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ABSTRACT

Self-supervised learning (SSL) has shown great potential in learning generalizable
representations for graph-structured data. However, existing SSL-based graph
pre-training methods largely focus on improving graph representations by learning
the structure information based on disturbing or reconstructing graphs, which ig-
nores an important issue: the importance of different nodes in the graph structure
may vary. To fill this gap, we propose a Centrality-guided Graph Pre-training
(CenPre) framework to integrate the distinct importance of nodes in graph structure
into the corresponding representations of nodes based on the centrality in graph
theory. In this way, the different roles played by different nodes can be effectively
leveraged when learning graph structure. The proposed CenPre contains three
modules for node representation pre-training and alignment. The first is a node-
level importance learning module, fusing the fine-grained node importance into
node representation based on degree centrality, allowing the aggregation of node
representations with equal/similar importance. The second one, the graph-level
importance learning module, characterizes the importance between all nodes in
the graph based on eigenvector centrality, enabling the exploitation of graph-level
structure similarities/differences when learning node representation. Finally, a
representation alignment module aligns the pre-trained node representation using
the original one, permitting graph representations to learn structural information
without losing their original semantic information, thereby leading to better graph
representations. Extensive experiments on a series of real-world datasets demon-
strate that the proposed CenPre outperforms the state-of-the-art baselines in the
tasks of node classification, link prediction, and graph classification1.

1 INTRODUCTION

Graph neural networks (GNNs) aim to model the structural information of the graph by neigh-
borhood aggregation schemes, becoming increasingly popular in graph representation learning for
graph-structured data (Zhu et al., 2021a), such as knowledge graphs (Baek et al., 2020), social
networks (Fan et al., 2019), point clouds (Shi & Rajkumar, 2020), and chemical analysis (De Cao &
Kipf, 2018). Graph representation learning can produce low-dimensional vector representations for
graph-structured data in many applications, including node/graph classification, link prediction, and
graph generation (You et al., 2020; Wang et al., 2020; Zhang & Chen, 2018; Hou et al., 2019).

Recently, self-supervised learning on graph-structured data has shown great potential in learning
generalizable, transferable, and robust representations due to the advantage of learning graph structural
information without annotated data (Hu* et al., 2020; You et al., 2020). Among many, graph predictive
learning and graph contrastive learning (GCL) have become two main paradigms in learning graph
representation, where mutual information between graph representations can be learned by leveraging
the similarity/difference between augmented views (Hu* et al., 2020; Kim et al., 2022; You et al.,

*Equal contribution.
†Corresponding authors.
1The source code of this work is released at https://github.com/HITSZ-HLT/CenPre.
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2020; 2021; Xia et al., 2022b). Furthermore, Jin et al. (2020) and Hu et al. (2019b) explore centrality
in learning graph structures in pre-training graphs. Despite promising progress made by existing graph
representation learning methods, they largely ignore the importance of different nodes in the graph
structure may vary when learning graph structure. This deficiency may result in the inability to exploit
important characteristic information in the graph structure when learning graph representations.

To alleviate this issue, in this paper, we propose a novel graph pre-training framework to produce better
graph representation that leverages graph structure in learning graph representations by exploiting
the distinct importance of different nodes in graph structure based on the notion of graph centrality,
dubbed Centrality-guided Graph Pre-training (CenPre). There are three modules in the proposed
CenPre: 1) node-level importance learning module, which aims to enhance the node representations
with the node importance in graph structure based on the property of degree centrality; 2) graph-
level importance learning module, which is designed to leverage the global importance of a node
based on the property of eigenvector centrality when learning node representation; and 3) graph
representation alignment module, which aligns the importance-fused node representation with the
original one.

Node-level importance learning. Degree centrality defines the importance of a node based on the
degree of that node. The higher the degree, the more crucial a node becomes in the graph (Zaki &
Meira, 2014). Based on this property, we argue that the degree of a node can represent its importance
in a graph, which plays a crucial role in its representation, so its representation can be refined
by degree. Therefore, we explore predictive learning to map each node representation into the
corresponding degree. This approach enables the model to capture statistical regularities between
representations and graph structures, allowing it to assess node importance effectively. As a result,
nodes with similar degrees receive comparable representations, while distinctions are maintained for
nodes of varying significance.

Graph-level importance learning. Eigenvector centrality, or eigencentrality, measures a node’s
influence within a connected network by accounting for direct and indirect connections (Zaki &
Meira, 2014; Bonacich, 2007). Such a measure provides a comprehensive understanding of a node’s
role in the global graph structure. Building on this, we propose identifying the most influential
neighbors of each node to obtain a global structural perspective, which can guide the refinement
of node representations. To achieve this, we introduce a Contrastive Representation-Structure
Pre-Training (CReSP) strategy that aligns node representations with the graph-level importance of
nodes. Specifically, matrix decomposition is used to extract significant eigenvalues and eigenvectors,
facilitating the identification of key neighbors in large, sparse graphs. Using cross-attention, the graph
representation guides the structure matrix in determining node importance relative to the current
node. Inspired by CLIP (Radford et al., 2021), CReSP refines this alignment by matching node
representations with their structural patterns, maximizing the similarity between nodes with shared
important neighbors and distinguishing node representations with different global importance, thereby
enhancing node representations by incorporating graph-level node importance information.

Graph representation alignment. After the graph structure pre-training, a graph representation
alignment module is devised to align the pre-trained structure-fused graph representation using the
original representation, allowing the graph representation to retain the original semantic information
while learning the graph structure information.

Our main contributions are as follows:

• We are the first to explore node importance in learning graph structure and align the graph
representation with graph structure in the graph pre-training process, aiming to produce
better graph representations for downstream tasks.

• Based on the notion of centrality, a novel Centrality-guided Graph Pre-training (CenPre)
framework is proposed to learn importance-fused graph representation from both local and
global perspectives.

• We conduct a series of experiments on real-world graph-structured benchmark datasets to
evaluate the effectiveness of our CenPre in learning graph representation. Experimental
results show that our CenPre significantly outperforms baselines in the tasks of node
classification, link prediction, and graph classification.
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2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) capture node dependencies through graph topology. The Graph
Convolutional Network (GCN) (Kipf & Welling, 2017) aggregates local neighborhood features,
excelling in node classification but struggling with global structures. Graph Attention Network
(GAT) (Velickovic et al., 2018) improves feature aggregation via attention mechanisms, enhancing
performance in heterogeneous graphs but increasing computational demands. Graph Isomorphism
Network (GIN) (Xu et al., 2019) improves structure distinction but risks overfitting on small datasets,
while GraphSAGE (Hamilton et al., 2017) scales well for large graphs using neighborhood sampling,
though it may lose information in dense networks. Graph Transformers (Dwivedi & Bresson, 2020)
capture long-range dependencies with self-attention, but are computationally intensive for large-scale
graphs. Some other previous works extend GNNs by leveraging centrality to enhance structural
understanding. For instance, Maurya et al., 2019 proposes a GNN framework for approximating
betweenness centrality by leveraging constrained message passing and ranking loss to learn structural
node importance efficiently. (Avelar et al., 2018) introduces a multitask GNN-based learning
framework to approximate multiple centrality measures, enabling shared representations and accurate
structural feature predictions.

2.2 SELF-SUPERVISED LEARNING ON GRAPHS

Self-supervised learning has achieved promising performance in graph pre-training. Early works
like DeepWalk (Perozzi et al., 2014) and node2vec (Grover & Leskovec, 2016) use random walks
to capture local structures, while contrastive learning methods such as DGI (Veličković et al.,
2019), InfoGraph (Sun et al., 2020), and GraphCL (You et al., 2020) maximize agreement between
augmented views. MVGRL (Hassani & Khasahmadi, 2020) contrasts different graph views using
diffusion, but these methods face challenges in selecting augmentations and handling negative samples.
GGD (Zheng et al., 2022) eliminates contrastive similarity computation by discriminating augmented
positive and negative node groups through a binary classification task. BGRL (Thakoor et al., 2021),
T-BGRL (Shiao et al., 2022), and CCA-SSG (Zhang et al., 2021) align representations without
negative samples, offering more efficient alternatives. Graph autoencoders (GAE) (García-Durán
& Niepert, 2017), VGAE (Kipf & Welling, 2016), and other variants reconstruct graph structure
but often underperform in classification. GraphMAE (Hou et al., 2022) improves performance
using masked feature reconstruction, bypassing augmentations, while GPT-GNN (Hu et al., 2020)
introduces autoregressive graph generation for pre-training. Along the line of work on multi-task
learning, GBT (Bielak et al., 2021) proposes to incorporate multi-task objectives, including node
proximity and subgraph features, to capture intrinsic graph properties without relying on augmentation.
PARETOGNN (Ju et al., 2022) enhances task generalization by reconciling multiple pretext tasks
through a multiple-gradient descent algorithm promoting Pareto optimality. AutoSSL (Jin et al.,
2021) leverages the homophily principle to automatically search for optimal combinations of multiple
self-supervised tasks, significantly enhancing the performance on downstream tasks such as node
clustering and classification. For the works that use centrality, GCA (Zhu et al., 2021b) adaptively
retains critical structural features using centrality-guided augmentations to enhance representation
learning. Relying on node degrees for its centrality-based learning, Jin et al. (2020) combines tasks
such as clustering and node distance prediction to learn robust structural embeddings. Hu et al.
(2019b) uses centrality score ranking to guide GNNs in capturing structural features but overlooks the
actual value of the centrality score. Unlike previous approaches, we use degree centrality to assess
node importance and Eigenvector centrality for global structural information, integrating both local
and global properties to guide graph pre-training efficiently. A detailed analysis of our motivation is
shown in Appendix F.

3 PRELIMINARIES

Notations Let G = {V, E} represent an undirected graph, where V = {v1, v2, ..., vn} is the set of
nodes and E the set of edges. Xv ∈ RN×dv and Xe ∈ R|E|×de denote the node and edge feature
matrices, respectively. The representation of a node vi is hi, and the graph-level representation is
HG = {h1, h2, ..., hn}.
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Figure 1: Illustration of our CenPre framework. f is the GNN encoder that is used to generate
node representation, f t is the pre-trained GNN encoder produced by our CenPre framework, and fo

is the original GNN encoder without pre-training."Att" represents cross-attention. h, s, and r are
embeddings, where rii = hi · s

′

i.

Graph Neural Networks GNNs update the graph representation HG by leveraging the graph
topology. For example, GCN (Kipf & Welling, 2016) updates node representations by aggregating
neighborhood information based on the adjacency matrix A. The degree matrix D, with Dii repre-
senting the degree of node vi, normalizes the influence of neighboring nodes. The propagation rule
for GCN is:

H(K) = σ
(
D̃− 1

2 ÃD̃− 1
2H(K−1)W (K)

)
(1)

where Ã = A+ I includes self-loops, D̃ is its degree matrix, W (K) is the trainable weight matrix,
and σ(·) is a non-linear activation function.

4 METHOD

The motivation for CenPre is based on node2vec (Grover & Leskovec, 2016), which suggests that
nodes with similar roles have similar embeddings. Additionally, as highlighted in (McNulty, 2022),
influential nodes in graph layouts tend to be positioned centrally due to their stronger connectiv-
ity. Building on the relationship between node importance and centrality, we propose a novel
Centrality-guided Graph Pre-training (CenPre) framework to learn node representations. Unlike
node2vec (Grover & Leskovec, 2016), our goal is to enhance node embeddings by aggregating or
differentiating them based on centrality, rather than just role similarity. The CenPre architecture is
shown in Figure 1.

To achieve this, we propose integrating node importance into representation learning from two
perspectives: 1) node-level importance learning, which enhances node representations based on
their individual importance in the graph; and 2) graph-level importance learning, which improves
node representations by considering the importance of related nodes. We introduce a graph represen-
tation alignment module to align the centrality-guided node representations with the original ones,
preserving semantic information while incorporating node importance. In this study, we use degree
centrality and eigenvector centrality as local and global measures of node importance, respectively, to
guide CenPre’s pre-training for more accurate, structure-aware node embeddings. More discussion
on other centrality measures can be found in Appendix A.
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4.1 NODE-LEVEL IMPORTANCE LEARNING

In this section, we introduce the node-level importance learning module of our CenPre framework in
detail. Based on the Definition 1 from Degree Centrality, we propose node-level importance learning,
aiming to identify the degrees of nodes to distinguish the importance of nodes, so as to guide the
refinement of the node representation according to the degree of the node.
Definition 1. Degree Centrality defines the importance of a node based on the degree of that node.
The higher the degree, the more crucial it becomes in the graph.

From Eq.1, it is evident that GNNs like GCNs use the adjacency matrix to aggregate information
from neighboring nodes in an equal and uniform manner, assuming that all sources of information
contribute equally. However, GCNs focus solely on the connections between nodes when aggregating
neighbor information and do not account for the specific roles or characteristics of nodes. In this
study, we address this limitation by incorporating node importance into the learning process, allowing
for more accurate representations. To be specific, for each graph, we obtain the degree di of each
node vi by summing the values in its corresponding row of the adjacency matrix A, which represents
the connections between nodes:

Yd
i = di =

∑
j

Aij (2)

where Aij represents the entry in the adjacency matrix A indicating the presence (1) or absence (0)
of an edge between nodes vi and vj . Then, we train a degree predictor Pd to predict the degree of
each node based on the node representations {h1, h2, ..., hn}. The loss of Pd is defined as:

Ld = − 1

n

n∑
i=1

Yd
i log

(
Pd(hi; θd)

)
(3)

where Pd(hi; θd) is the predicted distribution of the degree of node vi and Yd
i is the ground-truth

distribution. θd represents the trainable parameters of the degree predictor Pd. In this way, the degree
information can be integrated to refine the node representation.

4.2 GRAPH-LEVEL IMPORTANCE LEARNING

Node-level importance learning reflects a local perspective, focusing on the importance derived
from the node itself. Solely utilizing node degree as a metric for node-level learning might be
misleading, as nodes with similar degrees are not necessarily similar in other respects (e.g., two users
in a social network can have the same number of followers). A broader, more global perspective
that considers attributes like "the degree distribution of a node’s neighbors" is necessary. Such an
intuition is captured by the essence of Eigenvector Centrality (Definition 2), which reflects how a
node’s importance is shaped by the importance of its neighbors. Therefore, beyond learning local
node-level importance, we propose to integrate graph-level importance using Eigenvector Centrality.
Definition 2. Eigenvector Centrality defines relationships with high-scoring nodes have more
contribution to the score of a node than connections to nodes with low eigenvector centrality scores.

As described previously and by definition, degree centrality provides insight into a node’s immediate
environment, while eigenvector centrality reflects its importance relative to the entire network.
Together, they offer a more comprehensive picture of a node’s role within the graph, which is
naturally divided into four categories. More details are shown in Appendix A.

To compute Eigenvector Centrality, we first obtain λmax, which is the maximum absolute eigenvalue
of the adjacency matrix A, and solve for the eigenvector v⃗:

λmaxv⃗ = Av⃗ (4)

This is an example of the Eigen-Decomposition, where we decompose A into a set of eigenvectors
and eigenvalues. This classic technique is powerful but may not always be numerically stable for
ill-conditioned matrices2, which can arise in large, sparse, or noisy networks. Moreover, it is also

2An ill-conditioned matrix typically has a high condition number, which is the ratio of the largest to the
smallest singular value. This makes numerical operations such as Inversion or Eigen-Decomposition highly
sensitive to small perturbations in the data.
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computationally expensive for large matrices. To address this, we turn to (Truncated) Singular Value
Decomposition (ED and SVD are equal if the AT = A ∧ A ⪰ 0, which is usually the case for A
from undirected graph, see Appendix B for a proof). It retains only the top k singular values and
vectors3, reducing computational cost while preserving the most important structural information:

A = UΣV T ≈ UkΣkV
T
k (5)

where U and V are orthogonal matrices containing the left and right singular vectors, and Σ is a
diagonal matrix storing the singular values. The left singular vectors in Uk can be used as structural
representations for each node. Specifically, each row of the matrix Uk provides a k-dimensional
embedding that captures the most important structural properties of the graph with respect to its overall
connectivity. Denoting this structural representation retrieval process as a function ftruncated_svd
that returns the truncated left singular matrix Uk for a given adjacency matrix A, we can obtain the
structural representation si for each node vi as follows:

SG = {s1, s2, . . . , sn} = {Uk
0,∗, U

k
1,∗, . . . , U

k
n,∗} = Uk = ftruncated_svd(A) (6)

Based on this, the issue of producing importance-fused structure representation for a specific node
vi evolved into how to determine the importance of each node in a graph for vi. In our case, we
treat the structure representation SG and graph representation HG as two modalities–one encoding
the structural properties and the other capturing the feature-based characteristics of the graph–and
use graph representation HG to cross-attend over structural representation. By aligning the two
modalities, we produce the importance-fused graph-level structural representation S

′

G :

S
′

G = {s
′

1, s
′

2..., s
′

n} = CrossAtt(HG ;SG) = Softmax
(
(WqHG)(WkSG)

)
(WvSG) (7)

where Wq, Wk, and Wv are the weight matrices of query, key, and value in the cross-attention
mechanism, respectively. After obtaining the importance-fused structure representation S

′

G , inspired
by CLIP (Radford et al., 2021) aligning text and image modalities, we propose a Contrastive
Representation-Structure Pre-Training (CReSP) model Pe to train the node representation based
on the graph-level importance-fused structure representation. This contrastive learning objective
is designed to capture both local node features and global structural roles by aligning these two
complementary modalities in the same embedding space. The loss of Pe is defined as:

Le = − 1

n

n∑
i=1

1

2

(
Ye
i log

(
Pe(ri; θe)

)
+ Ye

i log
(
Pe(r

⊤
i; θe)

))
, ri = [ri1, ri2, ..., rin] (8)

where Ye represents the index label towards the importance-fused structure matrix. rij = his
′

j

represents the computation of similarity between hi and s
′

j . θe represents the trainable parameters of
the CReSP model Pe.

4.3 GRAPH REPRESENTATION ALIGNMENT

Based on the pre-trained GNN encoder f t learned by our CenPre, we use the L2-norm to align
the structure-fused node representation with the original one, aiming to prevent the loss of the
original semantic information while learning the graph structure information4. The loss of graph
representation alignment module is defined as:

Lr =
1

n

n∑
i=1

∣∣∣∣(f t(vi), f
o(vi)

)∣∣∣∣
2
=

1

n

n∑
i=1

√√√√ dv∑
j=1

(
f t(vij)− fo(vij)

)2
(9)

where f t(vi) and fo(vi) represent the representation of node vi produced by the pre-trained GNN
encoder f t and the original GNN encoder fo.

3Conventionally, we set k to explain ≥ 0.95 variance.
4In the preliminary experiments, we also tried other loss functions, such as KL-divergence, L1-norm, Cosine

Distance, etc. We found that the performance of L2-norm was more stable, so we use L2-norm in our method.
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4.4 OVERALL LEARNING OBJECTIVE

The overall learning objective of our CenPre is to train the framework by jointly minimizing the three
losses derived from Node-level Importance Learning, Graph-level Importance Learning, and Graph
Representation Alignment. The overall loss L is defined as:

L = λ1Ld + λ2Le + λ3Lr (10)

where hyperparameters λ1, λ2 and λ3 are scaling weights to balance the losses. In this way, our
proposed CenPre can effectively integrate structural information into node representations to pro-
duce structure-fused node representation by learning important information from graph structures.
Meanwhile, the graph representation alignment that aligns the structure-fused representation using
the original node representation can also prevent the loss of original semantic information due to
excessive learning of structural information.

5 EXPERIMENTS

In this section, we first evaluate the performance of our CenPre compared with existing state-of-the-art
(SOTA) competitors in the tasks of node classification, link prediction, and graph classification. Then,
we present a deep analysis of our CenPre to show its effectiveness in learning graph representation.

5.1 DATASETS AND EXPERIMENTAL SETTINGS

Table 1: Statistics of datasets.
Datasets Task #Graphs #Nodes #Edges #Features #Classes

Cora Node&Link 1 2,708 10,556 1,433 7
CiteSeer Node&Link 1 3,327 9,104 3,703 6
PubMed Node&Link 1 19,717 88,648 500 3

Computer Node 1 13,752 491,722 767 10
Photo Node 1 7,650 238,162 745 8
arXiv Node 1 169,343 2,315,598 128 40
Collab Link 1 235,868 1,285,465 128 -

MUTAG Graph 188 17.93 19.79 7 2
NCI1 Graph 4,110 29.87 32.30 5 2

PROTEINS Graph 1,113 39.06 72.82 29 2
DD Graph 1,178 284.32 715.66 7 2

IMDB-B Graph 1,000 19.77 96.53 10 2
RDT-B Graph 2,000 429.63 497.75 10 2

Dataset We evaluate the effective-
ness of our proposed CenPre frame-
work through the tasks of node
classification, link prediction, and
graph classification on 13 widely
used benchmark datasets. These
datasets include the Citation Net-
works triplet (Kipf & Welling, 2017)
(Cora, Citeseer, Pubmed), Amazon-
Co-Purchase networks (Shchur et al.,
2018) (Computer, Photo), TUD
Benchmark datasets (Morris et al.,
2020) (MUTAG, NCI1, PROTEINS,
DD, IMDB-B, RDT-B), and two
large-scale graphs from the Open Graph Benchmark (Hu et al., 2020) (ogbn-arXiv, ogbl-Collab).
The statistics of the datasets are shown in Table 1. We can see that these datasets span various domains,
with the number of graphs ranging from 1 to 4,110, the average number of nodes ranging from 17.93
to 235,868, and the average number of edges ranging from 19.79 to 2,315,598, demonstrating the
diversity and comprehensiveness of the datasets.

Baselines & Implementation Details We compare our CenPre with a series of SOTA baseline
models, including 1) supervised learning methods: GCN (Kipf & Welling, 2017), GAT (Velickovic
et al., 2018), GIN (Xu et al., 2019), and SAGE (Hamilton et al., 2017); 2) graph kernels methods:
WL (Shervashidze et al., 2011) and DGK (Yanardag & Vishwanathan, 2015); 3) self-supervised
learning methods: node2vec (Grover & Leskovec, 2016), graph2vec (Narayanan et al., 2017), Info-
Graph (Sun et al., 2020), GAE (Kipf & Welling, 2016), VGAE (Kipf & Welling, 2016), ARGA (Pan
et al., 2018), GraphMAE (Hou et al., 2022), DGI (Veličković et al., 2019), GRACE (Zhu et al.,
2020), GCA (Zhu et al., 2021b), BGRL (Thakoor et al., 2021), CCA-SSG (Zhang et al., 2021),
GraphCL (You et al., 2020), JOAO (You et al., 2021), InfoGCL (Xu et al., 2021), SimGRACE (Xia
et al., 2022a), AutoGCL (Yin et al., 2022), MaskGAEe (Li et al., 2023), MaskGAEp (Li et al., 2023),
TopoGCL (Chen et al., 2024), Patcher (Ju et al., 2023) and GPA (Zhang et al., 2024). Please refer to
Appendix C for detailed information of these baseline models and Appendix D for implementation
details, which follows the evaluation protocol established by previous works (Li et al., 2023; Hou
et al., 2022).
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Table 2: Experimental results of node classification. Averaged accuracy±std. (%) over 10 runs
are reported. The best and second-best results are highlighted in red and blue, respectively. A.R.
is short for the average rank. The smaller the value of A.R., the higher the ranking of model
performance. Results with ⋆ denote the significance tests of our CenPre over the baseline models at
p−value < 0.05.

Methods Cora CiteSeer PubMed Computer Photo arXiv A.R.↓

Supervised GCN 81.50±0.20 70.30±0.40 79.00±0.50 86.51±0.54 92.42±0.22 70.40±0.30 10.8
GAT 83.00±0.70 72.50±0.70 79.00±0.30 86.93±0.29 92.56±0.35 70.60±0.30 8.0

Self-supervised

GAE 74.90±0.40 65.60±0.50 74.20±0.30 85.10±0.40 91.00±0.10 63.60±0.50 15.0
VGAE 76.30±0.20 66.80±0.20 75.80±0.40 85.80±0.30 91.50±0.20 64.80±0.20 14.0
ARGA 77.95±0.70 64.44±1.19 80.44±0.74 85.86±0.11 91.82±0.08 67.34±0.09 12.5

NodeProperty 81.94±0.00 71.60±0.00 79.44±0.00 - - - 10.3
DGI 82.30±0.60 71.80±0.70 76.80±0.60 83.95±0.47 91.61±0.22 65.10±0.40 11.8

GRACE 81.90±0.40 71.20±0.50 80.60±0.40 86.25±0.25 92.15±0.24 68.70±0.40 10.5
GCA 81.80±0.20 71.90±0.40 81.00±0.30 87.85±0.31 92.53±0.16 68.20±0.20 8.8

BGRL 82.86±0.49 71.41±0.92 82.05±0.85 90.34±0.19 93.17±0.30 71.64±0.12 5.7
CCA-SSG 83.59±0.73 73.36±0.72 80.81±0.38 88.74±0.28 93.14±0.14 69.22±0.22 6.7
GraphMAE 84.20±0.40 73.40±0.40 81.10±0.40 89.51±0.08 93.23±0.13 71.75±0.17 3.8

Patcher 84.17±0.54 71.65±0.05 81.13±0.68 89.44±0.79 81.23±0.32 72.31±0.22 6.7
MaskGAEe 83.77±0.33 72.94±0.20 82.69±0.31 89.44±0.11 93.30±0.04 70.97±0.29 4.5
MaskGAEp 84.30±0.39 73.80±0.81 83.58±0.45 89.54±0.06 93.31±0.13 71.16±0.33 2.7

CenPre (ours) 85.15±0.49⋆ 76.94±2.12⋆ 83.91±0.12 91.22±0.05⋆ 93.96±0.14 72.47±0.15 1.0

Table 3: Experimental results of link prediction. Average AUC, Average Precision (AP), and
Hit@50±std. (%) over 10 runs are reported. Hit@50 measures the proportion of correct links among
the top 50 predictions. The best and second-best results are highlighted in red and blue, respectively.

Methods Cora CiteSeer PubMed COLLAB A.R.↓
AUC AP AUC AP AUC AP Hit@50

Supervised

GCN 86.70±0.20 87.55±0.05 91.10±0.50 91.72±0.43 84.66±0.10 86.20±0.61 47.14±0.01 9.4
GAT 86.84±0.27 88.66±0.08 91.20±0.10 92.02±0.44 84.23±0.10 86.62±0.22 - 10.1
GIN 86.66±0.59 87.62±0.58 92.62±0.24 92.54±0.11 84.05±0.32 86.17±0.25 - 10.4

SAGE 86.33±1.06 88.81±1.36 92.54±0.87 92.70±1.02 84.98±2.65 87.12±2.95 54.63±1.12 7.3

Latent node2vec 78.32±0.74 78.91±0.77 75.36±1.22 76.03±0.11 79.98±0.35 81.55±0.83 57.03±0.52 10
MatrixFactor 62.25±2.21 64.20±1.17 61.65±3.80 61.99±2.50 68.56±12.13 68.23±3.13 48.96±0.29 11.5

Self-supervised

GAE 91.09±0.01 92.83±0.03 96.40±0.01 96.50±0.02 90.52±0.04 91.68±0.05 47.14±1.45 7.1
VGAE 91.40±0.01 92.60±0.01 94.40±0.02 94.70±0.02 90.80±0.02 92.00±0.02 45.53±1.87 7.8
ARGA 92.40±0.00 93.23±0.00 96.81±0.00 97.11±0.00 91.94±0.00 93.03±0.00 28.39±2.51 6.3

GraphMAE 94.88±0.23 93.52±0.51 96.24±0.36 95.47±0.41 94.32±0.40 93.54±0.22 53.97±0.64 5.3
MaskGAEe 96.42±0.17 95.91±0.25 98.02±0.22 98.18±0.21 98.75±0.04 98.66±0.06 65.84±0.47 2.8
MaskGAEp 96.45±0.18 95.95±0.21 97.87±0.22 98.09±0.17 98.84±0.04 98.78±0.05 65.98±0.39 2.3

CenPre (ours) 97.44±0.85 96.05±0.65 99.02±0.59⋆ 99.04±0.37 99.82±0.10⋆ 99.62±0.10⋆ 66.03±0.27 1.0

5.2 COMPARISONS WITH BASELINES

Node Classification Table 2 shows the results of node classification. Our CenPre overall outper-
forms the SOTA baseline models, in which our CenPre achieves the best performance on all datasets.
This demonstrates the effectiveness of the proposed CenPre in node classification. Further, our
CenPre performs best on both the Cora dataset with 2,708 nodes and the arXiv dataset with 169,343
nodes, indicating that our CenPre can be effective on datasets of different types and sizes.

Link Prediction We further evaluate the performance of our CenPre in link prediction and report
the comparison results with SOTA baseline models in Table 3. Our CenPre achieves overall better
performance than the baseline models, reaching optimal performance in all datasets. This indicates
that leveraging the node importance based on the notion of Centrality can improve the representations
of nodes in a graph, thereby leading to better link prediction performance.

Graph Classification Table 4 shows the experimental results of graph classification. We can
see that our CenPre consistently outperforms the baseline models on all datasets. This verifies the
effectiveness of CenPre in graph classification, indicating that the proposed Centrality-guided method
can improve the learning of the entire graph based on the improvement of node representations,
therefore achieving optimal performance in graph classification. Further, our CenPre performs
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Table 4: Experimental results of graph classification. Averaged accuracy±std. (%) over 10 runs are
reported. The best and second-best results are highlighted in red and blue, respectively.

Methods NCI1 PROTEINS DD MUTAG IMDB-B RDT-B A.R.↓

Supervised
GCN 76.29±1.79 75.17±3.63 73.26±4.46 79.81±1.58 57.35±4.04 81.30±6.93 12
GAT 74.90±1.72 74.72±4.01 77.30±3.68 78.89±2.05 54.60±7.45 72.70±2.30 12.7

SAGE 74.73±1.34 74.01±4.27 75.78±3.91 78.75±1.18 58.95±6.74 83.10±5.40 12.7

Kernel WL 80.31±0.46 72.92±0.56 76.44±2.35 80.72±3.00 72.30±3.44 68.82±0.41 11.2
DGK 81.01±1.06 73.30±0.82 74.85±0.74 87.44±2.72 66.96±0.56 78.04±0.39 10.3

Self-supervised

node2vec 54.89±1.61 57.49±3.57 - 72.63±10.20 56.40±2.80 69.70±4.10 16.2
Graph2Vec 73.22±1.81 73.30±2.05 70.32±2.32 83.15±9.25 71.10±0.54 75.78±1.03 13.1
InfoGraph 76.20±1.06 74.44±0.31 74.24±0.86 89.01±1.13 73.03±0.87 82.50±1.42 9.3

GraphCL 77.87±0.41 74.39±0.45 78.62±0.40 86.80±1.34 71.14±0.44 89.53±0.84 8.2
JOAO 78.07±0.47 74.55±0.41 77.32±0.54 87.35±1.02 70.21±3.08 85.29±1.35 9.2

InfoGCL 80.20±0.60 - - 91.20±1.30 75.10±0.90 - 10.5
GraphMAE 80.40±0.30 75.30±0.39 - 88.19±1.26 75.52±0.66 88.01±0.19 7.5
SimGRACE 79.12±0.44 75.35±0.09 77.44±1.11 89.01±1.31 71.30±0.77 89.51±0.89 6.3
AutoGCL 82.00±0.29 75.80±0.36 77.57±0.60 88.64±1.08 72.32±0.93 88.58±1.49 5
TopoGCL 81.30±0.27 77.30±0.89 79.15±0.35 90.09±0.93 74.67±0.32 90.40±0.53 2.8

GPA 80.42±0.41 75.94±0.25 79.90±0.35 89.68±0.80 74.64±0.35 89.32±0.38 5.3

CenPre (ours) 88.13±0.91⋆ 80.25±0.67⋆ 85.18±1.37⋆ 94.74±0.48⋆ 78.05±1.21⋆ 91.20±0.50 1.0

consistently better than TopoGCL (Chen et al., 2024) which considers the topological information
of the graph. This denotes that leveraging node-level and graph-level importance can improve
the learning of graph structure when modeling a graph, thus improving the performance of graph
classification.

5.3 ANALYSIS OF OUR CENPRE Table 5: Experimental results of the ablation study. ∆
denotes the performance drop relative to the full CenPre.
“w/o SVD" means the adjacency matrix A is used di-
rectly as the structural representation, and AUC is used
as the evaluation metric for Cora-Link.
Methods Cora-Node ∆ Cora-Link ∆ MUTAG-Graph ∆

CenPre 85.15±0.49 0.00 95.05±0.18 0.00 94.74±0.48 0.00

w/ Ld 81.43±0.30 3.72 92.80±1.05 2.25 91.62±0.05 3.12
w/ Le 79.91±0.22 5.24 93.17±0.65 1.88 90.38±0.15 4.36

w/o Ld 80.40±0.10 4.75 94.08±0.29 0.97 86.84±0.13 7.9
w/o Le 84.21±0.62 0.94 94.07±0.54 0.98 92.11±0.26 2.63
w/o Lr 78.63±0.50 7.12 91.29±1.57 3.76 89.47±2.55 5.27
w/o SVD 83.45±0.61 1.70 93.72±0.22 1.33 93.52±0.42 1.22

Ablation Study We conduct an ablation
study to analyze the impact of each module
of the CenPre on performance. The results
are reported in Table 5. We can see that
whether using only node-level structure (w/
Ld) or graph-level structure (w/ Le), the
performance of the model has significantly
decreased. This verifies that we need to
simultaneously explore the different impor-
tance of nodes from both local and global
perspectives in order to better learn the
structural information of the graph. In ad-
dition, the removal of graph representation alignment (w/o Lr) seriously degrades the performance
of our CenPre. This indicates that it is necessary to align the node representation when learning
structural information, since it can prevent the loss of the graph semantic information, especially for
node classification. Further, the removal of node-level importance learning (w/o Ld) and graph-level
importance learning (w/o Le) can lead to considerable performance degradation, which demonstrates
that learning node importance from both node and graph levels can make full use of the important
structural information of node in a graph, thus improving the model’s performance. The performance
of "w/o SVD" shows that the removal of SVD noticeably degrades the performance of our CenPre.
This implies that exploiting SVD to produce the structure representation based on important singular
values and eigenvectors can help the model better learn the graph’s structural information.

Table 6: Experimental results of using different
graph autoencoders on the Cora dataset.

Methods Original w/ CenPre Improvement

GAE 74.90±0.40 81.56±0.60 6.66
VGAE 76.30±0.20 78.30±1.15 2.00
ARGA 77.95±0.70 80.73±0.27 2.78

DGI 82.30±0.60 83.11±0.54 0.81

CenPre (ours) 85.15±0.49 0.00

Analysis of Generalizability To analyze the
generalizability of our CenPre to different graph
autoencoders, we conduct comparative exper-
iments based on different graph autoencoders
and report the results in Table 6. We can see
that the proposed CenPre can directly adapt to
different graph autoencoders and achieve vary-
ing degrees of performance improvement, which
validates the generalizability of our CenPre in
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Figure 2: The T-SNE 3D plots of the extracted nodes during different pre-training stages.

Figure 3: The T-SNE 2D plots of all the test samples from the CORA dataset.

graph pre-training. In addition, it can be noted that our CenPre, which uses the original node represen-
tation, achieves better performance than those that use graph autoencoders. This implies that using
the original representation can better assist our CenPre in learning the structural information of the
graph, thereby obtaining better node representations. Furthermore, this also indicates that exploring
better methods for graph autoencoders may further enhance the learning of graphs.

Analysis of Node Representation To analyze how our CenPre improves the representation of
nodes, we select a node from Cora data and retain its first-order neighbors to analyze the changes
in their representation at different learning stages. The results are shown in Figure 2. We can see
that, the original representations of nodes are divergent and the correlation between them cannot
be observed. After node-level importance learning, some important nodes are gathered together.
Furthermore, through our complete CenPre, important nodes (4, 6, 7) are further aggregated (Figure 2
(d)). This indicates that our CenPre can learn the similarity importance between nodes based on
Centrality, thereby improving the representation of nodes.

Visualizations To qualitatively demonstrate how our CenPre improves the node representations,
Figure 3 shows the t-SNE (van der Maaten & Hinton, 2008) visualization of node representations
from original representations (a), the variants of our CenPre (b), (c) and (d), and our CenPre (e).
We can observe that the original node representations largely diffuse and overlap between different
labels. The variants of our CenPre can show differences between different labels, which denotes
that exploring preferable methods to learn better node representations is key to improving node
classification. Further, the node representations derived by our CenPre can be better separated from
different labels. This indicates that our CenPre can make full use of the node importance based on
Centrality, and further improve the representations of nodes based on the representation alignment,
therefore leading to improved node representations.

6 CONCLUSION

In this paper, we propose CenPre, a Centrality-guided Pre-training framework for node representation
learning. CenPre integrates structural information into graph representation by using node importance
based on Degree and Eigenvector Centrality while preserving semantic information through a graph
alignment module. Experiments on real-world datasets demonstrate its superiority over state-of-the-
art models in node classification, link prediction, and graph classification.
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A APPENDIX

A CENTRALITY MEASURES

Centrality is a key concept in network analysis used to identify the most important or influential
nodes within a graph. Different centrality measures capture various aspects of a node’s importance,
ranging from its immediate connections to its role in facilitating communication between other nodes.
These measures help in understanding the structure of the graph, the flow of information, and the
relative significance of individual nodes in maintaining the overall connectivity. Below, we introduce
several commonly used centrality measures:

• Degree Centrality (Freeman, 1978) counts the number of direct connections a node has.
Nodes with higher degree centrality are considered more locally important due to their
numerous direct interactions within the network. For a node vi, the degree centrality is given
by:

CD(vi) =
∑
j

Aij (11)

where Aij is the entry in the adjacency matrix A, indicating the presence or absence of an
edge between nodes i and j.

• Eigenvector Centrality (Bonacich, 1972) assigns relative scores to nodes based on the
principle that connections to high-scoring nodes contribute more to the score of the node
itself. It captures both direct and indirect influences in the network. For a node vi, the
eigenvector centrality is given by:

CE(vi) =
1

λ

∑
j

AijCE(vj) (12)
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where λ is the largest eigenvalue of the adjacency matrix A.
• Betweenness Centrality (Freeman, 1977) quantifies the number of times a node acts as

a bridge along the shortest path between two other nodes. For a node vi, betweenness
centrality is given by:

CB(vi) =
∑

s̸=vi ̸=t

σst(vi)

σst
(13)

where σst is the total number of shortest paths from node s to node t, and σst(vi) is the
number of those paths that pass through node vi.

• Closeness Centrality (Bavelas, 1950; Sabidussi, 1966) measures how close a node is to all
other nodes in the network. For a node vi, closeness centrality is defined as:

CC(vi) =
1∑

j d(vi, vj)
(14)

where d(vi, vj) is the shortest path distance between nodes vi and vj .
• PageRank Centrality is a variant of eigenvector centrality that evaluates the importance of

a node based on the quality and quantity of incoming connections, where connections from
more important nodes weigh more heavily. The PageRank score PR(vi) for a node vi is
given by:

PR(vi) =
1− d

N
+ d

∑
j∈N (vi)

PR(vj)

|N (vj)|
(15)

where d is the damping factor (typically set to 0.85), N is the total number of nodes, and
N (vj) is the set of neighbors of node vj .

• Katz Centrality (Katz, 1953) extends degree centrality by considering the total number of
walks between nodes. It is defined as:

CK(vi) = α
∑
j

AijCK(vj) + β (16)

where α is a constant (decay factor) and β is an additional weight applied to each node,
allowing for paths of different lengths to contribute to the centrality.

• Harmonic Centrality (Marchiori & Latora, 2000) is a variation of closeness centrality that
computes the sum of the reciprocals of the shortest path distances from one node to all other
nodes. It is defined as:

CH(vi) =
∑
j ̸=i

1

d(vi, vj)
(17)

where d(vi, vj) is the shortest path distance between nodes vi and vj .

Table 7 provides a detailed comparison of node types based on Degree Centrality and Eigenvector
Centrality, highlighting their roles and characteristics in network structures. The table categorizes
nodes into four distinct types depending on their local and global importance, as measured by high
or low values of these centrality metrics. Each category is accompanied by a description of the
node’s structural characteristics within the network and an illustrative example from social networks,
offering a practical understanding of how centrality measures reflect different types of influence and
connectivity in real-world scenarios.

B EIGEN-DECOMPOSITION (ED) AND SINGULAR VECTOR DECOMPOSITION
(SVD)

Theorem B.1. ED and SVD of a matrix A are equivalent if and only if A is symmetric positive
semi-definite, i.e., AT = A ∧A ⪰ 0.

Proof. Given a matrix A ∈ Rn×n, the SVD of A is written as:

A = UΣV T (18)

where:
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Degree Eigen Node Characteristics Examples in Social Network

High Low A node connected to many other
nodes that are not highly central. Im-
portant locally but not globally.

A celebrity with many followers but
most of those followers are inactive
or non-influential accounts.

Low High A node with few direct connections
but connected to highly central nodes.
Important globally but not locally.

A journalist or analyst who is fol-
lowed by a few highly influential pub-
lic figures or news organizations.

High High A node that is both locally and glob-
ally important, with many connec-
tions and highly central neighbors.

A popular politician who has many
followers who are themselves influen-
tial, such as other public figures.

Low Low A node with few connections and low
global importance. Neither locally
nor globally important.

A regular person with few followers,
none of whom are influential or cen-
tral.

Table 7: Comparison of Degree Centrality and Eigenvector Centrality for Different Node Types and
their examples in social networks.

• U ∈ Rn×n is an orthogonal matrix (i.e., UTU = I),

• V ∈ Rn×n is an orthogonal matrix (i.e., V TV = I),

• Σ ∈ Rn×n is a diagonal matrix containing the singular values σ1, σ2, . . . , σn, where σi ≥ 0.

The ED of a matrix A ∈ Rn×n is given by:

A = QΛQ−1 (19)

where:

• Q ∈ Rn×n is an invertible matrix whose columns are the eigenvectors of A,

• Λ ∈ Rn×n is a diagonal matrix whose entries are the eigenvalues λ1, λ2, . . . , λn.

We want to establish the conditions under which the SVD and ED of a matrix A are equivalent.
Specifically, we need to check under what conditions:

UΣV T ≡ QΛQ−1 (20)

For the two decompositions to be equivalent, the matrix A must be symmetric, which implies that the
left and right singular vectors are the same:

A = AT → A = UΣUT (21)

In SVD, the singular values σi in Σ are always non-negative. For the eigenvalues λi in the ED to
match the singular values, all eigenvalues must be non-negative as well. This requires that A be
positive semi-definite. For SVD and ED to coincide, the matrix Q in the ED must be orthogonal, i.e.,
QTQ = I . This occurs when the eigenvectors of A are orthonormal. In this case, Q−1 = QT, and
the ED becomes:

A = QΛQT (22)

Thus, for A to have orthonormal eigenvectors, it must be symmetric.
In conclusion, the SVD and ED of a matrix A are equivalent if and only if:

• A is symmetric, i.e., A = AT,

• A is positive semi-definite,

• The eigenvectors of A are orthonormal.

17



Published as a conference paper at ICLR 2025

In this case, the SVD and ED both yield the same decomposition:

UΣUT ≡ QΛQT (23)

where Σ = Λ, and the columns of U (in SVD) and Q (in ED) are the same orthonormal eigenvectors
of A.Thus, SVD and ED are equivalent when A is symmetric and positive semi-definite.

C BASELINES

We compare and evaluate our CenPre framework with a series of baseline models, which are grouped
by graph kernel methods, graph supervised learning methods, and graph self-supervised learning
methods. The more detailed introduction of the baseline models is as follows:

Graph Kernels Methods:

• WL (Shervashidze et al., 2011) measures graph similarity by iteratively refining node labels
through aggregation of neighboring node labels, capturing graph structure and preserving
node attribute information.

• DGK (Yanardag & Vishwanathan, 2015) uses neural networks to learn representations of
subgraphs and combine them to compute a similarity score, enabling more expressive and
flexible graph comparisons for various graph analysis tasks.

Graph Supervised Learning Methods:

• GCN (Kipf & Welling, 2017) uses spectral graph theory to aggregate neighboring node
features, learning new node representations for tasks like classification and link prediction.

• GAT (Velickovic et al., 2018) uses an attention mechanism to assign weights to neighboring
nodes, computing weighted sums of their features to capture complex relationships for tasks
where neighbor importance varies.

• GIN (Xu et al., 2019) aggregates node features by summing a node’s features with its
neighbors’ and applying an MLP, capturing local structure and complex feature interactions
for effective node and graph classification.

• SAGE (Hamilton et al., 2017) generates node embeddings by sampling and aggregating
neighborhood features, enabling it to generalize to unseen nodes and graphs for scalable
node classification and link prediction.

Graph Self-supervised Learning Methods

• GAE (Kipf & Welling, 2016) encodes nodes into latent embeddings and reconstructs the
graph structure to learn meaningful representations for tasks such as node classification and
link prediction.

• VGAE (Kipf & Welling, 2016) extends the GAEs with variational inference to learn prob-
abilistic latent variable models, providing robust and expressive node embeddings for
graph-based tasks such as link prediction and anomaly detection.

• ARGA (Pan et al., 2018) enhances GAEs by incorporating adversarial training, ensuring
more robust and discriminative node embeddings for graph tasks like node classification
and link prediction through adversarial regularization.

• GraphMAE (Hou et al., 2022) leverages masked node feature reconstruction to learn rich
and informative node embeddings, enhancing performance on downstream graph tasks such
as node classification and graph classification.

• MaskGAE (Li et al., 2023) applies masking and reconstruction strategies to learn meaningful
graph representations, enhancing performance on tasks such as node classification and link
prediction.

• DGI (Veličković et al., 2019) maximizes mutual information between local and global graph
representations, producing highly expressive node embeddings that excel in tasks such as
node classification and graph classification.
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• GRACE (Zhu et al., 2020) leverages contrastive learning to maximize agreement between
different views of the same graph, resulting in robust and informative node embeddings for
various graph-based tasks.

• GCA (Zhu et al., 2021b) enhances contrastive learning by incorporating adaptive augmenta-
tion strategies, yielding discriminative and robust node embeddings for diverse graph-related
tasks.

• BGRL (Thakoor et al., 2021) learns graph representations by leveraging a bootstrapping
mechanism to predict target network outputs, producing effective node embeddings for tasks
such as node classification and link prediction without the need for negative sampling.

• CCA-SSG (Zhang et al., 2021) utilizes canonical correlation analysis to maximize agreement
between different graph views, generating high-quality node embeddings for downstream
tasks such as node classification and clustering.

• node2vec (Grover & Leskovec, 2016) uses biased random walks to generate node sequences,
which are then used with the Skip-gram model to produce continuous node embeddings for
downstream tasks like node classification and link prediction.

• graph2vec (Narayanan et al., 2017) uses the Skip-gram model to generate continuous
embeddings, capturing structural and global graph characteristics for downstream tasks.

• InfoGraph (Sun et al., 2020) maximizes mutual information between graph-level and
substructure-level representations, resulting in informative embeddings for downstream
graph classification and clustering tasks.

• GraphCL (You et al., 2020) designs four contrastive learning with graph augmentations
to capture rich and robust graph representations, improving performance on tasks such as
graph classification and clustering.

• JOAO (You et al., 2021) dynamically optimizes data augmentations to enhance contrastive
learning, producing robust and generalizable node embeddings for various graph tasks.

• InfoGCL (Xu et al., 2021) combines contrastive learning with mutual information maxi-
mization to enhance node and graph-level embeddings, yielding improved performance on
various graph-based tasks.

• Patcher (Ju et al., 2023) mitigates degree bias in Graph Neural Networks through test-time
augmentation, enhancing the robustness and generalization of graph representations for
various graph-based tasks.

• SimGRACE (Xia et al., 2022a) enhances graph contrastive learning by leveraging similarity-
based augmentations, producing robust node and graph embeddings for improved perfor-
mance on downstream tasks.

• AutoGCL (Yin et al., 2022) employs learnable view generators to create optimized aug-
mentations, leading to robust and effective graph embeddings for various downstream
tasks.

• TopoGCL (Chen et al., 2024) leverages topological invariance and extended persistence
to capture higher-order substructures, enhancing graph representations and delivering sig-
nificant performance gains in unsupervised graph classification, particularly in biological,
chemical, and social interaction graphs.

• GPA (Zhang et al., 2024) customizes augmentation strategies for each graph based on
its topology and node attributes, enhancing representation learning and outperforming
state-of-the-art models across diverse benchmark datasets.

• NodeProperty (Jin et al., 2020) combines tasks such as clustering and node distance
prediction to learn robust structural embeddings.

D MORE DETAILS OF EXPERIMENTAL IMPLEMENTATION

For node classification and link prediction tasks, we use a 2-layer GCN (Kipf & Welling, 2017)
as the encoder for self-supervised pretraining under the CenPre framework, increasing to 4 layers
for the arXiv (Hu et al., 2020) dataset. After pretraining, we freeze the encoder to extract node
embeddings, which are then input into a 2-layer MLP for classification and prediction. Results are
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Table 8: Experimental implementation for node classification, link prediction, and graph classification.
In node classification tasks, we set Hidden Size to 64 for the Citation Networks, 128 for the Amazon
Co-Buy, and 512 for the arXiv dataset, which has a 4-layer MLP as the downstream classifier.

Parameter Description Node Class. Link Pred. Graph Class.

LR Learning Rate 0.001 0.001 0.001
L2 Weight Decay 5e-4 5e-4 5e-4
pe Early Stopping Patience 15 15 15
e∆ Early Stopping Min-Delta 1e-5 1e-5 1e-5
ps Learning Rate Scheduler Patience 8 8 8
B Batch size 128 128 1
K Number of GNN Layers 2 2 2
M Number of MLP Layers 2/4 2 2
dh Hidden Layer Size 64/128/512 64 128
λ1 Scaling Weight of Node-Level Loss Lnode 1 1 1
λ2 Scaling Weight of Graph-Level Loss Lgraph 1 1 1
λ3 Scaling Weight of Regularization Loss Lreg 5 5 5
E Training epochs 100 100 300
ηd Dropout Ratio 0.2 0.2 0.2

POOL(·) Pooling Function - - mean

reported as mean and standard deviation over 5 runs. For graph classification, we use a GIN (Xu
et al., 2019) encoder instead, which is commonly used in previous graph classification works. we use
the Adam (Kingma & Ba, 2014) optimizer with an initial learning rate of lr = 0.01. The balancing
hyperparameters for loss components are set to λ1 = 1, λ2 = 1, and λ3 = 5, determined through
pilot studies. For model parameters, we use grid search to find the optimal parameter combination.
For the three hyperparameters λ1, λ2, and λ3, in preliminary experiments, we found that when these
three hyperparameters are within a reasonable range of values, the performance of the model will
only fluctuate within a certain range. When hyperparameters are set to λ1 = 1, λ2 = 1, and λ3 = 5,
the model’s performance is optimal. Therefore, we set λ1 = 1, λ2 = 1, and λ3 = 5, also making
them to the same scale.

Our framework is built on PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey & Lenssen,
2019), leveraging their datasets and functionalities. Experiments are conducted on an Intel(R)
Xeon(R) Gold 6248R CPU at 3.00GHz and an Nvidia Tesla V100 GPU with 32GB VRAM. Table 8
shows all relevant parameter settings for our experiments.

E COMPLEXITY ANALYSIS

To analyze the computational requirements of CenPre, we consider the complexity of its iterative
operations during training while treating the truncated-SVD as a pre-computation step. The precom-
puted structural representations are reused throughout the training process, and their computation
does not contribute to the iterative complexity of the framework.

E.1 SPACETIME COMPLEXITY OF CENPRE

The space complexity of CenPre during training is determined by:

• The node embeddings, are stored as a matrix of size O(nd), where n is the number of nodes
and d is the dimensionality of the embeddings.

• The adjacency matrix A, which has O(|E|) space complexity for sparse graphs, where |E|
is the number of edges.

• The cross-attention mechanism, which requires storing O(n2) attention weights during
alignment.

Combining these, the overall space complexity of CenPre is:

O(nd+ |E|+ n2) (24)

The time complexity of CenPre’s iterative operations during training is as follows:
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• Node-level importance learning: Computing node degrees from the adjacency matrix A has
O(|E|) complexity. Training the degree predictor Pd for n nodes requires O(nd) operations
per iteration.

• Graph-level importance learning: The cross-attention mechanism aligns graph and structural
representations, incurring O(n2d) complexity due to pairwise attention calculations.

• Graph representation alignment: Computing the L2-norm alignment between structure-fused
and original embeddings requires O(nd) operations.

The total time complexity per training iteration is:

O(|E|+ nd+ n2d) (25)

Note that the truncated-SVD operation is considered a preprocessing step and involves decomposing
the adjacency matrix A to obtain the top k singular vectors. Its time complexity is O(kn2), and space
complexity is O(kn), where k is the number of retained singular values. This cost does not contribute
to the complexity of iterative training and is incurred only once.

E.2 TIME COMPLEXITY COMPARISON WITH OTHER METHODS

In this subsection, we provide a concise summary of the theoretical time complexity of other methods.

• GraphCL costs O(L|E|d2 + nd2 +N2d) per iteration. This includes O(L|E|d2) for the
GNN encoder over L layers, O(nd2) for the projection head, and O(N2d) for contrastive
loss computation with minibatch size N . Graph augmentation adds minor costs (O(n) to
O(|Es|)).

• GraphMAE consists of three main components. Masked feature reconstruction, including
masking and re-masking, incurs O(n) complexity for n nodes. The GNN encoder and
decoder operate over L layers with a complexity of O(L|E|d2), where |E| is the number
of edges and d is the embedding dimension. The scaled cosine error computation for
feature reconstruction adds O(nd). Thus, the overall time complexity per iteration is
O(L|E|d2 + nd).

• MaskGAE per iteration includes O(L|Evis|d2) for the GNN encoder processing the un-
masked graph over L layers, O(|Emask|d) for the structure decoder reconstructing masked
edges, and O(nd) for the degree decoder approximating node degrees, where |Evis| and
|Emask| are the numbers of unmasked and masked edges, respectively. Overall, the complex-
ity is O(L|Evis|d2 + |Emask|d+ nd).

• TopoGCL includes three main components. Extended persistence computation, involving
simplicial complex operations, has a complexity of O(N3) for N nodes. The GNN en-
coder, applied over L layers, incurs O(L|E|d2) for |E| edges and embedding dimension d.
Contrastive loss computation for a minibatch of size M adds O(M2d). Thus, the overall
complexity is O(N3 +L|E|d2 +M2d), with extended persistence dominating for dynamic
graphs.

• AutoGCL incurs O(L|E|d2) for the GNN-based view generator and encoder operating over
L layers with |E| edges and embedding dimension d, and O(N2d) for contrastive loss
computation with minibatch size N . Thus, the overall complexity is O(L|E|d2 +N2d).

The time complexity comparison highlights the computational efficiency and scalability of CenPre
compared to other graph learning methods. CenPre achieves a lower overall complexity of O(|E|+
nd + n2d) by leveraging precomputation for structural representations, making it well-suited for
large sparse graphs. In contrast, methods like GraphCL and AutoGCL incur higher costs due to the
quadratic dependence on minibatch size (O(N2d)) in contrastive loss computation, which can become
a bottleneck for large-scale data. GraphMAE and MaskGAE share similar complexities, but their
dependency on the number of masked and unmasked edges (|Evis| and |Emask|) introduces sensitivity
to the masking ratio. TopoGCL stands out with a cubic dependence on the number of nodes (O(n3))
for extended persistence computation, making it less efficient for large graphs, though it provides rich
topological insights. Overall, CenPre balances computational demands with performance by focusing
on centrality measures and pretraining strategies, offering a practical advantage in terms of scalability
and efficiency.
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F SCALING SENSITIVITY V.S. RANKING SENSITIVITY

Another significant challenge in the centrality-guided pre-training method is its sensitivity to scaling.
As noted by (Hu et al., 2019a), centrality scores are not directly comparable across graphs of varying
scales. Consequently, focusing solely on the centrality-based loss may fail to effectively capture
meaningful features.

To tackle the issue of scaling sensitivity, some existing studies have proposed learning the centrality-
based ranking instead of directly optimizing an explicit centrality loss (Hu et al., 2019a). However, a
slight modification to a graph, such as the removal of a few edges, may significantly alter centrality
values without necessarily impacting the ranking.
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Figure 4: The changes of different centrality after removal of one edge AG. We highlight the changes
in red color, where you could find a minor removal might cause significant changes in many different
centralities but cannot be captured by the order-based feature, which is proposed in (Hu et al., 2019a)
to reduce the scaling sensitivity but might introduce a new problem.

Here, we demonstrate this property using a simple example graph with 7 nodes (as shown in Figure 4).
When the edge between node A and node G is removed, the degree of both nodes A and G changes,
but their rankings based on degree centrality remain unchanged. This illustrates that relying solely
on degree order-based centrality fails to capture structural changes in the graph, as evidenced by the
significant updates in eigenvalues following the edge removal.

For a similar reason, in a graph containing several clusters of nodes with only a single edge connecting
different clusters, removing the connecting edges between clusters may leave the ranking-based
loss unchanged but fundamentally alters the semantic structure of the nodes (as shown in Figure 5).
Consequently, training strategies designed to address scaling sensitivity, such as ranking-based loss,
may inadvertently introduce sensitivity to ranking changes.

Therefore, in our work, we address this issue by employing a representation alignment-based loss,
as defined in Equation 9, to ensure that the learned representations align with an existing reference
scale. This approach can be intuitively understood as aligning the learned representations with a
prior distribution to maintain an appropriate scale. By introducing the parameter λ3, which controls
the contribution of Lr in the final loss, we strike a balance between scaling sensitivity and ranking
sensitivity.
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Figure 5: A graph which contains several clusters of nodes, where the nodes are almost fully connected
within clusters but only one edge connected between different clusters. Removing the connecting
edges (red edges) between clusters might not change the ranking-based loss but completely change
the semantic structure of nodes.

Figure 6: Comparison results of using and not using graph representation alignment on the Cora
dataset. "lr" represents graph representation alignment.

To investigate the efficiency of the proposed method, we consider three dimensions to evaluate the
proposed module:

• Does the proposed alignment strategy lead to a better performance?
• Does the proposed alignment strategy wildly be used for many different node representations

prior to distribution?
• Does the proposed alignment strategy lead to a more stable training process under the

perspective of scaling?

For the first question, compared to (Hu et al., 2019a), which employs a ranking-based loss to address
scaling sensitivity, our proposed method demonstrates the ability to effectively capture centrality-
guided information using an alignment-based loss, as shown in Table 5. Notably, the removal of
the alignment-based loss results in a significant performance drop compared to other components,
highlighting its importance.

For the second question, as shown in Table 6, the node encoding results can be utilized as prior
knowledge within the alignment-based loss to consistently enhance performance.
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For the third question, we conduct an additional experiment to track the L2-norm variations during
the training process. If the proposed method fails to address the scaling sensitivity issue fully, the
learned norm would exhibit rapid fluctuations during optimization. In this experiment, we calculate
and compare the average L2-norm of all nodes with and without graph representation alignment,
as shown in Figure 6. In the figure, without graph representation alignment, the average L2-norm
fluctuates significantly within the range [0.4, 1.2] over 20 training epochs. This behavior suggests that
the model struggles to appropriately scale and balance the learning objectives within a unified space
when directly targeting scaling-sensitive objectives. Conversely, with our proposed alignment strategy,
the learned representations stabilize around a consistent norm of 0.4. It indicates that our alignment
strategy effectively addresses the scaling sensitivity issue without requiring ranking-based learning
objectives, which introduce the ranking sensitivity issue and potentially harm the performance.

Figure 7: Performance trends of the CenPre on the Cora dataset as a function of hyperparameters
λ1, λ2, and λ3. Each graph shows the model’s accuracy (%) as the corresponding hyperparameter
is varied while keeping the other two fixed at a value of 1. The shaded bands around each curve
represent the standard deviation, highlighting the variability in performance.

G ANALYSIS OF THE HYPERPARAMETERS

Figure 7 demonstrates the sensitivity of the CenPre’s performance to the variation of hyperparameters
λ1, λ2, and λ3, which control the contributions of the alignment, eigenvalue, and degree losses,
respectively. The results show that the performance of the model will only fluctuate within a certain
range when the values of hyperparameters are set within a reasonable range. For example, when
the value range of λ1 is 1-4, the fluctuation amplitude of model performance is within 1%. Further,
we can see that both excessively large and excessively small values can lead to a clear decrease
in performance. In addition, analysis reveals that the model is most sensitive to λ3, showcasing
the critical role of the alignment loss in optimizing performance. Based on the results of the three
hyperparameters, we can conclude that the model performs best when λ1 = 1, λ2 = 1, and λ3 = 5.
One possible reason is that this setting places the three hyperparameters on the same scale, which can
lead to better learning of losses. Therefore, we set λ1 = 1, λ2 = 1, and λ3 = 5 in our experiments.

H DISCUSSION REGARDING THE TRAINING STABILITY

In the proposed framework, there are three types of operations involved:
Definition 3. Operation-1 Interaction between two trainable vectors, such as the inner product
between a weight matrix/vector and node representations.
Definition 4. Operation-2 A feed-forward layer with vectorized inputs and outputs.
Definition 5. Operation-3 Interaction between predictive vectors and optimization objectives.

Accordingly, the discussion will contain three parts:
Proposition H.1. If the two vectors in Operation-1 are independently drawn from Gaussian distribu-
tions, then the output of Operation-1 also follows a Gaussian distribution.
Proposition H.2. If the input of Operation-2 is Gaussian, then with high probability, the output
distribution of Operation-2 remains bounded.
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Proposition H.3. Based on the assumptions of Proposition H.1 and Proposition H.2, the difference
in gradients between any two training samples defined in Operation-3 is approximately bounded.

Proposition H.1 and Proposition H.2 are straightforward and intuitive.

H.1 PROOF OF PROPOSITION H.1

Proof. Let the representation vector of a node be r = {r1, r2, ..., rn} and the weight matrix be
W = wij , where i = 1, 2, ..., n and j = 1, 2, ..., k. Assume they are randomly initialized as:

ri ∼ N (0, σ2
r), wi ∼ N (0, σ2

w). (26)

By the normal product distribution, each term wijri has a mean of zero and a variance proportional
to the product of the variances:

E(wijri) = 0,Var(wijri) = σ2
rσ

2
w. (27)

For the output of Operation-1, defined as z = Wr, where z = z1, z2, ..., zk and zj = Σn
i=1wijri,

we obtain:

zj ∼ N (0, nσ2
rσ

2
w). (28)

Thus, for any ϵ ≥ 0, there exists δ ≥ 0 such that

P (||z|| > δ) ≤ ϵ. (29)

In addition, applying a layer normalization operator after Operation-1 can further constrain the
variance.

H.2 PROOF OF PROPOSITION H.2

Proof. By the Heine-Cantor theorem, all mapping functions in Operation-2 are continuous on Rn.
Since the input is Gaussian and bounded with high probability, the output is also bounded. This
property can be described using Lipschitz continuity: for any pair of inputs za and zb in Operation-2,
there is a constant K that bounds the corresponding output Oa and Ob by:

||Oa −Ob|| ≤ K||za − zb||. (30)

Thus, we have:

∂Oa

∂za
≤ K, (31)

if we force zb approximate to za.

H.3 PROOF OF PROPOSITION H.3

Proof. By probabilistic convergence, for any ϵ ≥ 0, there exist δ ≥ 0, and a content K ≥ 0 such that
for any pair of inputs ra and rb, after applying Operation-1 and Operation-2, the output satisfied:

||Oa −Ob|| < Kδ, with probability 1− ϵ. (32)
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In our training step, each node will be updated n times, once as a positive sample and n− 1 times as
a negative sample. The objective label is based on the index, ensuring ||Ye

i || = 1.

Denoting Pe(ri; θe) as the function formed by Operation-1 and Operation-2, and using the notation
Oa and za for any input representation ra, we derive:

Ye
a

1

Oa

∂Oa

∂za

∂za
∂ra

≤ WK

Oa
. (33)

For a specific dimension rai, the gradient update is:

Ye
a

1

Oa

∂Oa

∂za

∂za
∂rai

≤ Ye
a

K

Oa

k∑
j=1

wij . (34)

Since
∑k

j=1 wij follows a normal distribution due to independent initialization, we obtain a similar
gradient for another sample rb:

Ye
b

1

Ob

∂Ob

∂zb

∂zb
∂rbi

≤ Ye
b

K

Ob

k∑
j=1

wij . (35)

Considering ||Ye
a|| and ||Ye

b || are all identifiable representations of labels (only one dimension is 1
and others are o), we then have ||Ye

a|| = ||Ye
b || = 1. In addition, Oa and Ob are predictive outputs,

which are usually normalized by activation such as softmax.

For a specific dimension, we conclude that the gradients for updating should remain on the same
scale. Moreover, each training sample is treated as a positive sample once and as a negative sample
n− 1 times. This ensures that the updates to the representations are uniformly scaled across training
samples and identifiable labels. In contrast, the learned representations may become biased when
predicting non-identifiable labels or dealing with imbalanced category types. As highlighted in (Hu
et al., 2019b), directly optimizing the eigenvalues can yield negative outcomes, as it may be initially
caused by the imbalanced distribution in Ye

b and subsequently in Oi.

I LIMITATIONS

Despite its advantages, the CenPre framework has certain limitations. Firstly, its reliance on centrality
measures may not fully capture complex, multi-faceted structural properties of graphs, potentially
leading to sub-optimal representations in dense graphs and heterogeneous networks. Additionally,
the computational complexity of calculating centrality measures, especially for large-scale graphs,
can be high, impacting scalability and efficiency. Furthermore, the framework’s performance may be
sensitive to the choice of centrality measures, requiring careful tuning and selection based on specific
graph characteristics. Future work should address these limitations by exploring more comprehensive
structural descriptors, optimizing computational efficiency for broader applicability, and trying to
explore an effective method to exploit the node importance in a more differentiated way.
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