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Towards Usable Neural Comment Generation via
Code-comment Linkage Interpretation:

Method and Empirical Study
Shuyao Jiang, Jiacheng Shen, Shengnan Wu, Yu Cai, Yue Yu, and Yangfan Zhou

Abstract—Code comment is important to facilitate code comprehension for developers. Recent studies suggest to generate comments
automatically with deep learning, in particular, based on neural machine translation models. However, such a promising Neural Comment
Generation (NCG) technique suffers from unsatisfactory performance, as well as poor usability, i.e., developers cannot easily understand
and modify the auto-generated comments. This paper suggests that a proper interpretation of how the comments are generated can
significantly improve the usability of NCG approaches. We propose a novel model-independent framework, namely CCLink, to interpret
the auto-generated comments. CCLink generates a set of code mutants and obtains their corresponding comments. Based on these data,
several contribution mining algorithms are designed to infer the key elements in code that contributes to the generation of the key phrases
in the comments. The links between code and its auto-generated comment can thus be constructed. This in turn allows CCLink to
visualize the links as the comment interpretations to developers. It greatly facilitates manual verification and correction of the comments.
We examine the performance of CCLink with different contribution mining algorithms, NCG approaches, and real-world datasets. We also
conduct an empirical study on 32 experienced Java programmers to evaluate the effectiveness of CCLink. The results show that CCLink
is promising in making NCG more usable with a proper interpretation of the auto-generated comments.

✦

1 INTRODUCTION

CODE comprehension is critical to modern software
development, especially for open source projects that

new developers frequently join. It is a rigid need for those
new developers to understand the project code written by
others, while it is also a quite labor-intensive task (e.g., 80%
of the development time is spent on understanding code as
reported in [1]).

It has long been accepted that code comments, usually
brief descriptions of code snippets, can greatly facilitate
code comprehension. However, original developers may not
write good comments in practice due to negligence or time
constraints [2], [3]. As a result, new developers have to put
a lot of repetitive efforts to understand the existing code. A
promising solution is automatic code comment generation [4],
[5], which auto-summarizes code into short, natural language
text with an aim to reduce human efforts in understanding
the source code.

Current state-of-the-art approaches apply Neural Ma-
chine Translation (NMT) to perform this task [6], [7], [8],
[9]. Specifically, they adopt sequence-to-sequence neural
networks (e.g., [10]) to convert source code into natural lan-
guage (i.e., code comments). Such Neural Comment Generation
(NCG) approaches can learn from human experiences, i.e.,
high-quality mannually-written code comments generally
available in mature open source projects (e.g., Linux, Android,
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OpenStack). With the recent advancement of deep learning,
NCG is considered a very promising research direction [9].

Unfortunately, state-of-the-art NCG approaches are still
far from being usable in practice [11]. Despite tremendous
research efforts to improve NMT models, the quality of the
generated comments is not yet satisfactory. For example,
DeepCom [9] and ast-attengru [8], two state-of-the-art
NCG approaches, generally cannot achieve a BLEU value
over 40% (BLEU is a widely-used metric to evaluation text
quality [12]). Such poor performance makes developers
unwilling to use NCG approaches in practice.

Except for the unsatisfactory performance, the lack of
good usability is also a critical reason why NCG is not
applicable. It is difficult for developers to understand and
modify the auto-generated comments. This work, unlike
existing studies that emphasize on improving the perfor-
mance of NCG, proposes to address its usability issue.
We consider that the interpretability of the auto-generated
comments is critical to the usability of NCG approaches.
Actually, it has long been suggested that providing an
interpretation of software behavior will significantly improve
the software usability [13], [14], [15], [16], especially for
software that adopts machine learning [17], [18] in a black-
box manner. In the context where new developers would
like to contribute comments to open source projects, proper
interpretations of the auto-generated comments can greatly
facilitate developers to comprehend and further improve the
comments.

To this end, we propose a novel framework CCLink
(Code-Comment Links) to interpret the comments generated
by NCG approaches. CCLink aims to find the code segments
which contribute to the generation of key information (i.e.,
key phrases called focuses) in the auto-generated comments.
CCLink is inspired by the success of natural language
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translation (e.g., Google Translate [19]), where its result is
instantly explainable: A user can check the resulting phrases
against their counterparts in the source sequence. In this way,
the quality of the translation can be easily perceived, and
the user can accordingly modify the incorrect phrases. In
addition, those modifications can be recorded and further
used as a new type of valuable feedback data to refine the
original intelligent models.

However, the link between code and its comment is less
obvious. It is not straight-forward for a developer to know
why a sentence is generated with the code. Automatically
inferring such links is actually very challenging. It is no-
toriously difficult to interpret deep learning models [20].
Inferring such links by examining the underlying logic of an
NCG approach is infeasible currently. Fortunately, we note
that code is also a way of human communication [11], where
its internal documentation (e.g., variable names) to some
extent reflect its intention [21], [22]. This allows CCLink to
mine the links between code and its auto-generated comment,
by considering the deep learning model of an NCG as a black
box.

In particular, CCLink first determines the focuses (i.e.,
key phrases) in the auto-generated comment, then infers
which parts of code result in each focus with a contribution
mining method. To this end, CCLink generates a series of
code mutants of the code and obtains their auto-generated
comments. Based on the resulting comments, CCLink divides
the mutants into two categories: one can produce the
comments with a specific focus and the other cannot. Based on
these data, we tailor data mining algorithms to determine the
code segments that contribute to the generation of the focus.
The links between code and its auto-generated comment can
thus be constructed. This in turn allows CCLink to visualize
the links as the comment interpretations to developers.

To the best of our knowledge, CCLink is the first solution
dedicated to improving the usability of NCG from the
perspective of interpretability. We design comprehensive
experiments to evaluate CCLink. First, we examine the
performance of CCLink with different contribution mining
algorithms, NCG approaches and real-world datasets. Then,
we conduct an empirical study, where we recruit 32 experi-
enced Java programmers to perform a comment-correction
task with/without the interpretation functionality of CCLink.
The results verify the effectiveness of CCLink. The source
code of CCLink (including that for experiments) is open-
source available at https://github.com/CCLink-demo.

The main contributions of this paper are as follows:
• We are the first to propose the interpretability of the

auto-generated comments is key to the usability of NCG
approaches, and provide a systematic study on comment
interpretation.

• We design CCLink, a novel NMT model-independent
framework to interpret auto-generated comments, which
includes several specifically-tailored interpretation meth-
ods for this task.

• We show that CCLink is promising in making NCG
more usable with a proper interpretation of the auto-
generated comments via comprehensive experiments
and user studies.

The rest of paper is organized as follows. Section 2
provides the preliminaries and our research motivation. We
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Fig. 1. Attentional RNN Encoder-Decoder.

elaborate our CCLink design in Section 3. Sections 4 and 5
report our experimental results and empirical study. Section
6 further discusses our experimental and empirical studies,
where we provide and analyze good/bad examples of links,
the threats to validity, and the implications. We survey related
work in Section 7 and finally conclude this work in Section
8.

2 BACKGROUND AND MOTIVATION

Neural machine translation (NMT) is a machine learning
technique that adopts deep neural networks to convert a
source language sequence to a target language sequence. It
has shown its good performance in language translation,
without requiring feature extraction efforts typically required
in traditional approaches [23], [24]. Figure 1 shows a typical,
widely-used NMT model as an example [10]. It applies
Attentional RNN Encoder-Decoder, which includes two RNNs
(recurrent neural networks). One RNN, namely, the encoder,
transforms the source sequence to a vector representation
(i.e., an embedding). The other, namely, the decoder, then
transforms the embedding into the target sequence. An
attention mechanism is usually introduced to determine
the weights of the words in the source sequence during
translation [10]. RNN cells can also be replaced with long
short-term memory (LSTM) [25] or the gated recurrent unit
(GRU) [26], so as to handle long-sequence scenarios.

NMT has recently been proposed to conduct automatic
code comment generation [6], [27], which we call Neural
Comment Generation (NCG) in our following discussion.
The underlying notion of NCG is that software code is a
form of human communication, which has similar statistical
properties as natural language [11]. By treating code as a
source language sequence, an NMT model can convert it into
a target language sequence (i.e., code comments). Existing
studies have shown that NCG is an effective, promising
mechanism [6], [7], [8], [9], [27], [28], [29], [30].

However, NCG is not yet a mature technique in practical
scenarios due to its bad performance (i.e., the quality of
the auto-generated comments) [8], [9], [31]. Meanwhile,
existing NCG approaches also suffer from poor usability:
Developers cannot easily understand and correct the auto-
generated comments. Figure 2 presents a Java code segment
and its comment generated by attendgru [8], a typical
NCG approach. The code is actually for evaluating an
expression with the given arguments. But the generated
comment fails to precisely present its functionality, where
the "arguments" is wrongly identified as an "expression". By
reading such comments, a developer cannot easily compre-
hend the intention of the code without carefully examining
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Code:

Auto-generated	comment:

private boolean evaluateArguments ( String [ ] names , String [ ] values , SsimEdiator
ssimEdiator ) throws SsisTopProcessingException {

String expr = getExpression ( names , values ) ;
if ( expr == null ) {

throw new SsisTopProcessingException ( ) ;
}
try {

ExpressionParseTree tree = new ExpressionParseTree ( expr , ssimEdiator ) ;
return tree . evaluateTree ( ) ;

}
catch ( ParseException e ) {

throw new	 SsisTopProcessingException ( ) ;
}

}

​evaluates	the	given	expressions	as	the	current	expression

Fig. 2. A motivating example.

the entire code. We can see that even for such a state-of-
the-art approach as attendgru, it is still way before it can
effectively reduce human efforts in comprehending code and
writing comments.

To mitigate the gap in NCG from research to practice,
this work aims to address the usability issue of NCG.
Actually, software usability has long been suggested as a key
dimension to evaluate the quality of a software [32], [33], [34],
as it significantly affects the usage of software functionalities
[35]. In particular, we suggest that NCG can be made more
usable by improving its interpretability, i.e., providing a way for
developers to comprehend and improve the auto-generated
comments more easily.

Our idea is inspired by the success of natural language
translation (e.g., Google Translate [19]), where an explainable
result is critical to its usability. In such application scenarios,
two phrases in the source and target sequences typically have
a natural, straightforward connection, e.g., "ingeniería de
software" in Spanish and "software engineering" in English.
Users can compare the resulting phrases with their counter-
parts in the source sequence, and examine the correctness
of the translation. They can accordingly modify the result to
make it more accurate.

Unfortunately, unlike natural language, the link between
code and its comment is less obvious. Again, consider the
example in Figure 2. It is hard for developers to instantly
know how the comment is generated with the code. They
then cannot easily modify the imperfect result. Instead, they
may tend to simply discard this comment and write a new
one by reading the entire code (This is also confirmed in our
field study, elaborated in Section 5).

But, suppose how the comments are generated with the
code can be explained. As illustrated in Figure 2, "evalu-
ates" is from the statement that evaluates the expression;
"given expressions" is from that creates the expression; and
"current expression" is from the parameter list. Developers
can identify whether the comments are correctly-written
more conveniently. This can also allow her to improve the
comments accordingly. For example, change the "as the
current expression" to "with the given arguments" to describe
the parameter list.

However, it is extremely challenging to provide such
interpretations. It is notoriously hard to interpret how and

why a deep learning algorithm produces a specific result
[20]. Despite many attempts in the literature, it remains an
open problem [36], [37], [38], [39], [40], [41]. Fortunately,
in this task, we only need to find out which part of the
code that contributes to the resulting comment words,
without exploring the complex mechanisms of NMT. In
other words, we can consider the NMT algorithm as a black
box, and infer the connection between the code and the
resulting comments. This allows us to greatly simplify the
interpretation mechanism. Next, we will elaborate on how we
specifically design such a framework, namely, CCLink (Code-
Comment Links), to interpret the results of NCG approaches,
with an aim to improve their usability.

3 CCLINK DESIGN AND IMPLEMENTATION

As we have discussed, it is helpful to provide developers
with the critical subsequences of their concern in the resulting
comment, together with their corresponding code segments
that contribute to the generation of such subsequences. In
our following discussions, we call such subsequences focuses.
If every focus can correctly describe its corresponding code
segments, the comment can be acceptable to developers.
Otherwise, they can accordingly modify the comment by
correcting the wrong focuses. In this regard, CCLink finds
such a mapping between each focus and the specific parts
of code that contribute to its generation. Figure 3 overviews
our CCLink design.

Let us consider an NCG approach, the code and its
resulting comment generated by the approach. CCLink
first determines the focuses in the comment. Next, CCLink
considers the NMT model in the NCG approach as a
black box in analyzing the mapping of code segments to
the focuses. CCLink interpret the comments in a black-box
manner because we aim at providing a generic interpretation
framework to improve the usability of NCG. We intentionally
design CCLink to be model-independent, which relies on
no knowledge of the NMT model including any white-box
information of the model. Our purpose is to cope with all
neural comment generation approaches, embracing emerging
ones.

To this end, CCLink first generates a series of code
mutants, where a mutant is a slight modification of the
original code. By taking each code mutant as an input for
the NMT model, CCLink obtains its corresponding comment.
Then, according to the resulting comments, for each focus,
CCLink can group the mutants into two categories: One
includes those that produce the focus; The other contains
those that do not. These two resulting categories can allow
CCLink to determine which parts of the code contribute to
the generation of each focus with data mining algorithms.
Finally, such a mapping can be visualized to developers. They
can examine whether every focus describes its corresponding
code segments. This can facilitate their further correction of
the comment generated with the original code.

Next, we will first discuss how CCLink finds the focuses,
generates code mutants, and obtains the resulting two cate-
gories of data for each focus in Section 3.1. The interpretation
mechanisms of CCLink will be discussed in Section 3.2.
Finally, we will elaborate CCLink’s user interface in Section
3.3.
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Source	code	

Auto-generated	
comment

Mutate Group

Interpretations

Mine

User interface

Mutant/comment	
with	each	focus
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Key phrases
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Mutant 1 Mutant 2

…

…
Mutant/comment	
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Auto-generated	
comment 1

Auto-generated	
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…

Fig. 3. CCLink overview. The workflow consists of three phases: 1) Generate code mutants and obtain corresponding comments by the NCG
approach; 2) Adopt data mining approaches to interpret which parts of the code contribute to the generation of each focus; 3) Visualize the
interpretation results to developers.

3.1 Data Preparation

We first describe how CCLink determines the focuses in
the comment. Note that comments are natural language
sentences. There is already a rich body of literature in the
natural language processing community that studies how to
find the key information in a natural language sentence (e.g.,
[42], [43], [44]). This allows us to conveniently borrow the
existing, well-accepted concepts and approaches to retrieve
the focuses. Hence, CCLink conducts this task by invoking
a plugin algorithm. Such a plugin can easily be substituted
with any other similar algorithms. In particular, in our study
we use RAKE [45], a widely-used rapid automatic keyword
extraction algorithm to retrieve the focuses. It can identify
important phrases, i.e., those conveying key information, in
a sentence.

With a set of focuses, CCLink’s task now is to find the
code segments that contribute to the generation of the focuses.
An instant idea is to analyze how the NMT model processes
the input code, and accordingly determine which parts of the
code contribute the most to the production of each focus.
However, interpreting a deep learning model like NMT
is still a challenging, open problem [36], [37], [38], [39],
[40], [41]. Moreover, as we have discussed, CCLink aims
at providing a generic interpretation framework to improve
the usability of NCG. Such an interpretation attempt should
be orthogonal to the line of research efforts that improve the
NMT model per se. Hence, CCLink should be an NMT model-
independent approach, which cannot base its design on
analyzing a specific NMT model. With these considerations,
CCLink resorts to a black-box approach to analyze which
parts of the code contribute to the generation of each focus.

To this end, CCLink employs a code mutation-based
method: It removes only a small segment from the original
code to generate a code mutant. The purpose is to facilitate
the examination of whether the removed code segment
contributes to the generation of a focus. It also carefully
avoids changing the code syntax structure, since some
NCG approaches (e.g., [7], [29]) may require such structure
information in generating comments.

Now we discuss how CCLink performs such removal
to generate code mutants. First, CCLink should determine
the granularity of the code segment to be removed. An
instant measure is to remove some lines of codes. But, such

Fig. 4. The workflow of generating a code mutant.

a granularity is not suitable, since the original code per
se may typically have only a few lines (We will provide
our experimental study on such a granularity in Section
4). Consider the fact that in practical software projects,
the intention of code is typically suggested by the natural
language words in the code (e.g., the variable names) [21],
[22]. CCLink allows developers to obtain a fine-grained link
between the code and the focuses by removing such words in
the original code.

Specifically, CCLink conducts tokenization on the original
code as follows. It first considers only the English alphabet
and disregards other symbols by substituting them with
spaces. For example, the "if(isInitialized)" will be transformed
to "if isInitialized". In this way, the snake-case names can also
be separated into words, e.g., "file_name" will be transformed
to "file name". Then CCLink removes the programming-
language keywords (e.g., "public" and "int") except those for
flow control (e.g., "if"), since the flow-related keywords may
determine the behavior of the code. CCLink thus obtains a
sequence of words (not necessarily natural language ones).
It then tries to split each word if they are not in English
vocabulary. This is mainly for separating camel-case names.
For example, "fileName" will be transformed into "file name".
Eventually, CCLink transforms the code into a set of tokens
(i.e., words). It then randomly selects the tokens from the list,
and removes them from the code to generate code mutants.
A mutant m can thus be modeled by the set of tokens Tm

removed from the original code. Figure 4 shows the above
workflow of generating a code mutant. The removed tokens
will be replaced with blank placeholders to keep the code
structure unchanged.

Finally, CCLink uses the target NCG approach to generate
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Fig. 5. Example of different impacts caused by removing the same token.

comments based on these code mutants. In this way, for
each focus k, these code mutants can be divided into two
categories: one can produce the comments with the k
(denoted by Mk) and the other without (denoted by Mk).

3.2 Comment Interpretation with Contribution Mining
After obtaining the code mutant categories, we can prelimi-
narily infer the impact of the removed tokens on a specific
focus, i.e., if the removal of some tokens results in the absence
of focus k (The corresponding code mutants are in Mk), it is
reasonable to believe that these tokens have more impact on
k. However, infering what exactly causes the generation of
each focus is not easy. We can find in our experiments that the
absence/presence of a specific token does not always result
in the absence/presence of a focus.

For example, consider the simple code shown in Figure 5
and attendgru [8] as our NCG approach. A mutant where
the tokens "inet" and "address" are both removed from the
original code cannot produce a comment with the focus "ip
address". However, a mutant where the tokens "address" and
"ranges" are both removed can produce the focus "ip address".
We can see that the absence of the token "address" in the
mutants may not always indicate the absence of a focus "ip
address" in the generated comments.

This is actually not surprising due to the complication
of deep learning. An NMT model is non-linear in nature.
Its behaviors (i.e., whether to produce a focus) cannot be
simply determined by checking whether a specific token
exists or not. In this regard, CCLink models the comment
interpretation problem as one that infers a combination of
tokens, which are more likely to cause the NMT model in
producing the focus of concern.

We consider token combinations because it is more
suitable to model the non-linear nature of an NMT. Moreover,
presenting several tokens to the developer can provide more
information for her to determine the correctness of the focus,
than presenting only one single token. Inferring such a token
combination is essential to provide an approximate black-box
model of the non-linear, complicated behaviors of the target
NMT. Hence, we have to resort to heuristic methods. Next,
we customize three interpretation methods, namely, FreqCM,
LimeCM, and AnchorCM as examples.

3.2.1 FreqCM
The first method FreqCM (Frequent pattern-based Contri-
bution Mining) conducts token combination inference with

frequent pattern mining [46]. Specifically, given the two sets
of mutants Mk and Mk, consider a token combination that
exists frequently in the collection of Tm′ (∀m′ ∈ Mk), but
exists rarely in the collection of Tm (∀m ∈ Mk). We can infer
that the code segments containing such a token combination
are removed from the original code, the focus k is more likely
to be absent in the resulting comments. Thus, such a token
combination can be considered as that contributing the most
to the generation of the focus.

Hence, FreqCM applies a similar procedure as that in
the Apriori algorithm, a classic frequent pattern mining
algorithm [47]. Given a token combination tc, the collections
of Tm′ (∀m′ ∈ Mk) and Tm (∀m ∈ Mk), it relies on a breadth-
first search strategy to count the numbers of occurrences of
tc in both collections respectively. The occurrence numbers
are divided by their corresponding collection sizes for
normalization purpose, the values of which are denoted by
sup′tc and suptc respectively. sup′tc−suptc is then deemed as
the support of the combination. A higher support indicates
the combination occurs more frequently in the collection
of Tm′ (∀m′ ∈ Mk) than it occurs in the collection of Tm

(∀m ∈ Mk). The support is considered as the contribution of
the token combination. We formalize this process as follows:

sup′tc =
count′(tc)

|Tm′ |

suptc =
count(tc)

|Tm|
conk

tc = sup′tc − suptc

where |Tm′ | and |Tm| represent the collection sizes of Tm′

and Tm, count′(tc) and count(tc) represent the occurrence
numbers of tc in Tm′ and Tm respectively, conk

tc is the
contribution value of tc on focus k.

FreqCM then recursively extends such subsets until
no further successful extensions are found. In this way,
it can obtain the token combination with the maximum
contribution, and consider it as the result. In case the two
token combinations have the same highest contribution value,
FreqCM chooses the one with more tokens, in order to
provide more information to developers.

3.2.2 LimeCM and AnchorCM
Note that FreqCM is not the only choice. There is also much
recent work that attempts to interpret sequence-input deep
learning models. Two representative model-independent
interpretation approaches are LIME[17] and Anchor [18].
An instant consideration is that CCLink may resort to such
existing approaches.

However, recent approaches (e.g., LIME and Anchor) are
generally designed to interpret deep learning models that
perform classification tasks, instead of NMT. Fortunately, we
show that our interpretation problem can also be transformed
into a set of classification interpretation problems, where
existing approaches can be applied. In particular, consider the
mutants as the inputs, and whether or not a focus is present
in their corresponding generated comments as a Boolean
output. The NMT model can then be deemed as one that
conducts a two-class (i.e., presence/absence) classification
task for the focus. In this way, CCLink can apply both LIME
and Anchor to determine the contributions of the token
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combinations. Specifically, we name them LimeCM (LIME-
based Contribution Mining) and AnchorCM (Anchor-based
Contribution Mining). Next, we will first briefly introduce
LIME and Anchor, followed by showing how we tailor
LimeCM and AnchorCM for our comment interpretation
task.

LIME [17] constructs a linear, interpretable model to
locally fit the behavior of a complicated deep learning model.
In particular, LIME randomly perturbs an original input
sequence by randomly removing its elements. It takes these
perturbed sequences as inputs and applies the target deep
learning model to obtain their corresponding classification
results. The sequences, together with the results, are used
as training cases to train a simple, linear classifier. Based
on the parameters of the linear classifier (i.e., the weights
of the elements in the sequences), LIME can model the
contributions of the elements. Such contributions are then
considered as an approximation to interpret how each
element in the input sequence influences the result of the
deep learning classifier.

Anchor [18], in contrast, finds the invariant if-then rules.
Specifically, such an if-then rule indicates that if an input
contains a set of specific subsequences, namely anchors, then
the model will produce a specific classification result. It
perturbs the input sequence with a natural-languages word
embedding-based method, and lets the model produce the
results. It then accordingly calculates a contribution value of
the subsets of the element with the KL-LUCB algorithm [48].
The ones with high contributions are considered the anchors.

LIME perturbs the input sequence by randomly re-
moving its elements. Anchor perturbs the input sequence
by substituting similar natural-language words. But their
perturbation methods are orthogonal to their inference mech-
anisms. Hence, in LimeCM and AnchorCM, we substitute
the perturbation methods with our code-mutation method
discussed in Section 3.1 as it is more suitable for programs.

Since LIME calculates the contribution of each token
separately, we consider the top N tokens with the highest
contributions as the resulting token combination. The contri-
bution of token combination is considered as the average of
the N values. N is a parameter in LIME with default value
six [17]. LimeCM adopts this default setting. Similarly, the
contribution value of tc on k is denoted as conk

tc, and its
formal definition is as follows:

conk
t = weight(t)

conk
tc =

∑
conk

t (∀t ∈ TtopN
)

N

where weight(t) means the weight assigned to token t in
the liner model, TtopN

is the collection of tokens with top N
contribution value conk

t .
In contrast, Anchor per se finds token combinations. So,

AnchorCM applies Anchor’s inference mechanism, and takes
the anchor with the highest contribution value (also denoted
as conk

tc for consistency) as the result.
The computational complexity of LIME is linearly related

to the number of training samples, i.e., the number of mutants.
Its efficiency is acceptable. Anchor, in contrast, resorts to
an exhaustive search of token combinations, which may
result in low computational efficiency. We will study their
computational efficiency in Section 4.

Finally, note that our comment interpretation methods
FreqCM, LimeCM, and AnchorCM may be further substi-
tuted with one that customizies other sequence-input deep
learning interpretation approaches, including the possible
improved approaches in the future. Our AnchorCM and
LimeCM can serve as examples to guide such customization.
In this regard, CCLink again resorts to a plugin-based design,
where new deep learning interpretation approaches can be
easily applied.

3.3 Visualization and User-interaction Considerations

Our comment interpretation aims to facilitate developers to
comprehend code and write comments. It is important to
provide a usable graphic user interface module for CCLink.

First, CCLink should present an easy-to-comprehend
illustration of the code-comment links. Inspired by Tarantula
[49], a classic visualization tool for fault localization, CCLink
also displays focus and its corresponding token combination
in a spectrum-alike manner. We color each focus and its
corresponding parts in the source code the same, to facilitate
a clear understanding of the link between them.

In addition, the execution time of tool during UI interac-
tion with users is a critical concern to its practical application,
as confirmed by tremendous HCI research. To reduce such
time, we divide the execution of NCG and the CCLink’s
interpretation process into two parts: the light-weighted UI
and the computation-intensive backend running with the
target NCG approach. Such a design also allows the UI of
CCLink to be implemented as an IDE plugin easily.

The backend implements the mechanism discussed in
Sections 3.1 and 3.2. Since in our use scenario, the target code
to be comprehended is available beforehand. This allows us
to conduct the NCG process (which may require over 100ms
to complete in desktop computers [7], [8]) and the comment
interpretation at the backend offline. In other words, it is
conducted not during the developers are comprehending the
code and modifying the auto-comments, but beforehand. Its
results are then saved.

When a developer intends to comprehend the code and
modify the auto-comments, the UI of CCLink loads the
results and present to the developers the graphic illustration.
Such illustration of results is light-weighted, which do not
incur noticeable latency to the developers, since the results
are already available.

Figure 6 presents the user interface (UI) of our CCLink
prototyping implementation.The UI includes three parts: The
code, the auto-generated comments by an NCG approach,
and an edit box for developers to correct the comments. A
developer can load the code of concern, then generate its
comment with the NCG approach. CCLink then interprets
the results. When she moves her mouse pointer to the focus
of her concern, the interpretation will be shown by coloring
the focus and the corresponding parts in the source code.
In this way, the developer can check whether the focuses
correctly describe the intention of the code. If the answer is
no, she can accordingly modify the comment. We will present
an empirical study on the usability of such a comment
interpretation tool, which will be presented in Section 5.
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Fig. 6. User interface of CCLink prototype. It can also be found at
https://cclink-demo.github.io/web/.

4 PERFORMANCE STUDY

In this section, we present our performance study on CCLink.
In particular, we focus on the following research questions:

• RQ1: What is the interpretation quality of CCLink with
different comment interpretation approaches?

• RQ2: What is the computational efficiency of CCLink
with different comment interpretation approaches?

• RQ3: Whether CCLink is model-independent, i.e., ex-
tendable to interpret different NMT models?

4.1 Experiment Settings
NMT Models. We consider attendgru as our target NMT
model [10] when answering RQ1 and RQ2, because it is a rep-
resentative, state-of-the-art approach, based on an advanced
deep learning technique, i.e., the Attentional RNN Encoder-
Decoder neural network. In answering RQ3, we also test
CCLink on another NMT model, namely ast-attendgru
[8]. It considers two types of information on source code, i.e.,
the code text, and its syntax tree.

We build the original neural networks of attendgru
and ast-attendgru respectively with the Keras (version
2.2.4) deep learning framework, which employs TensorFlow
1.12 to conduct the backend deep learning tasks. We use the
default settings proposed by the original model designers
[8], [10]. The code for modeling training can be found at
https://github.com/mcmillco/funcom [8]. Regarding the
training arguments, we set batch_size to 200 and epochs
to 100. We use the default values for the rest of the arguments.

Datasets. We consider two real-world Java method corpora
to build our datasets. One is the corpus of attendgru [8],
the other is that of DeepCom [7]. They include both Java
methods and their comments that describe their functionality.

For the first corpus, we first select samples from its
training set. In this way, we randomly select 300 methods
with small sizes (≤ 20 tokens) and 300 methods with larger
sizes (21-100 tokens), in order to study the influence of input
size on CCLink performance. They are called OrigTrain-20
and OrigTrain-100, respectively. Considering that CCLink
is not designed for producing comments, instead, it is for
interpreting the comments. We select samples from the

TABLE 1
Dataset statistics.

∗-20 ∗-100

Code Comment Code Comment

OrigTrain 13.1 7.6 47.7 7.9
OrigTest 12.3 7.8 49.8 8.1
DeepCom 11.3 8.1 51.0 8.0

Code size is in number of tokens; Comment size is in word counts.

100 500 1000
Mutant Number

0.36

0.38

0.40

0.42

0.44

Pe
ar

so
n 

Co
rre

la
tio

n

0.00

0.05

0.10

0.15

0.20

Co
m

m
en

ts
/S

ec
on

dPC
Speed

(a) Results on OrigTest-20

100 500 1000
Mutant Number

0.08

0.09

0.10

0.11

0.12

Pe
ar

so
n 

Co
rre

la
tio

n

0.00

0.05

0.10

0.15

0.20

Co
m

m
en

ts
/S

ec
on

dPC
Speed

(b) Results on OrigTest-100

Fig. 7. The effect of different number of mutants on interpretation
quality (measured by Pearson correlation, discussed in Section 4.2)
and execution efficiency (measured by computation throughput, i.e., the
number of comments processed per second).

training set with an aim to produce more accurate results.
This allows us to examine more easily whether CCLink can
precisely interpret the generated comments.

With a similar procedure, we also randomly select
samples from the test set of the attendgru corpus, and
from the DeepCom corpus. We form OrigTest-20, OrigTest-
100, DeepCom-20, DeepCom-100 datasets, respectively,
where 20 and 100 have the same meaning as in OrigTrain-20
and OrigTrain-100. The number of tokens is limited to 100
due to the limitation of the input size of attendgru. Table
1 illustrates the average sizes of the Java methods and their
comments generated with attendgru, for our six datasets.

Setting of Mutants. The number of code mutants directly
impacts execution efficiency and interpretation quality of
CCLink. With more mutants, the interpretation quality
becomes higher because more token combinations are
explored. However, the execution time also increases due
to the increased computation overhead. To show the effect
of the different number of mutants, we evaluate CCLink
(with FreqCM) on small-scale data 1 with three different
mutant settings, i.e., 100, 500, and 1000. Figure 7 shows that
CCLink achieves a good trade-off between interpretation
quality (how to obtain the quality measure will be elaborated
in Section 4.2) and efficiency with around 500 mutants.
Therefore, our following discussions only report the results
where the number of code mutants in each run is fixed to 500.

Experiment Environment. All experiments are running on
a server with a 6-Core Intel i7-6800K 3.40GHz Processor
and 48GB DDR4 memory. Deep learning approaches are
boosted with an Nvidia GeForce GTX 1070 GPU. The server
is running over 64-bit Ubuntu 16.04.1 with Linux kernel
4.15.0.

1. We randomly sample one-third of the data from OrigTest-20 and
OrigTest-100.
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4.2 RQ1: Interpretation Quality

The key for CCLink to improve the usability of NCG is the
interpretation mechanism. Therefore, we should evaluate the
interpretation quality of CCLink, i.e., how a focus explains
its corresponding focused code. However, this is not a
straight-forward task. Actually, the quality is a subjective
consideration of the developer who reads and modifies
the comments. Unfortunately, there is generally no ground-
truth value of whether a code-comment link is correct.
Hence, to compare different interpretation methods, we
resort to a heuristic following the standard method widely
adopted by previous studies [50], [51]. We consider that if an
interpretation method is more reasonable, the contribution
values of the resulting interpretation (the code-comment
links) should tend to be more semantically correlated with
the text similarity between the resulting focused code and the
interpreted focus. Such a natural-language perspective can
reflect the developer’s perception on the natural-language
texts (i.e., the words in comments or codes) [11], and thus
indicate the interpretation quality.

In this regard, similarly as the previous work [50], [51], we
also adopt Pearson correlation (ranging from -1 to 1) [52] to
measure such correlation, and deem it as the result quality of
an interpretation method. Specifically, the Pearson correlation
is calculated on the tokens determined to be important by
CCLink and word embeddings produced by GloVe [53],
a widely-accepted word embedding model. Formally, the
Pearson correlation ρX,Y between two sets of data X and Y
is calculated as:

ρX,Y =
cov(X,Y )

σXσY
=

E(XY )− E(X)E(Y )√
E(X2)− E2(X)

√
E(Y 2)− E2(Y )

where cov(X,Y ) is the covariance of X and Y , σX and σY

are their standard deviations, and E(·) measures a mean. In
our task, X denotes the contribution values of the resulting
token combinations calculated by CCLink (a set of conk

tc

described in Section 3.2). Y denotes the text similarities
between the token combinations and their corresponding
focuses, calculated by GloVe [53]. The correlation between X
and Y measures how semantically close the interpretations
are to their corresponding focuses. In this way, we can
examine how the interpretation methods perform. The higher
the Pearson correlation, the better the interpretation method.

Since CCLink interprets auto-generated comments with
three contribution mining methods we design (i.e., Fre-
qCM, LimeCM, and AnchorCM), we compare CCLink with
each interpretation method. In addition, to verify that a
sophisticated contribution mining method like FreqCM,
LimeCM, or AnchorCM is important in finding high-quality
interpretations, we also design a greedy-algorithm-based
approach, namely, CFL (Counting based on Frequent Lines),
as a baseline to compare with these three methods. CFL
finds the lines of code that may contribute the most to
the generation of a focus. It removes some lines of code
to generate code mutants. Similarly, the comments of the
mutants are generated with the target NCG approach, each
at a time. Then for each code line, CFL counts the number
of times that its absence causes the absence of the focus.
CFL considers the lines with the maximum number as that
contribute to the generation of the focus.

TABLE 2
Pearson correlation values when using CFL and CCLink with different

interpretation methods (FreqCM, LimeCM, and AnchorCM).

OrigTrain-20 OrigTest-20 DeepCom-20

CFL 0.004 0.079 -0.098
FreqCM 0.359 0.396 0.256
LimeCM 0.140 0.199 -0.002
AnchorCM -0.291 -0.268 -0.318

OrigTrain-100 OrigTest-100 DeepCom-100

CFL -0.108 -0.140 -0.063
FreqCM 0.210 0.199 0.083
LimeCM 0.276 0.282 -0.122

Table 2 illustrates the Pearson correlation values calcu-
lated on our test data when using CFL and CCLink with
different interpretation methods (i.e., FreqCM, LimeCM, and
AnchorCM) 2. We can see that when applying FreqCM and
LimeCM as interpretation methods, CCLink perform much
better than CFL. In particular, many of the results on CFL
are negative, indicating that the token combinations are less
semantically-relevant to the focuses. Such resulting interpre-
tations may, on the contrary, cause confusion to developers.
The results indicate that it is important for CCLink to include
a more sophisticated comment interpretation method (e.g.,
FreqCM and LimeCM), rather than just using simple, straight-
forward solutions like CFL.

We also find that the results on OrigTrain-* are close to
the results on OrigTest-* and DeepCom-*. Although the com-
ments in OrigTrain-* are more accurate (since they are from
the training set of attendgru), this does not significantly
affect the quality of the interpretations produced by CCLink.
Moreover, we can see that the performance of AnchorCM
is not very satisfactory, showing that some sophisticated
interpretation mechanisms do not always perform well. It is
still an open problem to tailor better comment interpretation
mechanisms for CCLink.

4.3 RQ2: Computational Efficiency
We evaluate the computational efficiency of CCLink to
examine whether it is feasible in practice. Hence, we mea-
sure the average execution time of CCLink with different
interpretation methods on each of the Java methods in the
six datasets. The results are shown in Table 3.

We can see that CCLink with AnchorCM has the largest
execution time, compared with the other two. It takes over
50 seconds on average to complete a method in the datasets
with small code size (i.e., OrigTrain-20, OrigTest-20, and
DeepCom-20). It even fails to produce results in 10 minutes
for each method in the rest three datasets. In such a long
time, a developer can even read/comprehend the code by
herself. This indicates that AnchorCM, although shown
as a sophisticated interpretation method, does not show
advantages in our task.

The average execution time of CCLink with FreqCM to
process a method is about 7 to 8 seconds, which is slightly

2. As CCLink with AnchorCM cannot produce a result less than
ten minutes for each method in the datasets with larger code size
(i.e., OrigTrain-100, OrigTest-100, and DeepCom-100), we do not apply
AnchorCM to those datasets.
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TABLE 3
Average execution time (in second) of CCLink with different

interpretation methods on each Java method.

OrigTrain-20 OrigTest-20 DeepCom-20

FreqCM 8.01 7.69 7.86
LimeCM 9.48 9.35 10.02
AnchorCM 60.97 51.76 60.98

OrigTrain-100 OrigTest-100 DeepCom-100

FreqCM 7.08 7.75 7.43
LimeCM 9.20 10.65 10.64

TABLE 4
Pearson correlation values and average execution time (in second) on

each Java method (on ast-attendgru).

(a) Pearson correlation values

OrigTrain-20 OrigTrain-20 OrigTest-100 OrigTest-100

FreqCM 0.344 0.422 0.186 0.180
LimeCM 0.170 0.183 0.267 0.155

(b) Average execution time

OrigTrain-20 OrigTrain-20 OrigTest-100 OrigTest-100

FreqCM 7.36 7.45 8.58 7.73
LimeCM 8.89 10.53 9.41 11.16

faster than CCLink with LimeCM. We also find that their
execution time on methods with different sizes (those in the
∗-20 datasets and those in the ∗-100 datasets) is close. This
is because the target NMT, i.e. attendgru, will always pad
its inputs to 100 tokens for all 500 mutants of a method. The
time to generate comments of the mutants is hence similar.
Moreover, the execution time of FreqCM and that of LimeCM
are both linearly related to the number of mutants. Therefore,
the execution time of CCLink with FreqCM/LimeCM will
not vary significantly given methods with different sizes.

In conclusion, the computational efficiency of CCLink
with different interpretation methods varies. CCLink with
FreqCM, which requires less than 10 seconds to complete
a method, is a good choice. Anchor, although shown as an
advanced interpretation approach for deep learning, does
not show advantages in our problem setting.

4.4 RQ3: Model Extendablity

As introduced in Section 3, our design of CCLink does not
rely on the specifics of the target NMT model. It is a model-
agnostic approach. We verify this by applying CCLink to
interpreting comments generated by different NMT models.
Specifically, we test CCLink on ast-attendgru [8], another
NMT-based comment generation approach. It uses both code
text and th corresponding abstract syntax tree as the model
inputs.

Since CCLink with AnchorCM suffers bad efficiency, in
this study, we only consider CCLink with FreqCM and with
LimeCM. Similarly, we evaluate the Pearson correlation
and the execution time of CCLink on the same datasets
except DeepCom-∗, because they cannot reproduce the
required AST. Table 4 shows the results when the target
NCG is ast-attendgru. We can see that CCLink performs

similarly in terms of both Pearson correlation and execution
time. This proves that CCLink is model-agnostic and can be
applied to interpret different NCG approaches.

5 EMPIRICAL STUDY

CCLink interprets the comments generated by NCG ap-
proaches, with an aim to facilitate developers to comprehend
code and correct the comments. Hence, it is critical to
evaluate CCLink from the perspective of developers. To this
end, we conduct an empirical study to verify the usability of
CCLink. Our study aims to answer the following research
questions:

• RQ4: Can CCLink improve the efficiency of developers
to comprehend and correct auto-generated comments?

• RQ5: Can CCLink improve the quality of comments
corrected by developers?

• RQ6: What impact does CCLink have on developers’
workflow when using NCG tools?

• RQ7: How satisfied are developers with CCLink?

5.1 Experiment Settings
Our study consists of two stages. First, we design a comment
correction task to simulate code comprehension in practice.
Then, we communicate with developers to understand their
behaviors and thoughts. The settings for each stage are
illustrated separately.

5.1.1 The First Stage
In the first stage, we examine whether CCLink can help
developers in code comprehension and comment correction.
We recruit participants with over five-year Java programming
experience based on our social connection, and then extend
the participant set with snowball sampling [54]. In total, we
recruit 32 qualified participants, including software engineers
in global software companies and graduate students major-
ing in computer science. We consider them as representative
target users of CCLink.

We ask each participant to conduct an online experiment
by accessing the website of CCLink, which typically lasts for
40 minutes. This experiment simulates the scenario where
developers intend to contribute comments to open source
projects using NCG tools. In this scenario, developers read
code written by others. Hence, we adopt Java code from
existing projects. We randomly select 20 Java methods from
DeepCom-100 dataset (described in Section 4.1) for each of
our participants. Similar to the setting of the performance
study, we generate the comments with attendgru.

In the experiment, each participant is asked to perform
the following two tasks with CCLink. Task 1: Read each
of the 10 Java methods and its auto-generated comment,
then correct the comment to best describe the method,
without enabling the interpretation function of CCLink. Task
2: Read each method in another 10 Java methods and its
auto-generated comment, and correct each comment to
best describe the method, with the comment interpretations
produced by FreqCM3.

3. We choose FreqCM as our comment interpretation method as it
demonstrates good performance and computational efficiency, which
has been reported in Section 4.
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Finally, we extract the comments corrected by the partici-
pants and the time they spent reading and correcting each
comment. We also take video-record of the entire experiment.
Our purpose is to guarantee the reliability of data (e.g., a
participant is not interfered by another task), and to facilitate
further behavior analysis.

5.1.2 The Second Stage
Based on the above experiment, we further explore the
reasons for the efficiency differences of the developers in
completing the two tasks. We investigate the impact of
CCLink on developers’ workflow. To this end, we organize a
think-aloud workshop [55], where the participants are required
to tell us how they work. We invite seven participants to the
workshop, identified as P1 to P7.

During the workshop, with the same setting in stage
one, we present each participant with one randomly selected
Java method, an auto-generated comment for that method,
and the interpretation given by CCLink. Each participant is
required to reproduce the practice in the first stage, and at
the same time report her behaviors and thoughts using think
aloud approach [55].

To better understand their workflow, we record and
analyze all the screen activities of the participants during
the workshop after acquiring their consent. To ensure data
validity, we also conduct a round table discussion with all the 7
participants in this stage, discussing their comment writing
practice with and without CCLink during the workshop.

We also conduct semi-structured interviews with the
participants. Our focus is their user experiences. We follow
the wide-adopted semi-structured interview methodology:
We conduct our interview without "reading" the questions
of our interests. Instead, we adapt our questions to our com-
munication contexts. For example. We ask our participants
"when you modify unsatisfactory comments, do you read
the interpretations?". If the answer is yes, we will further
ask "do you find the interpretations make any sense or most
of time, they are misleading." If our user’s response is that
the interpretations are accurate, we will ask whether the
interpretations help in modifying the comments and ask
them to elaborate how they conduct their tasks accordingly.
Otherwise, we may ask the user to give examples and talk
more on how they feel and how they continue their tasks
when they find the interpretations inaccurate. We aim to
interview in a manner that our users tell more on their
stories (how they conduct the tasks and how they feel under
different situations), instead of asking them to answer a
set of predefined yes/no/why questions. We aim to obtain
more accurate understanding on our participants with such
communications.

Finally, in order to investigate the developers’ satisfaction
with CCLink comprehensively, we send a questionnaire to
all the 32 participants to ask about their opinions on CCLink.
The questionnaire is designed according to our interview
experiences. The questionnaire include 22 questions, includ-
ing general questions regarding their overall experiences
and specific ones including how they evaluate the links
in improving their workflow. We summarize the questions
in the questionnaire into several key ones presented in
Figure 8, where we merge related questions to save space.
We will report our findings based on both the results of the

• After providing the interpretations of CCLink, do you
think the efficiency of modifying comments has im-
proved and why?

• How satisfied are you with the comments you modified
in Task 1 and Task 2? Rate your satisfaction level from 1
to 10.

• Can CCLink provide helpful links between focus phrases
in comments and focus code?

• In what aspects do you think CCLink helps you compre-
hend and modify the comments?

• If you consider CCLink is not helpful, please describe
the reasons.

• Are you willing to use NCG tools in practice without
interpretation? Will your willingness to use NCG tools
improve with CCLink?

Fig. 8. Key questions in the questionnaire.

TABLE 5
The result of Paired t-Test based on the 32 participants.

Degrees of freedom (df ) Significance level (α) t Accept/Reject H0

31 0.01 6.949 Reject

questionnaire and the workshop (including the round table
discussion and the interviews) in what follows.

5.2 RQ4: Efficiency Improvement
We first analyze whether the interpretations improve the
efficiency of our participants to correct the comments. Figure
9 shows the average time for each participant to correct
comment of each Java method in the two tasks.

We can observe that the time for most participants in Task
2 (with interpretation) is shorter than in Task 1 (without
interpretation). Averagely, our participants require 128.8
seconds to correct the comment of each method in Task
1. The time is reduced to 93.6 seconds in Task 2. The results
indicate that interpretations given by CCLink indeed save the
time of developers to comprehend and modify the comments
in practice.

We further conduct a significance test to explore whether
there is a significant difference in the time spent by the
participants on the two tasks. Specifically, we adopt Paired
t-Test, which is suitable for testing two sets of paired samples
intervened by a certain indicator. In our experiment, the time
spent by each participant in the two tasks is considered as
a paired sample. We first make a hypothesis (denoted as
H0) that there is no significant difference in the average time
spent by the participants in the two tasks. Then we calculate
the t value based on the 32 paired samples, and determine
to accept or reject H0 based on the t value. Table 5 shows the
result of t-Test. In our experiment, the degree of freedom df is
31 (one less than the sample size), and we set the significance
level α as 0.01. In this case, we can reject H0 if the t value is
greater than 2.744 (the calculated value is 6.949). The result
indicates that the time spent by the participants in Task 2 is
significantly shorter than in Task 1.

5.3 RQ5: Comment Quality Improvement
Besides task-completing efficiency, it is also important to
study whether CCLink improves the quality of comments
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Fig. 9. Average time for each participant to correct comment of each Java method in the two tasks.

corrected by the participants. To answer this question, we
calculate the BLEU scores and edit distances (i.e., Levenshtein
distances) between user-modified comments and the ground
truth, i.e., the human-written comments provided in the
dataset, in the two tasks. The BLEU scores and edit distances
are calculated on word level. A higher BLEU score and a
smaller edit distance represent a better result. We obtain
the average values of the BLEU scores and edit distances of
all our partipants’ result. We find that in Task 2, the user-
modified comments can achieve both a higher BLEU score
(improved by 0.11 compared with Task 1 averagely) and a
smaller edit distance (improved by 1.27 compared with Task
1 averagely) with the ground truth. The results indicate that
with the interpretation of CCLink, the quality of comments
corrected by the participants has improved.

In addition, the participants also confirm that CCLink
improves the quality of their modified comments. Based
on the results of the questionnaire, 25 participants consider
the quality of their modified comments in Task 2 is higher
than those in Task 1. We also ask participants to read their
modified comments and rate their satisfaction level (from 1 to
10) with their modification. The results show that the average
level is 5.94 in cases without interpretations. Whereas, it
substantially increases to 7.47 when they use CCLink with
comment interpretations. These results again indicate that
the interpretability studied in our work should be of critical
concern.

5.4 RQ6: Workflow Changes

Instead of being satisfied by the fact that CCLink elevates
the efficiency of comment correction, we decide to take
a step further and illustrate why CCLink can achieve the
efficiency. We analyze the screen activities recorded during
the workshop, as well as the records of the round table
discussion. Based on these materials, we summarize the
workflow of participants with/without CCLink, shown in
Figure 10.

We find that without CCLink, the participants typically
complete their tasks with three steps: 1) Get a first impression
of the presented method by quickly glancing at the method
name and the auto-generated comment. 2) Read the whole
method body to fully comprehend the meaning of the

Fig. 10. Comment correction workflow comparison.

method. 3) Rewrite the comment based on their understand-
ing of the method. We observe that step 2 typically requires
considerable time, as the difficulty of understanding the
method body is non-trivial. As P6 said during the discussion:
"I often track the inputs, calculating key parameters while reading
code in the method body. sometimes I have to read some lines
repeatedly to ensure I have understood them correctly."

However, when the participants conduct the tasks with
CCLink, their workflow changes a lot. While the first step
is similar to the above, in step 2 the participants do not
read the whole method body. Instead, they check specific
code snippets based on the code-comment link provided
by CCLink, then determine the correctness of the comment
words. If a participant thinks the comment is inaccurate
in describing the method, she typically substitutes certain
words with suitable ones, and leaves the sentence structure
unchanged.

The result indicates that CCLink changes the original
read-understand-write practice into a more effective revision-
based workflow. The perceived effectiveness of CCLink in the
workflow reported by the participants can be summarized
as follows. 1) With the interpretations, they can focus on the
specific code snippet, which saves their time by avoiding
reading the entire code. 2) The interpretations, in turn, allow
them to quickly examine the correctness of comments. 3) The
key information highlighted by CCLink can inspire them
to revise the auto-generated comments precisely, and also
efficiently by allowing them to reuse the sentence structure.

5.5 RQ7: User Satisfaction

To obtain a more comprehensive view of the participants’
satisfaction towards CCLink, we analyze the opinions of
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all the 32 participants in the questionnaire and the results
obtained from the workshop.

The majority of our participants explicitly consider
CCLink helpful. During the round table discussion, 71.4%
(5/7) of our participants explicitly propose that CCLink helps
in both program comprehension and comment modification.
The effectiveness of CCLink is also confirmed in the ques-
tionnaire where 81.3% (26/32) of the participants express
that the interpretations provided by CCLink substantially
facilitate their tasks.

We are particularly interested in analyzing why some
participants do not explicitly consider interpretations helpful.
According to the feedback of six such participants in the
questionnaire, one reports that when he reads the first
auto-generated comment, he considers that the comment
is irrelevant to the code. He feels bored and does not read
any auto-generated comments from then on. The other five
participants share similar considerations, although their
attitude is less negative. Actually, their negative attitude
is due to the bad quality of the auto-generated comment,
instead of CCLink. This confirms that bad auto-generated
comment incurs unwillingness to use NCG, and hence our
direction in this work to improve NCG usability is important.
Moreover, their negative attitude also gives us inspirations
to improve CCLink. For example, in a scenario where the
auto-generated comment is of poor quality, e.g., the semantic
similarity between code and the comment is extremely low,
CCLink could reduce the interpretations of the comment. In
this way, CCLink may prevent interpretations from further
misleading users. Instead, CCLink can remind users that the
comment is of low quality to save their efforts.

Finally, we also find that CCLink increases the willingness
of our participants in using NCG approaches. First, 18 of our
participants, to some extent, express their negative attitudes
toward NCG without interpretations. Their reasons include
"poor accuracy" as we have discussed. They consider it more
time-consuming in modifying the poor comments rather than
writing them directly. Ten of them confirm their willingness
to adopt NCG approaches in their production development
practice, if being provided interpretations as CCLink. P7
suggests we integrate CCLink into popular IDEs so that
developers can use it more conveniently. This confirms
our argument that usability can be improved by not only
increasing accuracy, but reasonable interpretations.

6 FURTHER DISCUSSIONS

6.1 Case Analysis

We now demonstrate some examples of links identified by
CCLink. Figure 11 shows three cases, each containing a Java
function, the auto-generated comment, and the link identified
by CCLink. We highlight each focus in the comments and the
linked code with the same color.

The first case is a successful case where the interpre-
tation helps correct the comment. The focus "unregister"
is linked to the function name "unregisterListener", and
"metadata provider" is linked to the statement of calling
the function "removeMetaDataChangeListener". With this
interpretation, developers can realize that this function is
used to unregister the metadata change listener, instead of

(a) Case 1

(b) Case 2

(c) Case 3

Fig. 11. Examples of interpretations produced by CCLink.

the metadata provider. They can instantly correct the auto-
generated comment.

The second case shows the effectiveness of CCLink even
when the auto-generated comment is of poor quality. In
this case, the comment contains "<UNK>", an unknown
word. This is typically caused by the low frequency of the
generated word or the anomalous behavior of the NMT
model. Fortunately, CCLink can still link the "<UNK>" to
the contributed code, which is "location" in the function
name. With the help of CCLink, developers can quickly find
what the unknown word means and correct the comment
correspondingly. The other link of "time value" is also correct
in this case, also helping them check the correctness of the
focus quickly.

The code in the third case is more complicated than the
previous two, and the link between code and comment is
less obvious. This function is to add a shard at a specified
index. In this case, the links identified by CCLink are not
fully accurate. First, the focus "new shard" is linked to the
statement of getting a new shard from the shard list. This is
a correct link that helps developers understand the source of
the"new shard". Another focus "specified index" is linked to
the statement related to the shard ID, which is also a helpful
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link that facilitates a quick check. However, the focus "list" is
linked to the function signature, which is not much related
to the "list". The reason for this inaccurate link may due to
the poor quality of the auto-generated comments, as we have
discussed in Section 5.5.

The above example code-comment links can illustrate the
use scenario of CCLink. We can see that with the help of
CCLink, developers can examine the correctness of the auto-
generated comments conveniently and make modifications
more quickly. This can thus improve the usability of NCG
approaches, and in turn the developers’ efficiency in writing
comments.

6.2 Implications to Future Work

In this work, we propose CCLink to interpret code comments
generated by NCG approaches, as an attempt to improve
the usability of NCG approaches. Next, we discuss the
implications of our work to future work on automatic code
comprehension. First, the key insight of our work is that
the community should also focus on the interpretability of
NCG approaches, as as to improve its usability. Existing
NCG approaches are still far from applicable in practice due
to their poor usability. In particular, it is hard to interpret
the auto-generated comments for developers to correct the
comments. Our work show that enhancing its interpretability
is a promising research direction for NCG. We expect our
interpretation framework CCLink can shed light to future
research efforts in this direction.

Also, our empirical study indicates that the quality of
auto-generated comments has an impact on the effectiveness
of interpretation. So it is still important to improve the quality
of auto-generated comments. Existing work mainly focuses
on designing more sophisticated deep learning models.
However, there may be other more effective ways to improve
NCG approaches, e.g., building task-specific datasets and
proper data preprocessing. This is still an open problem
worthy of further exploration.

Another promising future work is to explore what
kinds of interpretations are considered more helpful by
the developers. In our empirical study, our investigation
shows that most participants emphasize the importance
of semantic similarity. In other words, they consider the
interpretations with high semantic similarity to the focuses
are more helpful. This is consistent with our metric for
evaluating interpretation quality in Section 4.2. Nonetheless,
comprehensive human-subject studies of this problem are of
interest, calling for joint research efforts from both the soft-
ware engineering community and the computer-supported
collaborative work community. Example research questions
include what phrases in the comments are more worthy of
attention and which parts of code are more likely to generate
valuable comments.

6.3 Threats to Validity

We also discuss the threats to the validity of our study and
the measures we take to address them. First, datasets are
critical considerations, which may mislead our findings. We
consider two Java code corpora well-recognized in many
existing studies. Both are based on real-world projects. Hence,

they are good representatives of real code. We also carefully
perform random sampling to avoid possible bias.

Second, it is difficult to model users’ perception of
interpretation quality with a quantitative indicator. To ad-
dress this issue, we use Pearson correlation, the semantic
correlation between a focus and its interpretation, to indicate
interpretation quality. Our consideration is based on the
well-accepted concept that code is also human-readable
communication [11]. Meanwhile, such a method is also
applied in existing work that evaluates the interpretation
quality of DNN language models [50], [51].

Third, CCLink mainly uses attendgru in our study.
A possible threat is whether CCLink can work with other
approaches. In fact, CCLink is carefully designed without
relying on the specifics of the NCG approaches. We also
study CCLink by applying it to another NCG approach in our
experimental study, which confirms our claim. In this work,
we design and apply only three contribution mining methods
(FreqCM, LimeCM, and AnchorCM). There may be many
possible heuristics for result interpretation. Contribution min-
ing can influence our results. Further possible enhancement
can be applied. CCLink actually implements contribution
mining as a plugin to facilitate further improvement.

Lastly, participants may bring bias to our results. For
example, an inexperienced programmer may tend to rely
more on auto-generated comments, and cannot precisely
write comments. So we recruit 32 participants who have over
five years of Java programming experience. We consider they
are representatives of CCLink’s target users. We also analyze
the videos of experiments and confirm that they conduct
the tasks smoothly as we expected. The results from the
empirical study are reliable to produce our findings.

7 RELATED WORK

7.1 Automatic Code Summarization
Automatic code summarization has long been studied to facil-
itate code comprehension. Many approaches have proposed
to construct a set of complex rules, based on which comments
can be generated with a template [4], [5]. Recent studies
suggest that deep neural networks (DNNs) be applied to this
task. Such neural comment generation (NCG) approaches
automatically learn from existing code-comment data to
produce comments for new code.

NCG for subroutines (e.g., function-level code snippets) is
one widely-studied topic. Early studies treat source code
as plain text. Iyer et al. [6] propose CODE-NN, which
adopts LSTM networks with attention (a classic NMT model)
to generate sentences that describe C# code snippets and
SQL queries. Allamanis et al. [27] introduce an attentional
convolutional neural network (CNN) to summarize source
code snippets. Recent work also proposed to consider code
structures. Hu et al. [7] propose DeepCom, using abstract
syntax tree (AST) to annotate the words in Java methods
as the input of NCG. CODE2SEQ [29] also leverages the
syntactic structure of programming languages to better
encode source code. LeClair et al. [8] propose a novel
NMT model ast-attendgru that combines words from
code with its AST to generate code- comments. Hu et al.
[9] propose Hybrid-DeepCom, improving DeepCom with
hybrid lexical and syntactical information.
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Works related to NCG also include code change sum-
marization. Jiang et al. [56] and Loyola et al. [57] apply
NMT to automatically summarize code changes (i.e., commit
messages). Liu et al. [58] further adopt an NMT model to
automatically generate pull request (PR) descriptions based
on the commit messages and the added source code com-
ments in the PRs. Tufano et al. [59] conduct an investigation
on the types of code changes that can be learned and applied
automatically by NMT. Hoang et al. [60] propose CC2Vec, a
DNN to produce distributed representations of code changes.

Existing learning-based approaches for code summariza-
tion have shown their advantages. However, they are not
yet widely-used in practice largely due to their accuracy
limitation and poor usability [8], [9]. This work aims to
address the usability issue of NCG. Next, we will survey
related work on software usability.

7.2 Software Usability

Software usability focuses on users’ feelings about soft-
ware, which is critical to software design. It has long
been established that usability should be considered during
iteration development [32] since it affects the usage of
functionalities [35]. Several design principles for usability
have been proposed [33], e.g., focusing on users as early
as possible. In the 1990s, the importance of usability was
further recognized and valued. For example, Mehlenbacher
outlines the weakness and strengths of several usability
evaluation approaches [61]. Usability became one of the key
non-functional requirements of software [34]. In recent years,
the study of usability gets more systematic. For example,
Walenstein emphasizes software usability by boundary ob-
jects, which mitigates the gap between SE and HCI [62].

Actually, developers are users too [55], as developers
usually adopt user mindsets when making user-related
decisions during development [63] and using automatic
tools [64]. Recent studies also focus on software usability
of tools for developers. Piccioni et al. investigate the usability
of APIs [65], as APIs are user interfaces of programming
models for developers. Myers et al. summarizes several
methods that can be used for user study and improving the
usability of tools for developers [55]. Concerning automatic
documentation, Wu et al. summarizes several challenges that
hinder the usability of automatic documentation tools [66].
Our work also focuses on tool usability, which remains a
critical research direction for the research community.

7.3 Interpretability of DNNs

To address the usability issue of NCG tools, we propose
to enhance their interpretability, as existing studies show
proper interpretations can improve the usability of such
learning-based software [17], [18]. Although sophisticated
DNNs have shown their effectiveness in many applications,
it is notoriously hard to interpret how and why a DNN
produces a specific result [20]. Despite many attempts in
the literature, it remains an open problem [36], [37], [38],
[39], [40], [41]. CCLink relies on model-independent result
interpretation. Such interpretation infers why a result is
produced, without examining the implementation details of
the target model.

Existing work generally focuses on classification models.
Poulin et al. [67] propose ExplainD to provide a graphical
interpretation of classification results. Erik et al. [68] interpret
individual classifications with game theory. These two
approaches rely on specific types of data. LIME provides
local model-agnostic interpretations of any classifier by
constructing a linear model to locally fit a complex DNN
model [17]. It does not depend on any specifics of data and
models. A similar approach is Model Explanation System
(MES) [69]. Ribeiro et al. [18] further propose Anchor, an
extension of LIME based on decision rules. An anchor is a
decision rule that leads to the result. LORE [70] is another
local rule-based interpretation approach similar to Anchor.
In this work, we apply LIME and Anchor as examples to
interpret comments, which is the first exploration of applying
DNN result interpretation to this task.

8 CONCLUSION

This work focuses on the usability of Neural Comment Genera-
tion (NCG). Instead of trying to improve the performance of
NCG, we justify that existing NCG approaches suffer from
poor usability in practice due to the lack of interpretability.
In this paper, we design and implement CCLink to interpret
the results of NCG approaches, which aim to find out the
links between code and its auto-generated comment. Our
study proves that CCLink can provide proper interpretations,
which can help developers comprehend code and write better
comments. We show that CCLink is a promising direction
towards the practical application of NCG, which may shed
light on this line of research.
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