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ABSTRACT

Software defect prediction aims to automatically locate defective
code modules to better focus testing resources and human effort.
Typically, software defect prediction pipelines are comprised of two
parts: the first extracts program features, like abstract syntax trees,
by using external tools, and the second applies machine learning-
based classification models to those features in order to predict
defective modules. Since such approaches depend on specific feature
extraction tools, machine learning classifiers have to be custom-
tailored to effectively build most accurate models.

To bridge the gap between deep learning and defect prediction, we
propose an end-to-end framework which can directly get prediction
results for programs without utilizing feature-extraction tools. To that
end, we first visualize programs as images, apply the self-attention
mechanism to extract image features, use transfer learning to reduce
the difference in sample distributions between projects, and finally
feed the image files into a pre-trained, deep learning model for
defect prediction. Experiments with 10 open source projects from the
PROMISE dataset show that our method can improve cross-project
and within-project defect prediction. Our code and data pointers are
available at https://zenodo.org/record/3373409#.XV0OOy5Mza35s.
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1 INTRODUCTION

Software defect prediction techniques can help software developers
locate defective code modules automatically, to save human effort
and material resources. Most prediction methods build prediction
models based on modules in the source code and historical devel-
opment data at different levels of modeling, e.g., commit changes,
methods, and files [1]. In practice, based on whether the historical
training data comes from the same project or not, we distinguish
between within-project defect prediction (WPDP) and cross-project
defect prediction (CPDP) [2].

A large number of manually designed features, including static
code features and process features [3], have been adopted to predict
whether a module is defective or not. To improve on those, current
software defect prediction studies mainly focus on two main direc-
tions: new feature extraction methods and classification methods
learned from large-scale datasets. However, defect prediction tech-
niques which feed manually designed features into machine learning
algorithms for classification, have some limitations [4]. The required
feature engineering is time consuming and requires that special tools
be used upstream, such as code complexity analysis, submission
log mining, and code structure analysis tools. Consequently, many
features can be difficult to capture in some projects. For example,
semantic code information, such as the features hidden in abstract
syntax trees (ASTs), may not be effectively represented by existing
traditional features. In addition to the inconvenience of feature engi-
neering for traditional features, as described by Wan et al. in a recent
review of defect prediction [5], semantic information can be more
capable than syntax information to distinguish one code region from
another. Thus, while AST-conveyed features can be useful for defect
prediction, such approaches are indirect, requiring additional tools in
order to build and mine the ASTs. Moreover, in such approaches, the
source code is most frequently not used once the ASTs are extracted.

A number of machine learning methods, e.g., support vector ma-
chines (SVMs) [6], naive Bayes (NB) [7], decision trees (DTs) [8],
and neural networks (NNs) [9], have been applied to defective mod-
ule prediction. In particular, recent research has been conclusive
that deep learning networks are highly effective in image classifi-
cation, feature extraction, and knowledge representation in many
areas [10-15]. In defect prediction specifically, to better generate
semantic features, a state-of-the-art method [16] leveraged deep
belief network (DBN) for learning features from token vectors ex-
tracted from programs’ ASTs. On this basis, Li et al. [17] and Dam
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Figure 1: A motivating example

et al. [18] used the structural information of programs and the seman-
tic relations between keywords to improve defect prediction with
convolutional neural network (CNN) and long-short-term-memory
networks (LSTMs). In those papers, the required feature engineering
was significant and required specific tools be used upstream.

In this work we are motivated by the possibility of improving de-
fect prediction by avoiding intermediary representations, e.g. ASTs,
and instead obtaining code semantic information directly. To that
end, inspired by the power of existing deep learning platforms for
image classification, in this paper we propose a more direct way to
use programs’ semantic information to predict defects: by represent-
ing source code as images and training image classification models
on those images.

Figure 1 shows a motivating example. The two Java files on top,
Filel.java and File2.java, are similar, both containing 1 if state-
ment, 2 for statements, and 4 function calls. Nevertheless, the files’
semantic and structural features are different. We wondered if a
visualization can help to tell that those two programs are different.
To do so, we turned code characters into pixels, their colors based on
the characters” ASCII decimal value, and then arranged those pixels
in a matrix, thus obtaining code images. By comparing those images,
we were able to visually recognize significant differences between
the corresponding programs, as shown in the bottom of Figure 1L
Both semantic and structural differences can be recognized visually
in those images. That leads us to our driving thesis:

Semantic and structural similarities between two programs can be
effectively identified by visually comparing program images.

To test that thesis, we start from a well known data set from
the PROMISE repository, of 10 projects with known defective files.
Once the files are converted to images, we automatically extract
features and build a classification model with the popular AlexNet
platform [19]. In addition, we use deep transfer learning [20] and self-
attention mechanism [21] (the details are in Figure 4 and Section 3.2)
to further improve the defect prediction, especially CPDP. Finally,
we propose an end-to-end framework, i.e., deep transfer learning

I'There were a number of technical details and choices we had to make when converting
programs into images; we discuss those in the Methods section.
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for defect prediction (DTL-DP), to automatically predict whether a
program file contains defects or not.
This paper makes the following contributions:

e We propose a novel approach for defect prediction based on
visualizing program files as images, in order to capture their
semantic and structural information.

e We propose an end-to-end deep-learning framework, DTL-
DP, comprised of a deep transfer learning model combined
with a self-attention mechanism, which takes program file
images as input, and outputs labels, either "defective’ or "not
defective’.

e Our experiments, on 10 OS Java projects, show that our ap-
proach improves both WPDP and CPDP. The advantages of
DTL-DP in CPDP are much more obvious than in WPDP.
We show that self-attention has the greatest contribution to
WPDP, and transfer learning contributes most to CPDP.

The remainder of this paper is organized as follows. First, we
review related work in Section 2. Then we describe DTL-DP and
present our experimental setup in Sections 3 and 4, respectively.
After that, we discuss the performance of DTL-DP in Section 5, and
the threats to validity in Section 6. Finally, we conclude the work
and provide several potential future directions in Section 7.

2 RELATED WORK

Defect prediction (DP) As one of the primary areas of interest in
software engineering research, DP has been receiving significant
attention [22-25]. A number of studies have focused on manually
designing features or producing new combinations of existing fea-
tures from labeled historical defects. Those features are typically
fed into a machine learning-based classifier to determine if a file
is defective. Commonly used features can be divided into static,
e.g., code size and code complexity (e.g. Halstead features [26],
McCabe features [27], CK features [28]), and process features, like
the behavioral differences of developers in the software development
process. Many studies have demonstrated that process features can
predict software quality [29]. Moser et al. [24] used authors, past
fixes, the number of revisions and ages of files as features to predict
defects. Nagappan et al. [30] indicated that code churn was effec-
tive for DP. Hassan et al. [31] used entropy of changes to predict
defects. Other process features are helpful too, including individual
developer characteristics [22, 32] and their collaborations [33-35].

Based on these features, many machine learning models, includ-
ing SVM [6], NB [7], DT [8], NN [9], etc., have been built for the
two different DP tasks: within-project, WPDP, and cross-project,
CPDP. For WPDP, the training set and test set come from the same
project, while for CPDP, they come from different projects. While
WPDP can give better results, it is of limited use in practice as it is
often difficult to obtain enough training data for a new project. Some
studies have instead used related projects to build prediction models
with sufficient historical data, and then used them to predict defects
in the target project [36-39]. Panichella et al. [40] proposed an ap-
proach named CODEP, which uses a classification model to combine
the results of 6 classification algorithms (including logistic regres-
sion, radial basis function network, and multi-layer perceptrons)
for CPDP. Turhan et al. [41] and Peters et al. [42] used different
strategies to select appropriate instances in a source project, based on
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nearest neighbor methods, to train the prediction models. Addition-
ally, the application of transfer learning is receiving more attention.
Xia et al. [43] proposed an approach named HYDRA to build classi-
fiers using genetic algorithm and ensemble learning. Ma et al. [44]
proposed a transfer naive Bayes (TNB) method to assign weights
to training instances, and then used them to construct a prediction
model. Nam et al. [45] proposed TCA+, which uses TCA [46] and
optimizes the normalization to improve CPDP.

Recently, some studies have used deep learning to directly get fea-
tures from source code for DP. Wang et al. [16] deployed deep belief
networks (DBNS) to learn semantic features from token vectors ex-
tracted from ASTs automatically, and leveraged the learned semantic
features to build machine learning models for DP. Li et al. [17] used
convolutional neural networks (CNNs) to generate features from
source code and combined CNN learned features with traditional
features to further improve upon the prediction. Similarly, Dam et
al. [18] proposed a prediction model that takes ASTSs representing
the source file as input. It used an LSTM architecture to capture
long-term dependencies which often exist between code elements.

Our proposed approach differs from the above in that we do
not use feature engineering followed by machine learning-based
classifiers. We also do not need ASTs to bridge the gap between
defect prediction and deep learning. Instead, our approach is based
on feeding software visualizations into an automatic, image based,
feature discovery pipeline.

Software visualization (SV) for DP SV has long history in soft-
ware engineering research and practice [47, 48]. It has been used
for visualizing code structure and features [49], code execution [50],
and evolution [51], of large codebases in particular [52]. SV has
also been applied to bug repositories, where it has been helpful
in correlating bugs with code structure [53]. In fact, the way code
was visualized in a recent study on malware code visualization [54]
has, in part, inspired us in this paper. However, to the best of our
knowledge, there is a dearth of applications of SV to software defect
prediction in the research literature, perhaps because prior to DL
approaches no connection was seen between the two areas.

Deep transfer learning (DTL) Transfer learning (TL) is an im-
portant tool that can help when there is insufficient training data
in machine learning. It works by transferring information from a
source domain to a target domain. The key is to relax the assumption
that the training and test data must be independent and identically
distributed [55]. This is helpful in areas where it is difficult to get
enough training data. In the field of DP, studies have shown that
CPDP can achieve better performance with transfer learning [56].

Most TL studies are based on traditional machine learning meth-
ods. Recently, deep learning-based transfer learning studies have
emerged, called deep transfer learning, DTL. Based on the tech-
niques used in them they can be divided into four categories: network-
based, instance-based, mapping-based, and adversarial-based [57].

Instance-based DTL is implemented through a specific weight
adjustment strategy. The instances selected from the source domain
are assigned weights that complement the training data in the target
domain [58-61]. Network-based DTL refers to the use of a partially
trained network in the source domain for the deep neural network
of the target domain, including its network structure and connecting

ICSE 2020, May 23-29, 2020, Seoul, South Korea

parameters [62, 63]. Adversarial-based DTL refers to introducing ad-
versarial technology inspired by generative adversarial nets (GAN)
to find a transferable representation that is applicable to the source
and target domains [64, 65]. Mapping-based DTL refers to map-
ping instances of the source and target domains to a new data space,
where the distributions of the two domains are similar. TCA [46]
and TCA-based methods have been widely used in applications of
traditional transfer learning [66]. Tzeng et al. [67] used maximum
mean discrepancy (MMD) to measure the sample distribution af-
ter deep neural network processing and learned domain invariant
representations by introducing an adaptation layer and additional
domain confusion loss. Long et al. [68] improved previous work by
replacing MMD with multiple kernel variant MMD (MK-MMD),
originally by [69], and proposed a method called deep adaptation
networks (DAN). Long et al. [70] proposed joint maximum mean
discrepancy to promote the transfer learning ability of neural net-
works to adapt to the data distribution of different domains. The
Wasserstein’s distance, proposed by Arjovsky et al. [71], has been
used as a new distance measure to find a better mapping between
domains.

To the best of our knowledge, DTL methods have not yet been
used in defect prediction. In this paper, we propose a novel, mapping-
based DTL method using a self-attention mechanism for defect
prediction.

3 APPROACH

The overall framework of our approach deep transfer learning for
defect prediction, DTL-DP, is shown in Figure 2. It is comprised of
two stages, (1) source code visualization and (2) modeling with DTL.
In the first stage we use a visualization method to convert program
files into images. In the second stage, we build a DTL model based
on the AlexNet network structure with transfer learning and a self-
attention mechanism to construct an end-to-end defect prediction
framework. We use that framework to predict if a new instance file
is defective or not.

In a nutshell, our approach takes the raw program files of a train-
ing and test sets directly as input and generates images from them,
which are then used to build the evaluation model for defect predic-
tion. Specifically, since the input data of the network model based
on the CNN structure should be in the form of images, we build
a mapping to convert the files into images. Then we use the first
5 layers of AlexNet as Feature-Net to generate features from the
images. The shallow CNN layers correlate the presence and absence
of defects to the overall code structure, gradually deepening the
granularity from function/loop bodies to function names, identifiers,
etc. These features are then fed into the Attention Layer where they
are used in assigning weights, and highlighting features, which are
more helpful in the classification. The re-weighted features of the
training and test sets are used to calculate MK-MMD, which is used
to measure the difference between their distributions, as the MMD
loss. After that, the re-weighted features of the training set are en-
tered into the fully connected layers to calculate the cross entropy
as the classification loss. The weighted sum of the MMD loss and
classification loss is fed back to train the whole network, including
Feature-Net, Attention Layer and the fully connected layers. Finally,
based on the source code visualization method and the DTL model,
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Figure 2: The overall framework of DTL-DP
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Figure 3: The process of converting code to color images

we build, train, and evaluate a defect prediction model. We give the
details in the following.

3.1 Source Code Visualization

Converting code to images retains information and facilitates avail-
able deep neural network (DNN) -based methods to improve defect
prediction performance. Most existing methods ignore associations
between extracted features and the classification task. Our proposed
method forms a unified end-to-end framework of feature extraction,
modeling, and prediction.

Figure 3 shows how we convert each program file into 6 different
images. We call this process source code visualization and the im-
ages produced code images. First, each source file is converted into a
vector of 8-bit unsigned integers corresponding to the ASCII decimal
values of the characters in the source code, e.g., ’a’ is converted to
97, etc. We then generate an image from that vector, by arranging
its values in rows and columns and interpreting it as a rectangular
image. A straight forward way to visualize the 8-bit values as color
intensities would be as levels of gray, e.g., O=black, and 255=white.
However, the relatively small size of our original training set means
that if we did that we would end up with a deep model that cannot be
sufficiently well trained. Fortunately, an additional benefit to using

images for training is that we can augment the original data set to
produce a larger data set with the same semantics. Common data
augmentation methods for image data sets include flipping (both
vertically and horizontally), rotating, cropping, translating (moving
along the x or y axis), adding Gaussian noise (distortion of high
frequency features), zooming and scaling. Since the sizes of our pro-
grams are small, and we want to retain the semantic and structural
features in the images, the above image data augmentation methods
could result in data loss.

Instead, we designed a novel, color based augmentation method
to generate 6 color images from each source code file. Namely,
each pixel in a color image can be represented by three primary
color components, or channels: red (R), green (G), and blue (B).
The letters R, G, B, and thus the color channels, can be ordered
in 6 different ways: RBG, RGB, BGR, BRG, GRB and GBR. By
adopting a different order every time, as shown in Figs. 2 and 3, we
generate six different images for each program file. For example,
*for’ is converted to [102, 111, 114], and the 3 values are filled into
the R, G, and B channels in 6 different ways to obtain 6 differently
colored pixels.

The above method expands our data set six-fold, and because of
the nature of the downstream analysis, the generated samples are
reasonable since the representation is changed only by the order of
the different channels. 2

Whereas we generated 6 images for each instance in the training
set, we randomly selected an RGB permutation for testing. We found
that it was not necessary to generate all six images for testing because
our experiments on 10 datasets showed that the performance of using
the different permutations was quite comparable. We randomly chose
one to increase the speed in practice. The data augmentation was
used to improve the efficacy of the model.

After the above, for each of the 6 orderings of R, G, B, we obtain
a vector of pixels of length one third the original code file size
(each source code character is assigned to a color channel, and thus
three characters in a row represent a pixel). We then turned those

2 A CNN model learns the features by convolution. Since we use ImageNet’s pre-trained
AlexNet model, the initial parameters of the convolution kernel are different for each
channel, which means even though byte sequences are the same, the final set of features
obtained by sequentially inputting into the model the different channels is also different.
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Table 1: Image Width for Various File Sizes

File Size Range = Image Width
<10kB 32
10kB - 30 kB 64
30kB - 60 kB 128
60 kB - 100 kB 256
100 kB - 200 kB 384
200 kB - 500 kB 512
500 kB - 1000 kB 768
>1000kB 1024

6 image vectors into image matrices of width and length such that
width % length = vector_size/3. We note that the first convolution
kernel of AlexNet is of size 11*11, so if the image is too narrow,
the convolution performance will be poor. And the image with a
suitable width can be convolved to obtain more efficient semantic
and structural features in contexts with a proper sequence length.
Table 1 gives some recommended image widths for different file
sizes, based on previous work [72, 73]. We adopt those in this work.

3.2 Modeling with Deep Transfer Learning

Next we describe our approach, DTL-DP. The goal is to learn trans-
ferable features across projects, and build a classifier y = ¢(x) of
file defectiveness, with source code supervision, where x is the rep-
resentation of the sample and y is the predicted label. In the defect
prediction problem, we are given a source project Ps = {(x;, yf)}?jl
with ng labeled instances, and a farget project Py = {(xl.t, yf)}?:tl
with n; unlabeled instances. In WPDP, the source project is the pre-
vious version of the farget project, while in CPDP, the source project
is a related project of the target project. The sample distributions p
and q in the source and target projects are often similar in WPDP,
but different in CPDP.

For our deep network architecture we adopt a similar architec-
ture as that of deep adaptation networks (DANs) [68] to capture
the semantic and structural information of the source code. To the
original DAN model we add an attention layer to further enhance
the expressive ability of important features. The overall architecture
is illustrated in Figure 4. In particular, our DTL-DP consists of an
input layer, five convolution layers (convl — conv5, from AlexNet),
an Attention-Layer, and finally four fully-connected hidden layers
(fc6 — fc9), working as a classifier. The structure and parameters of

(convl—conv5) and (fc6— fc8) are consistent with a DAN. But since
defect prediction is a binary classification problem, a fully-connected
layer (fc9) is added to obtain a binary result at the end.

We adopt the defaults for AlexNet, so the input to our DTL-DP
must be a 224%224 size image cropped from a three-channel (RGB)
image of size 256*256. The code image is placed in the approximate
center of the 256*256 image (the determination of the size of each
code image is described later, in Sect. 3.3). We note that the code
image can be smaller than 224*224 pixels due to the variance in the
size of the code files. If this happens the image is padded around
with blank (zero valued) pixels. Padding should not negatively effect
the qualitative performance of feature detection in the images; in fact
for deeper DL architectures like ours, padding has been shown to
provide extra contrast to the embedded image for each of the layers
as well as buffering against data loss by each layer [74].

Training deep models requires a significant amount of labeled
data, which is not available for a new project, so we first pre-trained
an AlexNet model on ImageNet 2012. Unlike a DAN, which freezes
convl—conv3 and fine-tunes conv4 —conv5, we fine tune all convolu-
tion layers conv1 — conv5 by taking the parameters of the pre-trained
models as initial parameters that we then optimize during the train-
ing phase. We do that to minimize the differences between our code
images and the actual object images in ImageNet 2012.

In order for DTL-DP to focus on the key features in different
defect images, and thus further improve prediction, we employ a
self-attention mechanism into our model inspired by the good per-
formance of self-attention in GANs [21]. As shown in the Attention
Layer in Figure 4, the attention mechanism makes the feature map
generated by layer conv5 be the self-attention feature map input to
the next layer, fc6. Specifically, at first, it linearly maps the input
features x (it is a 1*1 convolution, to compress the number of chan-
nels, i.e., out_chanels = in_chanels/8), and produces f(x), g(x),
and h(x), where f(x) = wrx,g(x) = wgx, h(x) = wpx. The dif-
ference between the three is that the size of h(x) is still the same
as x, but the other two are not. Thus, if the width of x is W, the
height H and the number of channels C, the size of x is [C, N], where
N = W = H, the size of f{x) and g(x) is [C/8, N], but the size of h(x)
is [C, N]. The transposed f(x) and g(x) are matrix-multiplied to ob-
tain the autocorrelation in the features, i.e., the relationship of each
pixel to all other pixels, where S;; = f (xi)Tg(xj). Then, softmax is
applied to the autocorrelation features, S, to get the attention map,
comprised of weights with values between 0 and 1:

o exp(Sij) n

SN exp(Siy)
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After that, the output of the AttentionLayer is the self-attention
feature map o = (01,02, ..., 0j, ...., 0N’ ), Where

N
0j = Z aj,ih(x;).
i=1

Then, each fully connected layer learns a nonlinear mapping
hf =f Liw! hg +b!), where hg is the /th layer hidden representation
of feature x;, w! and b! are the weights and biases of the Ith layer,
and fl is the activation function, using ReLU (fl(o) = max(0,0))
for fc6 — fc8 and softmax for fc9. If we let © denote the set of all
DTL-DP parameters, the empirical risk of DTL-DP, then, is

(@3]

1 n
in— » F($(0;),y; 3
min ~ Zl ($(01). i) 3
where F is the cross-entropy loss function, n is the number of in-
stances and ¢(o;) is the conditional probability that the DTL-DP
assigns o; to label y;. It is used to calculate the final loss in Equation
7.

To make the distribution of the source and target projects similar,
the same multi-layer adaptation and multi-kernel MMD strategy as
in a DAN [68] are used in our model. The feature mapping function
o is defined as the combination of m positive semi-definite kernels
ku,

< 0(0%),0(0") >= k(0®, 0") “)
k=" Puku ®)
u=1

where > 0 are the weights of the kernels.

The MK-MMD dj (p, q) of the probability distributions p and g
is defined as the reproducing kernel Hilbert space distance between
the mean embedding of p and g. The square formula of MK-MMD
is defined as

i (p.q) = Eplo(x*)] = Eqlo(xN)] |17 . ©)
We see then that the smaller d(p, g) is, the more similar p and q

are. If dj. is 0, the distribution of the target project is the same as that
of the source project. So the final loss function for train DPL-DP is

I
1v 2
= > F((oi).yi) + A ), (D4, D}) @
n 4
i=1 =4
where Déis the Ith layer hidden representation for the source and

target, di(Di, fo) is the MK-MMD between the source and target

evaluated on the Ith layer representation, A is a penalty parameter,
and [; and [ are f'c layers to calculate the MK-MMD between source
and target. In our implementation of DTL-DP, we set A = 1,1; = 6
and Iy = 9, as per the original DAN work [68].

3.3 Model Sensitivity to Parameter Choices

We have made a number of choices to make our modeling plat-
form work effectively. Here we justify those choices by presenting
sensitivity studies. For this analysis we used all the data.
Hyperparameter A The DTL-DP model has a hyper-parameter A
for the MMD penalty, that adjusts the final loss. We conducted A pa-
rameter sensitivity experiments in both the WPDP and CPDP setting.

We fix the other parameters and range A in {0.01,0.05,0.1,0.2,0.5,1,2,5}.

The results are shown in Figure 5(a). While fairly constant across the
range, small variations exist. In CPDP, the F-measure first increases
and then decreases along the hyper-parameter A. In WPDP, A affects
the performance of DTL-DP, but in the opposite direction. We chose
A =1 here.

Different Color Orders The selection of the R,G,B permutations
in the target project images may also potentially affect the outcome.
We performed experiments with all six different orderings. When
testing them, we set A to 1 and changed the image type of the tar-
get project to each one in {RGB, RBG, BRG, BGR, GBR, GRB}. The
results are shown in Figure 5(b). The target images in different color
orders have somewhat different performance. But overall the values
are close to DTL-DP’s average performance.

Different Image Widths To explore the impact of different choices
for image widths on the results, we performed additional experi-
ments.

For our code images, 3 bytes of source code are needed to form 1
pixel, each byte for one of the R, G, and B channels. The sizes of
the source files are between 0 and 100 kb, corresponding to images
with pixel count between 0 and 34, 133 (100%1024/3). The size of
the image is (width, height), where width is obtained from Table 1
according to the size of the code file (size).
size * 1024

3 * width ®
For example, the size of image converted from a 20 kb code file is
(64, 107).

We experimented with image widths of 1/8, 1/4, 1/2, 2, 4, and 8
times of the recommended widths in Table 1. The larger the mul-
tiplier, the wider the image. For images of different widths, we

height =
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repeated the previous experiment and obtained results for the mean
F-measure, shown in Figure 5(c). We see that the closer to the recom-
mended width from Table 1, the better the average result. In addition,
we found that a wider image is better than a narrower one. And the
closer the image is to a square, the better the prediction. Therefore,
we made the generated images be as close to a square as possible.

3.4 Training and Prediction

When training the DTL-DP, code images are generated from the
labeled instances in the source project and the unlabeled instances in
the target project, and then, are simultaneously input into the model.
They share the convolution layers convl—conv5 and AttentionLayer
to extract their respective features, and calculate the MK-MMD
between source and target projects in the fully connected layers
fc6 — fc9. It should be noted that we only calculate cross entropy
for the source project, because the target project’s labels are not pro-
vided. We use a mini-batch stochastic gradient descent along the loss
function in order to train the parameters of the entire model. We train
for 500 epochs for each pair of source and target projects, then pick
the epoch with the best F-measure (described in section 4.3) from
which to read out the parameters of the final model. Finally, the files
from the target project that need to be predicted are converted into
code images and then input into the trained model for classification.

Overfitting is always a possibility with such pipelines. We moder-
ate it here with our choices of (1) augmenting the dataset by using six
color channel permutations, described in section 3.1, (2) selecting a
simple AlexNet model structure, and (3) using the ImageNet 2012
pre-trained model to reduce fluctuations.

4 EXPERIMENTAL SETUP

We conducted experiments to asses the performance of DTL-DP and
to compare it with existing deep learning-based defect prediction
approaches, for both within-project, WPDP, and cross-project, CPDP,
defect prediction. We ran experiments on a modern-day Linux server
with 3 Titan XP GPUs. Unless otherwise stated, each experiment
was run 10 times and the average results are reported.

4.1 Dataset Description

In order to directly compare our work with prior research, we used
publicly available data from the PROMISE? data repository, which
has been widely used in defect prediction work [16-18, 75]. We
selected all open source Java projects from this repository, and
collected their version number, class names, and the buggy label
for each file. Based on the version number and class name, we
obtained the source code for each file from GitHub* and fed it to
our end-to-end framework. In total, data for 10 Java projects were
collected. Table 2 shows the details of these projects, including
project description, versions, the total and average number of files
and the defect rate. It should be noted that the average number
of files over all projects ranges between 150 and 1046, and the
defect rates of the projects have a minimum value of 13.4% and a
maximum value of 49.7%. The number of files in some projects is
not sufficient to train deep models, and the classes are imbalanced,
thus augmentation is needed, as described above.

3http://openscience.us/repo/defect/
4https:// ‘github.com/apache
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4.2 Baseline Comparison Methods

To evaluate the performance of our end-to-end framework DTL-DP
for defect prediction, we compare it with the following baseline
methods in the WPDP setting:

e Semantic [16, 75]: the state-of-the-art method which em-
ploys deep belief networks, DBN, on source code to extract
semantic features for defect prediction.

e PROMISE-DP [16]: a traditional method which builds an
alternating decision tree, ADTree, classifier based on the
original 20 features of the PROMISE dataset.

e DP-LSTM [18]: a long short-term memory, LSTM,-based
deep neural network model which uses ASTs to represent
source files and predict whether the file is defective or not.

e DP-CNN [17]: a convolutional neural network, CNN,-based
model which is seeded by AST-derived numerical vectors
to automatically learn semantic and structural features of
programs. The CNN-learned features are used to train the
final classifier in combination with traditional features.

For the cross-project settings, CPDP, Semantic and PROMISE-DP
could not be used directly. Instead, we used the following:

e DBN-CP [16, 75]: a variant of Semantic which trains a DBN
by using the source project and generates semantic features
for both the source and target projects.

o TCA+ [45]: the state-of-the-art technique for CPDP.

To obtain the training and test data, we followed the processes
established in [16]. For WPDP, we use two consecutive versions of
each project listed in Table 2. The older version is used to generate
the training data, and the more recent version is used as test data. For
CPDP, we pick versions randomly from each project, for 11 target
projects. And for each target project, we select 2 source projects that
are different from the target projects. We use the same 22 test pairs
as in [16]. When implementing the baseline methods, we use the
same network architecture and parameter settings as described in the
papers that introduced them.

4.3 Performance measures

To evaluate the prediction performance we use the F-measure, a
widely adopted metric in the literature [16-18, 43, 45]. The F-
measure captures a predictor’s accuracy and combines both precision
and recall, for a comprehensive evaluation of predictive performance.

Specifically, a prediction that a file is defective is called a true
positive (TP) if the file is in fact defective, and false positive (FP)
otherwise. Similarly, a prediction that a file is not defective is a true
negative (TN) if the file is in fact not defective, and false negative
(FN) otherwise. Then, the precision (P), recall (R), and F-measure
are defined as:

P =TP/(TP + FP) )
R=TP/(TP + FN) (10)
F=(2xPxXR)/(P+R). (an

S RESULTS

This section discusses our results of comparing DTL-DP to baseline
tools for defect prediction.
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Table 2: Dataset Description

Project Description Versions  #Files Avg files Avgsize(kb) % Defective
ant Java based build tool 1.5,1.6,1.7 1,465 488 6.2 13.4
camel Enterprise integration framework 1.2,1.4,1.6 3,140 1,046 29 18.7
jEdit Text editor designed for programmers 324041 1,935 645 8.7 19.2
log4;j Logging library for Java 1.0,1.1 300 150 34 49.7
lucene Text search engine library 2.0,2.2,2.4 607 402 3.8 35.8
xalan A library for transforming XML files 2425 1,984 992 4.6 29.6
xerces XML parser 1.2,1.3 1,647 549 2.9 15.7
ivy Dependency management library 1.4,2.0 622 311 4.1 20.0
synapse Data transport adapters 1.0,1.1,1.2 661 220 3.8 22.7
poi Java library to access Microsoft format files 1.5,2.5,3.0 1,248 416 3.6 40.7

Table 3: F-measure of DTL-DP, Semantic (Seman), PROMISE-
DP (PROM), DP-LSTM (LSTM) and DP-CNN (CNN) for
WPDP

Project  Version Seman PROM LSTM CNN DTL-DP
ant 1.5->1.6 914 47.7 452 532 70.0
1.6->1.7  94.2 54.2 379  56.6 59.3
camel 1.2->14 1785 37.3 323 46.1 40.6
14->1.6 374 39.1 400 508 38.5
iEdit 32->40 574 55.6 472 564 494
4.0->4.1 615 54.6 49.0 58.0 68.7
logdj 1.0->1.1 70.1 58.7 539 632 68.8
lucene 2.0->2.2  65.1 50.2 75.1 76.1 78.3
22->24 773 60.5 75.1 721 77.6
xalan  2.4->25 595 51.8 65.7  60.1 79.4
xerces 1.2->1.3  41.1 23.8 268 374 82.0
ivy 1.4->2.0 35.0 329 19.1 34.7 829
synapse 1.0->1.1 544 47.6 454 539 54.7
1.1->1.2 583 53.3 533 556 65.9
poi 1.5->2.5  64.0 55.8 80.8 589 68.5
25->3.0 803 75.4 777 784 42.6
Average 64.1 49.9 51.5 57.0 64.2

5.1 RQI1: How does DTL-DP compare to feature-
based machine learning methods and AST-
based deep learning methods, in WPDP?

We compare DTL-DP to 4 baseline approaches, representing two
different kinds of defect prediction methods. PROMISE-DP is the
baseline representative of traditional feature-based machine learning
methods. Semantic, DP-LSTM and DP-CNN are the baselines for
deep learning-type methods, based on extracting features from AST.
Guided by prior work, we conducted 16 sets of WPDP experiments,
each using two versions of the same project. The older version is
used to train the prediction model, and the newer version is used to
evaluate the trained model.

Table 3 shows the F-measure values for the within-project, WPDP,
defect prediction experiments. The highest F-measure values of the
5 methods are shown in bold. Since the methods based on deep
learning include some randomness, we run DTL-DP, Semantic, DP-
LSTM and DP-CNN 10 times for each experiment. On average,

the F-measure of our approach is 0.642, and the PROMISE-DP,
Semantic, DP-LSTM and DP-CNN achieve 0.499, 0.641, 0.515 and
0.570, respectively. The results demonstrate that our approach is
competitive, and may improve on defect prediction compared to
PROMISE-DP, DP-LSTM and DP-CNN. The results of Semantic
and our approach are similar.

The proposed DTL-DP is effective, and it could improve
the performance of WPDP tasks. Like other deep learners, it is
sensitive to small file sizes and unbalanced data.

5.1.1 Case Study: WPDP Discrimination of DTL-DP. t-SNE
is a non-linear dimensional reduction algorithm that is effective
in visualizing similarities and helping identify clusters in complex
data sets [76]. To give insight in the performance of DTL-DP, we
demonstrate feature transferability by showing t-SNE embeddings
in Figure 6. The blue points are non-defective files, and the red are
defective ones’. We observe the following: (1) The target instances
are not discriminated very well, using either the traditional manual
features or the TCA+ improved manual features or the semantic
features extracted from ASTs, while with our approach, the points
are discriminated much better. (2) With the other three approaches
the categories between source and target projects are not well aligned,
while with our approach, the categories between the projects are
more consistent. These conclusions are derived from the intra- and
inter-class distances of the two categories in Figures 6 and 7. They
are visually apparent.

Our method did not perform as well as the comparison methods on
some projects, such as ant, which is likely caused by large variance
in file sizes. While the sizes of ant-1.5 and ant-1.6 are close, there is
a marked difference between ant-1.6 and ant-1.7, the former being
much smaller than the latter. From Table 3, the performance of our
method on antl.5->antl.6 is better than that on antl.6->antl.7.
On the contrary, baseline methods other than DP-LSTM perform
better for the task antl.6->antl.7, notably, Semantic is dominant,
indicating that the semantic feature-based method is more robust to
file size variability. Moreover, the ant dataset has two shortcomings,
the first is that the amount of data is small, cf. Table 2, where the
average amount is only 488 files in one project. The second is that

3Since we use data augmentation, we have more samples than the three baselines.
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Figure 6: t-SNE mapping of source and target features (WPDP)

the classes are unbalanced, and the proportion of defective files is
13.4%, which is the least of all our projects. This makes training of
the deep model more difficult, which leads to the poorer performance

of our method on some projects.

Table 4: F-measure of DTL-DP, DBN-CP (DBN), TCA+, DP-
LSTM (LSTM) and DP-CNN (CNN) in CPDP

ICSE 2020, May 23-29, 2020, Seoul, South Korea

Again, guided by prior work, we conducted 22 sets of CPDP experi-
ments. In each we randomly select two project versions from two
different projects, one as a training set and the other as a test set.

Table 4 presents the F-measure results of DTL-CP and the 4 base-
line approaches. The highest F-measure values are in bold. On aver-
age, the F-measure of our approach in CPDP is 0.618, and the DBN-
CP, TCA+, DP-LSTM and DP-CNN achieve 0.568, 0.479, 0.495 and
0.528. Thus, DTL-DP outperforms them by 8.8%, 29.0%, 24.8% and
15.5%, respectively. In addition, we found that for projects log4j1.1
and poi3.0 our method does better than the corresponding WPDP
best performing method.

Our proposed DTL-DP shows significant improvements on
the state-of-the-art in cross-project defect prediction.

5.2.1 Case Study: CPDP Discrimination of DTL-DP. Our
method is more obviously dominant in CPDP than in WPDP. A
possible reason for that is that deep transfer learning makes the dis-
tributions of the training and test samples more similar in feature
space. Another reason might be the superior ability of deep models
to represent features, enabling the model to obtain more transferable
features from the images. To gain more insight, we choose the task
poi3.0 — antl.6, and show the t-SNE embeddings in Figure 7. We
make similar observations as in the RQ1 case study, that (1) the tar-

Source Target DBN TCA+ LSTM CNN DTL-DP get instances are more easily discriminated with our approach, and
antl.6 camell .4 31.6 29.2 32.1 32.3 39.5 (2) the target instances can be better discriminated with the source
jEdit4.1 camell4 693 33.0 31.8 65.1 40.7  classifier. This implies that our approach can learn more transferable
camell .4 antl.6 979 616 44.8 60.7 59.1 features for more effective defect prediction.
poi3.0 antl.6 47.8 598 386 532 69.3
camell .4 jEdit4.1 61.5 537 39.4 547 53.1
log4j1.1 jEdit4.1 503 419 389 423 63.9 PROMISE-DP TCA+
jEdit4.1 log4jl.1 645 574 574  65.6 78.3 1
lucene2.2 log4jl.1 61.8 57.1 578 632 79.4 3
lucene2.2  xalan2.5 550 53.0 68.0 54.0 68.9 H
xerces1.3 xalan2.5 572  58.1 67.6 562 68.6 ’
xalan2.5 lucene2.2 594  56.1 750 621 78.3
log4j1.1 lucene2.2 69.2 524 75.0 663 76.9
xalan2.5 xercesl.3 38.6 394 340 391 40.0 - :
ivy2.0 xercesl.3  42.6  39.8 26.1 421 42.0 ) *
xerces1.3 ivy2.0 453 409 264  46.7 47.2 & %‘\
synapsel.2 ivy2.0 824 383 26.1 371 494
ivyl.4 synapsel.l 48.9 3438 45.1 49.1 54.5 ® Clean  © Defective
poi2.5 synapsel.l 425  37.6 435 436 59.7
ivy2.0 synapsel.2 43.3  57.0 530 456 62.0  Figure 7: t-SNE mapping of source and target features (CPDP)
poi3.0 synapsel.2 514 542 50.3 53.2 62.3
synapsel.2 po?S.O 66.1 65.1 78.5 67.1 827 53 RQ3: How much does each of the three
aml.6Averagep013.0 2;2 ij; 47122 25; ii; mechanisms, i.e., data augmentation, transfer

5.2 RQ2: How does DTL-DP compare to feature-
based Machine Learning and AST-based deep
learning methods, in CPDP?

Here we compare to TCA+ and DBN-CP, instead of PROMISE
and Semantic, as the baseline approaches, as explained in Sect. 4.2.

learning and self-attention mechanism,
contribute to DTL-DP’s performance?

To find out the specific contributions of the three parts to defect
prediction, we conducted further experiments. We built the original
AlexNet model for binary classification and use it as the Base. +TL,
+Attention and +DataAug are three new baselines built by adding to
the base AlexNet one of three mechanisms (transfer learning, self
attention and data augmentation), respectively. It should be noted
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that, in addition to +DataAug, we use images generated by one
sequence of R, G, and B as training and test sets in each experiment.
Therefore, the experimental results of Base, +TL and +Attention in
Tables 5 and 6 are average results obtained over the 6 different RGB

Chen et al.

Table 7: Time cost of the three mechanisms: defect visualization
(Visualiz.), self-attention (Attent.) and transfer learning (TL)

Time (s)

permutations, as described above.

Table 5: Contributions of the three mechanisms to WPDP

Project  Version Base +TL +Atten +Aug DTL-DP
ant 1.5->1.6 660 67.6 664 67.7 70.0
1.6->1.7 525 552 524 59.1 59.3
camel 1.2->14 415 38.1 41.6 40.3 40.6
14->1.6 412 39.6 423 384 38.5
iEdit 32->40 484 50.5 497 48.5 494
4.0->4.1 629 649 645 67.9 68.7
logdj 1.0->1.1 688 679 69.2 65.8 68.8
lucene 20->22 667 773 778 76.1 78.3
22->24 749 713 769 75.8 77.6
xalan  2.4->2.5 757 754 758 77.8 79.4
xerces 1.2->1.3 809 822 800 78.8 82.0
ivy 1.4->2.0 820 824 827 81.2 82.9
synapse 1.0->1.1 525 484 511 53.0 54.7
1.1->1.2 61.8 60.8 612 61.6 65.9
poi 1.5->25 663 593 654 61.4 68.5
25->3.0 41.0 449 420 432 42.6
Average 614 616 624 62.3 64.2

Table 6: Contributions of the three mechanisms to CPDP

Project —=- Attent.  Visualiz.

ant 45.04 1.31 4.59
camel  96.55 2.42 7.85
jEdit 59.15  2.66 4.97
log4j 13.71 1.31 1.76
lucene  37.39 1.86 3.54
xalan 9444 271 8.23
xerces 51.17 2.14 2.75

ivy 29.02 1.42 3.05

synapse 20.42  1.26 2.09

poi 38.65 1.57 2.21

Average 48.56  1.87 4.10

To discern the contribution of each mechanism we compare the
performance of these baseline methods in WPDP and CPDP. From
the results in Table 5 and Table 6, we observe that the three mecha-
nisms each contribute substantially to the accuracy of DTL-DP, in
both WPDP and CPDP. In terms of the F-measure, transfer learn-
ing contributes the least improvement, and self-attention and data
augmentation contribute similarly to the final result. But in CPDP,
transfer learning contributes to the F-measure the most. This is
likely because of the applicability of transfer learning in the CPDP
setting, and is, in a way, a validation of the approach.

We also noted the time cost for the 3 mechanisms in our proposed
DTL-DP. Table 7 shows the result. The most time spent during data
augmentation is on converting code into images, i.e., source code
visualization. For transfer learning, most time is spent on the MK-
MMD calculation, and for self-attention, on the calculation of the
attention layer in Fig. 4. E.g., for the project ant, Table 3 shows two
sets of WPDP experiments, ant 1.5 — 1.6 and ant 1.6 — 1.7. On
average, it takes 45.04 seconds, 13.01 seconds and 4.59 seconds for
the 3 parts, respectively, for both the training data and the test data.
Transfer learning takes the longest time, more than the sum of the
other two. This is because of the large number of matrices needed
to calculate MMD with the kernel function. The least time cost is
incurred by the attention mechanism, and its contribution to WPDP
is the largest of the three, i.e., it is most cost-effective.

The three mechanisms all contribute toward the accuracy of
our proposed end-to-end framework, in WPDP and CPDP. Self-
attention has the greatest contribution to WPDP, and transfer
learning contributes most to CPDP.

Source Target Base +TL +Atten +Aug DTL-DP
ant1.6 camell4 383 379 365 37.7 39.5
jEdit4.1 camell.4  36.8 394 395 37.1 40.7
camell .4 antl.6 67.0 66.7 653 59.6 59.1
poi3.0 antl.6 60.6 627 634 59.3 69.3
camell 4 jEdit4.1 66.3 657 652 64.7 53.1
log4j1.1 jEdit4.1 599 599 592 59.4 63.9
jEdit4.1 log4j1.1 754 80.0 774 74.6 78.3
lucene2.2 log4jl.1 759 750 753 78.3 79.4
lucene2.2 xalan2.5 66.1 664 650 64.7 68.9
xerces1.3 xalan2.5 51.0 63.8 62.6 66.2 68.6
xalan2.5 lucene2.2 730 751 71.0 76.9 78.3
log4j1.1 lucene2.2 713 745 74.0 72.7 76.9
xalan2.5 xercesl.3 387 355 393 37.3 40.0
ivy2.0 xercesl.3 41.3 40.8 39.8 37.8 42.0
xerces1.3 ivy2.0 51.8 50.0 504 50.0 47.2
synapsel.2 ivy2.0 52.1 49.0 509 47.6 494
ivyl.4 synapsel.l 55.1 581 553 53.6 54.5
poi2.5 synapsel.l 50.8 54.1 51.6 54.5 59.7
ivy2.0 synapsel.2 604 622 619 61.1 62.0
poi3.0 synapsel.2 60.0 63.2 61.3 61.2 62.3
synapsel.2 poi3.0 77.0 804 781 81.7 82.7
antl.6 poi3.0 777  66.2  70.0 81.2 82.7
Average 594 603 59.7 59.9 61.8

6 THREATS TO VALIDITY

Threats to internal validity come from experimental errors and the
replication of the baseline methods. In order to compare and analyze
the deep learning-based defect prediction techniques, we compare
our proposed DTL-DP method with Sementic, DBN-CP, DP-LSTM
and DP-CNN. In addition, our method is also compared with the
transfer learning-based method TCA+, which is the state-of-the-
art CPDP technique. Since the original implementations were not
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available, we re-implemented our own versions of the baselines.
Although we strictly follow the procedures described in their work,
our new implementations may not completely restore all of their
original implementation details. And the randomness of the deep
learning-based approach also makes the results of our implemented
experiments different from the original. Since we have removed the
entries in the PROMISE dataset that cannot retrieve the correspond-
ing source files, our re-implemented experimental results may not
be consistent with the original baselines.

The external threat to the validity of the results lies in the general-
izability of the results. We have tested our method on 10 open source
Java projects, including 14600 files. Defect predictions for instances
of other languages, such as C, C++, etc., need to be validated by
additional experiments in the future.

Threats to construct validity depend on the appropriateness of
the evaluation measurement. The F-measure is used as our main
evaluation measure, which has been applied in many previous efforts
to evaluate defect prediction comprehensively.

7 CONCLUSIONS AND FUTURE WORK

Here we made two main contributions, code visualization for defect
prediction and an improved deep transfer learning model. Our exper-
imental results on 10 open source projects show that deep learning
can be effectively applied directly for defect prediction after apply-
ing visualization methods to the code. Specifically, our approach,
DTL-DP, performs at the top of the range of state-of-the-art WPDP
approaches. For CPDP, DTL-DP improves on the state-of-the-art
technique TCA+, built on traditional features, by 29.0% (in the F-
measure). It also bests the deep learning-based approaches DBN-CP,
DP-LSTM and DP-CNN by 8.8%, 24.8% and 15.5%, respectively.

DTL-DP still has some limitations. For some projects, a problem
of negative transfer occurs, resulting in a worse prediction than a
direct prediction. Large differences between two projects can cause
such negative transfer. Reducing the impact of negative transfer is
one of the problems to be solved in the future. Additionally, the
amount of training data we had was small and class imbalance is
inherent in software defect prediction. Both can be improved with
more data, which we plan to obtain in the future.
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