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Abstract

With the growing deployment of pre-trained
models like Transformers on cloud platforms,
privacy concerns about model parameters
and inference data are intensifying. Ex-
isting Privacy-Preserving Transformer Infer-
ence (PPTI) frameworks face the “impossi-
ble trinity” of balancing privacy, efficiency,
and performance: Secure Multi-Party Com-
putation (SMPC)-based approaches ensure
strong privacy but suffer from high computa-
tional overhead and performance losses; Con-
versely, permutation-based methods achieve
near-plaintext efficiency and accuracy but com-
promise privacy by exposing sensitive model
parameters and intermediate results. Bridging
this gap with a single approach presents sub-
stantial challenges, motivating the introduction
of CENTAUR, a groundbreaking PPTI frame-
work that seamlessly integrates random permu-
tations and SMPC to address the “impossible
trinity”. By designing efficient PPTI algorithms
tailored to the structural properties of Trans-
former models, CENTAUR achieves an unprece-
dented balance among privacy, efficiency, and
performance. Our experiments demonstrate
CENTAUR’s ability to resist diverse data recon-
struction attacks, achieve plaintext-level infer-
ence accuracy, and boost inference speed by
5.0∼30.4 times, unlocking new possibilities
for secure and efficient AI deployment.

1 Introduction

Transformer-based models (Vaswani et al., 2017;
Devlin et al., 2019; Radford et al., 2019), widely
deployed in cloud services such as chatbots, virtual
assistants, and code generators, have revolution-
ized many aspects of human activity. However,
their cloud-based deployment introduces signif-
icant privacy risks. Companies deploying these
models and users of the services must upload pro-
prietary model parameters—critical to their com-
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Figure 1: Overview of CENTAUR and Other PPTI
Frameworks.

petitive edge—along with potentially sensitive in-
ference data, which could include personal infor-
mation (e.g., identity, investment plans, or health
records). These risks not only threaten the compet-
itiveness of companies but also compromise indi-
viduals’ privacy, raising concerns about whether
cloud-based AI models can truly be trusted with
sensitive information. Recently, Samsung banned
its employees from using external large language
model (LLM) services after an internal code leak1,
further underscoring the growing privacy concerns.

Recent works (Hao et al., 2022; Chen et al.,
2022; Li et al., 2023; Luo et al., 2024; Yuan et al.,
2023) have explored addressing the privacy con-
cerns of model parameters and inference data in
Transformer-based inference. However, these ap-
proaches often face the “impossible trinity” of
privacy, efficiency, and performance. For exam-
ple, SMPC-based privacy-preserving Transformer
inference (PPTI) offers strong theoretical privacy
guarantees but suffers from significant communi-
cation overhead. This inefficiency arises primarily
from the numerous large-scale matrix multiplica-
tions and SMPC-unfriendly non-linear operations
inherent in Transformer models. To mitigate these

1https://www.androidauthority.com/samsung-chatgpt-
leak-3310307/



issues, some studies (Li et al., 2023; Luo et al.,
2024) have replaced non-linear operations with lin-
ear ones, but this substitution results in further per-
formance degradation (see Section 3 for details).

In contrast, permutation-based PPTI (Yuan et al.,
2023) achieves efficiency and performance com-
parable to plaintext inference by conducting plain-
text computations on permuted model parameters
and inference data. However, to ensure inference
correctness, permutation-based PPTI must expose
embedding layer parameters and some original in-
termediate results, thereby introducing significant
privacy leakage risks (see Section 3 for details).

Existing PPTI frameworks struggle to balance
privacy, efficiency, and performance, limiting their
practical adoption in real-world applications. To
bridge the “impossible trinity” and unlock new pos-
sibilities for secure and efficient AI deployment,
we propose CENTAUR, a practical PPTI framework
that leverages the complementary strengths of mul-
tiple privacy-preserving strategies to protect the
privacy of both model parameters and inference
data (Fig. 1). Specifically:

• Privacy: CENTAUR introduces a novel PPTI
workflow, ensuring that model parameters, in-
ference data, and intermediate results during
inference remain either encrypted or in a ran-
domly permuted state. The security analysis
(Section 4.4) and experimental results of data
reconstruction attacks (Section 5.2) demonstrate
that CENTAUR effectively safeguards the privacy
of both model parameters and inference data.

• Efficiency: CENTAUR leverages random permu-
tation to transform privacy-preserving multiplica-
tions between ciphertexts, which incur high com-
munication overhead, into communication-free
operations between plaintexts and ciphertexts,
significantly improving the inference efficiency
of linear layers in PPTI. Additionally, it reduces
the communication overhead of non-linear oper-
ations in PPTI through the design of a series of
privacy-preserving algorithms. Experimental re-
sults (Section 5.3) show that CENTAUR achieves
inference speeds 5.0∼30.4 times faster than ex-
isting SMPC-based PPTI frameworks.

• Performance: CENTAUR preserves the original
model structure and parameters by implementing
precise computation of non-linear operations in
Transformer models. Experimental results (Sec-
tion 5.4) demonstrate that CENTAUR achieves

performance identical to plaintext inference with-
out the need for retraining or fine-tuning.

2 Preliminaries

2.1 Transformer Models
The Transformer model mainly consists of three
components: the embedding layer, the transformer
layer, and the adaptation layer. In the embed-
ding layer, the input features of the model are ex-
tracted as embeddings. At the transformer layer,
the embedded information is processed through a
multi-head attention mechanism and passed into
the feed-forward neural network to produce a hid-
den state. In the adaptation layer, the hidden state is
ultimately transformed into a vector representation
that can be applied to various downstream tasks
such as text classification and text prediction.

2.2 Secure Multi-Party Computation
Secure Multi-Party Computation (SMPC) enables
a group of untrusted participants to jointly com-
pute a function f without revealing private data.
Among the various cryptographic primitives used
to implement SMPC, secret sharing (Shamir, 1979;
Goldreich et al., 1987) is widely employed in PPTI
due to its efficiency. Specifically, 2-out-of-2 secret
sharing divides a secret x in the integer ring ZL into
two random shares [[x]] = ([x]0, [x]1), where nei-
ther share independently reveals any information
about x. The secret can be reconstructed by com-
bining the shares as x = (([x]0 + [x]1) mod L).
In two-party SMPC protocols, these shares are dis-
tributed among two non-colluding parties, who
exchange masked intermediate results to perform
privacy-preserving computations for various func-
tions. At the end of the process, they each receive
shares of the computed results.

2.3 Permutation Matrix
A permutation matrix π is a square matrix contain-
ing only 0s and 1s, with exactly one “1” in each row
and column. In linear algebra, an n× n permuta-
tion matrix represents a permutation of n elements
and has the following key properties:

• Multiplying a matrix by π permutes its rows (if
π is on the left) or columns (if π is on the right).

• π is orthogonal, i.e., ππ⊤ = I .

These properties make permutation matrices use-
ful for privacy-preserving computations in Trans-
former models, enabling the following operations:



• Linear Layers: For a linear layer with parame-
ters (W,B),

Y = Xπ(Wπ)⊤ +B = XW⊤ +B. (1)

• Element-Wise Non-Linear Layers: For an
element-wise non-linear function fe,

fe(Xπ) = fe(X)π. (2)

The privacy offered by π increases with its
size, making it ideal for large-scale Transformers.
Specifically, an n × n matrix has n! possible per-
mutations. For example, when n = 1280, the
probability of brute-force recovery of the original
matrix is approximately 1

1280! ≈
1

211372
.

3 Impossible Trinity in PPTI

Observation 1: Efficiency and Performance
Challenges of SMPC-Based PPTI. SMPC-
based PPTI can be formalized as a two-party SMPC
protocol between the model developer and the
client. In this setup, the shares of model param-
eters and inference data are used as inputs to the
SMPC protocols, enabling privacy-preserving exe-
cution of Transformer operations.

This approach ensures privacy for model param-
eters and inference data but faces severe inefficien-
cies, primarily from the high communication over-
head in large-scale matrix multiplications and non-
linear operations within Transformers. For exam-
ple, running BERTBASE inference with CrypTen
(Knott et al., 2021) in a WAN (200 Mbps band-
width, 40 ms latency) takes 881 seconds, with 865
seconds spent on transmitting 66 GB of intermedi-
ate data.

Efforts to improve the efficiency of SMPC-based
PPTI can be classified into two categories: 1)
SMPC Protocol Design: Approaches such as (Hao
et al., 2022; Zheng et al., 2023; Gupta et al., 2023;
Dong et al., 2023; Hou et al., 2023; Ding et al.,
2023; Pang et al., 2023; Lu et al., 2023; Luo et al.,
2024; Li et al., 2024) focus on developing effi-
cient privacy-preserving algorithms for non-linear
operations in Transformers. While these meth-
ods preserve model performance, they still incur
substantial computation and communication over-
head. 2) Model Design: Techniques like (Li et al.,
2023; Zeng et al., 2022; Zhang et al., 2023; Liang
et al., 2023) modify the model by replacing SMPC-
unfriendly non-linear operations to reduce high
computational overhead. Although these strategies
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Figure 2: Two examples of recovering private inference
input data through attacks on intermediate results. On
the left are the real data, and on the right are the data
reconstructed using data reconstruction attacks. Green
indicates complete recovery, while orange signifies ap-
proximate recovery.

improve efficiency, they often result in significant
performance degradation (see Table 2 for details).

Observation 2: Privacy Leakage Risks in
Permutation-Based PPTI. Unlike SMPC-based
PPTI, permutation-based PPTI uses permuted
model parameters and inference data as input.
By leveraging the properties of the permutation
matrix, it correctly performs linear layers (ma-
trix multiplication, Eq. (1)) and nonlinear layers
(element-wise operations, Eq. (2)), producing per-
muted inference results. Since the computation
is directly performed on the plaintext permuted
data, permutation-based PPTI achieves efficiency
and performance comparable to plaintext inference.
However, it compromises the privacy of both model
parameters and inference data.

For model parameters, permutation-based PPTI
faces the issue of sequence-level permutation vul-
nerability due to the relatively short length of the
inference data sequence. Yuan et al. (2023) suggest
performing the permutation in the input feature
space2. While this method enhances privacy, it
requires the model developer to expose the embed-
ding layer parameters to the data owner.

Regarding inference data, the orthogonality
of the permutation matrix (Eq. (1)) leads to
permutation-based PPTI revealing some original
intermediate results. We have demonstrated that ex-
isting data reconstruction methods can effectively
recover the private inference data from these raw
intermediate results. Fig. 2 illustrates real examples
of recovering the original data from the raw inter-
mediate results, and more detailed attack results
are provided in Section 5.2.

2The feature dimension d is typically large; for example,
GPT-2LARGE has d = 1280.



4 CENTAUR

To bridge the “impossible trinity” in PPTI, CEN-
TAUR introduces a novel approach that seamlessly
integrates random permutations and SMPC. This
allows CENTAUR to overcome the limitations of ex-
isting methods, achieving a unique balance among
privacy, efficiency, and performance. The follow-
ing sections delve into CENTAUR’s design and im-
plementation.

4.1 Framework

CENTAUR focuses on the three-party scenario
where the model developer and the cloud plat-
form are separate entities, which is common in
real-world model inference service providers (Yuan
et al., 2023). Specifically, as shown in Fig. 3, CEN-
TAUR involves three entities: model developer P0,
cloud platform P1, and client P2. In this setup, P0

holds the private model parameters Θ, while P2

holds the private inference data X .

4.2 Threat Model

CENTAUR adopts the widely used three-party semi-
honest model (Wagh et al., 2019; Ryffel et al., 2020;
Li et al., 2023; Dong et al., 2023). Specifically,
it assumes that the model provider P0 does not
collude with the cloud platform P1 to obtain the
client P2’s private inference data, and likewise, the
cloud platform P1 does not collude with the client
P2 to access the model provider P0’s proprietary
model parameters.

In contrast to two-party PPTI protocols (Hao
et al., 2022; Pang et al., 2023; Lu et al., 2023),
which require the data owner to act as one of
the computing parties and frequently communi-
cate with the model provider during the entire in-
ference process—often relying on homomorphic
encryption or oblivious transfer to generate corre-
lated randomness—CENTAUR takes a different ap-
proach. The data owner, who typically has limited
computing and communication capabilities, only
plays the role of a dealer, responsible for generat-
ing the correlated randomness required for PPTI
execution, such as Beaver triples (Beaver, 1992) for
multiplication and random permutation matrices to
accelerate computation.

The computation and communication intensive
tasks are delegated to the semi-honest cloud plat-
form and the model developer, both of which are
assumed to have ample resources. CENTAUR con-
sists of two main phases: Initialization and Privacy-
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Figure 3: High-level Workflow of CENTAUR.

Preserving Inference, detailed as follows.

Initialization. The model developer P0 generates
a set of random permutation matrices, Π = {π ∈
Rd×d, π1 ∈ Rn×n, π2 ∈ Rk×k}, where n denotes
the input length, d represents the feature dimension,
and k corresponds to the intermediate dimension
in the feed-forward neural network. These matri-
ces are designed to permute the model parameters
according to their respective dimensions. Among
them, the permutation matrix π is shared with P2.
Subsequently, P0 applies the appropriate permuta-
tion matrix from Π to permute the model param-
eters Θ, resulting in the permuted parameters Θ′,
which are then sent to P1.

Privacy-Preserving Inference. The client P2 lo-
cally generates shares of the inference data X →
([X]0, [X]1) and sends [X]j to the respective par-
ties Pj for j ∈ {0, 1}. Each Pj then takes Θ′

and [X]j as input, and jointly executes the privacy-
preserving inference process according to the work-
flow shown in Fig. 4, resulting in the shares of the
permuted inference result [Y π]j . Subsequently,
each Pj sends [Y π]j to the client P2. Upon receiv-
ing [Y π]j , P2 reconstructs the permuted inference
result Y π = [Y π]0 + [Y π]1, and restores the final
inference result using π: Y = Y ππ⊤.

4.3 Implementation
As described in Section 2.1, the Transformer model
consists of the Transformer layers, the embedding
layer, and the adaptation layer. We now outline
how CENTAUR enhances privacy-preserving com-
putation in each of these layers.

4.3.1 Transformer Layers

Linear Layer. CENTAUR optimizes the effi-
ciency of linear layers by converting costly privacy-
preserving matrix multiplications between random
shares (denoted as ΠMatMul) into communication-
free privacy-preserving multiplications between
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Figure 4: Implementation of CENTAUR-based PPTI.
Red lines and boxes indicate that there is a communi-
cation overhead for the computation of this step. Black
lines indicate completion of the calculation for that step
without communication overhead.

plaintexts and random shares (denoted as ΠScalMul).
This is achieved by separately using random per-
mutation for model parameters and secret-sharing
for inference data to ensure privacy.

As shown in Fig. 4, the linear layer parame-
ters consist of WQ,WK ,WV , (WO, BO) in the at-
tention mechanism and (W1, B1), (W2, B2) in the
feed-forward neural network for a single Trans-
former block. During the initialization phase, these
parameters are permuted by the model developer
P0. When data, in the form of secret shares, passes
through these linear layers, the computation is per-
formed using the communication-free plaintext-
shares privacy-preserving multiplication protocol
ΠScalMul. The shares of the computation results are
then output as follows:

[[Q]] = ΠScalMul(WQπ, [[XEπ]]),
3

[[K]] = ΠScalMul(WKπ, [[XEπ]]),

[[V ]] = ΠScalMul(WV π, [[XEπ]]), (3)

[[O4π]] = ΠScalMul(WOπ, [[O3]]) +BOπ,

[[O5π2]] = ΠScalMul(π
⊤
2 W1π, [[L1π]]) +B1π2,

[[O6π]] = ΠScalMul(π
⊤W2π2, [[Gπ2]]) +B2π.

To ensure the correctness and security of the in-
ference results, CENTAUR requires a limited num-
ber of privacy-preserving matrix multiplications
between shares in the attention mechanism. The
detailed computation process is as follows:

[[O1]] = ΠMatMul([[Q]], [[K]])/
√
dh + [[M ]],

[[O3]] = ΠMatMul([[O2π1]], [[V π1]]).
(4)

Non-linear Layers. CENTAUR enhances the ef-
ficiency of nonlinear layers by converting secret
shares into a randomly permuted state, enabling
plaintext computations for element-wise nonlinear
operations on the permuted data.

For any nonlinear operation with permuted input
Xπ, which has been secret-shared between P0 and
P1, the process proceeds as follows:

• The model developer P0 sends the share [Xπ]0
to the cloud platform P1, enabling it to convert
the input from the secret-sharing state [[Xπ]] to
the permuted state Xπ.

• P1 performs the nonlinear computation using
Xπ and obtains the permuted output Y π.

• P1 generates shares [[Y π]] of Y π and sends [Y π]0
back to P0.

This process requires two rounds of communica-
tion to transmit the shares of both the input and the
output. Based on this, CENTAUR supports Privacy-
Preserving Softmax (ΠPPSM), Privacy-Preserving
GeLU (ΠPPGeLU), and Privacy-Preserving Layer-
Norm (ΠPPLN) for computing nonlinear layers in
Transformers. Detailed construction algorithms are
provided in Appendix A.

It is important to note that transitioning the in-
put from the secret-sharing state [[Xπ]] to the per-
muted state Xπ requires the input shares to be in
the permuted state. However, this condition is not
always met in the PPTI process. For example, the
shares of O1 are initially not in the permuted state
because the permutation matrix π is canceled out
during ΠMatMul (Eq. (4)). To address this, CEN-
TAUR introduces a Privacy-Preserving Permutation
(ΠPPP) protocol. By invoking privacy-preserving
matrix multiplication, ΠPPP converts the shares of
any input [[X]] into [[Xπ]]. The detailed process is
outlined in Algorithm 6.

3We omit the bias here for concise presentation. For the
case that there is additional bias parameters B in producing Q,
K, and V , the model developer can secretly share B to cloud
platform and add it to the output of ΠScalMul using ΠAdd.



BERTLARGE on the QNLI dataset GPT-2LARGE on the Wikitext-103 dataset

Attacks Methods O1 O4 O5 O6 Avg O1 O4 O5 O6 Avg

SIP
W/O 66.14± 1.38 78.64± 0.28 95.57± 0.06 96.00± 0.05 84.09 69.64± 0.68 92.91± 0.17 93.69± 0.11 94.31± 0.21 87.64

W(Ours) 10.72± 2.01 2.03± 0.89 0.00± 0.00 2.71± 1.86 3.86 6.10± 4.67 12.90± 0.64 0.58± 0.21 2.00± 1.29 5.40
Rand 5.08± 0.04 6.82± 0.02 0.17± 0.06 3.58± 0.21 3.91 14.65± 0.90 2.69± 0.05 0.00± 0.00 3.38± 0.04 5.18

EIA
W/O 100.00± 0.00 36.49± 1.13 80.97± 0.71 19.5± 0.50 59.24 96.70± 0.02 99.97± 0.04 100.00± 0.00 67.30± 0.01 90.99

W(Ours) 1.37± 0.12 5.94± 0.43 2.89± 0.13 0.12± 0.07 2.58 1.36± 0.10 11.90± 0.37 7.91± 0.23 4.40± 0.33 6.39
Rand 0.14± 0.00 7.22± 0.17 0.34± 0.11 0.85± 0.03 2.13 0.30± 0.02 8.27± 0.02 2.54± 0.06 4.29± 0.04 3.85

BRE
W/O 56.64± 1.06 14.85± 0.55 74.50± 0.75 7.80± 0.11 38.45 56.64± 1.06 99.99± 0.01 99.99± 0.00 45.26± 0.58 75.47

W(Ours) 0.21± 0.02 0.45± 0.03 0.52± 0.39 0.52± 0.39 0.43 0.21± 0.02 1.33± 0.07 0.03± 0.01 0.07± 0.02 0.41
Rand 0.07± 0.02 0.25± 0.20 0.09± 0.01 0.58± 0.02 0.25 0.07± 0.02 0.20± 0.00 0.08± 0.00 0.10± 0.01 0.11

Table 1: The degree of privacy leakage (ROUGE-L F1 Score (%)) on the permuted intermediate results
"O1, O4, O5, O6" using three data reconstruction attack methods. "W/O" represents the original data, "W" represents
the permuted state, and "Rand" represents random input. The results denote the attack targets and are averaged over
three different random seeds.

4.3.2 Embedding Layer & Adaptation Layer.

The Embedding and Adaptation layers involve both
linear and nonlinear operations, enabling dual ac-
celeration of efficiency within CENTAUR. Specif-
ically, the Embedding layer includes matrix mul-
tiplication and LayerNorm operations, allowing
for Privacy-Preserving Embedding (ΠPPEmbedding)
via the invocation of ΠScalMul and ΠPPLN. The
construction of the Privacy-Preserving Adapta-
tion (ΠPPAdaptation) layer, which adapts to different
downstream tasks such as classification or predic-
tion, varies across Transformer models. However,
it can be uniformly implemented by using CEN-
TAUR’s privacy-preserving algorithms. Detailed
constructions for PPEmbedding and PPAdaptation
are provided in Algorithm 4 and Algorithm 5.

4.4 Theoretical Analysis

CENTAUR can leverage the properties of permu-
tation matrices to ensure the confidentiality of
model parameters. By applying the widely used
simulation-based paradigm (Lindell, 2017) from
SMPC, we can demonstrate that intermediate re-
sults under secret-sharing can guarantee the con-
fidentiality of user inference data. Additionally,
using distance correlation theory (Székely et al.,
2007), privacy protection of intermediate results
under random permutation can be analyzed. We
leave the detailed security analyses in Appendix B
since the theoretical framework of the SMPC and
random permutation mechanism, which is usually
the focus of the security community, is not over-
explored by CENTAUR. We will focus on substanti-
ating the empirical security of CENTAUR through
rich and complex attack experiments in Section 5.2.

5 Experiments

We conducted experiments to address three key
questions regarding CENTAUR: Q1 (Privacy):
Does the intermediate result in CENTAUR, stored
in a randomly permuted state, withstand various
rigorous adversarial attacks? Q2 (Efficiency): Can
CENTAUR improve the inference speed of PPTI?
Q3 (Performance): Does CENTAUR maintain the
model’s performance during PPTI execution?

5.1 Experimental Setup

Implementation. We perform CENTAUR on
CrypTen, a privacy-preserving machine learning
framework based on SMPC. Our experiments were
conducted on three servers, each equipped with
an A100 GPU. To assess efficiency under varying
conditions, we simulated different network settings
using Linux Traffic Control. For the Local Area
Network (LAN), the bandwidth was set to 3 Gbps
with a round-trip delay of 0.8 ms, while for the
Wide Area Network (WAN), the bandwidth was
100 Mbps with an 80 ms delay.
Baselines. CENTAUR is compared with several
state-of-the-art PPTI frameworks: MPCFormer (Li
et al., 2023), PUMA (Dong et al., 2023), and Sec-
Former (Luo et al., 2024). MPCFormer improves
PPTI efficiency by replacing Softmax and GeLU
with SMPC-friendly quadratics. PUMA optimizes
PPTI efficiency with enhanced SMPC protocols
for nonlinear operations, while SecFormer also re-
places Softmax with SMPC-friendly quadratics and
refines protocols for nonlinear layers.
Models and Datasets. To ensure fairness, we se-
lected the BERT and GPT-2 models, which are
widely used in baseline evaluations, as bench-
mark models for our experimental assessment. For
the BERT model, we selected five datasets from
the GLUE benchmark (Wang et al., 2019) (RTE,
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Figure 5: Time breakdown for each operations (left) and the entire PPTI process (right) of the tested frameworks.
The results are the average of ten runs.

CoLA, STS-B, MRPC, QNLI) for natural language
understanding (NLU) tasks. For GPT-2, we em-
ployed two datasets from the Wikitext collection
(Merity et al., 2017) (Wikitext-103 and Wikitext-
2) for natural language generation (NLG) tasks.
Furthermore, as CENTAUR performs the computa-
tion of nonlinear functions in Transformer models
under permutation, it can theoretically be easily ex-
tended to other types of Transformer models, such
as LLaMA, while maintaining a better balance be-
tween privacy, efficiency, and performance. These
details will be further outlined in Appendix E.

5.2 Empirical Security

To answer Q1, we conduct a series of rigorous
adversarial experiments. Specifically, we first em-
ploy the three most advanced Data Reconstruction
Attack (DRA) methods to attack the permuted in-
termediate results in an attempt to retrieve private
inference data from users without recovering the
permutation matrix. We also perform pattern-based
and heuristic-based methods to recover the permu-
tation matrix from the permuted intermediate re-
sults. The attack setup and more results of the
attack experiments are presented in Appendix C.

Attack Methods. We evaluate three mainstream
DRA methods targeting the intermediate outputs
of Transformer models: (1) SIP (Chen et al., 2024),
a learning-based approach that trains an inversion
model on the auxiliary dataset to reconstruct the
original sentence from any intermediate output de-
rived from the private dataset; (2) Embedding Inver-
sion Attack (EIA) (Song and Raghunathan, 2020),

an optimization-based approach that generates a
dummy input and iteratively optimizes it (through
relaxed optimization within the discrete vocabulary
space) to match the observed intermediate outputs;
and (3) BRE (Chen et al., 2024), an optimization-
based approach that constructs dummy inputs but
performs optimization within the continuous em-
bedding space.

Attack Targets. In CENTAUR, as outlined in Sec-
tion 4.3, intermediate results such as O1π1, O4π,
O5π2, and O6π are stored in permuted form on
cloud platform P1. To validate the privacy protec-
tion capabilities of CENTAUR, we conduct DRA
experiments on these permuted results. For compar-
ison, we also set up two control experiments: one
with the original intermediate results (O1, O4, O5,
O6), and another with random matrices of equiv-
alent dimensions. The focus of our experiments
is on the first Transformer block, where privacy
leakage is most likely to occur.

Evaluation Metrics. We use ROUGE-L (Rouge,
2004) F1 score as the evaluation metric for the at-
tack experiments. ROUGE-L F1 assesses similarity
based on the longest common subsequence, strictly
following the order and tokens. By analyzing the
ROUGE-L F1 values, we can understand the ex-
tent to which the original inference data can be
reconstructed from the intermediate results. The
ROUGE-L F1 score ranges from 0 to 1, with lower
values indicating a lower recovery rate.

Evaluation Results. The experimental results in
Table 1 demonstrate that on both BERTLARGE and



GPT-2LARGE, the average ROUGE-L F1 values
for data recovery by the three attack methods us-
ing CENTAUR’s permuted intermediate results are
comparable to those obtained with random inputs.
This further confirms that CENTAUR effectively
preserves the privacy of inference data. Specifi-
cally, for BERTLARGE, the three attack methods re-
cover only 3.86%, 2.58%, and 0.43% of the data’s
average ROUGE-L F1 values on the QNLI classi-
fication task dataset. In contrast, the recovery rate
significantly increases when original intermediate
results are used for the attacks. For instance, on
GPT-2LARGE, the average ROUGE-L F1 value for
data recovery using EIA reaches as high as 90.99%,
with 100% data recovery achieved on O1 = QK⊤.
This indicates that the privacy-preserving mecha-
nism of PPTI (Yuan et al., 2023) based on random
permutation completely fails once the original in-
termediate results are exposed.

5.3 Efficiency Comparison

To address Q2, we analyze the inference time and
communication overhead of CENTAUR performing
PPTI and compare it with current state-of-the-art
frameworks. The key results are presented in Fig. 5,
with more details provided in Appendix D. In two
network settings—LAN (3Gbps, 0.8ms) and WAN
(100Mbps, 80ms)—CENTAUR significantly outper-
forms other PPTI frameworks. For BERTLARGE,
CENTAUR is 5.1∼24.2 times faster in a LAN en-
vironment and 6.3∼30.4 times faster in WAN. For
GPT-2LARGE, CENTAUR is 5.0∼26.9 times faster in
LAN and 5.8∼28.4 times faster in WAN. These effi-
ciency improvements are attributed to CENTAUR’s
dual optimization of both the linear and non-linear
layers within PPTI.
Linear Layers. CENTAUR speeds up inference in
linear layers by 1.8∼2.2 times for BERTLARGE and
2.0∼2.8 times for GPT-2LARGE compared to other
PPTI frameworks. This is due to CENTAUR’s use of
randomly permuted model parameters and secret-
shared inference data, allowing most linear compu-
tations to be performed with the communication-
free private matrix multiplication protocol ΠScalMul.

Non-Linear Layers. In the non-linear layers,
CENTAUR achieves significant speed-ups. For
Softmax and GeLU, CENTAUR outperforms the
SMPC-based framework PUMA by two orders
of magnitude. For BERTLARGE, CENTAUR is
3.2∼93.3 times faster in Softmax, 1.4∼66.8 times
faster in GeLU, and 8.6∼50.1 times faster in Lay-

erNorm. For GPT-2LARGE, the speed-ups are
3.7∼105.5, 1.5∼76.5, and 9.3∼29.5 times, respec-
tively. These improvements are attributed to the
privacy-preserving non-linear algorithms proposed
in CENTAUR, which significantly reduce the com-
munication overhead of non-linear computations
in PPTI by converting the secret-share state to a
random permutation state.

Embedding & Adaptation Layers. The embed-
ding and adaptation layers, which involve both
linear and non-linear operations, benefit from
CENTAUR’s dual optimization. For BERTLARGE,
CENTAUR’s inference speed in the embedding
layer is 364.1∼377.8 times faster, while for GPT-
2LARGE, the speedup ranges from 67.1∼82.8 times.
In the adaptation layer, CENTAUR accelerates
BERTLARGE by 7.6∼11.6 times and GPT-2LARGE
by 193.7∼290.9 times.

5.4 Performance Comparison

To answer Q3, we validate the performance of
CENTAUR and show the results in Table 2. As
can be seen, both the BERT series models with
an encoder structure and the GPT series models
with a decoder structure achieve the same perfor-
mance when using CENTAUR for PPTI as inference
in plaintext. This indicates that CENTAUR does
not compromise the performance of the plaintext
models while protecting the model parameters and
inference data. This is because CENTAUR does
not make any adjustments to the structure of the
plaintext Transformer models during the PPTI pro-
cess. Consequently, CENTAUR can be combined
with any existing Transformer architecture model
to achieve PPTI with performance equivalent to
plaintext inference.

6 Discussion

CENTAUR bridges the "impossible trinity" of
privacy, efficiency, and performance in privacy-
preserving transformer inference (PPTI) by lever-
aging the complementary strengths of SMPC and
random permutation strategies. Comprehensive ex-
periments demonstrate that CENTAUR significantly
improves the efficiency of PPTI while providing a
practical level of privacy, without sacrificing model
performance. This enables CENTAUR to be readily
integrated into existing Transformer-based model-
as-a-service (MaaS) platforms to support privacy-
preserving inference.

Moreover, CENTAUR does not yet incorporate



QNLI (108k) CoLA (8.5k) STS-B (5.7k) MRPC (3.5k) RTE (2.5k) Avg. Wikitext-2 (45k) Wikitext-103 (1800k) Avg.
BERTBASE(↑) GPT-2BASE(↓)

Plain-text 91.7 57.8 89.1 90.3 69.7 79.7 20.3 24.3 22.3
PUMA 91.7 57.8 89.1 90.3 69.7 79.7 20.3 24.3 22.3
•MPCFormerw/o 69.8 0.0 36.1 81.2 52.7 48.0 420.9 520.0 470.5

•MPCFormer 90.6 52.6 80.3 88.7 64.9 75.4 431.8 522.3 477.1
◦SecFormerw/o 89.3 57.0 86.2 83.8 63.2 75.9 75.4 131.0 103.2

◦SecFormer 91.2 57.1 87.4 89.2 69.0 78.8 75.3 130.9 103.1
CENTAUR (Ours) 91.7 57.8 89.1 90.3 69.7 79.7 20.3 24.3 22.3

BERTLARGE(↑) GPT-2LARGE(↓)

Plain-text 92.4 61.7 90.2 90.6 75.5 82.1 14.4 16.0 15.2
PUMA 92.4 61.7 90.2 90.6 75.5 82.1 14.4 16.0 15.2
•MPCFormerw/o 49.5 0.0 0.0 81.2 52.7 36.7 94.4 396.2 245.3

•MPCFormer 87.8 0.0 52.1 81.4 59.2 56.1 94.5 402.5 248.5
◦SecFormerw/o 90.8 60.8 89.0 87.6 69.7 79.6 91.8 143.1 117.5

◦SecFormer 92.0 61.3 89.2 88.7 72.6 80.8 91.5 140.6 119.1
CENTAUR (Ours) 92.4 61.7 90.2 90.6 75.5 82.1 14.4 16.0 15.2

Table 2: Performance comparison of BERT and GPT-2 models. Underlined numbers indicate the best results.
Marker ◦ refer to approximating GeLU with Quad. Marker • refer to approximating GeLU and Softmax with Quad
and 2Quad, respectively. “w/o” indicates no re-training or knowledge distillation

other techniques designed to improve the compu-
tational and memory efficiency of Transformer
inference, such as quantization and KV-cache,
which could further enhance overall PPTI effi-
ciency. These techniques are orthogonal to CEN-
TAUR, and integrating them poses new challenges.
For instance, KV-cache involves operations that
are inherently incompatible with SMPC—such as
similarity computation, top-k selection, and token
aggregation—which would require additional con-
siderations to enable privacy-preserving KV-cache.
We leave the exploration of these directions for fu-
ture work, aiming to further enhance the privacy
and efficiency of PPTI by combining CENTAUR

with such optimizations.

7 Conclusion

This paper introduces CENTAUR, an efficient
PPTI framework that employs tailored privacy-
preserving mechanisms for both model parameters
and inference data. By seamlessly integrating these
techniques with customized algorithms, CENTAUR

strikes an optimal balance in the privacy-efficiency-
performance trade-off, often referred to as the “im-
possibility triangle”, unlocking new possibilities
for the secure deployment of language models.

8 Limitations

CENTAUR adopts a privacy-preserving mechanism
based on random permutation, which means that it
cannot directly achieve theoretical security. CEN-
TAUR does not overemphasize the theoretical se-
curity frameworks focused on the security domain
but instead supports its claimed empirical secu-
rity through extensive and complex attack exper-

iments. In practical applications, privacy and us-
ability are often incompatible. Particularly in the
era of large models based on Transformer archi-
tectures, the rapid growth in model size has made
traditional provable security techniques, such as
SMPC and homomorphic encryption, impractical
due to their high communication and computational
costs. Therefore, we believe exploring practical
privacy-preserving mechanisms for large models
is of significant importance. Among various un-
verifiable security methods, the privacy-preserving
capabilities of random permutation are positively
correlated with the scale of the protected entity,
making it especially suitable for large models with
high-dimensional Transformer architectures. CEN-
TAUR achieves a better balance between privacy
and usability by combining random permutation
with other provable security techniques. At the
same time, we believe that the practical attack anal-
yses on intermediate results in language models
performed in CENTAUR hold equal importance to
purely theoretical frameworks and require evalua-
tion by the NLP community.
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Appendices
The appendices in this paper are organized as fol-
lows.

• Appendix A presents the privacy-preserving al-
gorithms designed in CENTAUR.

• Appendix B offers a detailed theoretical security
analysis of the CENTAUR framework.

• Appendix C offers a detailed empirical security
analysis of the CENTAUR framework.

• Appendix D presents comparative analyses of
CENTAUR’s communication volume and infer-
ence time for BERTBASE and GPT-2BASE.

• Appendix E provides a comprehensive analysis
of CENTAUR framework, further supported by
experimental results on the LLaMA-7B model.

• Finally, Appendix F outlines the hyperparameters
employed in the performance experiments.

A Privacy-preserving Algorithms in
CENTAUR

In this section, we present the construction
of privacy-preserving algorithms within CEN-
TAUR. Specifically, this includes Privacy-
Preserving Softmax (ΠPPSM), Privacy-Preserving
GeLU (ΠPPGeLU), Privacy-Preserving LayerNorm
(ΠPPLN), Privacy-preserving permutation (ΠPPP),
Privacy-Preserving Embedding (ΠPPEmbedding), and
Privacy-Preserving Adaptation (ΠPPAdaptation). We
illustrate the construction of ΠPPAdaptation using the
BERT series model as an example. In the BERT
model, the Adaptation layer consists of a pooling
layer composed of a linear layer (WP , BP ) and the
activation function Tanh, followed by a linear layer
with parameters (WC , BC).

Algorithm 1: Privacy-preserving Softmax
(ΠPPSM)

Input: For j ∈ {0, 1}, Pj holds [Xπ]j .
Output: For j ∈ {0, 1}, Pj holds

[Y π]j = [Softmax(X)π]j .
1 The model developer P0 transmits [Xπ]0 to

P1

2 P1 reconstructs Xπ and calculates
Y π = Softmax(Xπ) = Softmax(X)π

3 P1 generates shares of Y π and sends [Y π]0
to P0

Algorithm 2: Privacy-preserving GeLU
(ΠPPGeLU)

Input: For j ∈ {0, 1}, Pj holds [Xπ2]j .
Output: For j ∈ {0, 1}, Pj holds

[Y π2]j = [GeLU(X)π2]j .
1 The model developer P0 sends [Xπ2]0 to P1

2 P1 reconstructs Xπ2 and calculates
Y π2 = GeLU(Xπ2)

3 P1 generates shares of Y π2 and sends
[Y π2]0 to P0

Algorithm 3: Privacy-preserving Layer-
Norm (ΠPPLN)
Input: For j ∈ {0, 1}, Pj holds [Xπ]j .
Output: For j ∈ {0, 1}, Pj holds

[Y π]j = [LayerNorm(X)π]j .
1 The model developer P0 transmits [Xπ]0 to

P1

2 P1 reconstructs Xπ and calculates
Y π = LayerNorm(Xπ, γπ, βπ)

3 P1 generates shares of Y π and sends [Y π]0
to P0

Algorithm 4: Privacy-preserving Embed-
ding (ΠEmbedding)
Input: For j ∈ {0, 1}, Pj holds [X]j .
Output: For j ∈ {0, 1}, Pj holds [XEπ]j .

1 P0 and P1 jointly calculate
[[XMπ]] = ΠScalMul([[input]],WEπ)

2 P0 and P1 jointly calculate
[[XEπ]] = ΠPPLN([[XMπ]])

Algorithm 5: Privacy-preserving Adapta-
tion (ΠAdaptation)
Input: For j ∈ {0, 1}, Pj holds [Xπ]j .
Output: For j ∈ {0, 1}, Pj holds [Y π]j .

1 P0 and P1 jointly calculate
[[XPπ]] = ΠScalMul([[input]],WPπ)

2 The model developer P0 sends [Xπ]0 to P1

3 P1 reconstructs Xπ and calculates
Tπ = Tanh(Xπ) = Tanh(X)π

4 P1 generates shares of Tπ and sends [Tπ]0
to P0

5 P0 and P1 jointly calculate
[[Y ]] = ΠScalMul([[Tπ]],Wc)



Algorithm 6: Privacy-preserving permuta-
tion (ΠPPP)
Input: For j ∈ {0, 1}, Pj holds [X]j .
Output: For j ∈ {0, 1}, Pj holds [Xπ]j .

1 P2 generates a random permutation
π ∈ Rd×d

2 P2 generates the shares ([π]0, [π]1) and
sends [π]j to Pj

3 P0 and P1 jointly calculate the permuated
share [[Xπ]] = ΠMatMul([[X]], [[π]]).

B Theoretical Analysis

In this section, we theoretically demonstrate that
CENTAUR can protect the confidentiality of both
model parameters held by the model developer and
user inference data. Specifically, we first lever-
age the properties of permutation matrices and the
Transformer model structure to show how CEN-
TAUR ensures the confidentiality of model parame-
ters. Next, by applying the widely-used simulation-
based paradigm from secure multi-party computa-
tion (SMPC), we illustrate how intermediate results
in a secret-sharing state can safeguard the confi-
dentiality of user inference data. Furthermore, we
analyze the privacy-preserving capabilities of inter-
mediate results under random permutation using
distance correlation theory.

B.1 Privacy of Model Parameters

In CENTAUR, the permutation matrices
Π = {π, π1, π2} are randomly generated lo-
cally by the model developer P0 during the
initialization phase. Subsequently, P0 sends the
permutation matrix π to the client P2 and the
permuted model parameters to the cloud platform
P1. During the privacy-preserving inference
phase, although P1 receives the permuted param-
eters in the linear layers and LayerNorm layers
{WEπ,WQπ,WKπ,WV π, (WOπ,BOπ), (π2W1

π,B1π), (πW2π2, B2π), (γ1π, β1π), (γ2π, β2π)},
it lacks information about the permutation matrices
{π ∈ Rd×d, π2 ∈ Rk×k}. This prevents P1 from
directly obtaining the original parameters. Based
on the properties of permutation matrices, the prob-
ability that P1 can derive the original parameters
{WE ,WQ,WK ,WV , (WO, BO), (γ1, β1), (γ2, β2),
B2} from the permuted ones is 1

d! . The probability
of retrieving the parameters {W1,W2} is 1

d!k! and
B1 is 1

k! .
Also, during both the initialization and privacy-

preserving inference phases, the client P2 can only
obtain the permutation matrix π and the permuted
inference results, thus preventing any access to
information about the model parameters.

B.2 Privacy of Inference Data

Unlike model parameters, inference data in CEN-
TAUR is split into random shares. We prove that
CENTAUR can ensure that during PPTI, neither the
model developer P0 nor the cloud platform P1 can
obtain any meaningful information about the infer-
ence data. Firstly, we prove through simulation that
the intermediate results in the random shares state
in CENTAUR do not leak the privacy of the infer-
ence data. Then, we demonstrate through distance
correlation theory and various attack experiments
to verify that the permuted intermediate results do
not leak the privacy of the inference data.

Intermediate Results in the Secret-Sharing State.
CENTAUR follows the semi-honest (also known as
honest-but-curious) assumption, similar to (Li et al.,
2023; Dong et al., 2023; Luo et al., 2024). Under
this assumption, the security of CENTAUR can be
formally proven in the simulation paradigm, partic-
ularly against a static semi-honest adversary (de-
noted as A). Specifically, the simulation paradigm
divides the process into two distinct worlds: the
real world and the ideal world. In the real world,
the server executes the protocol in the presence of
a semi-honest adversary A. In contrast, in the ideal
world, the server transmits the input information to
a trusted dealer who executes the protocol correctly.
The security of the CENTAUR framework requires
that the protocol executed with intermediate results
in a randomly shared state produces distributions
in the real world and the ideal world that are indis-
tinguishable for any semi-honest adversary A.

Theorem 1 The protocols executed in CENTAUR,
using intermediate results in a randomly shared
state as input, satisfies the following criteria:

• Correctness: For a model FΘ with parameters
Θ and inference data X , the output of the client
at the end of the protocol is the correct inference
result FΘ(X).

• Security: For any corrupted computing server
Sj with j ∈ {0, 1}, there exists a probabilis-
tic polynomial-time simulator SimSj such that
the adversary A cannot distinguish between
V iewΠP

Sj
(i.e., the view of Sj during the execution

of ΠP ) and SimSj .



BERTLARGE on the MRPC dataset GPT-2LARGE on the Wikitext-2 dataset

Attacks Methods O1 O4 O5 O6 Avg O1 O4 O5 O6 Avg

SIP
W/O 70.94± 0.17 85.40± 0.38 97.61± 0.08 97.89± 0.08 87.96 65.38± 0.14 93.59± 0.04 93.07± 0.13 94.68± 0.05 86.68

W(Ours) 10.96± 1.24 1.68± 0.29 2.36± 1.67 4.96± 0.67 4.99 4.64± 0.91 11.58± 0.47 0.48± 0.29 2.68± 2.71 4.85
Rand 5.72± 0.05 6.09± 0.04 3.79± 2.68 4.14± 0.19 4.94 0.09± 0.01 1.20± 0.02 0.00± 0.00 1.46± 0.01 0.69

EIA
W/O 100.00± 0.00 34.25± 0.62 78.41± 0.50 19.31± 0.78 57.99 96.17± 0.05 100.00± 0.00 99.99± 0.01 65.04± 2.97 90.30

W(Ours) 1.60± 0.40 5.65± 0.47 3.41± 0.85 0.25± 0.21 2.73 1.46± 0.17 12.49± 0.25 8.67± 0.20 4.89± 0.77 6.88
Rand 0.13± 0.01 6.57± 0.08 0.28± 0.01 0.77± 0.03 1.94 0.76± 0.80 9.69± 0.73 2.13± 0.78 4.11± 0.36 4.17

BRE
W/O 51.89± 1.26 73.30± 0.43 70.86± 0.37 11.34± 2.40 51.85 100.00± 0.00 100.00± 0.00 100.00± 0.00 40.50± 0.36 85.13

W(Ours) 0.07± 0.01 2.77± 0.11 1.08± 0.20 0.91± 0.36 1.21 0.26± 0.14 2.14± 0.20 0.04± 0.01 0.07± 0.01 0.63
Rand 0.18± 0.01 1.94± 0.08 0.68± 0.03 0.54± 0.05 0.84 0.17± 0.06 0.28± 0.07 0.06± 0.02 0.09± 0.02 0.15

Table 3: Attack performance (RougeL-F%) on BERTLARGE and GPT-2LARGE. The MRPC dataset is used for
BERT and the Wikitext-2 dataset is used for GPT-2. “W/O” represents the original data without permutation; “W”
represents the permuted state; “Rand” represents random input. Results are the average of three different random
seeds.

We provide the proof of Theorem 1 through the
following analyses. According to Fig. 4 and Eqs.
(3)-(4), the linear layers in a Transformer model
only involve privacy-preserving operations ΠPPP
which is essentially a ΠMatMul, ΠScalMul, ΠMatMul,
and ΠAdd. Since these basic operations ΠScalMul,
ΠMatMul, and ΠAdd have been proven to satisfy The-
orem 1, we can directly prove that CENTAUR satis-
fies Theorem 1 for these linear layers using the uni-
versally composable security theorem established
in (Canetti, 2001).

Intermediate Results in the Randomly Per-
muted State. In CENTAUR, to perform non-linear
operations such as ΠPPSM, ΠPPGeLU, and ΠPPLN, a
conversion from a random sharing state to a ran-
dom permutation state is required. During this pro-
cess, the model developer P0 needs to send [Xπ]0
to the cloud platform P1 for the reconstruction of
Xπ, resulting in the intermediate results being in a
random permutation state.

We demonstrate both theoretically and experi-
mentally that intermediate results in a random per-
mutation state do not leak the privacy of inference
data. Specifically, from a theoretical standpoint, we
employ distance correlation theory (Székely et al.,
2007) to prove that the privacy leakage caused
by intermediate results in a randomly permuted
state is less than that of one-dimensional reduc-
tion, which has already been proven to possess
privacy-preserving capabilities in practical appli-
cations (Wang et al., 2018; Oliveira and Zaiane,
2004). According to (Zheng et al., 2022), for any
vector o ∈ R1×d, the following inequality holds:

E
π,WA∈Zd×d

[Discorr(o, oWAπ)]

≤ E
WB∈Zd×1

[Discorr(o, oWB)],
(5)

where Discorr denotes a distance correlation func-

tion. This inequality implies that the distance corre-
lation of the vector o after passing through a linear
layer with parameter WA, followed by a permuta-
tion π, is less than or equal to the distance corre-
lation after passing through a linear layer WB that
compresses it to a 1-dimensional output. Accord-
ing to Fig. 4, all shares pass through at least one
linear layer before being converted to a permuted
state in CENTAUR. Therefore, it can be proven that
the intermediate results in the permuted state in
CENTAUR satisfy Eq. (5).

C Empirical Security Analysis

In this section, we demonstrate that the distributed
secure inference based on the permutation of inter-
mediate results provides empirical privacy security.
Specifically, in the scenario we consider, even for
a reasonably strong attacker, the difficulty of suc-
cessfully launching an attack is extremely high. To
illustrate this, we assume an overly idealized ad-
versary, who has full white-box access to all parts
of the model segment held by the model devel-
oper. This assumption is unrealistic in practical
application scenarios. To comprehensively eval-
uate privacy, we further categorize the adversary
into two types: those who launch attacks with and
without cracking the permutation matrix. It is im-
portant to note that, to date, no existing work has
successfully compromised permuted Transformer
intermediate results. We are the first to conduct
a thorough analysis of the privacy and security of
permutation-based Transformer inference.

Attack Setup. We evaluate the privacy protection
capabilities of CENTAUR by conducting a series
of data reconstruction attack (DRA) experiments,
with and without the adversary attempting to crack
the permutation matrix (secret key). Consider an
overly idealized attack scenario where the adver-
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Figure 6: An example of recovering private inference input data through O1.

sary has unrestricted query access to key interme-
diate components of the model. An adversary can
launch attacks at any nonlinear intermediate layer
and recover the inference data’s privacy using only
the intermediate results from that layer. Addition-
ally, we assume this powerful adversary has ac-
cess to an auxiliary dataset that may or may not
resemble the target private dataset. We use a batch
size of 4 and evaluate the average attack perfor-
mance on 20 batches. To ensure the stability of
the experimental results, each set of experiments
was conducted with three different random seeds.
The CNN-DailyMail News Text Summarization
dataset (See et al., 2017), which is entirely distinct
from the target private datasets, was selected as
the auxiliary dataset to simulate a realistic attack
scenario.

C.1 Attack without Cracking the Permutation
Matrix

For an attacker who does not attempt to crack
the permutation matrix, the inability to determine
whether the target intermediate results have been
permuted leads them to employ traditional DRA
strategies designed for the intermediate results of
Transformers. In Section 5.2, we have already pro-
vided experimental results for three state-of-the-art
data reconstruction attack methods tailored for this
scenario. Here, we present the attack setup and
implementation details for the three adopted DRA
methods, along with additional results and specific
examples from the attack experiments discussed
earlier.

Implementation Details. For SIP, we employ a
simple GRU model as the Inversion Model, with

a hidden size of 256 and a dropout rate of 0.1,
and train it for 20 epochs on the CNN Daily-Mail
News dataset. Given that the last two dimensions
of O1 correspond to variable-length sequences, we
truncate these sequences to a fixed length (512 in
our experiments) before inputting them into the
Inversion Model for training. For EIA, we use
the Gumbel Softmax approximation to construct a
distribution matrix over the vocabulary, which is
then fed into the model. We optimize the interme-
diate outputs using Euclidean distance as the loss
function. Since the attack focuses on intermediate
results from the first layer, we do not need to apply
the mapping strategy to shallow layers as described
in (Song and Raghunathan, 2020). For BRE, we
directly construct an embedding, bypassing the em-
bedding layer, and input it into the language model,
optimizing based on cosine similarity. We conduct
6000 epochs of optimization for BRE and 2400
epochs for EIA, with both methods using AdamW
with a learning rate of 0.1 as the optimizer.

More Attack Result. We also report the out-
comes of attacks on the MRPC dataset using the
BERTLARGE model and on the Wikitext-2 dataset
using the GPT-2LARGE model. Specifically, for
the BERTLARGE model, the average ROUGE-L
F1 scores for data recovery across three different
attack methods on the MRPC classification task
dataset are a mere 4.99%, 2.73%, and 1.21%, re-
spectively. These results are comparable to the
ROUGE-L F1 scores obtained when attacking ran-
dom inputs. In contrast, attacks on plaintext inter-
mediate results yield significantly higher recovery
rates. Notably, the average ROUGE-L F1 score for
data recovered using SIP from plaintext interme-



diate results reaches as high as 87.96%. A similar
pattern is observed with the GPT-2LARGE model
during prediction tasks. On the Wikitext-2 dataset,
the average ROUGE-L F1 scores for data recovery
from randomly permuted intermediate results are
4.58%, 6.88%, and 0.63%, which are again com-
parable to the recovery rates from random inputs.
However, when targeting plaintext intermediate re-
sults, the average ROUGE-L F1 scores for data
recovery using the three attack methods are signifi-
cantly higher, with the EIA method recovering over
90.3% of the private data.

Attack Examples. We provide additional practi-
cal attack examples targeting O1 = QKT . These
examples clearly demonstrate that directly attack-
ing the plaintext O1 can effectively recover private
inference data, indicating that permutation-based
PPTI presents a significant privacy leakage risk.
In contrast, attacking obfuscated intermediate re-
sults or random inputs only produces meaningless
garbled output. This demonstrates that the privacy
protection provided by CENTAUR can effectively
resist current DRA attacks.

Analysis. For the considered data reconstruction
attacks, to launch an attack based on observations
in the intermediate space N , the attacker must ob-
tain an inverse mapping f−1 to map the results
back to the vocabulary space V . In this context, we
investigate the correlation between the proportion
of shuffled features in the intermediate results and
the effectiveness of f−1. The results, after fitting
and smoothing, are presented in Fig. 7. It is evi-
dent that a small amount of feature displacement
(20%) can significantly reduce the effectiveness of
f−1. In practice, for the permutation matrix gen-
erated by np.permutation, when the hidden size of
the large language model (LLM) exceeds 768, the
proportion of non-shuffled elements is less than
0.13%, effectively achieving near-complete feature
reordering. This leads to the complete disruption
of f−1. Thus, although the intermediate represen-
tations of the Transformer are sparse, in a scenario
where almost all features are randomly reordered,
any direct attack method that does not consider
cracking the permutation matrix is impractical.

C.2 Attack by Cracking the Permutation
Matrix

Furthermore, we consider a more advanced adver-
sary, who is aware that the intermediate result being
attacked has been permuted and attempts to launch
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Figure 7: The correlation between the proportion of
shuffled features and the effectiveness (measured by
the ROUGE-L F1 score) of the inversion attack f−1,
showing that reconstructing the raw text requires 75%+
of the features to remain in place.

an attack by cracking the permutation matrix. We
emphasize that permuting the intermediate results
of a Transformer is difficult to crack in practice,
which stems from:

• Huge secret key space: A typical Trans-
former model has a large dimensionality for
its intermediate representations. For instance,
the dimensionality is often 768 (and it is even
over a thousand for GPT-2 and Llama). The
key space reaches 768!. Even for a computer
with a computing power of 1018 FLOPS, it
is impossible to solve the problem within a
reasonable time frame.

• Noisiness of intermediate representations:
Usually, the cracking of substitution ciphers
is carried out directly in the vocabulary space
V . However, in the context of Centaur, the
target model f : V → N maps the original
sentences to the intermediate space N . For
the attacker under consideration, the cracking
process occurs in the space N . For an attacker
aiming to reconstruct the original sentence
data from a target, the function f is noisy.
Due to the stacking of attention mechanisms,
the intermediate activations of the same token
vary across different contexts and also differ
from the initial embedding of that token. That
is to say, the randomness here comes from the
context during inference.

Due to the adversary’s limited attack view
caused by the perturbation, the large key space,
and the challenging inversion curve shown in Fig. 7,



cracking the permutation matrix proves to be dif-
ficult in practice. In the following, we attempt
two cracking methods, namely pattern-based and
searching-based approaches, both of which fail to
successfully break the permutation matrix.

C.2.1 Crack by Pattern Identification:
Difficult

For permutation-based encryption in the feature
space, a key issue is whether there are identifiable
patterns across the feature dimensions that could
be exploited by the attacker to launch a cracking
attack. We note that, due to operations such as
LayerNorm performed by the Transformer on the
feature dimensions, it is difficult to attempt crack-
ing by simply identifying patterns in the different
features, as their distributions are too similar to be
distinguished.

Table 4: The average global Jensen-Shannon (JS) diver-
gence across the feature dimensions of the intermediate
results generated during inference on different models
and datasets, with all values being less than 0.1, indi-
cates that the distribution differences across the feature
dimensions are minimal.

Model PIQA WikiText MRPC QNLI
BERT-large 0.0748 0.0618 0.0605 0.0612
GPT2-large 0.0555 0.0441 0.0462 0.0470

Distribution Similarity Test We calculated the
global Jensen-Shannon (JS) divergence (ranging
from 0 to 1, where 1 indicates a clear distinction be-
tween distributions) among all feature dimensions
of the intermediate activations on BERT, GPT-2,
and three datasets. It can be observed from Table 4
that all the global JS divergences are less than 0.1.
The differences in the distributions of different fea-
tures are extremely small. Moreover, considering
that the intermediate dimension is quite large (>=
768), it is very difficult in practice to recover the
permutation matrix by observing the distributions
of these features.

Classifier-based Test We also attempted to use
RNN and Linear as classifiers to model the distribu-
tion characteristics of different feature dimensions.
However, even after careful tuning, such classifiers
failed to fit successfully during the training process.

C.2.2 Crack by Heuristic Searching: Difficult
Cracking strategies that use heuristic signals such
as frequency as search guides are indeed efficient

in traditional substitution cipher scenarios. How-
ever, in the scenario considered by Centaur, the
presence of noise makes it difficult for attackers to
find effective and accurate heuristic signals.

Take the frequency-based attack as an example.
Different from the monoalphabetic substitution ci-
pher, the substitution space (768!) and the vocab-
ulary space (>10000) are much larger than the al-
phabet. Moreover, the "substitution" occurs in the
intermediate results rather than the original vocab-
ulary, even if an attacker might obtain the interme-
diate representation of a known token, they still
cannot directly solve for the permutation matrix as
in a known-plaintext attack (KPA), because there
is a random perturbation between the intermedi-
ate representation they possess and the one they
observe.

We conducted experiments to further verify the
difficulty of heuristic search attacks. We con-
sider both genetic algorithm (Bassin and Buzdalov,
2020) and gradient-based continuous approxima-
tion approaches for searching the permutation ma-
trix. We tried various heuristic schemes to guide
the cracking process, including:

• Frequency-based. The attacker can use the
clustering of intermediate results (since per-
mutation does not affect clustering based on
metrics such as cosine-similarity) to count
token frequencies. After identifying high-
frequency tokens, the attacker can crack the
permutation matrix by comparing the interme-
diate representations of high-frequency tokens
before and after permutation. In the experi-
ment, we assumed that the attacker had com-
pletely determined the identities of the top-5
and top-1 high-frequency permuted interme-
diate results. We attempted to use the cosine
similarity between the original intermediate
results of these five tokens (sampled by the
attacker from the auxiliary dataset) and the
observed values as a heuristic signal.

• Scoring-model-based. An ML model can be
used to model the relationship between the
"degree of disorder" and the degree of restora-
tion mentioned in Fig. 7. This model takes
the permuted intermediate results as input and
can score the degree of disorder of the per-
mutation. In practice, a scoring model with
the architecture of the bert - base model can
fit this relationship. Therefore, an attempt is



Table 5: The attack performance (measured by ROUGE-L F1 score %) of heuristic-searching-based cracking after
the search curve reaches saturation, using different heuristic signals.

Heuristic Signals Scoring-
model

Frequency
(top1-token)

Frequency
(top5-token)

(GT)
Edit Distance

(GT)
Invertion Rouge

Genetic Algorithm 1.02± 0.98 8.23± 2.44 14.54± 3.84 11.45± 1.01 28.41± 1.98
Gradient-based 6.87± 3.21 7.85± 2.90 9.87± 1.92 - 18.23± 2.09

made to use the output score of this model as
a heuristic signal.

• Control. As a control, we used two ground
truth metrics: (a) the mean edit distance (the
average edit distance between the cracked per-
mutation matrix and the real permutation ma-
trix), and (b) ROUGE-L of the reconstructed
sentence after cracking, compared to the real
sentence, as ground truth heuristic signals.

We conducted permutation cracking experiments
on an experimental machine equipped with 2 x In-
tel Xeon Gold 2.60GHz CPUs and 4 x NVIDIA
A100(40GB) GPUs. We also recorded the ROUGE-
L of the decrypted results of the cracked permuta-
tion after the search curve reached saturation (i.e.,
after the heuristic indicators stopped increasing for
a certain period of time). It can be seen from Ta-
ble 5 that even when using the ground truth (GT) as
the heuristic signal for the search, this search task
remains difficult (it’s hard to break through the 30%
performance bottleneck). As mentioned in 2.1, an
attacker needs to recover more than 80% of the per-
mutation matrix to achieve an attack performance
of over 30%, which is already extremely challeng-
ing. Moreover, the heuristic signals adopted by
the attacker are perturbed. This perturbation will
further confound the features that are already dif-
ficult to distinguish as mentioned in Fig. 7, creat-
ing an inevitable gap between them and the real
signals. This further prevents the recovery perfor-
mance from surpassing the 30% bottleneck.

D More Efficiency Results

D.1 Communication Overhead Analyses
We analyze the communication overhead of CEN-
TAUR-based PPTI and compare it with the current
leading privacy-preserving inference frameworks.
For BERTBASE and BERTLARGE, using CENTAUR

for PPTI reduces the communication overhead, re-
spectively, by 2.5 ∼ 37.1 and 2.4∼36.0 times com-
pared to existing methods. For the GPT-2BASE
and GPT-2LARGE, this reduction is 2.6∼37.6 and

2.51∼35.4 times, respectively. This significant
reduction is attributed to the hybrid computation
mechanism employed by CENTAUR, which drasti-
cally reduces the communication overhead in both
the linear and non-linear layers during PPTI.

Linear Layers. In the linear layers, the communi-
cation overhead required for performing PPTI us-
ing CENTAUR is half of existing PPTI frameworks.
This is because in the baseline PPTI frameworks,
both the model parameters and inference data are
in secret-sharing states, requiring the use of the
private matrix multiplication protocol ΠMatMul be-
tween secret shares during linear layer operations.
In contrast, CENTAUR places only the inference
data in a secret-sharing state while keeping the
model parameters in a randomly permuted state.
This allows CENTAUR to perform most of the lin-
ear layer computations using the communication-
free private matrix multiplication protocol ΠScalMul
between plaintext and secret shares.

Non-Linear Layers. In the non-linear layers,
CENTAUR significantly reduces the communica-
tion overhead of privacy-preserving computations
by converting between secret-sharing and random
permutation states. Specifically, for the privacy-
preserving computation of Softmax, CENTAUR re-
duces the communication overhead by 3.1∼112.3
times compared to the current state-of-the-art PPTI
frameworks. For the privacy-preserving computa-
tion of GeLU, CENTAUR reduces the communica-
tion overhead by 2.0∼95.0 times, and for Layer-
Norm, CENTAUR reduces the communication over-
head by 3.0 ∼ 3.1 times.
Embedding & Adaptation Layers. The Embed-
ding and Adaptation layers both include linear
and nonlinear operations, allowing CENTAUR to
achieve dual optimization in communication over-
head. Specifically, for the Embedding layer, which
includes matrix multiplication and LayerNorm,
CENTAUR reduces communication overhead by
22.0 ∼27.8 times compared to the current state-
of-the-art PPTI frameworks. For the Adaptation
layer, CENTAUR reduces communication overhead
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Figure 8: Communication volume for each operations (left) and the entire PPTI process (right) of the tested
frameworks.
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Figure 9: Time breakdown for BERTBASE and GPT-2BASE. The results are the average of ten runs.

by 10.2 and 11.2 times on the BERT series models.
However, for the GPT-2 series models, the reduc-
tions are significantly higher, at 448.3 and 698.7
times. This is due to the different structures used in
the adaptation layers of BERT and GPT-2 models
to adapt to downstream tasks.

D.2 Time breakdown for BERTBASE and
GPT-2BASE

In this section, we present the results of the time
overhead for privacy-preserving inference using
CENTAUR with BERTBASE and GPT-2BASE models
under LAN and WAN settings. The analysis results
are consistent with those observed for BERTLARGE

and GPT-2LARGE Section 5.4.

E The Generalizability of CENTAUR

CENTAUR is compatible with other Transformer
models and can achieve a more optimal balance
between privacy, efficiency, and performance. This
is due to CENTAUR performing the computation of
nonlinear functions in Transformer models under
permutation, allowing for seamless extension to
other Transformer architectures, such as LLaMA.
In particular, the LLaMA model utilizes the RM-
SNorm normalization function and the SwiGLU
activation function. These functions are analogous
to LayerNorm and GeLU and can both be com-



Table 6: The cost of privacy-preserving inference on LLaMA-7B, where #Input denotes the length of the input
sentence and #Output represents the number of generated tokens.

(#Input, #Output) (4, 1) (8, 1) (16, 1)
Costs Comm(GB) Time(S) Comm(GB) Time(S) Comm(GB) Time(S)

CENTAUR 0.32 2.76 0.39 3.02 0.54 6.81

puted under permutation, as demonstrated below:

RMSNorm(xπ) =
xπ√
1
d

d∑
i=1

x2i

= RMSNorm(x)π,

(6)

SwiGLU(xπ) =
xπ

1 + e−xπ
= SwiGLU(x)π.

(7)
Where x ∈ Rd is the input vector, d is the

input dimension (i.e., the number of elements),
and xi represents the i-th element in the vec-
tor. This enables CENTAUR to perform com-
plete privacy-preserving inference on the LLaMA
model without changing its underlying architecture.
In contrast, for SMPC-based PPTI frameworks,
such as MPCFormer and PUMA, extending to the
LLaMA model would require the design of pro-
prietary SMPC protocols for handling RMSNorm
and SwiGLU. This means that CENTAUR is more
generalizable than SMPC-based PPTI frameworks.

Since CENTAUR does not alter the structure of
the LLaMA model, it can theoretically achieve per-
formance comparable to the plaintext model. In
terms of efficiency, we have further added experi-
mental results of CENTAUR applied to the LLaMA-
7B model. We used the same experimental setup
as in the paper and executed the experiments in a
local area network (LAN) with 20Gbps bandwidth
and 0.1ms latency.

From the data in Table 6, it is evident that CEN-
TAUR can complete privacy-preserving inference
on the LLaMA-7B model in less than 10 seconds,
with communication overheads below 1GB. When
the input sequence length is 8, executing privacy-
preserving inference on the LLaMA-7B model us-
ing CENTAUR generates 1 token in less than 3 sec-
onds, with a communication overhead of 0.39GB.
In the same network conditions (bandwidth and
latency), PUMA would require approximately 200
seconds and 1.79GB of communication. This
shows that CENTAUR offers significant advantages
in both speed and communication efficiency, mak-

ing it a highly scalable and practical solution for
privacy-preserving Transformer model inference.

F Hyper-parameter

For the baselines MPCFormer (Li et al., 2023) and
SecFormer (Luo et al., 2024), which require ad-
ditional training and distillation, we followed the
fine-tuning and distillation hyperparameter selec-
tion method as described in (Li et al., 2023). Specif-
ically, for BERT series models, during the fine-
tuning phase, we used learning rates of {1e-6, 5e-6,
1e-5, 1e-4}, batch sizes of {64, 256}, and epochs
of {10, 30, 100}. For GPT-2 series models, dur-
ing the fine-tuning phase, we used learning rates
of {1e-6, 5e-6, 1e-5, 1e-4}, a batch size of 2, and
epochs of {1, 3, 5}. We fine-tuned each model with
these hyperparameter combinations and selected
the best-performing model as the teacher.

During the knowledge distillation phase, for
BERT series models, the number of distillation
iterations was determined based on the MSE loss
between the embedding layer and the transformer
layer. For small datasets (CoLA, MRPC, RTE), the
batch size was 8, while for large datasets (QNLI,
STS-B), the batch size was 32. Specifically, for
the distillation stages in the embedding layer and
transformer layer, QNLI was trained for 10 epochs,
MRPC for 20 epochs, STS-B for 50 epochs, CoLA
for 50 epochs, and RTE for 50 epochs. For GPT-2
models, we used KLDiv loss to calculate the loss
between the output representations of the teacher
and student models, and Cosine loss to calculate
the loss between the hidden layers of the teacher
and student models. The number of distillation
steps was determined based on the loss values.
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