection, BugSum applies this method to the generated summary for informativeness
enhancement. An additional part of the sentence containing the missing information will be
selected dynamically to extent the salient sentence set Chosen. Finally, BugSum concate-
nates the sentences in Chosen in their original order in the bug report to obtain the summary
SUM.

4 Experiments

We conduct experiments to evaluate our approach by answering the following research
questions:

– RQ1: How does BugSum perform against baseline approaches?
– RQ2: To what extent does BugSum reduce the controversial sentences being selected

into the summary?
– RQ3: How do factors believability and informativeness influence the performance of

BugSum?
– RQ4: How do the different SO-Model influence the performance of BugSum?
– RQ5: How do the parameters influence the performance of BugSum?
– RQ6: How do sentence feature extraction, dynamic selection, and informativeness

enhancement influence the performance of BugSum?

4.1 Experimental Setup

We implement BugSum on PyTorch (Paszke et al. 2017) . All experiments are deployed on
a single machine with the Ubuntu 16.04 operating system, the Intel Core (TM) i7-8700K
CPU, the GTX1080ti GPU, and 16 GB memory.

4.1.1 Datasets

We design our experiments on three datasets, two of which are popular benchmark datasets
Summary Dataset (SDS) (Rastkar et al. 2014) and the Authorship Dataset (ADS) (Jiang
et al. 2017). These two datasets consist of 36 and 96 bug reports, respectively. In these
datasets, each bug report is annotated by three annotators to ensure accuracy. The annotators
were asked to write an abstractive summary (AbsSum) in around 25% of the length of the
bug report using their own words, which is to ensure that annotators have carefully read
the entire bug report and understand its contents. They were also asked to list the sentences
from the original report that gave them the most information when writing the summary.
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For each bug report, the sentences listed by more than two annotators are referred to as the
golden standard sentences set (GSS) (Rastkar et al. 2014).

These datasets, however, evaluate model performance based on the accuracy of salient
sentence selection. To better evaluate the model’s ability in handling controversial sen-
tences, we construct a new database Controversial Dataset (CDS). It consists of 39
annotated bug reports and 62 controversial sentences. These annotated bug reports were ran-
domly selected from the 34,140 bug reports introduced in Section 2. In addition to writing
the AbsSum and constructing the GSS following the requirements described above, the five
annotators also need to determine the controversial sentence in the bug report. Each bug
report in CDS contains at least one controversial sentence. To ensure accuracy, each con-
troversial sentence in CDS is disapproved by all its evaluator sentences and determined by
all five annotators. These annotated controversial sentences contain incorrect information,
and selecting them into the summary may introduce bias. Since this dataset is constructed
to evaluate the model’s ability of handling controversial sentences, it requires that the anno-
tated bug report must contain a controversial sentences. Hence during data annotation, the
annotator will first annotate controversial sentences. If the bug report does not contain a
controversial sentence, it will be skipped. Therefore, CDS can be used to test the model’s
ability of handling controversial sentences by counting the number of selected controversial
sentences.

The size of the dataset has been an insurmountable limitation of the bug report summary
generation work. The complexity of the bug report annotation process and the high demand
on annotators make it difficult to increase the size of this dataset. This also becomes a
threat to the accuracy of the experiment. In addition to being able to evaluate the ability
of controversial sentence handling, the CDS proposed in this paper also expands more data
and mitigates this threat.

4.1.2 Baseline Approaches

We reproduce eight previous methods to compare with our approach. DeepSum (Li et al.
2018) is an unsupervised approach for bug report summarization that focuses on prede-
fined field words and sentence types. Centroid (Radev et al. 2004), MMR (Carbonell and
Goldstein 1998), Grasshopper (Zhu et al. 2007), and DivRank (Mei et al. 2010) are unsu-
pervised approaches for natural language summarization. They are enhanced by Noise
Reducer (Mani et al. 2012) and implemented for bug report summarization. We use the
enhanced version of these four approaches in our experiments. Hurried (Lotufo et al. 2015)
is an unsupervised approach that imitates human reading patterns, connects sentences based
on their similarity, and chooses sentences with the highest possibility of being read during a
random scan. DeepSum and Centroid mainly rely on word frequency in bug reports. MMR
selects sentences based on their novelties. Grasshopper, DivRank, and Hurried focus on
context information. It should be noted here that the context information contains not only
evaluation behaviors used in our approaches, but also the relationships formed by sentence
similarities.

BRC (Rastkar et al. 2014)and ACS (Jiang et al. 2017) are supervised approaches for bug
report summarization that use annotated bug reports as the training data for their classifiers.
They score and choose sentences base on the classifiers. Due to the lack of annotated data,
we use the leave-one-out (Rastkar et al. 2014) procedure in our experiments. The The leave-
one-out procedure randomly divides the data into several parts, and each time randomly
takes one as the test set and the others as the training set. We divide the data into 10 parts,
repeat this procedure 10 times, and use the average value as the final result.
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4.1.3 Evaluation Metrics

We evaluate the performance of approaches from the perspective of salient sentence selec-
tion and generated summary. The Precision, Recall, F-Score, and Pyramid metrics are used
to measure the accuracy of the salient sentence selection, and the quality of generated
summary are measured in the form of the Rouge-1 and Rouge-2 metrics.

We use the Precision, Recall, and F-Scoremetrics, which are calculated from the selected
sentence set Chosen and the golden standard sentence set GSS, to measure the accuracy of
the summaries. Given a selected sentence set Chosen and the corresponding summary SUM,
these metrics are calculated as follows:

Precision = |Chosen ∩ GSS|
|Chosen| (7)

Recall = |Chosen ∩ GSS|
|GSS| (8)

F−score = 2 ∗ Precision ∗ Recall

P recision + Recall
(9)

Pyramid (Nenkova et al. 2007) precision is proposed to better measure the quality of the
summary when multiple annotators exist. The assessment based on Pyramid assumes that,
sentences listed by more annotators should be preferred, with the achievement of a certain
accuracy.

Pyramid = NumChosenListed

NumMaxListed

(10)

NumChosenListed is the amount of times that the sentences in Chosen are listed by anno-
tators, while NumMaxListed is the maximum possible amount for the corresponding word
amount limitation. For example, if three sentences are referenced by 2, 3, and 3 annotators,
respectively. When two sentences are required to form the summary, selecting the last two
sentences can result in a maximum NumMaxListed of 6. If in fact, we choose the first two
sentences, the value of NumChosenListed is 5. Therefore, the Pyramid of this selection can
be calculated as 5

6 according to Formula 10.
The ROUGE toolkit (Lin 2004) measures a method’s qualities by counting continuously

overlapping units between the summary SUM and the ground truth AbsSum. For each bug
report, we calculate the Rouge-n value with all three AbsSumwritten by the three annotators,
and use their average value as the final Rouge-n score. Rouge-1 and Rouge-2 are used in our
experiments due to their abilities in human-automatic comparisons (Owczarzak et al. 2012).

Rouge−n =
∑

s∈AbsSum

∑
n−gram∈s

Countmatch(n−gram)

∑
s∈AbsSum

∑
n−gram∈s

Count (n−gram)
(11)

In Formula 11, n is the n-gram length. The numerator is the number of n-gram overlap-
ping units between SUM and AbsSum, while the denominator is the number of n-gram in
AbsSum.

4.2 Answer to RQ1: Overall Performance

We compare the performance of BugSum with 8 baselines as introduced in Section 4.1.2.
We use the average of 10 times experiments as the final results. Tables 1, 2 and 3 show the
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Table 1 Overall performance on SDS

overall performance of BugSum against eight baselines over SDS, ADS, and CDS, respec-
tively. A gray cell represents BugSum outperforming a baseline approach with p−value <

0.05 by the paired Wilcoxon signed rank test (Holm 1979). Experiment results show that,
BugSum outperforms baseline approaches on almost all metrics and reaches the second
place in the metrics Precision and Pyramid over SDS.

The Recall of BugSum is significantly higher than that of comparative approaches, and
the reason may be that: the Recall reveals the coverage of salient sentences. Due to the
redundancy in sentences, similar sentences tend to be scored with close scores. Therefore,
whenever a salient sentence is selected, previous approaches may also select sentences that
contain redundant features of this salient sentence, which leads to the drop in Precision.
The coverage of salient sentences has to be decreased to maintain relatively high Precision.
BugSum selects sentences while also considering their contributions to the informativeness
of currently selected sentences, which can prevent part of the noise sentences from being
selected. This makes BugSum has high Recall while maintaining relatively high Precision.
Approaches such as Hurried, Grasshopper, and DivRank rely on context information. They
use sentence similarity as one of the rules for constructing context information. This rule
causes bias introduced by the redundancy in sentences to have a greater impact on these
approaches, which makes them have relatively low Recall with the similar Precision.

Table 2 Overall performance on ADS
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By contrast, MMR selects sentences based on their novelties, which makes it has rela-
tively high Recall while having similar Precision over ADS and SDS. DeepSum also has
relatively high Recall, as it re-initiates similar sentences during its pre-processing step.

The results of the Pyramidmetric show a similar trend with Precision. BugSum performs
smoothly on all datasets, achieving The highest performance over ADS and CDS, and the
second highest over SDS.

The quality of the generated summary is assessed using the Rouge-n score. The results
suggest that summaries generated by BugSum having the best performance over these
datasets.

We observe that, the characteristics of datasets can significantly affect the performance
of different approaches. For example, ACS is based on authorship. ACS uses bug reports
posted by the same author as the training set to train a sentence classifier. The bug reports
in ADS have this kind of authorship, which makes ACS has relatively high performance
on the ADS dataset. We find that approaches based on context information, such as MMR,
DivRank, and Hurried, exhibit a significant performance drop when testing over ADS, but
have relatively high performance on CDS. To understand the cause of these performance
fluctuations, we count the number of sentences and the proportion of sentences related to
the evaluation behaviors in SDS, ADS, and CDS, respectively. We find that bug reports in
ADS only contain an average of 39 sentences. Compared with an average of 65 sentences
in SDS and 52 in CDS, ADS has a relatively small amount of sentences, which makes
the sentences in the description more important. In SDS, ADS, and CDS, 44.5%, 30.7%,
and 41.9% of sentences respectively are influenced by evaluation behaviors. This indicates
that there are relatively fewer evaluation behaviors in ADS, which results in a performance
drop for approaches that rely on context information. Despite this, however, BugSum still
achieves the state-of-the-art performance in ADS. The reason is that, BugSum only uses
evaluation behaviors to emphasize the believability of sentences, but does not entirely rely
on them.

4.3 Answer to RQ2: Controversial Sentence Reduction

As was introduced in Section 2.1, the information contained in controversial sentences is
likely to be incorrect. Therefore, selecting these sentences into summaries may introduce
misleading information. BugSum evaluates the believability of sentences and aims to reduce
the possibilities of controversial sentences being selected into summaries. In order to deter-
mine the extent to which BugSum reduces these possibilities, we first need to identify which
controversial sentences are contained in our datasets. In other words, we have to build a
controversial sentence set as the ground truth.

To ensure correctness, we only choose sentences that are explicitly disapproved by all
evaluations and are also manually confirmed to be incorrect. The 5 annotators mentioned
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Table 3 Overall performance on CDS

in Section 3.2.2 are also recruited for this task. They determine whether a sentence is
controversial based on the following rules:

– The sentence should be selected by at least one baseline approach.
– The sentence should have been explicitly evaluated by at least one sentence, and all of

these evaluation sentences should express negative opinions.

We select sentences that are determined to be controversial by all five programmers.
We obtain 7 and 16 controversial sentences from SDS and ADS, respectively. As noted
in Section 4.1.1, in order to have a more accurate test of the methods’ ability to process
controversial sentences, we construct a new database CDS containing 62 controversial sen-
tences. In the CDS, each bug report contains at least one controversial sentence. For each
baseline approach and BugSum, we check the number of controversial sentences that have
been selected into the summaries over ADS, SDS, and CDS, respectively. In addition, to
understand the improvement brought by considering ambiguous replies, we also test the
performance of BugSum considering only explicit replies, which is denoted as BugSum-E.

As shown in Fig. 5, BugSum only selects 9.4% of controversial sentences (8 out of 85)
into the summaries, which reduces the controversial sentences in summaries by up to 64.7%
(55 out of 85) compared to baseline approaches. Meanwhile, compared with BugSum-E,
the reduction of controversial sentences is increased from 76.5% (65 out of 85) to 90.6%
(77 out of 85), which indicates that the consideration of ambiguous replies can improve the
deduction of controversial sentences. We also observe that approaches like Grasshopper,
DivRank, and Hurried based on context information, and approaches such as DeepSum and
Centroid based on word frequency select more controversial sentences. This validates our
assumption proposed in Section 2.1. The controversial sentences are discussed by a series
of comments before they are disapproved. Words or sentences related to the controversial
sentences will appear more times in bug reports. Thus, approaches based on word frequency
or context information are likely to select more controversial sentences.

In order to better understand the limitations of BugSum’s ability of handling controver-
sial sentences, we perform a case study of the 8 controversial sentences that selected by
BugSum. We found that these sentences are from 7 comments of 7 bug reports. We selected
three of the representative sentences and their evaluator sentences in this study. As illus-
trate in Table 4, these sentences are evaluated by only one sentence, and the opinion of
the evaluating sentence is relatively gentle. This results in these evaluated sentences hav-
ing believability scores between 0.3 and 0.6. Also, these sentences contain a large number
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Fig. 5 Selected controversial sentences

of topic-related words, such as “drivers”, “version”, and “depends” in Sentence 1, making
the sentence textually informative. Therefore, in the trade-off between textual informative
and believability, BugSum decides to select these sentences into the summary. This result
suggests that although our approach can significantly reduce the number of controversial
sentences in the summary, there is still great potential in the design of our methods for
sentence opinion assessment and sentence believability assignment.

Table 4 Example of controversial sentences selected by BugSum

Controversial Sentence Evaluator Sentence

1 The drivers just have to work with the ver-
sion we have, and Depends does not solve
anything.

If some driver happens to have issues, it
needs patching.

2 I briefly reviewed the debdiff and it seems
that the script will hit ‘cantcreatebase’ if the
directory does exist.

I thought that too, but then both experimen-
tation and the mkdir(1) manpage showed
that mkdir -p won’t return an error if the
directory already exists (it will for other
problems, such as EPERM).

3 Of course, then we’d need to find a way to
avoid mailing him when the 5 minutes batch
time are up.

Why not special-case the action instead?
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4.4 Answer to RQ3: Influence of Believability and Informativeness

In this paper, we propose two new factors: Believability and Informativeness. The exper-
iments above show that using these two factors can help generate summaries with higher
accuracy and fewer controversial sentences. In this section, we discuss how these two factors
can help improve the performance of the bug report summarization.

4.4.1 Influence of Believability

Believability refers to the degree that a sentence has been supported against disapproved
among the discussions in the bug report. The purpose of introducing this factor is to assess
whether a sentence is believable based on relevant evaluation behaviors and sentence opin-
ions in the bug report. As introduced in Formula 3 in Section 3.3, the sentence believability
scores reduce the impact of the potentially incorrect sentences in the full-text through the
combination of as weights with a vector of sentence features.

In this section, we illustrate how the factor believability affects the performance of Bug-
Sum through ablation study (introduced in Section 4.7). We add two control models, i.e. the
model does not consider the opinion of the evaluator sentences when assessing believability
(BugSum-NOp), and the model does not consider the sentence believability (BugSum-
NBeli). For model BugSum-NOp, it assumes that all sentences express positive opinions
and their opinion scores are set to 1. Meanwhile, BugSum-NBeli assumes that all sentences
have the same believability. According to Formula 3, we set the believability score of each
sentence to 1 so that each sentence contributes equally to the generation of the full-text vec-
tor. We use the F-score to assess the performances of these two models in the aspect of
salient sentence selection, and the number of selected controversial sentences to assess their
performances in the controversial sentence reduction.

As shown in Table 5. We find that the model faces a significant performance drop in both
the salient sentence selection and the controversial sentence reduction when the sentence
opinion or believability is not considered. However, we find that BugSum-NOp significantly
outperforms BugSum-NBeli on salient sentence selection. This is because in BugSum-NOp,
the opinion of the evaluator sentence is not considered and all sentences are assumed to
express positive opinions. Under this circumstance, sentences with higher number of eval-
uation behaviors in the bug report will be assigned with higher weights. In other words,
BugSum-NOp assumes that sentences being discussed more often are more important. This

Table 5 Performance of control models

Dataset Model F-score Selected controversial sentences

SDS BugSum-NOp 0.425 14

BugSum-NBeli 0.359 12

BugSum 0.495 0

ADS BugSum-NOp 0.412 4

BugSum-NBeli 0.348 3

BugSum 0.492 0

SDS

BugSum-NOp 0.435 40

BugSum-NBeli 0.350 41

BugSum 0.495 8
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makes salient sentences with high frequency more likely to be selected, and results in a bet-
ter performance. This is the domain reason why the factor believability can help improve
BugSum’s performance in salient sentence selection. In Bugsum, in addition to reducing the
controversial sentences in the summary, the believability score assignment can help increase
sentences that approved more often.

4.4.2 Influence of Informativeness

Informativeness refers to the amount of information contained in a generated summary.
This factor is introduced to reduce the redundancy in the generated summary. As discussed
in Section 2.2, bug reports contain various kind of information, such as bug reproduction and
solution discussion. They account for different proportions of sentences in the bug report.
Since previous works prefer information with a greater proportion, we assume that this may
lead to redundancy of certain types of information in the summary and the absence of oth-
ers. To validate our assumption, we study the informativeness of the summaries generated
by previous works (PGS). As discussed in Section 3.5, we focus only on the bug reproduc-
tion and solution discussion, and count the proportion of sentences with these information
types in the bug report (BR), the ground truth salient sentences, and PGS, respectively. Since
the golden standard sentence set (GSS) we mentioned in Section 4.1.3 is consists of salient
sentences selected manually, we take it as the ground truth of salient sentences in this study.
Also, since the feature vectors used to calculate informativeness are weighted by believabil-
ity, to avoid the interaction between these two factors affecting the results, we added the
control model BugSum-NBeli, mentioned in Section 4.4.1, to the experiment. This study
is deployed on bug reports from all three datasets (ADS, SDS, CDS), and the results are
illustrated in Table 6. Note that the data in Table 6 represents not the number of sentences
but the percentage. For example, the Bug Reproduction of BR in Table 6 is 8.9%. This
means that the sentences related to Expected behavior in BR represent 8.9% of all sentences
in BR.

We found that bug reproduction and solution discussion account for 8.9% and 43.1% of
sentences in BR, and 11.2% and 48.3% of them in GSS, respectively. Although the propor-
tion of sentences related to these two types of information slightly increased in GSS, their

Table 6 The proportion of sentences with different information types

Bug reproduction Solution discussion

BR 8.9% 43.1%

GSS 11.2% 48.3%

PGS Centroid 4.8% 73.2%

DivRank 1.6% 63.4%

Hurried 2.3% 62.9%

BRC 3.7% 59.3%

MMR 6.6% 57.7%

Grasshopper 2.0% 61.0%

ACS 3.9% 58.8%

DeepSum 5.4% 63.4%

BugSum-NBeli 12.5% 53.5%

BugSum 13.2% 53.1%
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proportions to each other remain similar to those in the bug report. However, in all PGS,
sentences related to solution discussion accounted for at least 58.8% of the bug report, while
sentences related to the bug reproduction account for less than 6.6%. The proportion of
solution discussion in all PGS increased significantly compared to that in BR and GSS, but
the proportion of bug reproduction in all PGS remain the same or even declined. Although
sentences related to solution discussions have a greater proportion in the bug report, the
over inclusion of such information may lead to the redundancy in the summary, and also the
reduction of sentences with other information types due to the summary length limitation.
This result validates our assumption in Section 2.2. Previous approaches usually measure
the weight of a sentence based on the word frequency and prefer to select sentences with
high weights. It results in sentences containing the majority information type are preferred
to be selected into the summary. Under the length limitation, this further leads to redundancy
of the majority information type in the summary as well as the absence of other types.

On the contrary, the information type proportions in the summary generated by BugSum
are relatively more similar to those in GSS. It indicates that BugSum dose not over-select
sentences of the majority information type, but reduces the proportion of such sentences
and increased the number of sentences of other types. The similar performance of BugSum
and BugSum-NBeli indicates that believability has almost no effect on informativeness. All
these results indicate that, while ensuring the accuracy of the selected sentences, BugSum
prefers to select sentences with different types of information due to its consideration of
informativeness. Informativeness leverages the importance of the sentence and the redun-
dancy it may introduce. It makes salient sentences with less majority type of information
are more likely to be selected, and therefore improves the model performance.

4.5 Answer to RQ4: Influence of Different SO-Model

As introduced in Section 3.2.2, BugSum uses the combination of DPCNN and random for-
est as SO-Model to assign the opinion scores of sentences. In order to have an assessment
of the influence brought by such combination, we test the performance of several classifi-
cation models and their combinations from three aspects, sentence opinion classification,
controversial sentence reduction and salient sentence selection.

4.5.1 Selection and Combination of Classification Models

BugSum regards the sentence opinion assessment as a classification task, and uses the pos-
sibility of negative opinion to assign the opinion score of each sentence. In our experiments,
we select two convolutional neural networks and three traditional classification algorithms
as SO-Model. For convolutional neural networks, we include the TextCNN (Kim 2014) and
DPCNN. TextCNN is widely used in text classification tasks. It uses multiple kernels of
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different sizes to extract features from sentences. Meanwhile, DPCNN improves the struc-
ture of convolutional neural networks. It maintains a relatively low complexity and can
effectively extract the long-distance relationship features in the text. As for traditional clas-
sification algorithms, we employ logistic regression (LR) (Kianifard and Kleinbaum 1995),
random forest (RF), and support vector machine (SVM) (Vapnik 2000), which are also
widely used algorithms in text classification.

4.5.2 Sentence Opinion Classification

As introduced in Section 3.2.2, SO-Model of BugSum is trained over a dataset consists of
3,000 sentences. These sentences are labeled with positive or negative to represent their
opinions towards the evaluated sentences. We randomly select 80% of sentences from the
dataset to train the models, and use the rest sentences as the test set. We repeat this process
for 5 times, and use the average of the results as the final result.

As illustrated in Table 7, in our dataset, the performance of both the convolutional neural
networks is higher than that of traditional classification algorithms. For the convolutional
neural networks, DPCNN performs better than TextCNN. As for the traditional classifi-
cation algorithms, LR has the best performance, while RF and SVM achieve competitive
performance.

Most importantly, combining both types of algorithms can achieve better performance,
compared with using only one classification algorithm. The combination of DPCNN and
RF has the best performance. The performance of sentence opinion assessment increased
from 81.1% to 91.2% compared with the SVM algorithm we used in previous work, and
thus we use this combination as SO-Model in all our experiments. This result validates our
assumption in Section 3.2.2. Convolutional neural networks compress features to be more
concise and accurate, while traditional classification algorithms process input features more
detail. Their combinations can incorporate both of their advantages so that they can achieve
the best performance.

Since the input features of DPCNN are compressed through multiple layers, when com-
bining DPCNN with RF, we also test the model’s performance using different features that
are compressed by different numbers of DPCNN layers. The number of layers of DPCNN

Table 7 Accuracy of sentence
opinion classification SO-Model Accuracy

CNN TextCNN 0.889

DPCNN 0.900

Traditional Algorithm Random Forest (RF) 0.807

Logistic Regression (LR) 0.773

Support Vector Machine (SVM) 0.811

Combination TextCNN + RF 0.901

TextCNN + LR 0.894

TextCNN + SVM 0.897

DPCNN + RF 0.912

DPCNN + LR 0.900

DPCNN + SVM 0.910
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depends on the length of the input data (Johnson and Tong 2017). As the length of the sen-
tences after pre-processing in our datasets is around 30, we set the length of input data of
DPCNN to 32, and accordingly set the number of layers to 5. As shown in Fig. 6, the perfor-
mance of all classification models increases with the number of compressed layers. Features
compressed by more layers in DPCNN can help achieve better performance when combin-
ing with traditional algorithms. Therefore, BugSum uses the compressed features from the
last layer of DPCNN.

4.5.3 Controversial Sentence Reduction

Different SO-Model assigns different opinion scores to each sentence. It will further affect
the assignment of sentence believability scores, according to Formula 1, and will then result
in different numbers of selected controversial sentences, as shown in Table 8.

From Tables 7 and 8, we find that, in general, the more accurate the SO-Model is, the
less controversial sentences are selected. Thus, the improvement of SO-Model can help the
deduction of controversial sentences.

4.5.4 Salient Sentence Selection

We also test the performance of BugSum on the salient sentence selection.
As shown in Table 9, BugSum The combination of DPCNN and random forest achieves

the best performance. But the changes of SO-Model have only a slight impact on the
selection of salient sentences. The reason may be that,

The salient sentence selection in BugSum relies not only on the sentence believability,
which is affected by SO-Model, but also on evaluation behaviors between sentences. We
also find that SO-Model changes have a greater impact on datasets SDS and CDS (especially
when using Logistic regression). This finding is consistent with our analysis in Section 4.2.
SDS and CDS have a greater proportion of sentences covered by evaluation behaviors. As
the sentence score is assigned by classification models, the change of classification models
will have relatively greater impacts on these two datasets.

Fig. 6 The performance of models using different layers
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Table 8 Reduction of controversial sentences using different so-model

SO-Model Selected controversial sentences

CNN TextCNN 17

DPCNN 14

Traditional Algorithm Random Forest (RF) 21

Logistic Regression (LR) 15

Support Vector Machine (SVM) 21

Combination TextCNN + RF 13

TextCNN + LR 17

TextCNN + SVM 14

DPCNN + RF 8

DPCNN + LR 13

DPCNN + SVM 10

4.6 Answer to RQ5: Influence of Parameters

BugSum contains three parameters: feature vector dimension, TF-IDF score threshold, and
the beam size of the beam search algorithm. To find out how these parameters influence the
performance of BugSum, we perform the following experiments.

Table 9 Performance of salient sentence selection using different so-model

SO-Model F-score

SDS ADS CDS

CNN TextCNN 0.489 0.486 0.483

DPCNN 0.492 0.488 0.494

Traditional Algorithm Random Forest (RF) 0.471 0.482 0.462

Logistic Regression (LR) 0.485 0.484 0.487

Support Vector Machine (SVM) 0.473 0.479 0.460

Combination TextCNN + RF 0.493 0.492 0.493

TextCNN + LR 0.488 0.487 0.485

TextCNN + SVM 0.490 0.491 0.493

DPCNN + RF 0.495 0.492 0.495

DPCNN + LR 0.492 0.489 0.494

DPCNN + SVM 0.493 0.492 0.494
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4.6.1 Feature Vector Dimension

BugSum uses sentence vectors and a full-text vector to represent important information in
bug reports. The dimension of these feature vectors may affect the performance of BugSum.
We evaluate the performance of BugSum with the vector dimension from 1 to 2000. In
Fig. 7a, we present the F-score values of BugSum.

The performance curves of BugSum on SDS, ADS, and CDS exhibit a consistent trend.
The performance of BugSum declines rapidly when the dimension of feature vectors is
lower than 200. It grows steadily when the dimension is between 200 and 1000. When the
dimension is between 1000 and 1400, the performance of BugSum remains stable and peaks
when the dimension reaches 1200. The performance begins to decrease when the dimension
exceeds 1400. The reason for this is that a low-dimension feature vector can only retain
limited features with insufficient information, which can lead to worse performance. By
contrast, when the dimension is too large, noisy features are also included in the feature
vectors, which causes performance degradation.

We have also checked the performance of BugSum in terms of other metrics, and obtained
quite similar results. Thus, we set the dimension of feature vectors to 1200 in all our experi-
ments, as at around this value, the performance of BugSum reaches the peak on ADS, SDS,
and CDS.

4.6.2 TF-IDF Score Threshold

As noted in Section 3.2.1, we identify the evaluation behaviors of ambiguous replies based on
the sharing of topic-related words to assess the believability of sentences in the description.

Fig. 7 Performance of BugSum influenced by different parameters
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When selecting topic-related words, we need to set the threshold θ to the TF-IDF score. In
this experiment, we test the sensibility of θ , from 0.02 to 0.20.

As can be seen in Fig. 7b, the performance of BugSum increases rapidly over all datasets
when θ grows from 0.02 to 0.06. Subsequently, as the value increases from 0.06 to 0.1, we
obtain comparative performance. When θ is higher than 0.1, the performance of BugSum
first declines slightly and then remains stable from the point at around 0.18. The reason is
that, when θ is too small, the number of selected topic-related words will be large. Many
links, including noises, may be constructed between the description and comments, which
causes a further performance drop. On the contrary, when θ is too high, few topic-related
words can be selected, meaning that only a very limited amount of links can be built. The
input information for BugSum is not rich enough, so its performance also drops. When θ

is higher than a certain value, such as 0.18 in Fig. 7b, the amount of topic-related words is
too small, and the identified evaluation behaviors of ambiguous replies can no longer affect
the selection. Therefore, the performance becomes stable again. We also observe that the
performance over ADS is more sensitive to the change of θ . This is because there are fewer
sentences in ADS than in SDS and CDS, so the sentences in the description play a more
critical role in ADS. Since the evaluation behaviors related to the description in our approach
are mainly identified based on ambiguous replies, the noises introduced by θ will have more
effects on ADS than on SDS and CDS. We also check the performance using other metrics
and obtain similar results. Overall, we set the TF-IDF score threshold of topic-related word
selection to 0.08 in all our experiments.

4.6.3 Beam Size

BugSum generates a summary based on the beam search algorithm. As introduced in
Section 3.4, the beam search algorithm maintains b candidate sentence sets. In Fig. 7c, we
illustrate the performance of BugSum in the form of the F-score metric, when b is between
1 and 11.

The performance of BugSum increases along with b until it reaches the value of 8,
after which the performance becomes stable. Additional growth of the beam size cannot
improve the performance of BugSum. The computational complexity of the search algo-
rithm increases significantly as the beam size increases. Thus, we set the beam size to 8
in all our experiments to balance the performance of BugSum and the computational time
consumption.

4.7 Answer to RQ6: Ablation Study

An ablation study usually refers to removing some components of the model, and seeing
how that affects performance. In our approach, we implement the Sentence Feature Extrac-
tion (SFE) to extract semantic features from sentences, Dynamic Selection (DS) to select
salient sentences, and Informativeness Enhancement (IE) to improve the informativeness of
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the summary. In this section, we carry out an ablation study to test the effectiveness of these
components against the commonly used alternative strategies.

Bag-of-Words (BoW) is one of the most popular representation strategies (Zhang et al.
2010), which preserves the word frequency and ignores the original order or relationship
between neighboring words. The sentence score method has been commonly used in pre-
vious approaches (Li et al. 2018; Carbonell and Goldstein 1998; Radev et al. 2004; Lotufo
et al. 2015; Mei et al. 2010; Zhu et al. 2007), which we denote as SSM. SSM selects sen-
tences with the highest score under the word amount limitation. In this experiment, SSM
uses the cosine similarity between the sentence vector Si and the full-text vector DF as
the score of sentence i. We use BoW as an alternative strategy for SFE and SSM as a
replacement for DS.

We illustrate the performance of the model under different combinations of alternative
strategies in Table 10. We find that the replacement of any strategies will lead to a significant
drop in most metrics. The replacement of the sentence feature extraction strategy signifi-
cantly impacts BugSum’s Precision, R-1, and R-2. The reason is that, the domain semantic
features in sentences include word frequency and word context. The BoW strategy can only
preserve word frequency information, which leads to a performance drop. This also indi-
cates that our approach can preserve domain semantic features in sentences. We also find
that summary selection strategies heavily influence BugSum’s Recall, a result that is caused
by the redundancy in sentences. Dynamic selection, as evaluated in Section 4.3, can select
sentences while considering the informativeness of selected sentences. Alternative strate-
gies like SSM tend to select sentences with redundant semantic features, and further cause
relatively low Recall while achieving similar Precision.

For the informativeness enhancement, we compared the performance of BugSum on
three datasets with and without this method. The results are shown in Table 11. BugSum-
NIE refers to the performance of BugSum when informativeness enhancement (IE) is not
used. Since the IE method makes the model select some extra sentences, we expand the
number of selected sentences in BugSum correspondingly, and use Precision-Add to rep-
resent the accuracy of the additional selection. We find that the precision of additional
selection (Precision-Add) is higher when using IE method, which indicate that IE method
can improve the model’s recall while maintaining accuracy. This verifies our assumption

Table 10 Performance of BugSum using different strategies

Dataset Strategy F-score Precision Recall Pyramid R-1 R-2

SDS

BoW SSM 0.297 0.410 0.246 0.303 0.441 0.092

BoW DS 0.399 0.492 0.348 0.545 0.520 0.125

SFE SSM 0.386 0.519 0.311 0.542 0.514 0.116

SFE DS 0.499 0.627 0.437 0.659 0.601 0.197

ADS BoW SSM 0.292 0.400 0.249 0.490 0.457 0.112

BoW DS 0.386 0.454 0.356 0.563 0.517 0.210

SFE SSM 0.382 0.470 0.325 0.531 0.492 0.181

SFE DS 0.494 0.611 0.424 0.691 0.568 0.272

CDS BoW SSM 0.298 0.405 0.258 0.494 0.467 0.114

BoW DS 0.388 0.451 0.355 0.559 0.517 0.207

SFE SSM 0.380 0.466 0.326 0.525 0.492 0.182

SFE DS 0.496 0.613 0.437 0.687 0.581 0.253
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Table 11 Performance of
BugSum using informativeness
enhancement

Dataset Model Precision Recall Precision-Add

SDS BugSum-NIE 0.614 0.418 0.533

BugSum 0.627 0.437 0.622

ADS BugSum-NIE 0.607 0.420 0.492

BugSum 0.611 0.424 0.605

CDS BugSum-NIE 0.615 0.423 0.537

BugSum 0.617 0.427 0.614

in Section 3.5: Due to the redundancy, over-selecting sentences of the major type makes
it difficult to improve the informativeness of the summary, while selecting sentences with
information lacking in the summary can achieve better results.

5 Threats to Validity

In this section, we discuss threats to construct validity, internal validity, and external validity,
which may affect the results of our study.

Construct Validity: The accuracy of selected controversial sentences is a threat to the valid-
ity of our experiments. In order to ensure the accuracy of selected controversial sentences,
every selected sentence is confirmed by all 5 annotators. However, since none of the anno-
tators have participated in the project of annotated bug reports, their understanding of these
issues is limited. This makes it possible that there may be some controversial sentences in
these bug reports that we do not find. This may affect the results of our experiment. How-
ever, since such controversial sentences are sporadic and can hardly affect the experiment
results, such bias is acceptable in our experiments.

Internal Validity: The bias introduced by machine learning method is also a potential threat.
On the sentence feature extraction and the assessment of sentence believability scores, we
use the auto-encoder to extract textual features from the sentence, and the SO-Model to
predict the sentence opinion. These models are based on machine learning, which is heav-
ily relying on training data, and its performance can be significantly biased with different
datasets. Moreover, even with the same training data, the performance of the machine learn-
ing method is not stable. It usually fluctuates from training to training. To mitigate these
threats, we randomly divide the training and testing sets of the model. All experiments are
run 5 times, and we use the average as the final result.

External Validity: The threat to external validity related to the generalizability of our find-
ings and approach. To alleviate this threat, Our experiment study is conducted on the dataset
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consists 34,140 bug reports from 8 popular open-source projects. Our approach has exper-
imented against 8 baseline approaches on two public datasets and one customized dataset.
The results suggest that our approach has acceptable generalizability.

6 RelatedWork

6.1 Bug Report Summarization

Bug report summarization, which is considered to be a promising way to reduce human
effort, involves composing a summary by picking out salient sentences from the bug report.
Rastkar et al. (2014) and Jiang et al. (2017) extracted sentences based on feature classifiers
that were trained using manually annotated bug reports. The performance of feature classi-
fiers relies heavily on the quality of the training corpus (Lotufo et al. 2015), which requires
the annotators to have certain expert knowledge and massive manual efforts. (Arya et al.
2019) labeled comments with their possible contained information, and let users choose
corresponding sentences based on their requirements. Radev et al. (2004) compressed each
sentence into a vector based on their TF-IDF values, and assessed sentences based on their
similarity to the average of all sentence vectors. Other approaches (Zhu et al. 2007; Mei
et al. 2010) have attempted to select sentences according to reference relations, which were
enhanced by a noise removal strategy designed by Mani et al. (2012). Lotufo et al. (2015)
scored their sentences based on imitating human reading patterns, connected sentences
according to their similarities, and chose sentences with the highest possibilities of being
reached during a random traverse. Li et al. (2018) focused on predefined field words and
sentence types, and scored sentences based on the weight of words. In this paper, we have
proposed a novel supervised algorithm for bug report summarization that can efficiently
reduce the possibility of controversial sentences been selected into the summary.

6.2 Summarization of NLP

Text summarization is one of the key applications of natural language processing for
information condensation (Munot and Govilkar 2014). Wang and Cardie (2013) generated
summaries for meeting records through templates, which required considerable manual
effort to obtain. Cheng and Lapata (2016) transformed the bug summarization into a clas-
sification task, by using LSTM as a recurrent document encoder to represent documents.
Nallapati et al. (2017) took the position of sentences into consideration to minimize the neg-
ative log-likelihood between the prediction and the ground truth by using an RNN based
sequence model. Jadhav and Rajan (2018) implemented the pointer network to add the
salience of words into the prediction process. Narayan et al. (2018) optimized the Rouge
evaluation metric through a reinforcement learning objective. Zhou et al. (2018) designed
an end-to-end neural network to combine the sentence scoring process and the sentence
selection process. The above approaches have accelerated the development of understanding
software artifacts (Nazar et al. 2016), e.g. source code and bug report.

6.3 Deep Learning in Software Engineering

In recent years, deep learning has been increasingly adopted to improve the performance
of software engineering tasks (White et al. 2015). Moreno et al. (2013) and (Matskevich
and Gordon 2018) utilized neural networks for source code analysis by integrating abstract
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syntax trees (i.e., AST) and code semantic information to generate comments. Similarly,
Wang et al. (2017) combined API sequence information with neural networks, and gener-
ated descriptions for object-related statement sequences. Moreover, Linares-Vásquez et al.
(2015) and Buse and Weimer (2010) used neural networks to generate commit messages
through extracting code changes. Jiang et al. (2017) improved the results of neural networks
by adding filters to filter out the likely poor predictions. Liu et al. (2019) employed the
pointer network to deal with out-of-vocabulary (i.e., OOV) words. While deep learning is an
exciting new technique, it is still debatable as to whether this method can be implemented
in a way that benefits SE (Fu and Menzies 2017; Hellendoorn and Devanbu 2017).

6.4 Text Classification

Text classification is a well-studied area in natural language processing, which is mainly
based on traditional classification algorithms or deep learning approaches. Traditional clas-
sification algorithms such as Naive Bayes (Corporate AAFAI 1992), decision tree (Olanow
and Koller 1998), and support vector machines (SVM) (Vapnik 2000) have simple struc-
tures and relatively few parameters, which makes them faster to be trained and easier
to understand. (Surhone et al. 2010) improve the decision tree algorithm to mitigate the
overfitting problem. Wang and Manning (2012) combine the Naive Bayes and SVM, and
achieved better performance. Meanwhile, with the increasing recognition of deep learn-
ing, some approaches based on deep learning have been proposed to the text classification.
(Kim 2014) applied the convolutional neural network (CNN) to text classification, which
extracted domain features from sentences using kernels of different sizes. Johnson and Tong
(2017) improved the structure of the naive CNN and proposed the Deep Pyramid Convolu-
tional Neural Networks (DPCNN). It can extract the long-distance relationship features of
sentences while maintaining relatively low complexity. Kim et al. (2018) incorporated word
embeddings into the Open Directory Project (ODP) to handle large-scale text classifica-
tion. These methods were based on and improved upon traditional classification algorithms
or deep learning, and have achieved good performances in text classification. Recently, the
combination of traditional classification algorithms with deep learning has become a new
research trend. Wan et al. (2020) combined the decision tree with deep learning, which
improved the model’s performance and interpretability. Our approach combined random
forest with DPCNN, and also achieved a significant improvement. The potential applica-
tions of the combination of traditional classification algorithms and deep learning remain to
be explored.

7 Conclusion

In this study, we present a novel supervised summarization approach, that considers the
semantic feature and sentence believability of bug report, and the informativeness of the
summary. To generate more reliable and informative summaries for bug reports. To improve
the performance of our previous design, we deeply explore the unique characteristics of
bug reports and take ambiguous replies into consideration. For the purpose of validating the
generality of our approach, we manually construct a controversial dataset, which contains
39 annotated bug reports and 62 controversial sentences. Extensive experiments over three
public datasets show that the performance of our approach, compared to 8 typical base-
line approaches, reaches the state-of-the-art performance. Our approach can be applied in
practice to assist with software maintenance and reuse. In particular, our method is able to
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prevent most controversial sentences from being selected into the summary, which points a
promising direction for further work on conversation-based text analysis.

During our research, we find that, bug reports contain various types of information, such
as bug reproduction, and possible solutions. Existing auto-generated summaries are con-
catenated by the salient sentences, while the complete information for each kind, such as
complete steps to reproduce a bug, still needs to be organized by developers. In the future,
we plan to extract a complete and believable summary for each kind of information in bug
reports to provide more assistance to developers.
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