
Dual Channel Among Task and Contribution on OSS

Communities: An Empirical Study

Yu Zhang*, Yue Yu†, Tao Wang‡, Zhixing Li§ and Xiaochuan Wang¶

National University of Defense Technology

Changsha 410073, P. R. China
*zhangyu_@nudt.edu.cn
†yuyue@nudt.edu.cn

‡taowang2005@nudt.edu.cn
§lizhixing15@nudt.edu.cn
¶mrwangxc@nudt.edu.cn

Received 16 March 2021

Revised 31 March 2021

Accepted 23 May 2021

Open Source Software (OSS) community has attracted a large number of distributed developers
to work together, e.g. reporting and discussing issues as well as submitting and reviewing code.

OSS developers create links among development units (e.g. issues and pull requests in GitHub),

share their opinions and promote the resolution of development units. Although previous

work has examined the role of links in recommending high-priority tasks and reducing resource
waste, the understanding of the actual usage of links in practice is still limited. To address

the research gap, we conduct an empirical study based on the 5W1H model and data mining

from ¯ve popular OSS projects on GitHub. We ¯nd that links originating from a PR are
more common than the other three types of links, and links are more frequently created

in Documentation. We also ¯nd that average duration between development units' create

time in a link is half a year. We observed that link behaviors are very complex and the

duration of link increases with the complexity of link structure. We also observe that the reasons
of link are very di®erent, especially in P–P and I–I. Finally, future works are discussed

in conclusion.

Keywords: Open source software; issue; pull request; link; empirical study.

1. Introduction

The widespread use of Open Source Software (OSS) not only creates a paradigm

of popular distributed software development model [1–4], but also creates a self-

learning and self-organizing OSS community [5, 6]. With the continuously evolving

of distributed software development, pull-based development has become a

†Corresponding author.

International Journal of Software Engineering

and Knowledge Engineering

Vol. 31, No. 8 (2021) 1213–1234

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194021500388

September 6, 2021 5:48:21pm WSPC/117-IJSEKE 2150038
2ndReading

1213

https://dx.doi.org/10.1142/S0218194021500388

recent form and gained tremendous traction in the OSS community. Compared with

traditional models of OSS development (e.g. mailing list and issue tracking system),

the pull-based development model is more popular in code integrating [7] because it

provides process automation and information centralization [8, 9]. This model

decouples the development e®ort from the decision-making to integrate code. In pull-

based development, contributors submit ¯le changes [10, 11], report defect ¯ndings,

require features and ask questions [12, 13], while integrators oversee the merge

process, provide feedback, make decision [14] and maintain the sustainability of the

project [15, 16].

Due to mutual dependence [17], a development unit (i.e. issue and PR) is often

referenced by other development units which triggers the creation of links [18]. The

usage of links in multiple development processes (e.g. committing, creating and

discussing) [7, 19] stems from various motivations of practitioners and enhances the

dependency of tasks and contributions in OSS communities [20]. Link also involves

stakeholders' consideration of issue resolution [21], and improves the e±ciency and

e®ectiveness of development manifested by the increased acceptance of contribution

and decreased resource waste in code review [8, 22]. In addition, the link facilitates

knowledge sharing in OSS community [23] because it contains a large amount of

knowledge from the OSS project [24, 5].

To make use of the link properly, it is necessary to examine it from multiple

perspectives [25, 26]. Previous researches have focused on the applications of link in

code review recommendation [27], similar bug recommendation [28] and related

knowledge acquisition [23]. Meanwhile, researchers also explored the reasons why

developers leave links, the context where link appears and the potential impact of

link on software development [21]. However, little is known about the real usage of

links in the perspectives of customs, patterns and characteristics. A better under-

standing of this can help OSS practitioners to use the linking mechanism in a formal

way and provide insights into the design of current tools for better support and best

practices on e±cient collaboration.

To bridge this gap, we provided an empirical study on ¯ve popular OSS

projects hosted on GitHub to explore the comprehensive usage of link in practice.

We borrowed the idea of the 5W1H model [29], which is a popular model describing

a fact using who, what, where, when and how questions, and raised ¯ve

research questions. We organized the knowledge about links in GitHub, depicting

the developer (who) create a link (what) in a speci¯c artifact (where) at a

certain time (when) while expressing link behavior (how) for a speci¯c intention

(why) [30]. In this paper, research questions do not include \Who" because users in

OSS community are obviously integrators and contributors that we all consider

carefully.

In our study, ¯rst, we collected all historical development units of ¯ve projects via

GitHub o±cial API.a Second, we identi¯ed links from collected development units.

ahttps://docs.github.com/en/graphql.

1214 Y. Zhang et al.

September 6, 2021 5:48:23pm WSPC/117-IJSEKE 2150038
2ndReading

Based on a total of 246,569 links, we investigated the real usage of link in multiple

aspects to address the following research questions:

RQ1: What are the types of link?

In this research question, we ¯rst de¯ned link types according to the type of source

and target development unit and then analyzed distributions of link types.

RQ2: Where do links appear?

With this research question, we aimed to explore speci¯c locations where links are

used. We also studied the frequency of di®erent locations.

RQ3: When do links happen?

In this research question, we ¯rst de¯ned two time-related measurements

which are create time interval (CTI) and link time interval (LTI) and then measured

distributions of links on these measurements.

RQ4: How are links organized?

We ¯rst reorganized a set of connected links into new structures (i.e. multi-target

link and cluster). Then we studied the complexity of new structures by analyzing link

distributions on several metrics.

RQ5: Why are links used?

With this research question, we conducted a qualitative analysis to reveal reasons

of link and presented the distribution according to the category of link type.

The contributions of this paper can be summarized as follows:

. We conducted a comprehensive and systematic empirical study on the practical usage of

link in GitHub.We found that linked development units are close in time and obvious in

location while composing relatively small size structures and resulted by various reasons.

. We provide actionable suggestions and implications for OSS practitioners and tool

designers, which is useful in merging external contributions more e®ectively,

maintaining project awareness and devising automatic tools.

The remainder of the paper is organized as follows. Section 2 describes the

background of this paper. Section 3 presents the construction of the dataset used in

this study. Section 4 reports the results and ¯ndings. Finally, Sec. 5 concludes the

paper and outlines directions for future work.

2. Background

2.1. Challenges in pull-based development

Some preliminary researches have focused on the use of pull-based development [31–33, 19]

and revealed that it provides fast turnaround, increased opportunities for community

engagement and decreased time to incorporate contribution [8] which make it pop-

ular in distributed collaboration of OSS development [34, 35]. However, in practice,

the challenges imposed by pull-based development [36] cannot be ignored.

Gousios et al. [37] found that integrators struggled to maintain the quality of their

projects and had di±culties with prioritizing contributions [9, 38]. Popular projects

Dual Channel Among Task and Contribution 1215

September 6, 2021 5:48:23pm WSPC/117-IJSEKE 2150038
2ndReading

receive a big volume of contributions each day that burdens integrators for it is

di±cult to manage and decide the priority with the weak relationships among con-

tributions. Although contributors had a strong interest in maintaining awareness of

project status [39], it is also a challenge that contributors work in the way that there

is a shortage of centralized coordination and organized development units [40]. For

instance, several researches have pointed out that duplicate pull request is one of the

reasons that hinders developers to contribute [41–43]. The undiscovered and not

managed links among development units result in duplicate pull requests directly in

contributors' work without realizing others' work. In addition, as for newcomers in

the OSS community, Balali et al. [44] found 44 barriers newcomers faced. The barrier

lacking newcomer's background knowledge calls for making full use of links among

development units to formulate necessary knowledge and awareness of projects.

2.2. Link in development units

Comparing with traditional software engineering which relies on employment

contracts, formal policy and hierarchical management to implement decision-

making [15], OSS projects promote interest-led software development and attract

voluntary work from contributors. Aberdour [15] listed di®erences between tradi-

tional software and OSS development in 11 perspectives, such as Team members are

assigned work versus Team members choose work and Much e®ort put into project

planning and scheduling versus Little project planning or scheduling. Knowledge

management plays a signi¯cant role in both traditional software and OSS for the

knowledge-intensive native of software development [45]. Document management

used to manage explicit knowledge in artifacts of software and competence

management used to organize tacit knowledge embedded within developers are

fundamentals for knowledge management in traditional software engineering [46].

In OSS projects, bene¯ting from the maturity of OSS platforms and communities,

explicit knowledge is well organized in ¯les, versions and repositories. However, tacit

knowledge management has not been studied in depth.

Link is a key component in supporting contributions and knowledge management

in OSS within the pull-based development model [18] for it maintains awareness of

the project and organizes knowledge embedded in various practitioners [18]. Figure 1

shows an example of a link in GitHub. In issue rails/rails#40534, contributor ojab left a

comment and referenced to PR rails/rails#40390 and PR rails/rails#40385. The two

links triggered timeline events in corresponding PRs as shown in the right of Fig. 1.

In our study, the de¯nition of link is informed as follows:

Link is a pair of development units from the source to the target. The source is the

development unit in which the practitioner uses a link and the target is the

development unit referenced by the practitioner.

Due to the increasing importance, link in development unit has attracted atten-

tion from researchers interested in online collaboration and software development

1216 Y. Zhang et al.

September 6, 2021 5:48:24pm WSPC/117-IJSEKE 2150038
2ndReading

practices. According to Xu et al. [47], in Stack Over°ow, they ¯gured that knowledge

units were linkable for di®erent purposes and implemented a deep-learning approach

to recognize di®erent classes of linkable knowledge. Zhang et al. [17] presented a

mixed-method study of issue linking and issue resolution in Rails on GitHub, in

which they reported that developers tended to link more cross-project and cross-

ecosystem issues which were associated with more discussions. Yu et al. constructed a

large dataset of historical duplicate PRs in GitHub [42], which was one type of link,

and analyzed redundancy, context and preference of duplicate PRs [24]. In addition,

researchers have devoted themselves to tool implementation. Zhang et al. [23] pro-

posed iLinker as a novel approach to accomplish recommendation tasks in acquiring

related issue knowledge. Rocha et al. [28] implemented the related bugs recom-

mendation tool NextBug for contributors and evaluated the tool to clarify the ap-

plicability, bene¯ts and limitations of similar bugs recommendations.

3. Dataset

In this section, we present how the data was collected and processed. First, we selected

¯ve popular OSS projects hosted on GitHub, as described in Sec. 3.1. Second, we

collected all historical development units through GitHub API in Sec. 3.2. Finally, we

presented the more elaborate processing steps on link extraction in Sec. 3.3.

3.1. Studied projects

To conduct our study, we selected ¯ve projects from GitHub, as shown in Table 1.

The criteria of project selection are that (i) they should have full-°edged and heavy

usage of pull-based development model (e.g. all have more than 30,000 development

units), (ii) they should be relatively popular and receive plenty of attention from

the community, which can be quanti¯ed through the number of stars and forks

(41.2 k stars and 16.0 k forks on average) and (iii) they should cover di®erent

Fig. 1. Example of links in Rails on GitHub.

Dual Channel Among Task and Contribution 1217

programming languages and application domains which increases the generalizability

of our study.

3.2. Data collection

We used the GitHub GraphQL API to download historical development units along

with their corresponding public release of selected projects. GraphQL API provides a

new conceptual framework for implementing the way of data access interface with

graph query language [48]. We followed the following steps to collect the data:

(i) For each project, we obtained historical development units by querying objects

issues and pullRequests (referred as developmentUnits) as well as

complementary information, such as number, author, title, body, url and

createdAt in developmentUnit. We got 274,777 development units in total.

(ii) In each developmentUnit, we crawled object comments for the list of comments

along with the corresponding segments (i.e. author, body and createdAt) and

got 1,823,883 comments.

(iii) We also collected CrossReferencedEvents and ReferencedEvents from object

timelineItems in each developmentUnit. They returned events triggered by

link behaviors from other development units to the studied one. Meanwhile,

segments, such as actor, createdAt, subject, source and target, were col-

lected together. The number of collected referenced events and cross referenced

events we got are 342,948 and 8,657,124, respectively.

3.3. Link extraction

We focused link extraction on the integrity of links in studied projects. First, we used

data from timelineItems to extract explicit links as described in Sec. 3.3.1. Second,

we analyzed content in title and body to extract implicit links in Sec. 3.3.2.

Currently, we narrowed down the source and target development units of a link to

the same project.

3.3.1. Extracting explicit links

In this part, we parsed event lists returned from CrossReferencedEvent and

ReferencedEvent. Events in CrossReferencedEvent are triggered by link behaviors

Table 1. Overview of studied projects.

Project Language Application #PR #Issue #Star #Fork

Elasticsearch Java Search engine 40.8 k 26.0 k 53.2 k 19.1 k

Joomla-cms PHP Content management system 20.0 k 11.6 k 3.7 k 3.1 k

Kubernetes Go Container management 60.3 k 37.1 k 73.6 k 26.8 k
Pandas Python Data analysis and manipulation 19.0 k 19.5 k 28.1 k 11.8 k

Rails Ruby Web framework 26.4 k 14.3 k 47.4 k 19.1 k

1218 Y. Zhang et al.

September 6, 2021 5:50:03pm WSPC/117-IJSEKE 2150038
2ndReading

when creating or discussing a development unit, while events in ReferencedEvent are

triggered by link behaviors in commit message when committing changes of ¯les. Each

event includes information of actor, create time, source and target development units

of the link, with which we converted events into links in our dataset. In total,

we extracted 165,456 links from CrossReferencedEvent and 39,137 links from

ReferencedEvent.

3.3.2. Extracting implicit links

To ensure the integrity of our dataset, we also extracted implicit links in title and

body for several reasons. First, in early era of GitHub, Cross Referenced Event and

Referenced Event were not applied to record links. For example, in comment of rails/

rails#371, author baroquebobcat referenced development unit rails/rails#451

(\I put together a patch #451"), but there is no event created in rails/rails#451.

Second, links in development unit's title cannot be converted into events either.

Thus, it is necessary to extract implicit links.

First of all, we extended a data preprocessing procedure to systematically clean

raw data by eliminating unnecessary artifacts that a®ect implicit link extraction.

The data preprocessing consists of the following steps: (i) eliminate Block Quote in

comments which starts with a block marker \>" and brings a considerable number of

duplicate links to the dataset, (ii) eliminate both Code Block and Code Span to

remove invalid links from our dataset. Code block is marked with three consecutive

backtick characters, while code span is marked with a backtick character. We applied

the Python RegEx to do the data preprocessing and the resulting contents were

prepared for extraction process elaborated as follows:

Extracting links in shortened format. According to GitHub Flavored Mark-

down [49], a link is automatically created when an author uses shortened format of

text. The format User/Project#Num [50] (e.g. rails/rails#26) creates a link to the

development unit numbered as Num in User/Project.Meanwhile, patterns of #Num

(e.g. #26) and GH-Num (e.g. GH-26) create a link to the development unit num-

bered as Num in the same project. We used regular expressions to extract link in

these patterns.

Extracting links via URL. URLs usually appear in plain text of raw data crawled

from GitHub API to represent links. For example, \https://github.com/rails/rails/

pull/26" creates a link to the development unit whose tracking number is 26 in

Rails on GitHub. We also extracted all links in the format of URL using regular

expressions.

The number of implicit links we got is 41,976.

It is worth noting that when extracting, we processed two types of link in a

particular way: (i) Replicate links. When two development units are linked

more than once, they compose a number of replicate links. We treated replicate links

as the same one and only kept the earliest one to maintain the validity of dataset.

Dual Channel Among Task and Contribution 1219

September 6, 2021 5:50:03pm WSPC/117-IJSEKE 2150038
2ndReading

(ii) Self-link. If a development unit is referenced by itself, it creates a self-link. We

removed all self-links for it is meaningless in our study. Overall, the details about the

number of links in each project are shown in Table 2.

4. Experiments and Results

In this section, we conducted experiments on 246,569 links and answered research

questions of this paper. The research methods and results are illustrated as follows.

4.1. RQ1: What are the types of link?

With this research question, we ¯rst de¯ned link type and then explored the dis-

tributions of links on di®erent types.

4.1.1. Link types

In GitHub, issue and PR share the same numbering system. Therefore, in addition to

referencing an issue/PR in an issue/PR, developers can also reference an issue/PR in

a PR/issue. As shown in Fig. 2, links in GitHub can be classi¯ed into four types

according to the type of source development unit and target development unit.

(i) P–P: A link from PR to PR,

(ii) P–I: A link from PR to issue,

(iii) I–P: A link from issue to PR,

(iv) I–I: A link from issue to issue.

4.1.2. Type distribution

We present the distributions of links on four types in Fig. 3. We observed that

37.29% links start from issue, while 62.71% links are from PR, which is twice as much

Table 2. Overview of the number of links.

Project Elasticsearch Joomla-cms Kubernetes Pandas Rails Total

#Links 58,137 25,985 110,928 32,211 19,308 246,569

Fig. 2. Links among pull requests and issues in a project.

1220 Y. Zhang et al.

September 6, 2021 5:50:03pm WSPC/117-IJSEKE 2150038
2ndReading

as links from issue. It suggests that development behaviors in PRs are more com-

plicated and attract more attention from practitioners in community. Links in PRs

are worth spending more time discussing and reviewing. Especially, when solving

issues, it is helpful to examine overall links associated with the development unit in

order to avoid resources waste and mutual interference. In the perspective of target

development unit, 54.33% links are directing to PR and 45.67% links are directing to

issue. The relatively balanced distribution indicates that PR and issue are equally

important artifacts and both contain development knowledge of OSS project. When

¯guring links, we should treat them on an equal footing. Among four link types, links

in P–I and I–P are more closely related to issue resolution for they connect task and

contribution directly. However, in the distributions, these links account for only half

(49.81%) of the total. It means that contributors and integrators have to spend at

least half e®ort in solving occasional problems other than issue resolution directly.

4.2. RQ2: Where do links appear?

In this research question, we investigated the location of a link and analyzed the

distributions of links in the perspective of locations.

Fig. 3. Percentage of link types across studied projects.

Dual Channel Among Task and Contribution 1221

September 6, 2021 5:50:06pm WSPC/117-IJSEKE 2150038
2ndReading

4.2.1. Link locations

In GitHub, development unit is made up of multiple artifacts. Practitioners are

allowed to use link in several artifacts. Thus, we de¯ned the location of a link as the

artifact where the link was used as follows:

. Documentation: The location includes title and body of a development unit. Links

in documentation are already detected by contributors at the beginning of the

development unit.

. Comment: Links in comment are created when discussing around the development

unit. Compared with links in documentation, they are more time-consuming

and di±cult to detect as well as involving more resources and knowledge as the

discussion continues.

. Commit: When committing changed ¯les, contributors write down the commit

message to describe the change brie°y, in which a link would be created.

4.2.2. Location distribution

Figure 4 shows the distributions of link locations. On average, half of the links

(56.65%) are created in documentation, where contributor writes concise information

of the work she/he is going to do. It indicates that they have discovered these links at

the ¯rst time of the development unit. However, to maintain the awareness and

conduct e±cient development of project, the proportion is not enough. Development

units without link in documentation are created with no explicit announcement of

related tasks and contributions which is not suggested by integrators of project. The

39.72% links are created in comment on average and discovered by di®erent con-

tributors. As for links which have already existed at the beginning of development

unit, it is a waste of time and resources to arouse unnecessary communication rounds

involving a number of contributors. It is a better choice for contributor to examine

Fig. 4. Percentage of link locations across studied projects.

1222 Y. Zhang et al.

September 6, 2021 5:50:35pm WSPC/117-IJSEKE 2150038
2ndReading

the overall links before contributing. As for links in commit, they account for only

9.63% on average. We infer the reason of scarcity of links in commit is that commit

message is not displayed in the web page of development unit directly. It is to say

that other contributors interested in the development unit cannot get the link in-

formation at the ¯rst glance of the development unit. It is not instrumental enough in

exchanging contributors' opinions.

4.3. RQ3: When do links happen?

The third research question elicits the time-related measurements. We ¯rst de¯ned

two statistical measurements of time factor, and then investigated the distributions

of them.

4.3.1. Time interval

Time is an important metric in the analysis of link. For example, the longer a

development unit lasts, the more likely it causes duplication [24] and the more links it

may introduce. We de¯ned two time statistical measurements:

(i) CTI: The time interval from the create time timestampsc of the source devel-

opment unit ds to the create time of the target development unit dt in a link l:

CTIðlÞ ¼ timestampscðdtÞ � timestampscðdsÞ:

(ii) LTI: The time interval from the latest create time of the source and target

development unit to the link time timestampsðlÞ of a link l:

LTIðlÞ ¼ timestampsðlÞ �MaxðtimestampscðdsÞ; timestampscðdtÞÞ:
As for CTI, the value is whether positive or negative. When CTI is negative, it

indicates that links are recommending contributors to refer to historical development

units, while to a latter development unit when the value is positive. The negative

CTI links is more conspicuous than positive one for links of negative CTI are created

in the latest development unit which is easier to discover. CTI is designed to reveal

how long does it take to form a link. Another measurement LTI is de¯nitely positive

and shows how long does it take to discover a link after it is already formed.

Dual Channel Among Task and Contribution 1223

September 6, 2021 5:50:47pm WSPC/117-IJSEKE 2150038
2ndReading

We parsed GitHub API returned data createdAt in Sec. 3.2 to get timestampscðdsÞ
and timestampscðdtÞ. Next, we presented the following method we used to parse

timestampsðlÞ according to the location where the link l appears in Sec. 4.2:

(i) Documentation: The create time of link in documentation is as same as the

create time of the development unit it belongs to. Thus, the timestampsðlÞ
equals the create time of source development unit timestampscðdsÞ.

(ii) Comment: Link in comment is created along with the comment, so the

timestampsðlÞ is the create time of the comment.

(iii) Commit: As same as link in comment, timestampsðlÞ of link in commit is the

create time of the commit.

4.3.2. Time interval distribution

For better understanding of link behaviors in time dimension, we explored dis-

tributions of CTI and LTI. Figure 5 shows the results of this research question.

(a) (b)

(c) (d)

Fig. 5. Results of experiments on CTI and LTI: (a) statistics of positive CTI; (b) statistics of negative CTI;

(c) percentage of positive and negative CTI and (d) statistics of LTI.

1224 Y. Zhang et al.

September 6, 2021 5:51:04pm WSPC/117-IJSEKE 2150038
2ndReading

Figures 5(a) and 5(b) present the distributions of CTI in positive and negative,

respectively. We found that the maximal duration of forming a link lasts extremely

long, approaching the age of the project. On the other hand, the average CTI of all

projects is 175.2 days, which has provided contributors a time window in which they

should check related development units carefully. In Fig. 5(c), we observed that

the number of links whose CTI are negative is signi¯cantly more than positive one

(2.7 times on average). Account for the time sequence of development unit in issue

tracker system and the di®erence of positive and negative CTI links mentioned

above, we speculated that contributors are more inclined to create links in later

development unit, which are more obvious in issue tracker system. We also observed

that in Fig. 5(d), it takes 16.66 days on average to ¯nd a link after the formation of it.

What is more, the longest LTI is 2788.6 days in Pandas. The lack of adequate link

information leads to time waste in LTI which could be compressed largely with the

help of automatic recommendation tools of link.

4.4. RQ4: How are links organized?

In this research question, we reorganized links into two new structures and analyzed

their features, respectively.

4.4.1. Multi-target link

When analyzing links, we found that there is a shortage of interpretation on com-

plicated link behaviors of contributors. While re°ecting on this behavior, we realized

that the existing organization of link (i.e. one source development unit directing to

one target development unit) is not su±cient. To address this situation, we intended

to reorganize links in accordance with the number of target development units. We

introduced two structures as follows:

(i) Single-target link: A link whose source development unit directs to one target.

(ii) Multi-target link: A link whose source development unit directs to more than one

target.

Meanwhile, we also corrected the de¯nition of CTI in Sec. 4.3.1 to adapt new

structures. Duration is the time interval from the create time timestampsc of the

Dual Channel Among Task and Contribution 1225

September 6, 2021 5:51:53pm WSPC/117-IJSEKE 2150038
2ndReading

earliest development unit de to the create time of the latest development unit dl.

durationðlÞ ¼ timestampscðdlÞ � timestampscðdeÞ:

We present the results of experiments on single-target and multi-target links

in Fig. 6. In Fig. 6(a), we observed that the number of multi-target links (average

58.63%) are relatively more than the number of single-target links (average 41.37%).

It shows that when checking related development units, contributors should

perform adequate review for all links. What is more, according to statistics,

we assumed that the number of multi-target links is positively correlated with

the age of project. The veracity of the speculation remains to be demonstrated

by future research. The duration of multi-target links (344.63 days) is obviously

longer than duration of single-target links (166.42 days). That is to say the

more complex the link behavior is, the longer it lasts. For more e±cient and e®ective

development, contributors are expected to control link duration in a relatively

short duration.

(a) (b)

(c)

Fig. 6. Results of experiments on single-target and multi-target links: (a) percentage of single-target and

multi-target links; (b) duration of single-target links and (c) duration of multi-target links.

1226 Y. Zhang et al.

September 6, 2021 5:52:08pm WSPC/117-IJSEKE 2150038
2ndReading

4.4.2. Cluster

To gain more insight of how link works in practical development scenarios, we

investigated crossly connected development units and de¯ned them as a cluster. For

instance, Fig. 7 shows a cluster that involves six links (i.e. six edges) and gathers four

development units (i.e. development units numbered as 2224, 2219, 2080 and 2150)

in Rails. We identi¯ed cluster of links that is expected to be the representation of

resolution to more complex tasks involving several di®erent development units.

We introduced the method we used in identifying cluster as follows. (i) Start a

cluster from one development unit, and then ¯nd the development unit's target

which is the ¯rst layer of cluster. (ii) Find out all target development units of each

development unit in the ¯rst layer and they construct the second layer. (iii) Repeat

step (ii) until all development units do not have any targets or the target is involved

in former layers of the cluster already. We restricted that the number of cluster layers

is at least 2 in order to distinguish from multi-target links. Overall, we got 11,227

clusters, as shown in Table 3.

For each cluster, we de¯ned two metrics to reveal the complexity and scale of

cluster: (i) cluster depth presents the number of layers of cluster and (ii) cluster size

presents the number of development units in a cluster. Additionally, duration is also

considered which is de¯ned in Sec. 4.4.1.

Figure 8 illustrates the distributions of three metrics across studied projects. We

observed that the distributions of cluster depth and cluster size are quite skewed

towards the minimum (i.e. two layers and three development units). It shows that

the size of most clusters is relatively small and it is possible to acquire awareness of

Fig. 7. Example of a cluster in Rails on GitHub.

Table 3. Statistics of the number of clusters.

Project Elasticsearch Joomla-cms Kubernetes Pandas Rails Total

#Clusters 3181 1384 4025 1913 724 11,227

Dual Channel Among Task and Contribution 1227

September 6, 2021 5:52:43pm WSPC/117-IJSEKE 2150038
2ndReading

project by detecting clusters. However, Kubernetes is the project that has the most

large-scale cluster (i.e. 22 layers and 41 development units). Notably, Kubernetes is

also the project which has the least multi-target links in Sec. 4.4.1. It manifests that

two structures (i.e. multi-target link and cluster) have re°ected the usage of links on

di®erent sides. Furthermore, duration of clusters is on average 372.51 days which is a

quite long time for contributors to review.

4.5. RQ5: Why are links used?

In this research question, we sought to understand why are development units linked.

We conducted a card sorting on 500 randomly selected links. The sample yields a 90%

con¯dence level with a 3.7% error margin. We focused on the context where developers

built links and Table 4 shows the results distributed in four categories of link type.

(a) (b)

Fig. 8. Results of experiments on cluster: (a) statistics of cluster depth; (b) statistics of cluster size and

(c) duration of cluster.

1228 Y. Zhang et al.

September 6, 2021 5:52:46pm WSPC/117-IJSEKE 2150038
2ndReading

The most common reason why practitioners use links is bug ¯x. Among reasons in

P–I and I–P, bug ¯x accounts for 85.48%. It highlights the practicality of the pull-

based development mechanism in promoting OSS development by solving issues.

There are also 20 links aiming at reporting defect from existing PR. Around 19% of

links are used for collaboration connecting di®erent issues or PRs. These links aim to

accomplish the same task and are divided into di®erent parts. Correspondingly, out of

500 instances, seven links are used in task assignment by splitting a complicated task

or contribution into small parts and accomplished by either one or more contributors.

After the development stage, the practitioner, usually an integrator, creates a devel-

opment unit to summary development status and maintain awareness of project.

Contributors strive for e®ective and e±cient development by ¯guring out a duplicate

(5.6%) that contains two inadvertently identical development units. They also try to

ensure successful integrating by identifying block links (1%), in which the resolution of

one development unit is blocked by another development unit. A complementary reason

is backportwhich accounts for 6%. It connects two contributions aiming at two versions of

code. Supersede (12.6%) is also mentioned for development unit replacement. Finally,

(c)

Fig. 8. (Continued)

Table 4. Overview of reasons in each type of links.

Reasons P–P P–I I–P I–I Total

Bug ¯x 2 160 46 208

Collaboration 65 33 98

Supersede 51 12 63
Summary 5 30 35

Cherry pick 35 2 37

Backport 30 30

Duplicate 3 10 28
Defect report 2 18 20

Task assignment 3 4 7

Non-context 5 1 6

Block 2 2 1 5

Dual Channel Among Task and Contribution 1229

September 6, 2021 5:53:38pm WSPC/117-IJSEKE 2150038
2ndReading

1.2% of links are marked as non-context for lack of su±cient context to identify the

reason. According to the reasons, we had several ¯ndings.

E±cient development. As suggested by multiple guidelines, before ¯rst

attempting to create a contribution, contributor should announce the task she/he is

working on and checks the project's current status. Bug ¯x, which acts on issue

resolution directly, reveals the role pull-based development mechanism plays in

promoting OSS development. While defect report raises questions about inadequate

code review process resulting in defect in merged code.

Task and contribution division. Considering the continuous development nature

of OSS, amount of tasks emerge all the time. Collaboration indicates a critical step

before creating a contribution, which divides contributions into small patches. It is

manifested by Gousios et al. [37] that the smaller size of code patch is easier to

integrate. Correspondingly, practitioners also need to do task assignment and sum-

mary in time to maintain project awareness.

Resources waste. Even though many guidelines and researches suggest contributors

examine existing contributions and the project's issue database, links of duplicate and

block ¯gure out redundancy of time and resources from both contributor's and integrator's

perspectives. At the same time, links in supersede have both positive and negative impacts

on development. The positive impact is the enhancement of code quality when competing

with other contributors, while the negative impact is the waste of resources.

Continuous service. Approximately, 20% of links in P–P are used to identify

backport. It underlines the importance of maintaining project service across di®erent

code versions. Contributors are suggested to take backport into consideration after

the merge of a contribution.

Communication fatigue. As reported in [37], non-context reveals the paradox be-

tween the need of maintaining project's awareness and the behavior of rare communi-

cation from contributors. It hinders the observability of the overall status of a project

and burdens integrators and contributors with extra communication obligations [37].

1230 Y. Zhang et al.

September 6, 2021 5:53:50pm WSPC/117-IJSEKE 2150038
2ndReading

5. Conclusion

In this paper, we conducted an empirical study on links among tasks and con-

tributions in the context of pull-based development on GitHub. The goal of our study

is to better understand the real usage and the in°uence of links in practice. We

analyzed ¯ve popular GitHub projects. We found that most links are associated with

PRs and used in obvious locations (e.g. documentation and comment). We also

found that, on average, the lifecycle of a link is half a year and practitioners spend

half a month discovering links. We observed that links have di®erent structures (e.g.

multi-target link and cluster) which are usually small-sized and possible to detect.

We also observed that various reasons contribute to the usage of links in di®erent

contexts. Based on the ¯ndings of our study, we recommend that enough attention

should be paid to link in OSS community for it contains rich knowledge about

development and is helpful in maintaining awareness of projects to all practitioners

publicly. Meanwhile, an automatic link recommendation tool is also suggested to be

integrated into OSS platforms for intellective OSS development.

Our future work includes expanding the research to more projects, verifying the

usefulness of initial ¯ndings, improving our ¯ndings to reduce researchers' biases, and

looking for other factors that a®ect practitioners' linking behaviors. In addition, we

will summarize the best practices of link usage, and evaluate the pros and cons of

each mode in link usage through regression analysis. Combining the practical usage

of links in di®erent projects, we will explore formal methods of link usage and au-

tomatic link recommendation tools. Learning the process and characteristics of

process and knowledge management in traditional software engineering may improve

link usage in OSS projects.

Acknowledgments

This work was supported by National Grand R&DPlan (Grant No. 2020AAA0103504).

References

1. GitHub, Inc., The 2020 state of the Octoverse, https://octoverse.github.com/. Accessed
2021-9-2 (2020).

2. Y. Yu, G. Yin, H. Wang and T. Wang, Exploring the patterns of social behavior in
GitHub, in Proc. 1st Int. Workshop on Crowd-based Software Development Methods and
Technologies, 2014, pp. 31–36.

3. T. Wang, G. Yin, Y. U. Yue, Y. Zhang and H. Wang, Crowd-intelligence-based software
development method and practices, Sci. Sin. Inf. 50(3) (2020) 318–334.

4. H. Wang, Harnessing the crowd wisdom for software trustworthiness: Practices in China,
ACM SIGSOFT Softw. Eng. Notes 43 (2018) 1–6.

5. S. Sowe, I. Stamelos and L. Angelis, Identifying knowledge brokers that yield software
engineering knowledge in OSS projects, Inf. Softw. Technol. 48(11) (2006) 1025–1033.

Dual Channel Among Task and Contribution 1231

September 6, 2021 5:54:08pm WSPC/117-IJSEKE 2150038
2ndReading

6. H. Wang, G. Yin, T. Wang and Y. Yu, Crowd-Based Methodology of Software Development
in the Internet Era (Towards Engineering Free/Libre Open Source Software (FLOSS)
Ecosystems for Impact and Sustainability, 2019).

7. M. Golzadeh, A. Decan, D. Legay and T. Mens, A ground-truth dataset and classi¯cation
model for detecting bots in GitHub issue and PR comments, J. Syst. Softw. 175 (2021) 110911.

8. G. Gousios, M. Pinzger and A. van Deursen, An exploratory study of the pull-based software
development model, in Proc. 36th Int. Conf. Software Engineering, 2014, pp. 345–355.

9. M. I. Azeem, S. Panichella, A. Di Sorbo, A. Serebrenik and Q. Wang, Action-based
recommendation in pull-request development, in Proc. Int. Conf. Software and System
Processes, 2020, pp. 115–124.

10. M. Michlmayr, Quality improvement in volunteer free and open source software projects,
Opensource, MIT (2007).

11. B. Lin, G. Robles and A. Serebrenik, Developer turnover in global, industrial open source
projects: Insights from applying survival analysis, in 2017 IEEE 12th Int. Conf. Global
Software Engineering, 2017, pp. 66–75.

12. L. Dabbish, C. Stuart, J. Tsay and J. Herbsleb, Social coding in GitHub: Transparency
and collaboration in an open software repository, in Proc. ACM 2012 Conf. Computer
Supported Cooperative Work, 2012, pp. 1277–1286.

13. R. Kallis, A. Di Sorbo, G. Canfora and S. Panichella, Predicting issue types on GitHub,
Sci. Comput. Program. 205 (2020) 102598.

14. C. Bird, A. Gourley and P. Devanbu, Detecting patch submission and acceptance in OSS
projects, in Fourth Int. Workshop on Mining Software Repositories, 2007, pp. 26–26.

15. M. Aberdour, Achieving quality in open-source software, IEEE Softw. 24(1) (2007) 58–64.
16. M. Rashid, P. M. Clarke and R. V. O'Connor, Exploring knowledge loss in open source

software (OSS) projects, in Int. Conf. Software Process Improvement and Capability
Determination, 2017, pp. 481–495.

17. Y. Zhang, Y. Yu, H. Wang, B. Vasilescu and V. Filkov, Within-ecosystem issue linking: A
large-scale study of rails, in Proc. 7th Int. Workshop on Software Mining, 2018, pp. 12–19.

18. F. Zampetti, L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta and M. Lanza, How
developers document pull requests with external references, in 2017 IEEE/ACM 25th Int.
Conf. Program Comprehension, 2017, pp. 23–33.

19. M. M. Rahman and C. K. Roy, An insight into the pull requests of GitHub, in Proc. 11th
Working Conf. Mining Software Repositories, 2014, pp. 364–367.

20. Q. Fan, Y. Yu, G. Yin, T. Wang and H. Wang, Where is the road for issue reports
classi¯cation based on text mining?, in 2017 ACM/IEEE Int. Symp. Empirical Software
Engineering and Measurement, 2017, pp. 121–130.

21. L. Li, Z. Ren, X. Li, W. Zou and H. Jiang, How are issue units linked? Empirical study on
the linking behavior in GitHub, in 2018 25th Asia-Paci¯c Software Engineering Conf.,
2018, pp. 386–395.

22. M. Chen, D. Hu, T. Wang, J. Long, G. Yin, Y. Yu and Y. Zhang, Using document
embedding techniques for similar bug reports recommendation, in 2018 IEEE 9th Int.
Conf. Software Engineering and Service Science, 2018, pp. 811–814.

23. Y. Zhang, Y. Wu, T. Wang and H. Wang, iLinker: A novel approach for issue knowledge
acquisition in GitHub projects, World Wide Web 23 (2020) 1589–1619.

24. Z. Li, Y. Yu, M. Zhou, T. Wang, G. Yin, L. Lan and H. Wang, Redundancy, context, and
preference: An empirical study of duplicate pull requests in OSS projects, IEEE Trans.
Softw. Eng. (2020), https://ieeexplore.ieee.org/document/9174755.

25. J. Tsay, L. Dabbish and J. Herbsleb, In°uence of social and technical factors for
evaluating contribution in GitHub, in Proc. 36th Int. Conf. Software Engineering, 2014,
pp. 356–366.

1232 Y. Zhang et al.

September 6, 2021 5:54:08pm WSPC/117-IJSEKE 2150038
2ndReading

26. A. Lee, J. C. Carver and A. Bosu, Understanding the impressions, motivations, and
barriers of one time code contributors to °oss projects: A survey, in 2017 IEEE/ACM
39th Int. Conf. Software Engineering, 2017, pp. 187–197.

27. Y. Yu, H. Wang, G. Yin and T. Wang, Reviewer recommendation for pull-requests in
GitHub: What can we learn from code review and bug assignment?, Inf. Softw. Technol.
74 (2016) 204–218.

28. H. Rocha, M. T. Valente, H. Marques-Neto and G. C. Murphy, An empirical study on
recommendations of similar bugs, in 2016 IEEE 23rd Int. Conf. Software Analysis,
Evolution, and Reengineering, Vol. 1, 2016, pp. 46–56.

29. R. Kipling, Just So Stories for Little Children (Oxford Paperbacks, 1998).
30. M. A. Jabar, R. Ahmadi, M. Y. Shafazand, A. A. A. Ghani, F. Sidi et al., An

automated method for requirement determination and structuring based on 5W1H
elements, in 2013 IEEE 4th Control and System Graduate Research Colloquium, 2013,
pp. 32–37.

31. J. Zhu, M. Zhou and A. Mockus, E®ectiveness of code contribution: From patch-based to
pull-request-based tools, in Proc. 2016 24th ACM SIGSOFT Int. Symp. Foundations of
Software Engineering, 2016, pp. 871–882.

32. K. R. Lakhani and R. G. Wolf, Why hackers do what they do: Understanding motivation
and e®ort in free/open source software projects (2003). Available at SSRN: https://ssrn.
com/abstract=443040 or http://dx.doi.org/10.2139/ssrn.443040.

33. Y. Yu, G. Yin, T. Wang, C. Yang and H. Wang, Determinants of pull-based development
in the context of continuous integration, Sci. China Inf. Sci. 59(8) (2016) 1–14.

34. Z.-X. Li, Y. Yu, G. Yin, T. Wang and H.-M. Wang, What are they talking about?
Analyzing code reviews in pull-based development model, J. Comput. Sci. Technol. 32(6)
(2017) 1060–1075.

35. K. Peterson, The GitHub open source development process (2013), http://kevinp. me/
github-process-research/github-processresearch.pdf (visited on 05 November 2017).

36. J. Noll, S. Beecham and I. Richardson, Global software development and collaboration:
Barriers and solutions, ACM Inroads 1(3) (2011) 66–78.

37. G. Gousios, A. Zaidman, M.-A. Storey and A. Van Deursen, Work practices and chal-
lenges in pull-based development: The integrator's perspective, in 2015 IEEE/ACM 37th
IEEE Int. Conf. Software Engineering, Vol. 1, 2015, pp. 358–368.

38. Y. Yu, H. Wang, V. Filkov, P. Devanbu and B. Vasilescu, Wait for it: Determinants of
pull request evaluation latency on GitHub, in 2015 IEEE/ACM 12th Working Conf.
Mining Software Repositories, 2015, pp. 367–371.

39. G. Gousios, M.-A. Storey and A. Bacchelli, Work practices and challenges in pull-based
development: The contributor's perspective, in 2016 IEEE/ACM 38th Int. Conf. Software
Engineering, 2016, pp. 285–296.

40. Z. Li, Y. Yu, T. Wang, G. Yin and H. Wang, Are you still working on this an empirical
study on pull request abandonment, IEEE Trans. Softw. Eng., https://ieeexplore.ieee.
org/document/9332267/.

41. D. M. Soares, M. L. de Lima Júnior, L. Murta and A. Plastino, Acceptance factors of pull
requests in open-source projects, in Proc. 30th Annual ACM Symp. Applied Computing,
2015, pp. 1541–1546.

42. Y. Yu, Z. Li, G. Yin, T. Wang and H. Wang, A dataset of duplicate pull-requests in
GitHub, in Proc. 15th Int. Conf. Mining Software Repositories, 2018, pp. 22–25.

43. L. Ren, S. Zhou, C. Kästner and A. Wąsowski, Identifying redundancies in fork-based
development, in 2019 IEEE 26th Int. Conf. Software Analysis, Evolution and Reengineering,
2019, pp. 230–241.

Dual Channel Among Task and Contribution 1233

September 6, 2021 5:54:08pm WSPC/117-IJSEKE 2150038
2ndReading

44. S. Balali, I. Steinmacher, U. Annamalai, A. Sarma and M. A. Gerosa, Newcomers'
barriers. . . is that all? An analysis of mentors' and newcomers' barriers in OSS projects,
Comput. Support. Coop. Work (CSCW) 27(3) (2018) 679–714.

45. F. O. Bjørnson and T. Dingsøyr, Knowledge management in software engineering:
A systematic review of studied concepts, ¯ndings and research methods used, Inf. Softw.
Technol. 50(11) (2008) 1055–1068.

46. I. Rus, M. Lindvall and S. Sinha, Knowledge management in software engineering, IEEE
Softw. 19(3) (2002) 26–38.

47. B. Xu, D. Ye, Z. Xing, X. Xia, G. Chen and S. Li, Predicting semantically linkable
knowledge in developer online forums via convolutional neural network, in 2016 31st
IEEE/ACM Int. Conf. Automated Software Engineering, 2016, pp. 51–62.

48. S. Yazdipour, GitHub data exposure and accessing blocked data using the GraphQL
security design °aw, arXiv:2005.13448.

49. GitHub, GitHub Flavored Markdown Spec (2019), https://github.github.com/gfm/.
Accessed 2021-9-2.

50. K. Blincoe, F. Harrison and D. Damian, Ecosystems in GitHub and a method for
ecosystem identi¯cation using reference coupling, in 2015 IEEE/ACM 12th Working
Conf. Mining Software Repositories, 2015, pp. 202–211.

1234 Y. Zhang et al.

September 6, 2021 5:54:08pm WSPC/117-IJSEKE 2150038
2ndReading

	Dual Channel Among Task and Contribution on OSS Communities: An Empirical Study
	1. Introduction
	2. Background
	2.1. Challenges in pull-based development
	2.2. Link in development units

	3. Dataset
	3.1. Studied projects
	3.2. Data collection
	3.3. Link extraction
	3.3.1. Extracting explicit links
	3.3.2. Extracting implicit links

	4. Experiments and Results
	4.1. RQ1: What are the types of link?
	4.1.1. Link types
	4.1.2. Type distribution

	4.2. RQ2: Where do links appear?
	4.2.1. Link locations
	4.2.2. Location distribution

	4.3. RQ3: When do links happen?
	4.3.1. Time interval
	4.3.2. Time interval distribution

	4.4. RQ4: How are links organized?
	4.4.1. Multi-target link
	4.4.2. Cluster

	4.5. RQ5: Why are links used?

	5. Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 30
 30
 30
 30
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.177000
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

