
EncryIP: A Practical Encryption-Based Framework for Model Intellectual Property
Protection

Xin Mu1, Yu Wang1, Zhengan Huang1, Junzuo Lai2, Yehong Zhang1, Hui Wang1, Yue Yu1*

1Peng Cheng Laboratory, Shenzhen 518000, China
2College of Information Science and Technology, Jinan University, Guangzhou, China

{mux, wangy12, wangh06, yuy}@pcl.ac.cn, {zhahuang.sjtu, laijunzuo, zyhredleaf}@gmail.com

Abstract

In the rapidly growing digital economy, protecting intellec-
tual property (IP) associated with digital products has become
increasingly important. Within this context, machine learn-
ing (ML) models, being highly valuable digital assets, have
gained significant attention for IP protection. This paper intro-
duces a practical encryption-based framework called EncryIP,
which seamlessly integrates a public-key encryption scheme
into the model learning process. This approach enables the
protected model to generate randomized and confused labels,
ensuring that only individuals with accurate secret keys, signi-
fying authorized users, can decrypt and reveal authentic labels.
Importantly, the proposed framework not only facilitates the
protected model to multiple authorized users without requiring
repetitive training of the original ML model with IP protection
methods but also maintains the model’s performance without
compromising its accuracy. Compared to existing methods
like watermark-based, trigger-based, and passport-based ap-
proaches, EncryIP demonstrates superior effectiveness in both
training protected models and efficiently detecting the unau-
thorized spread of ML models.

1 Introduction
Recent years have witnessed a surge in interest regarding
intellectual property (IP) protection for ML models, with
attention spanning both academia and industry (Xue, Wang,
and Liu 2021; Chen et al. 2018; Tauhid et al. 2023). The
central theme of current approaches revolves around em-
bedding distinctive information within the ML model or its
training data. This empowers users to verify ownership of
the ML model by confirming this embedded information.
Broadly, these methods can be categorized into three types:
(1) Watermark-based method: It incorporates designated
watermarks into model parameters, strategically employing
regularization terms for embedding (Boenisch 2020; Zhang
et al. 2022); (2) Trigger-based method: This method assigns
a specific value to a trigger set during model training. The
model outputs this value when the same trigger set is used
for verification (Zhang et al. 2018); and (3) Passport-based
method: By introducing a new passport layer into the origi-
nal deep neural network model, this technique uses a set of

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

data as the passport for ownership verification. The perfor-
mance of the original task will significantly deteriorate if a
wrong passport is used (Fan et al. 2022).

While the mentioned methods can indeed create protected
ML models, they remain inadequate in addressing the is-
sue of unauthorized model distribution—when the model
is used by unintended users. For instance, envision an AI
company developing and licensing an ML model to multiple
users. The company’s aim is to restrict the model’s use to
authorized users solely. However, practical scenarios often
witness authorized users sharing the model with unauthorized
counterparts, bypassing the company’s consent. Moreover,
the risk persists of the model being stolen and employed by
unauthorized entities.

To address this challenge, a prevailing strategy entails allo-
cating different versions of same model to various authorized
users. By overseeing the utilization of these model variations,
the model creator can discern whether a specific version has
been disseminated to unintended users. However, directly
implementing this strategy necessitates creating separate pro-
tected model iterations for each user. This approach entails
multiple rounds of model training using existing IP protection
techniques. Unfortunately, this method becomes impractical
in real-world scenarios due to several reasons:
• Large-Scale Models. Training large-scale models such

as GPT-4 (OpenAI 2023) or DALL-E (Ramesh et al. 2021)
takes substantial time, often spanning days or months. Requir-
ing multiple training for these models would incur significant
costs in terms of computing resources, time, and manpower.
• Restricted Usage. In certain scenarios, like military or

sensitive data, the utilization of data might be limited due to
confidentiality agreements or proprietary concerns. In such
cases, employing a strategy involving multiple rounds of
training is impractical.

Based on the above demands of practice, we present En-
cryIP, an Encryption-based framework for Intellectual prop-
erty Protection of machine learning model. This approach
generates multiple safeguarded model versions through a
single training iteration. EncryIP considers a special kind
of public-key encryption scheme, focusing on the dataset,
particularly within the label space. Our framework unveils a
novel encryption strategy, bridging the relationship between
encryption schemes and machine learning algorithms. Empir-
ical investigations encompass various ML models, validating

the efficacy and efficiency of our approach.
The contributions of the paper are summarized as follows:
•We introduce a novel encryption-based framework called

EncryIP, to address model intellectual property protection.
Compared with existing solutions, EncryIP generates mul-
tiple protected versions of the same model through a single
training process, eliminating the need for repetitive train-
ing. Furthermore, the protected model produced by EncryIP
utilizes randomized labels, preventing unauthorized users
without accurate secret keys from accessing true labels. Our
approach satisfies IP protection requirements while surpass-
ing the efficiency of existing methods.
• EncryIP represents a data-dependent strategy utilizing

a public-key encryption scheme that interacts directly with
the dataset. It avoids extensive model structural modifica-
tions or additional trigger datasets. It creates a degree of
independence between the learning algorithm and the encryp-
tion algorithm, which makes it easier to operate on different
structures of ML models. EncryIP provides a practical and
versatile solution for protecting the intellectual property of
machine learning models.
•We evaluate EncryIP on a great diversity of scenarios,

including different model structures and data sets. The evalu-
ation results provide valuable insights into the effectiveness
and efficiency of EncryIP in real-world settings, demonstrat-
ing its ability to handle different model architectures and
datasets with satisfactory outcomes.

2 Related Work
One direction is the watermark-based method (Uchida
et al. 2017; Adi et al. 2018; Merrer, Pérez, and Trédan 2020;
Rouhani, Chen, and Koushanfar 2019; Kuribayashi, Tanaka,
and Funabiki 2020; Feng and Zhang 2020; Chen et al. 2019;
Guo and Potkonjak 2018; Chen, Rouhani, and Koushanfar
2019; Kuribayashi, Tanaka, and Funabiki 2020). The basic
idea is to design a specific embedding mechanism and utilize
this mechanism in the training process. The specific embed-
ding information can be viewed as one kind of watermark.
User can verify the right of ownership by watermark. For in-
stance, Uchida et al. (Uchida et al. 2017) proposed a general
framework for embedding a watermark in model parame-
ters by using a parameter regularizer. This regularizer can be
used to embed a T -bit vector into model parameters, and all
watermarks can be correctly detected by a simple linear trans-
formation. For real applications, Guo and Potkonjak (Guo
and Potkonjak 2018) proposed a watermarking framework
enabling DNN watermarking on embedded devices.

The second is the trigger-based method (Zhang et al.
2018; Lukas, Zhang, and Kerschbaum 2021; Cao, Jia, and
Gong 2021; Maung and Kiya 2020; Jebreel et al. 2021; Chen
et al. 2017; Zhong et al. 2020; Cao, Jia, and Gong 2021;
Zhang et al. 2020a). Generally, the algorithm employs a set
of instances as a trigger set and embeds this trigger set infor-
mation into ML model in the training procedure. The verifi-
cation process is that model can output a specific result when
this trigger set is treated as the input. For example, Lukas,
Zhang, and Kerschbaum (Lukas, Zhang, and Kerschbaum
2021) proposed a fingerprinting method for deep neural net-
work classifiers that extracts this trigger set from the original

model, and this trigger set should have the same classification
results with a copied model. Maung and Kiya (Maung and
Kiya 2020) proposed a model protection method by using
block-wise pixel shuffling with a secret key as a preprocess-
ing technique to input images and training with such prepro-
cessed images. In (Jebreel et al. 2021), a multitask learning
IP protection method was proposed by learning the original
classification task and the watermarking task together.

In recent years, a new way to rethink this problem has been
proposed by introducing a novel passport-based method
(Fan et al. 2022; Fan, Ng, and Chan 2019; Zhang et al. 2020b).
The main motivation of embedding digital passports is to
design and train DNN models in a way such that their in-
ference performances of the original task (i.e., classification
accuracy) will be significantly deteriorated due to the forged
signatures. Zhang et al. (Zhang et al. 2020b) proposed a new
passport-aware normalization formulation which builds the
relationship between the model performance and the passport
correctness. One advantage of the passport-based method
is that it is robust to network modifications and resilient to
ambiguity attacks simultaneously.

While current methods can generate protected models, they
remain inadequate in addressing unauthorized model spread.
For instance, high training costs make the watermark-based
approach impractical, as it requires multiple training itera-
tions for generating distinct versions. Although the trigger-
based method achieves this with one training, its output is
a true prediction, lacking security. Similarly, the passport-
based method necessitates multiple passport groups, requir-
ing complex training, and intricate modifications to the orig-
inal model structure. In contrast, our EncryIP framework
efficiently tackles unauthorized spread, providing effective
protection without the drawbacks posed by other methods.

3 Preliminaries
The IP protection. Let training data set D = {(xi, yi)}Ni=1,
where xi ∈ Rd is a training instance and yi ∈ Y =
{1, 2, . . . , z} is the associated class label. A machine learning
modelM is learned from D through an algorithm architec-
ture A. Following the definition in (Fan et al. 2022), the two
main processes in the IP protection task are as follows:

1. Learning process L(D,A,AIP) = [M], is a model train-
ing process that takes training data D and an IP protection
method AIP as inputs, and outputs a model [M]. [·] is
indicated as having the capacity of IP protection.

2. Deploying process P ([M], x,A−1IP) = y, is that [M]
outputs a results y when input x. Note that the output y is
correct if and only if the user utilizes the correct inverse
IP protection method A−1IP , otherwise, a confused result
will be generated.

In the watermark-based method,AIP involves implanting
distinct information into an ML model, often through spe-
cialized regularizers in the loss function. The trigger-based
method relies on AIP to introduce a specific dataset that can
be learned during training. During verification, model [M]
responds with the designated information upon receiving
this unique dataset as input. In the passport-based method,

AIP encompasses a novel structure integrated into the origi-
nal modelM. The protected model [M] furnishes accurate
outputs only upon receiving predetermined inputs.

In this paper, we elaborate on the concept of unauthorized
model spread within the context of IP protection as follows:
Definition 1 (Unauthorized spread of model). In the IP
protection task, the output of a learning process [M] nor-
mally is authorized to a set of users O = {o1, o2, . . . , oJ}.
The unauthorized spread of model is that [M] is used by a
user o /∈ O.

To meet this problem, we introduce a verification process
in the IP protection task:

• Verification process V ([M], o) = {True, False}, is an
authorization verification that verifies if a model user o
belongs to an authorized model user set.

PKE with multiple secret keys. In this paper, EncryIP in-
corporates a distinct form of public-key encryption (PKE)
scheme (Katz and Lindell 2020), characterized by the fol-
lowing requisites: i) the existence of multiple secret keys
corresponding to a public key (i.e., each one of these secret
keys can be used for decryption), and ii) the existence of
some ill-formed ciphertexts, such that decrypting them with
different secret keys (corresponding to the same public key)
will lead to different messages.

To be specific, in this paper, a PKE scheme with the above
properties consists of the following probabilistic algorithms.
• Gen: This is the key generation algorithm. It takes a

number P ∈ N as input, and outputs a public key pk and
P secret keys {skj}Pj=1.

• Enc: This is the encryption algorithm, taking pk and a
message m as input, and outputting a ciphertext c.

• Dec: This is the decryption algorithm, taking sk and a
ciphertext c as input, and outputting a message m or ⊥,
which indicates that c is invalid.

• Fake: This is the fake encryption algorithm, taking pk as
input, and outputting an ill-formed ciphertext c.

For correctness, we require that for any valid messagem, and
any (pk, {skj}Pj=1)← Gen(P):

(i) for any j ∈ {1, · · · , P}, Dec(skj ,Enc(pk,m)) = m.
(ii) for any c ← Fake(pk) and any distinct j1, j2 ∈
{1, · · · , P}, Dec(skj1 , c) ̸= Dec(skj2 , c).

4 The Proposed Framework
4.1 EncryIP: An overview
The proposed EncryIP framework integrates a distinctive
form of public-key encryption (PKE) scheme directly within
a learning algorithm, primarily within the dataset’s label
space. EncryIP aims to achieve the following objectives: (1)
It generates an interpretable output exclusively when the
model user employs the correct secret key. (2) Different users
possess distinct secret keys, enabling EncryIP to identify the
unauthorized user during model misuse. (3) Integrating an
encryption scheme does not significantly compromise the
predictive performance of the ML model.

To realize the aforementioned objectives, EncryIP employs
a three-step process:

• Learning Process. A learning process L(D,A,PKE) =
([M], {skj}Pj=1) first processes training dataD by a PKE
scheme PKE, and then executes a learning algorithmA to
output the model [M] and a set of secret keys {skj}Pj=1.

• Deploying Process. A deploying process P (x, [M],
skj) = y is that the protected model [M] outputs the
prediction result y when x is as its input.
Remark: In general, the output of model [M] is correct if
and only if the user uses correct skj to decrypt it, other-
wise a confused result will be output.

• Verification Process. An verification process V ([M],
skj) = {True,False} is to evaluate if [M] belongs to its
owner oj .

The crucial aspect of EncryIP lies in the integration of an
encryption scheme with a learning algorithmA. In this paper,
we propose a data-dependent IP protection method where the
encryption scheme primarily focuses on the data, particularly
in the label space. It can be described by

min
[M]

N∑
i=1

(Pr[ψ−1([M](xi)) = yi)]− Pr[M(xi) = yi])

where ψ is an encryption function on a dataset D by
ψ(D) = (xi, ψi(yi)), and ψ−1 is a decryption function,
D = ψ−1(ψ(D)).M is a model learned fromD, e.g.,M←
A(D), y ←M(x) and [M]← A(ψ(D)), [y]← [M](x).

4.2 EncryIP: Encryption
Integrating encryption and machine learning poses a crucial
challenge: ensuring accurate communication between the
two processes. Encryption and decryption demand exactness,
while machine learning often deals with approximations, like
probabilities. This discrepancy requires thoughtful solutions
to bridge the gap and make encryption and learning methods
work harmoniously. In this paper, we introduce a novel en-
cryption strategy that presents an effective transfer function
between label space and encryption scheme.

First of all, we show the details of the encryption scheme
here. As described before, we consider a PKE with multi-
ple secret keys corresponding to the same public key, and
further require that there exist some ill-formed ciphertexts,
such that decrypting them with different secret keys (cor-
responding to the same public key) will lead to different
messages. Many PKE schemes, like those built using hash
proof systems (Cramer and Shoup 2002), adhere to these
characteristics. For practical purposes, we focus on a simpli-
fied form of the Cramer-Shoup scheme (Cramer and Shoup
1998), which we call CSlite.

Let Gq be a cyclic group of some prime order q, g1
be a generator of Gq, and Z∗q = Zq \ {0}. We present a
PKE scheme CSlite = (Gen,Enc,Dec,Fake), with mes-
sage space Gq, as shown in Figure 1. Note that here for a
finite set S, we write s← S for sampling s uniformly random
from S. Due to space limitations, the correctness analysis is
shown in Appendix1.

1We refer readers to the full version on the ArXiv website.

Gen(P):

t← Z∗
q , g2 = gt

1, (a1, b1)← (Zq)
2, h = g

a1
1 g

b1
2

{bj ← Zq}Pj=2 (s.t. bj ̸= b1 and bj1 ̸= bj2 for j1 ̸= j2)
{aj = a1 + (b1 − bj)t}Pj=2

pk = (g1, g2, h), {skj = (aj , bj)}Pj=1

Return (pk, {skj}Pj=1)

Enc(pk,m):
r ← Zq , u1 = gr

1 , u2 = gr
2 , u3 = hrm

Return c = (u1, u2, u3)

Dec(sk, c):
Parse sk = (a, b) and c = (u1, u2, u3)

Return m =
u3

ua
1ub

2

Fake(pk):
(r1, r2)← (Zq)

2 (s.t. r1 ̸= r2), u1 = g
r1
1 , u2 = g

r2
2 , u3 ← Z∗

q

Return c = (u1, u2, u3)

Figure 1: PKE scheme CSlite = (Gen,Enc,Dec,Fake).

For security of CSlite, we present the following theorem.
Due to space limitations, the definition of the DDH assump-
tion and that of IND-CPA security are recalled in Appendix,
and the proof of Theorem 1 is given in Appendix.

Theorem 1 If the DDH assumption holds for Gq, CSlite is
IND-CPA secure.

Based on CSlite in Figure 1, we present our proposed en-
cryption strategy, which encompasses three key steps:

1. Generate Public/Secret Keys: The process begins by
utilizing the algorithm Gen within CSlite to create public and
secret key pairs.

2. Encrypt Labels: Working with the training set D and
the algorithm Enc, the process involves processing the train-
ing set D as follows:

c← Enc(pk, y), (1)

where ciphertext c is a three-tuple, i.e., (u1, u2, u3).
It is important to note that the outcome of Enc is generally

a random value. In our paper, we establish the first encryp-
tion result as the ciphertext for each label, and it remains
unchanged subsequently. However, in reality, the outcome of
Enc(pk, y) can be viewed as a randomly sampled value from
a distribution denoted as Distct

y = {r ← Zq : (gr1, g
r
2, h

ry)}.
This distribution is characterized by the following attributes:

• The distribution can be represented by any element sam-
pled from it. In other words, given an element c′ sampled
from Distct

y , Distct
y can be represented with c′.

That is because for any element c′ sampled from Distct
y , c′

can be written as c′ = (u′1, u
′
2, u
′
3) = (gr

′

1 , g
r′

2 , h
r′y). So

Distct
y can be written as

Distct
y = {r ← Zq : (gr1u

′
1, g

r
2u

′
2, h

ru′
3)}.

Hence, (1) the ciphertext c← Enc(pk, y) can be viewed as
a representation of distribution; and (2) the following learn-
ing process can also be viewed as learning on distribution
corresponding to labels, rather than a strict label value.

Additionally, we define a sampling algorithm SampDist,
which takes a cipehrtext c′ = (u′1, u

′
2, u
′
3) sampled from

y={0,0,0,0,0,0,0,1,0,0}

c= (4,5,8)
4 {0,0,0,0,1,0,0,0,0,0}
5 {0,0,0,0,0,1,0,0,0,0}
8 {0,0,0,0,0,0,0,0,1,0}

[y]={0,0,0,0,1,0,0,0,0,0,
 0,0,0,0,0,1,0,0,0,0,
 0,0,0,0,0,0,0,0,1,0}

1 2

3

ENC(pk,7) Φ (c)

Figure 2: A case study on encryption process. (1) The index
of label is encrypted by encryption algorithm Enc; (2) A
ciphertext is transferred to label structure by transfer function
Φ; (3) A confused label is achieved by concatenation.

Distct
y as input, and outputs a new ciphertext sampled from

Distct
y . Formally, we write c ← SampDist(c′) for this pro-

cess. The detailed description of SampDist for the encryp-
tion algorithm Enc of CSlite is as follows.
SampDist(c′ = (u′

1, u
′
2, u

′
3)):

r ← Zq; u1 = gr1u
′
1; u2 = gr2u

′
2; u3 = hru′

3

Return c = (u1, u2, u3)

3. Transfer ciphertexts to “confused” labels. As the
structure of c is not a normal label structure, a learning algo-
rithmA can not directly use it to train. In the ensuing section,
we present a transfer function that establishes a connection
between a conventional label structure and the ciphertext
structure. We refer to every true label y as a “readable” label.
For any label [y] generated from a transfer function, we refer
to it as a “confused” label.
Definition 2 (Transfer Function). Denote Φ as the transfer
function such that for each ciphertext c in the ciphertext
structure, Φ(c) = [y]. Denote Φ−1 as the inverse function of
Φ satisfying Φ−1(Φ(c)) = c for all ciphertexts.

In CSlite, the function Φ can be viewed as an indicator func-
tion I which outputs a q-dimension2 all-zero vector except
the position c is 1,

T ∈ {0, 1}q ← Φ(c) = I(c) (2)

Specifically, as described in Eqn. (1), the ciphertext is a three-
tuple (u1, u2, u3). We take u1, u2 and u3 separately as the
input in Φ and get T1, T2 and T3. Then, we concatenate them
as [y], i.e., [y] = {T1T2T3}. Note that [y] can be used in a
normal learning process, but [y] is a confused label that is
totally different from y.

After that, we obtain a new dataset [D] = {xi, [yi]}Ni=1. A
case study is shown in Figure 2.

Remark: (1) It is evident that by using alternative PKE
schemes constructed from various hash proof systems (e.g.,
(Cramer and Shoup 2002; Hofheinz and Kiltz 2007; Naor
and Segev 2009)) as foundational components, the ciphertext
can be configured as a k-tuple (i.e., c = (u1, u1, . . . , uk)).
Generally, a higher value of k enhances the security of the
PKE but results in reduced efficiency. For practicality and
clarity, we adopt a simplified version with k = 3 in this
paper. (2) It’s worth noting that [y] can also be calculated

2q is a parameter related to security of the encryption scheme.
In our implementation, for simplicity, we set q to the smallest prime
number greater than or equal to the number of classes. Further
analysis on this parameter can be found in the experiment section.

Algorithm 1: Learning Process
Input :D = {(xi, yi)}Ni=1 - input data. A - algorithm

architecture. CSlite - encryption scheme.
Output :[M] - model, {skj}Pj=1 - P secret keys.

1 (pk, {skj}Pj=1)← Gen(P) ;
2 for i = 1, . . . , N do
3 ci ← Enc(pk, yi) ;
4 [yi]← Φ(ci) ;
5 end
6 [M]← A({(xi, [yi])}Ni=1) ;
7 return [M], {skj}Pj=1.

using different methods, such as a reduction technique, e.g.,
[y] = V1 + V2 + V3.

4.3 EncryIP: Learning /Deploying
Learning. Once the data is encrypted, the learning process is
executed on the encrypted dataset [D]. The comprehensive
learning process of EncryIP is delineated in Algorithm 1.
Notably, the training procedure for the ML model remains
unaltered from the original model, as illustrated in line 6
of Algorithm 1. The sole modification lies in replacing the
original loss function with a soft-label loss within the learning
algorithmA. In Sec. 5.1, we demonstrate that this adjustment
does not hinder the convergence of the learning process.
Deploying. The deployment process is formally outlined in
Algorithm 2. In our framework, EncryIP produces a random
prediction (confused label), thereby preventing attackers from
inferring the true label through analysis of the confused label.

The deploying process unfolds as follows:
(1) Initially, an inverse function is utilized to convert con-

fused labels into ciphertexts. For instance, assuming [y] is an
output vector denoting label probabilities, the inverse func-
tion Φ−1 operates as:

c← Φ−1([y]) = I([y]) (3)

Here, I() returns the position index of the top k values in in-
put [y]. For instance, when k = 3, I() generates a ciphertext
c from the position index of the top 3 values in prediction [y],
i.e., I1, I2, I3 is treated as ciphertext c.

(2) As previously discussed, c can symbolize a distribution
Distyct linked to a certain y. In line 3 of Algorithm 2, a
random ciphertext cd is derived by sampling from Distct

y .
(3) Ultimately, EncryIP generates a random prediction (a

confused label), as depicted in lines 4 to 5 of Algorithm 2.
An authorized user holding the correct secret key skj (j ∈

1, · · · , P) can obtain the actual label:

y ← Dec(skj , cd). (4)

4.4 EncryIP: Verification
In this section, we describe the methodology for identifying
unauthorized usage of the model. We assume a scenario
where a neutral arbitrator, who possesses all secret keys S =
{skj}Pj=1, sells the ML model to P users, each possessing a
distinct secret key. The verification procedure is carried out
by the arbitrator. We consider the two following scenarios:

Algorithm 2: Deploying Process
Input :x - input dataset. [M] - model,

skj , j ∈ {1, 2, . . . , P} - a secret key.
Output : [yd] - a confused label.

1 [y]← [M](x) ;
2 c← Φ−1([y]) ;
3 cd ← SampDist(c) ;
4 [yd]← Φ(cd) ;
5 return [yd].

y={0,0,0,0,0,0,0,1,0,0}

c= (4,5,8)

4 {0,0,0,0,1,0,0,0,0,0}

5 {0,0,0,0,0,1,0,0,0,0}

8 {0,0,0,0,0,0,0,0,1,0}

[y]={0,0,0,0,0,0,0,1,0,0,
 0,0,0,0,0,1,0,0,0,0,
 0,0,0,0,0,0,0,0,1,0}

1 2 3

Φ (c)

 Fake (pk) �= (3,8,4)
2

Φ (�)

3 {0,0,0,1,0,0,0,0,0,0}
8 {0,0,0,0,0,0,0,0,1,0}
4 {0,0,0,0,1,0,0,0,0,0}

3

{0,0,0,1,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,1,0,
 0,0,0,0,1,0,0,0,0,0}

 [�]

1

 �

 +
4

 [�]

[M] [�] �= (3,8,4) Dec(skj , �) {yj’}

Figure 3: A case study on verification (when the secret key
is unavailable). (1) One kind of ill-formed ciphertext c̄ is
generated by algorithm Fake; (2) A ciphertext is transferred
to label structure by transfer function Φ; (3) A confused label
is achieved by concatenation; (4) A verification instance-label
pair {x̄, [ȳ]} is added to [D].

• Secret key available. In this scenario, the arbitrator can
know which secret key is used by a user in the deploying
process. This is a simple and easy verification scenario that
the neutral arbitrator can check if the secret key belongs to a
corresponding model user by:

V ([M], sk) =

{
j, if sk ∈ S, sk = skj

False, if sk /∈ S

• Secret key unavailable. In this scenario, the arbitra-
tor lacks knowledge about which secret key a user employs
during the deployment. Detecting unauthorized model us-
age without this information poses a challenge. To address
this challenge, we leverage the property of CSlite, where ill-
formed ciphertexts yield distinct decrypted messages based
on different secret keys. This property can be applied to En-
cryIP as follows:

Let {x̄, [ȳ]} be a verification instance-label pair. x̄ is an ar-
bitrary instance (e.g., an arbitrary picture), and ȳ is generated
from one kind of ill-formed ciphertext c̄ (i.e., [ȳ] ← I(c̄)),
where c̄← Fake(pk). We assume {ȳ′j}Pj=1 is a set of results
which is from decrypting the ciphertext c̄ by using different
secret keys, i.e., ȳ′j ← Dec(skj , c̄) for j ∈ {1, . . . , P}. Note
that the arbitrator has this information {x̄, {skj , ȳ′j}Pj=1}.
Then we add {x̄, [ȳ]} to [D], and train the ML model [M]. A
simple case is illustrated in Figure 3.

When x̄ is utilized as input and distinct secret keys are
employed to decrypt the ciphertext c̄, [M] will yield varying
results due to the aforementioned property. Consequently, the
verification process is as follows:

V ([M], x̄) =

j, if Dec(skj , c̄) = ȳ′

j .

False,
if ∀ j ∈ {1, · · · , P},

Dec(skj , c̄) ̸= ȳ′
j .

(5)

where c̄← I([M](x̄)).

4.5 EncryIP: Analysis
(1) Against removal attacks and ambiguity attacks. Re-
moval attacks seek to eliminate or alter IP protection mea-
sures by modifying model weights through techniques like
fine-tuning or pruning. Since EncryIP is data-dependent, its
performance remains unaffected regardless of the extent of
fine-tuning or pruning applied. This robustness makes En-
cryIP resilient against removal attacks.

Ambiguity attacks aim to forge counterfeit secret keys (or
watermark, or passport) without modifying model weights.
In EncryIP, the security of CSlite guarantees that it is hard to
forge a secret key. More specifically, according to Theorem 1,
CSlite is IND-CPA secure, which implies that the probability
of forging a secret key successfully is negligible (otherwise,
one can trivially succeed in breaking the IND-CPA security
of CSlite, contradicting Theorem 1).

(2) The incremental authorized users. In practice, a sig-
nificant challenge for IP protection methods lies in efficiently
accommodating an increasing number of authorized users.
As we know, EncryIP produces different model versions
by generating different secret keys. This challenge can be
easily addressed in EncryIP. Specifically, assume that P
secret keys {skj = (aj , bj)}Pj=1 have been generated, and
now a new user is authorized. In this case, a new secret key
skP+1 = (aP+1, bP+1) can be generated as follows: sam-
pling bP+1 ← Zq such that bP+1 /∈ {b1, · · · , bP }, and com-
puting aP+1 = a1 + (b1 − bP+1)t. Note that, this approach
eliminates the need to update existing authorized users’ secret
keys or retrain the ML model, serving as a future direction.

(3) The collusion. The aim of this study is to systemat-
ically define and address the issue of unauthorized model
distribution within the context of model IP protection. We
present a robust solution under certain initial assumptions,
which offers room for further enhancement. For instance, our
proposed method, EncryIP, currently operates on the premise
that authorized users do not collaborate. Exploring the substi-
tution of the employed PKE scheme in Sec. 4.2 with alterna-
tives rooted in distinct computational assumptions, such as
the Decisional Composite Residuosity assumption (Paillier
1999), could yield advancements. We regard the exploration
of ways to fortify EncryIP from diverse perspectives as a
promising avenue for future research.

5 Experiment
5.1 The effectiveness of EncryIP
The results on Learning /Deploying. We evaluate the ef-
fectiveness of EncryIP during both the learning and deploy-
ment stages. We compare the test performance of EncryIP
and EncryIPIncorrect (using an incorrect secret key) with the
original model. These comparisons are performed across
three machine learning model structures and three datasets.
We repeat each experiment 30 times and present the results
in terms of mean and standard deviation.

The prediction accuracy is employed as the evaluation
metric. In EncryIP, we set q to the number of classes in each
data set. The common parameters in each model structure
are set by default values and the same in each method. The

EncryIP

(a) MNIST

EncryIP

(b) CIFAR10

EncryIP

(c) CIFAR100

Figure 4: The training convergence for ResNet. Results for
GoogLeNet and AlexNet can be found in the Appendix.

settings of EncryIPIncorrect are the same with EncryIP, except
a fake secret key is used.

Table 1 shows that the results of EncryIP are almost the
same as the performance of the original model. The displayed
∆ values indicate percentage deviations between the origi-
nal model and EncryIP, with an approximate average of 1%.
Conversely, EncryIPIncorrect exhibits subpar performance, con-
firming that incorrect secret keys hinder recovery in EncryIP.
These findings underscore EncryIP’s efficacy as an impactful
protection for model outputs while maintaining strong model
performance.

Figure 4 demonstrates that the incorporation of EncryIP
does not impede the convergence of the learning process.
The accuracy convergence of EncryIP aligns closely with the
original model’s trajectory, exhibiting nuanced differences
during training. The dissimilarity between training with En-
cryIP and the original approach is primarily attributed to
label structure. EncryIP introduces confused labels to the
training model, potentially influencing the training process.
However, as indicated in Table 1, this modification has only
a minimal effect on performance, highlighting the effective
balance of security and performance achieved by EncryIP.

The results on verification. To examine the verification of
EncryIP (the performance of detecting whose model is unau-
thorizedly used), we conducted experiments as below: The
verification is under the scenario of secret key unavailable.
One of the authorized user’s models (e.g., j) is randomly
selected as the model which is used by an unintended user.
We check if the output of Eqn. (5) is equal to j. Note that in
our experiments, the required image x̄ in verification can be
set by different types. We refer x̄ to one kind of randomly
selected image which is different from training data. The
experiment is repeated 30 times, we try different types of
x̄ and different j each time. In Table 1, the performance of
verification is shown in parentheses. The results of the veri-
fication are at nearly 100% accuracy in different structures
and different datasets.

5.2 The efficiency of EncryIP
Settings. We compare training times among state-of-the-art
methods to highlight their efficiency in addressing the prob-
lem of the unauthorized spread of the model. The three typical
methods from watermark-based (PR (Uchida et al. 2017)),
trigger-based (EW (Zhang et al. 2018)) and passport-based
method (DeepIPR (Fan et al. 2022)) are chosen as the com-
parisons. The scenario involves a model producer intending

Table 1: The results on the effectiveness (Acc.). In the parentheses, the left side indicates the percentage changes between the
original model and EncryIP, and the right side indicates the performance of the verification.

Model Method MNIST CIFAR10 CIFAR100 ImageNet

ResNet18
original 0.9936± 0.0014 0.9030± 0.0046 0.7322± 0.0036 0.6231± 0.0010

EncryIP 0.9930± 0.0006 (0.06%, 1.0) 0.9094± 0.0051 (0.71%, 1.0) 0.7279± 0.0030 (0.59%, 0.97) 0.6178± 0.0006 (0.85%, 1.0)
EncryIPIncorrect 0.0006± 0.0003 0.0075± 0.0053 0.0027± 0.0008 0.0011± 0.0005

GoogLeNet
original 0.9905± 0.0011 0.8675± 0.0036 0.6347± 0.0031 0.6502± 0.0016

EncryIP 0.9879± 0.0015 (0.84%, 1.0) 0.8508± 0.0101 (1.9%, 1.0) 0.6165± 0.0053 (2.86%, 1.0) 0.6461± 0.0013 (0.63%, 1.0)
EncryIPIncorrect 0.0216± 0.0403 0.0124± 0.0087 0.0055± 0.0013 0.024± 0.0102

AlexNet
original 0.9914± 0.0006 0.8563± 0.0022 0.5439± 0.0049 0.5673± 0.0020

EncryIP 0.9923± 0.0010 (0.09%, 1.0) 0.8457± 0.0031 (1.24%, 1.0) 0.5282± 0.0040 (2.88%, 0.97) 0.5615± 0.0020 (1.02%, 1.0)
EncryIPIncorrect 0.0006± 0.0003 0.0181± 0.0048 0.0055± 0.0012 0.0006± 0.0025

EncryIP

(a) MNIST
EncryIP

(b) CIFAR10
EncryIP

(c) CIFAR100

Figure 5: The training time results of ResNet18.

to sell an ML model to three users. For PR, the producer
must perform three separate training sessions, each yielding
a distinct model version. This necessity arises from the use of
distinct watermark parameters required by the embedding reg-
ularizer for generating different versions. Similarly, DeepIPR
necessitates three separate training rounds to cater to its re-
quirement for employing three distinct passport groups to
generate diverse model versions. Although EW can train
once to address this situation by incorporating three differ-
ent trigger sets, it fails to meet the security requirement as
its output remains interpretable. Note that the experimental
conditions are the same in each group, e.g., the number of
epochs. The outcomes for ResNet18 are depicted in Figure 5,
while comprehensive results are available in Appendix.
Results. The results show that EncryIP is more efficient than
the other methods (PR and DeepIPR), and its training time
is almost close to the original time (the “Original” in Figure
5). EW performs similar results with EncryIP because it just
needs one time of training to meet this scenario. But, this
approach does not provide sufficient security for the resulting
predictions, as its output is a readable prediction. In contrast,
our proposed method prioritizes the output of confused labels,
which offers a more protected solution than EW.

5.3 Attack analysis
To evaluate removal attacks, we simulate an experiment in-
volving the influence of fine-tuning. We partition each dataset
into five parts and consecutively fine-tune the model on each
part. We use the pre-trained model from the previous part as
a starting point for the current training. The training proce-
dure follows the Algorithm 1. Figure 6 illustrates the trend
in model performance after each fine-tuning round. The out-
comes across the three datasets reveal that fine-tuning does

1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1.0

A
cc
ur
ac

y

 ResNet18
 GoogLenet
 AlexNet

The number of fine-tuning

(a) MNIST

1 2 3 4 5
0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac

y

 ResNet18
 GoogLeNet
 AlexNet

The number of fine-tuning

(b) CIFAR10

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

A
cc
ur
ac

y

 ResNet18
 GoogLeNet
 AlexNet

The number of fine-tuning

(c) CIFAR100

Figure 6: The results of removal attacks.

MNIST CIFAR10 CIFAR100

0.6

0.8

1.0

1.2

Ac
cu
rac

y

 ResNet18
 GoogLeNet
 AlexNet

Figure 7: The verification on removal attacks.

not impact EncryIP, and the model performance trend re-
mains consistent within the expected range. To examine the
verification, we conduct tests on its performance after each
round of fine-tuning, employing the same experimental setup
as described in Sec. 5.1. Figure 7 presents the verification
performance, which remains consistently close to 100% ac-
curacy across different model structures and datasets. These
results demonstrate the robustness of EncryIP against this
type of attack as well.

6 Conclusion
This paper presents an innovative encryption-based frame-
work for protecting model intellectual property. The frame-
work employs label space encryption, establishing autonomy
between learning and encryption algorithms. EncryIP ef-
fectively ensures IP protection while maintaining efficiency
across various model structures. Experimental results validate
its effectiveness. Future work will focus on enhancing the
framework’s efficiency and security, exploring its theoretical
underpinnings, and extending the concept to address dynamic
IP protection challenges.

7 Acknowledgments
This work was supported by the National Key Research and
Development Program of China (No. 2022ZD0115301), the
National Natural Science Foundation of China (62106114,
62206139), the Major Key Project of PCL, National Natural
Science Foundation of China under Grant No. U2001205,
Guangdong Basic and Applied Basic Research Foundation
(Grant No. 2023B1515040020),

References
Adi, Y.; Baum, C.; Cissé, M.; Pinkas, B.; and Keshet, J.
2018. Turning Your Weakness Into a Strength: Watermarking
Deep Neural Networks by Backdooring. In USENIX Security
Symposium, 1615–1631.
Boenisch, F. 2020. A Survey on Model Watermarking Neural
Networks. CoRR, abs/2009.12153.
Cao, X.; Jia, J.; and Gong, N. Z. 2021. IPGuard: Protecting
Intellectual Property of Deep Neural Networks via Finger-
printing the Classification Boundary. In ASIA CCS, 14–25.
Chen, H.; Rouhani, B. D.; Fan, X.; Kilinc, O. C.;
and Koushanfar, F. 2018. Performance Comparison of
Contemporary DNN Watermarking Techniques. CoRR,
abs/1811.03713.
Chen, H.; Rouhani, B. D.; Fu, C.; Zhao, J.; and Koushanfar,
F. 2019. DeepMarks: A Secure Fingerprinting Framework
for Digital Rights Management of Deep Learning Models. In
ICMR, 105–113.
Chen, H.; Rouhani, B. D.; and Koushanfar, F. 2019. Black-
Marks: Blackbox Multibit Watermarking for Deep Neural
Networks. CoRR, abs/1904.00344.
Chen, X.; Liu, C.; Li, B.; Lu, K.; and Song, D. 2017. Targeted
Backdoor Attacks on Deep Learning Systems Using Data
Poisoning. CoRR, abs/1712.05526.
Cramer, R.; and Shoup, V. 1998. A practical public key cryp-
tosystem provably secure against adaptive chosen ciphertext
attack. In CRYPTO, 13–25.
Cramer, R.; and Shoup, V. 2002. Universal Hash Proofs and a
Paradigm for Adaptive Chosen Ciphertext Secure Public-Key
Encryption. In EUROCRYPT, 45–64.
Fan, L.; Ng, K. W.; and Chan, C. S. 2019. Rethinking Deep
Neural Network Ownership Verification: Embedding Pass-
ports to Defeat Ambiguity Attacks. In NeurIPS, 4716–4725.
Fan, L.; Ng, K. W.; Chan, C. S.; and Yang, Q. 2022. DeepIPR:
Deep Neural Network Ownership Verification With Passports.
IEEE TPAMI, 44(10): 6122–6139.
Feng, L.; and Zhang, X. 2020. Watermarking Neural Network
with Compensation Mechanism. In KSEM, 363–375.
Guo, J.; and Potkonjak, M. 2018. Watermarking deep neural
networks for embedded systems. In ICCAD, 133–139.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In CVPR, 770–778.
Hofheinz, D.; and Kiltz, E. 2007. Secure Hybrid Encryption
from Weakened Key Encapsulation. In CRYPTO, 553–571.

Jebreel, N. M.; Domingo-Ferrer, J.; Sánchez, D.; and Blanco-
Justicia, A. 2021. KeyNet: An Asymmetric Key-Style Frame-
work for Watermarking Deep Learning Models. Applied
Sciences, 11(3).
Katz, J.; and Lindell, Y. 2020. Introduction to modern cryp-
tography. CRC press.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
ageNet Classification with Deep Convolutional Neural Net-
works. In NIPS, 1106–1114.
Kuribayashi, M.; Tanaka, T.; and Funabiki, N. 2020. Deep-
Watermark: Embedding Watermark into DNN Model. In
APSIPA, 1340–1346.
Lukas, N.; Zhang, Y.; and Kerschbaum, F. 2021. Deep Neural
Network Fingerprinting by Conferrable Adversarial Exam-
ples. In ICLR.
Maung, A. P. M.; and Kiya, H. 2020. Training DNN Model
with Secret Key for Model Protection. In IEEE GCCE, 818–
821.
Merrer, E. L.; Pérez, P.; and Trédan, G. 2020. Adversarial
frontier stitching for remote neural network watermarking.
Neural Computing & Applications, 32(13): 9233–9244.
Naor, M.; and Segev, G. 2009. Public-Key Cryptosystems
Resilient to Key Leakage. In CRYPTO, 18–35.
OpenAI. 2023. GPT-4 Technical Report. CoRR,
abs/2303.08774.
Paillier, P. 1999. Public-Key Cryptosystems Based on Com-
posite Degree Residuosity Classes. In EUROCRYPT, 223–
238. ISBN 978-3-540-48910-8.
Ramesh, A.; Pavlov, M.; Goh, G.; Gray, S.; Voss, C.; Radford,
A.; Chen, M.; and Sutskever, I. 2021. Zero-Shot Text-to-
Image Generation. In ICML.
Rouhani, B. D.; Chen, H.; and Koushanfar, F. 2019. Deep-
Signs: An End-to-End Watermarking Framework for Own-
ership Protection of Deep Neural Networks. In ASPLOS,
485–497.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S. E.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2015. Going deeper with convolutions. In CVPR, 1–9.
Tauhid, A.; Xu, L.; Rahman, M.; and Tomai, E. 2023. A sur-
vey on security analysis of machine learning-oriented hard-
ware and software intellectual property. High-Confidence
Computing, 3(2): 100114.
Uchida, Y.; Nagai, Y.; Sakazawa, S.; and Satoh, S. 2017.
Embedding Watermarks into Deep Neural Networks. In
ICMR, 269–277.
Xue, M.; Wang, J.; and Liu, W. 2021. DNN Intellectual
Property Protection: Taxonomy, Attacks and Evaluations. In
Great Lakes Symposium on VLSI, 455–460.
Zhang, J.; Chen, D.; Liao, J.; Fang, H.; Zhang, W.; Zhou, W.;
Cui, H.; and Yu, N. 2020a. Model Watermarking for Image
Processing Networks. In AAAI, 12805–12812.
Zhang, J.; Chen, D.; Liao, J.; Zhang, W.; Feng, H.; Hua, G.;
and Yu, N. 2022. Deep Model Intellectual Property Protection
via Deep Watermarking. IEEE TPAMI, 44(8): 4005–4020.

Zhang, J.; Chen, D.; Liao, J.; Zhang, W.; Hua, G.; and Yu,
N. 2020b. Passport-aware Normalization for Deep Model
Protection. In NeurIPS.
Zhang, J.; Gu, Z.; Jang, J.; Wu, H.; Stoecklin, M. P.; Huang,
H.; and Molloy, I. M. 2018. Protecting Intellectual Property
of Deep Neural Networks with Watermarking. In ASIA CCS,
159–172.
Zhong, Q.; Zhang, L. Y.; Zhang, J.; Gao, L.; and Xiang, Y.
2020. Protecting IP of Deep Neural Networks with Water-
marking: A New Label Helps. In PAKDD, 462–474.

