A Dataset of Duplicate Pull-requests in GitHub

Yue Yu*, Zhixing Li*, Gang Yin, Tao Wang, Huaimin Wang
College of Computer, National University of Defense Technology
Changsha, China
{yuyue,lizhixing15,yingang,taowang2005,hmwang}@nudt.edu.cn

ABSTRACT

In GitHub, the pull-based development model enables community
contributors to collaborate in a more efficient way. However, the
distributed and parallel characteristics of this model pose a potential
risk for developers to submit duplicate pull-requests (PRs), which
increase the extra cost of project maintenance. To facilitate the
further studies to better understand and solve the issues introduced
by duplicate PRs, we construct a large dataset of historical duplicate
PRs extracted from 26 popular open source projects in GitHub by
using a semi-automatic approach. Furthermore, we present some
preliminary applications to illustrate how further researches can
be conducted based on this dataset.

KEYWORDS
Duplicate pull-request, distributed software development, GitHub

ACM Reference Format:

Yue Yu*, Zhixing Li*, Gang Yin, Tao Wang, Huaimin Wang. 2018. A Dataset
of Duplicate Pull-requests in GitHub. In MSR ’18: MSR °18: 15th International
Conference on Mining Software Repositories , May 28-29, 2018, Gothenburg,
Sweden. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3196398.
3196455

1 INTRODUCTION

In GiHub, the pull-based mechanism [1, 4, 10] lowers the contribu-
tion entry for community developers and prompts the development
and evolution of numerous open source software projects. Any
contributor can fork (i.e., clone) a repository and edit the forked
repository locally without disturbing the original repository. After
finishing their local work (e.g., fixing bugs or proposing features),
contributors package the code changes into a new Pull-Request (PR)
and submit it to the original repository. And then the core mem-
bers of the project and community users will launch the process
of code review [3, 8] to detect potential defects contained in the
submitted PR and discuss how to improve its quality. Finally, the PR
which have went through several rounds of rigorous evaluations
will be merged or rejected depending on its eventual quality by an
integrator of the original repository.

* Yue Yu and Zhixing Li are both first authors, and contributed equally to the work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR ’18, May 28-29, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5716-6/18/05...$15.00
https://doi.org/10.1145/3196398.3196455

However, due to the parallel and distributed nature of pull-based
development model, more than one contributors would submit PRs
to achieve a similar objective (i.e., duplicate PRs [5]). Especially
for the popular projects which attract thousands of volunteers and
continuously receive incoming PRs [7, 11], it is hard to appropri-
ately coordinate contributors’ activities, because most of them work
distributively and tend to lack information of others progress. Du-
plicate PRs increase the maintenance cost of GitHub and result in
the waste of time spent on the redundant effort of evaluating each
of them separately [1, 3]. Moreover, contributors may iteratively
update and improve their PRs in several rounds of code reviews [11]
driven by the feedbacks provided by reviewers. Therefore, the more
late the duplicate relations between PRs are identified, the more
efforts of contributors and reviewers may be wasted. Furthermore,
improper management of duplicates may also lead the contributors
to be more frustrated [6] and get doubtful about the core team.

Although several research has been conducted on analyzing the
popularity [1], challenges [3, 5] and evaluations [10, 11] of PRs, the
problem of duplicate PRs is left not well studied. More research,
including empirical studies on the cause, outcome, challenge, and
even influencing factor of duplicate PRs and automatic tool develop-
ment used to help reviewers to detect and choose duplicates, need to
be conducted to better understand and solve the issues introduced
by duplicate PRs. To facilitate the further studies, we constructed a
large dataset of historical duplicate PRs (called DupPR) extracted
from 26 open source projects in GitHub. Each pair of duplicate PRs
in DupPR has been manually verified after an automatic identifica-
tion process, which would guarantee the quality of this dataset. We
make the dataset and the source code available online, ! in hope it
will foster more interest in the following studies.

e Analyzing how much redundant effort would be wasted by
duplicate PRs. This would give researchers a straightforward
impression about how duplicate PRs negatively affect soft-
ware development process.

o Investigating how reviewers make dicisions among similar
contributions. It is necessary to build automatic tools that
make more targeted comparisons between PRs and assist
reviewers in managing duplicates.

e Training and evaluating the intelligent models for detecting

duplicate PRs. Detecting duplicates at submission time can

avoid redundant effort spent in quality evaluation.

Exploring the factors that affect the occurrence probability of

duplicate PRs. This makes it possible to recognize inefficient

collaborative patterns that are more likely to generate du-
plicate contributions, and hence core members can propose
corresponding strategies to avoid them.

Uhttps://github.com/whystar/MSR2018-DupPR

https://doi.org/10.1145/3196398.3196455
https://doi.org/10.1145/3196398.3196455
https://doi.org/10.1145/3196398.3196455
https://github.com/whystar/MSR2018-DupPR

MSR 18, May 28-29, 2018, Gothenburg, Sweden

Indicative
Comments

Sampled
Comments

Identification
Rules

Z. Lietal

Candidate
Duplicate PRs
A

Final
Duplicate PRs

A

Random
Sampling

Manual
Examination

Rules
Extraction

Automatic Manual
Identification Veritying

Figure 1: Process of collecting duplicate Pull-requests

2 DATA COLLECTION
2.1 Studied Projects

We study on 26 open source projects hosted in GitHub, involving 12
programming languages and various application domains (e.g., web-
application framework, database and scientific computing library).
Table 1 presents some of statistical characteristics about the project
scale and popularity, e.g., the number of PRs, contributors and forks,
which show that they have attracted plenty of attentions from the
community. Also, we can assure that the studied projects have full-
fledged and heavy usage of PR mechanism (minimum number of
PRs is 5,050). More details can be found in the released dataset.

Table 1: The statistical information of studied projects

Statistic Min Max Mean Median
#PR 5,050 31,600 10,912 12,753
#Contributor 518 3,395 1,283 1,034
#Fork 1,759 55,075 9,317 5,131
#Star 1,277 117,220 25,290 16,917
#Watch 112 7,116 1,759 1,303

2.2 Method

Unlike Stack Overflow, which indicates duplicate posts with a sig-
nal “[duplicate]” at the end of question titles, GitHub provides no
explicit and unified mechanism to indicate duplicate PRs. Although
reviewers are encouraged to use the pre-defined reply template 2
when they intend to point out a PR is duplicate to another one, a
variety of other comment presentations can also be applied. There-
fore, to collect a comprehensive dataset of duplicate PRs in GitHub,
we have to analyze and examine the historical review comments
carefully. The raw data of projects, pull-requests and comments
is easily available with the official API provided by GitHub, and
hence the key point is how to collect duplicate PRs based on those
raw data. In this paper, we design a mixed approach that combines
automatic identification and manual examination, as illustrated in
Figure 1, where the rounded rectangles stand for the actions we
have taken and parallelograms represent the input data or output
data of the actions. The details of our novel collecting process are
discussed as follows.

2.2.1 Random sampling. For each project, we randomly sampled
200 review comments which contain at least one reference (i.e., the
number or the url of a PR) to another PR. Cross-PR references in

Zhttps://help.github.com/articles/about- duplicate-issues-and-pull-requests

review comments are the evidence that some kind of relation exists
between two PRs. In fact, this is also the necessary condition for
finding duplicate PRs because reviewers have to reference other
PRs when they want to point out the duplicate relation among
PRs. Using cross-PR references as a filter criteria in sampling can
reduce the proportion of noise data in the sampled comments to
be processed in the following action (i.e., Manual examination) and
therefore improve the examination efficiency.

2.2.2 Manual examination. For each sampled comment, we man-
ually examine whether it is a comment that some reviewer uses to
point out the duplicate relation among PRs. We call such kind of
comments indicative comments which can help us to re-construct
the duplicate relations. We would like to note that quite a num-
ber of sampled comments are not indicative comments. Cross-PR
references can also be used to indicate the relation of conflict, de-
pendency, or association among PRs.

2.2.3 Rules extraction. We review all the manually identified
indicative comments and tried to extract rules which can be ap-
plied lately to automatically judge whether a given comment is
an indicative comment. Actually, some phrases frequently occur
when reviewers are stating the duplicate relation between PRs. Sim-
ilarly, we call such phrases as indicative phrases. The followings are
several example comments containing indicative phrases.

o “dup of #31372”
o “Closed by https://github.com/rails/rails/pull/13867”
e “This has been addressed in #27768.”

In the above example comments, “dup of”, “closed by”, and “ad-
dressed in” are all the typical indicative phrases. Together with PR
references, these indicative phrases can be used to compose the
identification rules. An identification rule can be implemented as a
regular expression which is applied to match comment text to iden-
tify duplicate relations. The following items are some simplified
rules, and the complete set of our rules can be found online. 3

® closed by (?2:\w+:?){,5} (2:#(\d+))
o (2:#(\d+)):? (2:\w+:?){,5} dup(?:licate)?

2.24 Automatic identification. According to the extracted iden-
tification rules, we can automatically identify the indicative com-
ments and then discover the duplicate PRs. If a review comment is
identified as an indicative comment, the PR references contained in
the comment will be extracted immediately. Each of the extracted
PRs and the PR that the indicative comment belongs to form a

Shttps://github.com/whystar/MSR2018- DupPR/blob/master/code/rules.py

https://help.github.com/articles/about-duplicate-issues-and-pull-requests
https://github.com/whystar/MSR2018-DupPR/blob/master/code/rules.py

A Dataset of Duplicate Pull-requests in GitHub

couple of candidate duplicates. Actually, we have introduced some
preliminary constrains for candidate duplicate PRs. For example,
a couple of candidate duplicate PRs cannot be submitted by the
same contributor. It is obviously that the same author is aware of
the existence of both PRs which means the duplicate is intentional
and the author submit duplicate PRs for some purpose. This kind
of intentional duplicates are not taken into account in our dataset.
Moreover, PRs and issues share the same numbering system in
GitHub and issues may also be referenced by the same format as
PRs like "#[number]". Therefore, we have to verify the extracted
“PR” is really a PR, rather than an issue.

2.2.5 Manual verifying. It is inevitable that automatic identifi-
cation may introduce false-positive errors, that is some identified
candidate duplicate PRs are not really duplicate in fact. To further
clean the automatically identified dataset, we manually examine
and verify all the candidate duplicate PRs. For a couple of candidate
duplicates, the early submitted one is called master PR and the late
submitted one is called duplicate PR in the paper. And then we
review each couple of candidate duplicates and label them as “re-
ally duplicate” if they meet the following criteria: (a) the author of
duplicate PR is not aware of the existence of the master PR. It is the
default assumption unless we can find obvious contrary evidence
in the discussion history of both PRs. (b) reviewers have reached a
consensus on the duplicate. When some reviewer points out a PR
is duplicate to another one, it is necessary that this declaration is
responded and affirmed. One of the most common responses is an
immediate close of one of the duplicate PRs.

After manual verifying is finished, the final dataset of 2,323 pairs
of duplicate PRs is constructed.

3 DESCRIPTION OF DATASET

We store the dataset DupPR in a MySQL database, and make the
script files available online in GitHub. Figure 2 illustrates the schema
of DupPR. There are four tables in DupPR and the fields in these
tables are defined as follows.

Duplicate
Integer : prj_id
Integer : mst_pr
Integer : dup_pr

Integer : idn_cmt

Pull-request

Integer: id HIoject
Comment F——y Integer : id
Integer : pr_id Integer: prj_i .
String : user_name
. Integer : pr_num
Text: content String : repo_name
) Text : title
Time : created_at Integer : watch_count
Text: description
String : author Integer : fork count

Time : created_at

Integer : star_count

String : author

Figure 2: The Schema of DupPR dataset

e Table Project stores the basic information of studied projects.
Field user_name is the name of the user owning the project in

MSR ’18, May 28-29, 2018, Gothenburg, Sweden

GitHub, and field repo_name is the name of the project. These
two fields, together with the domain name of GitHub, can be used
to compose the resource locator of the project in GitHub. Other
fields in table Project present some statistical characteristics of
a project, for example fork_count is the number of forks.

e For each project, all the PRs belonged to it are stored in table
Pull-request. Field prj_id is the value of id of the project.
and pr_num, title and description represent the number
label (generated by GitHub), the title and the description of a PR
respectively. Moreover, field pr_ num can be used to uniquely locate
a PR in the addressing space of a project in GitHub. Fields author
and created_at mean a PR is submitted by the GitHub user
named author at the time of created_at.

e For a pull-request in Table Pull-request, comments on
it are stored in table Comment. For table Comment, filed pr_id
is the value of id of the pull-request. The text content, the cre-
ation time and the author of a comment are represented by fields
content, created_at, and author respectively.

e Table Duplicate contains all the duplicate PR-pairs. Field
prj_id is the value of id of the project that a pair of duplicate
PRs belong to. For a pair of duplicate PRs, field mst_pr is the
number of the PR that is submitted early and filed dup_pr is the
number of the PR that is submitted late. Field idn_cmt is the first
indicative comment that points out the duplicate relation between
mst_pr and dup_pr.

4 APPLICATIONS

To foster more interest in studying pull-based development based
on this dataset (maybe sometimes together with GHTorrent [2] and
GitHub API), we present some of our preliminary investigations.

4.1 Detection latency & redundant effort

First, we have explored the detection latency of duplicates. In this
paper, detection latency is used to measure how long it takes to
detect the duplicate relation between two PRs. It is defined as the
time period from the submission time of a new PR to the time when
the duplicate relation between it and a historical PR is identified.
For each item in table Duplicate, the property created_at of
dup_pr in table Pull-request is used as the submission time,
and the property created_at of idn_cmt in table Comment
is used as the identification time. Figure 3 shows the statistical
distribution of the detection latency based on our dataset. There
are nearly 21% (486) duplicates are detected after a relative long
latency (more than one week). Those PRs probably have already
consumed a lot of unnecessary manpower and computational re-
sources (e.g., continuous integration [9, 10]). In addition, we focus
on how much redundant review effort has been costed by calcu-
lating the number of different reviewers and comments that are
involved in the evolution process of duplicate PRs. According to
our statistics, there are on average 2.5 reviewers participating in
the redundant review discussions and 5.2 review comments are
generated before the duplicate relation is identified.

4.2 Preference of choice

For each pair of duplicate PRs, reviewers have to make a choice
between them or, in rare cases, make a combination. We have tried

MSR 18, May 28-29, 2018, Gothenburg, Sweden

025

020

0.15

0.10

0.05 I I
0.00 -

-
<=1M M-1H 1H-1d 1d-1w w-1m 1m-1y > 1y
Detection latency of duplicate pull-requests

Percentage

Figure 3: Distribution of detection latency

to figure out the reasons why integrators would prefer one pull-
request to the other one. In brief, a winner PR contains some of
prominent indicators: (a) correct implementation; (b) early submis-
sion (i.e., first-come first-merge); (c) better implementation (e.g.,
less changed codes or better performance); (d) providing test of
changed codes; and (e) submitted by new contributors (reviewers
prefer new contributors to encourage them to continuously con-
tribute). Obviously, there are other factors that can affect reviewers’
preference of choice, and we will conduct further research on this
topic and analyze the influences of these factors. We would also
investigate the effectiveness of the current practices of choice. For
example, we are studying whether the preference for new contrib-
utors would increase the probability of introducing potential bugs,
and whether it is necessary to dynamically adjust the strategy of
choice according to the development status of a project.

4.3 Training & evaluating models

The dataset DupPR is constructed through a rigorous process which
involves careful manual verifying. Thus, it can act as a ground
truth to train and evaluate intelligent models (e.g., classification
model). Here, we conduct a preliminary experiment to automatically
identify duplicate PRs. By employing natural language processing
and calculating the overlap of changes, we measure the similarity
between two PRs, and then return a candidate list of top-k historical
PRs that are most similar with the submitted PR. We use half of
DupPR to train an automatic detection model and use the rest to
evaluate its performance. Figure 4 shows the identification results
measured by recall-rate@k, which can achive nearly 70% when the
size of candidate list is set to be 20.

0.70
065
0.60
g 055
§ 0.50
& 045
040
035

0.30
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
K (size of candidate list)

Figure 4: Performance of the automatic detection model

5 CONCLUSION

The distributed and parallel characteristics of pull-based develop-
ment model on one hand enable community users to collaborative

Z. Lietal

in a more efficient and effective way, but on the other hand carry
contributors a potential risk of submitting duplicate PRs.

In this paper, we present a large dataset containing 2,323 pairs of
duplicate PRs, collected from 26 popular open source projects hosted
in GitHub. The dataset includes duplicate relations between PRs,
the meta-data of PRs and reviews (e.g., creation time, text content
and author), and the basic information of the studied projects.

The dataset allows us to conduct empirical studies to under-
stand the outcomes and issues of duplicates, explore the underlying
causes and the corresponding prevention strategies, and analyze
the practices and challenges of integrators and contributors in deal-
ing with duplicates. Moreover, this dataset enables us to train and
evaluate automatic models that can detect duplicate historical PRs
for a newly submitted PR.

However, this dataset still has several limitations. The studied
projects are only a relatively small proportion of all the projects
hosted in GitHub. We plan to enrich the dataset by taking more
projects into consideration. In addition, identification rules are
extracted based on sampled comments and therefore the set of
rules might be incomplete which would result in false negatives in
the dataset. In future work, we would like to continually improve
the identification method. At the meantime, by sharing both the
dataset and guidelines for recreation, we intend to encourage other
researchers to validate and extend the dataset.

REFERENCES

[1] Georgios Gousios, Martin Pinzger, and Arie Van Deursen. 2014. An exploratory
study of the pull-based software development model. In Proceedings of the 36th
International Conference on Software Engineering, ICSE. 345-355.

Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: Github’s data from

a firehose. In Proceedings of the 9th Working Conference on Mining Software

Repositories, MSR. 12-21.

[3] Georgios Gousios, Margaret Anne Storey, and Alberto Bacchelli. 2016. Work
practices and challenges in pull-based development: the contributor’s perspective.
In Proceedings of the 38th International Conference Software Engineering, ICSE.
285-296.

[4] Georgios Gousios and Andy Zaidman. 2014. A Dataset for Pull-based Develop-
ment Research. In Proceedings of the 11th Working Conference on Mining Software
Repositories, MSR. 368-371.

[5] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen.
2015. Work practices and challenges in pull-based development: the integra-
tor’s perspective. In Proceedings of the 37th International Conference on Software
Engineering, ICSE. 358-368.

[6] Wenjian Huang, Tun Lu, Haiyi Zhu, Guo Li, and Ning Gu. 2016. Effectiveness

of Conflict Management Strategies in Peer Review Process of Online Collabora-

tion Projects. In Proceedings of the 19th ACM Conference on Computer-Supported

Cooperative Work & Social Computing. 717-728.

Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula,

Norihiro Yoshida, Hajimu lida, and Kenichi Matsumoto. 2015. Who should review

my code? A file location-based code-reviewer recommendation approach for

Modern Code Review. In Proceedings of the 22nd International Conference on

Software Analysis, Evolution, and Reengineering, SANER. 141-150.

[8] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Let’s talk about it: evaluat-
ing contributions through discussion in GitHub. In Proceedings of the 22Nd ACM
International Symposium on Foundations of Software Engineering, FSE. 144-154.

[9] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and productivity outcomes relating to continuous integra-
tion in GitHub. In Proceedings of the 10th Joint Meeting on Foundations of Software
Engineering, FSE. 805-816.

[10] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan

Vasilescu. 2015. Wait for it: Determinants of pull request evaluation latency

on GitHub. In Proceedings of the 12th Working Conference on Mining Software

Repositories, MSR. 367-371.

Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. 2016. Reviewer recommenda-

tion for pull-requests in GitHub: What can we learn from code review and bug

assignment? Information and Software Technology 74 (2016), 204-218.

[2

[7

[11

	Abstract
	1 Introduction
	2 Data collection
	2.1 Studied Projects
	2.2 Method

	3 Description of dataset
	4 Applications
	4.1 Detection latency & redundant effort
	4.2 Preference of choice
	4.3 Training & evaluating models

	5 Conclusion
	References

