
Mining and Recommending Software Features across
Multiple Web Repositories

Yue Yu, Huaimin Wang, Gang Yin, Bo Liu
National Laboratory for Parallel and Distributed Processing

School of Computer Science, National University of Defense Technology, Changsha, 410073, China
yuyue_whu@foxmail.com, whm_w@163.com, jack_nudt@163.com

ABSTRACT
The “Internetware” paradigm is fundamentally changing the
traditional way of software development. More and more
software projects are developed, maintained and shared on
the Internet. However, a large quantity of heterogeneous
software resources have not been organized in a reasonable
and efficient way. Software feature is an ideal material to
characterize software resources. The effectiveness of feature-
related tasks will be greatly improved, if a multi-grained
feature repository is available. In this paper, we propose a
novel approach for organizing, analyzing and recommend-
ing software features. Firstly, we construct a Hierarchical
rEpository of Software feAture (HESA). Then, we mine the
hidden affinities among the features and recommend relevant
and high-quality features to stakeholders based on HESA.
Finally, we conduct a user study to evaluate our approach
quantitatively. The results show that HESA can organize
software features in a more reasonable way compared to the
traditional and the state-of-the-art approaches. The result
of feature recommendation is effective and interesting.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Mining Software Reposi-
tory; H.3.3 [Information Storage and retrieval]: Fea-
ture Model, Clustering, Query formulation

General Terms
Algorithms, Human Factors

Keywords
Mining Software Repository, Domain Analysis, Feature On-
tology, Recommender System

1. INTRODUCTION
The Internet is undergoing a tremendous change towards

the globalized computing environment. With the vision

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

of “Internet as computer”[21][23], more and more software
projects are developed, maintained and diffused through the
Internet computing environment. The Internet-based soft-
ware repositories, such as Sourceforge.net1, Freecode.com2,
Ohloh.com3 and Softpedia.com4, have hosted large amounts
of software projects, which are fundamentally changing the
traditional paradigms of software development. Around the
repositories, manifold reusable software resources[13] have
been accumulated, including code bases, execution traces,
historical code changes, mailing lists, bug databases, soft-
ware descriptions, social tags, user evaluations and so on.

However, all of these valuable resources have not been
reorganized in a reasonable and efficient way to assist in
the activities of software development[30]. For example, a
large proportion of projects in the above repositories have
not been categorized or marked with some effective tags. In
Sourceforge.net, there are 39.8% software projects have no
category label and in Ohloh.com 61.68% projects have not
tagged by users. Table 1 (according to data in mid-2011)
presents the details about our statistical results. Consid-
ering the large-scale, heterogeneous and multi-grained soft-
ware resources, it is a great challenge for stakeholders to
retrieve the suitable one.

Table 1: Labels in open source communities

Repository
total

projects
unique
labels

ratio
(#label=0)

ratio
(#label=0,1)

SourceForge 298,402 363 39.80% 77.00%
Ohloh 417,344 102,298 61.68% 69.89%
Freecode 43,864 6,432 8.61% 20.60%

As a kind of visible attributes which capture and identify
commonalities and differences in a software domain, Fea-
ture[3][15] is an ideal material to represent the software re-
sources. For example, when a company wants to develop a
new commercial software product about Video-Player, do-
main analysts might evaluate user comments to pick out
outstanding competing products, analyze and extract the
reusable feature assets, combine the related function points
and design a novel feature model. Based on the feature
model, developers match the features with corresponding
software resources including code fragments, components
and mature open source software.

However, classic feature analysis techniques, such as Fea-
ture Oriented Domain Analysis (FODA)[14] and Domain
Analysis and Reuse Environment (DARE)[9], are heavily
relied on the experience of domain experts and plenty of

1http://sourceforge.net
2http://freecode.com
3http://www.ohloh.net
4http://www.softpedia.com

Figure 1: The overview of HESA construction and feature recommendation

market survey data. Hence, the feature analysis is a labor-
intensive and error-prone process. Nowadays, in order to
promote software products to users, stakeholders write some
marketing-like summaries, release notes and feature descrip-
tions on the profile pages via natural language, as shown in
Figure 2. The massive number of software profiles can be
treated as a kind of repository contains a wealth of informa-
tion about social software features.

In this paper, we propose a novel approach for organizing,
analyzing and recommending software features to reduce the
costs of domain analysis. First of all, mining the hidden
semantic structure, we construct a Hierarchical rEpository
of Software feAture (HESA) using an improved agglomera-
tive hierarchical clustering algorithm. The features are orga-
nized as a kind of hierarchical structure in HESA. From top
down, the semantic granularity is finer and finer accompa-
nying with the increasing number of features, which can sat-
isfy the requirements of multi-grained reuse environments.
Then, utilizing the search engine for HESA, features in the
specific layers are retrieved and tied together to mine the
affinities among them. Finally, we design a novel strategy
to evaluate the popularity and quality of software products
and circularly recommend features to stakeholders.

The rest of this paper is or organized as follows. Section 2
introduces the overview of our work. Section 3 describes the
construction of HESA in detail. We mine the hidden rela-
tionship of software features and present the novel approach
of feature recommendation in Section 4. Experiments and
analysis can be found in Section 5. Finally, we review related
work in Section 6 and draw conclusions in Section 7.

2. OVERVIEW
The objective of this paper is to recommend a set of the

most relevant and high-quality software features to stake-
holders. We have collected a massive number of social soft-
ware features to build a Hierarchical rEpository of Software
feAture (HESA). At the beginning, stakeholders can just

input limited information for the initial idea about an in-
novative software product. When stakeholders accept some
recommended features or provide more requirements, our
system would refine the recommendations in the next stage.

Before describing the specific details of the underlying al-
gorithms, an architectural overview of approach will be pro-
vided as below. There are actually two processes concerning
the application of our method, i.e., the construction pro-
cess of HESA and the process of feature recommendation to
stakeholders. As depicted in Figure 1, the construction pro-
cess consists of three primary modules and the input data
are software profiles collected and updated continuously by a
web crawler. There is a wealth of information on a software
profile page as shown in Figure 2. Our system can automat-
ically extract social feature elements (blue boxes), softsware
categories (green box) and the user evaluations (red boxes).

The Feature-Topic Modeler is responsible for mining the
semantic structures hidden in social feature elements. Then,
the HESA Constructor will merge the synonymic elements
and build the feature ontology based on the semantic struc-
tures. After all the raw data under our category are dis-
posed, the construction process of HESA is finished.

In terms of user evaluations, the Popularity Evaluator and
Resource Selector can classify the software resources into
different groups such as popular and high-quality group and
unpopular and low-quality group. When stakeholders input
their requirements of a specific domain, the HESA Search
Engine can retrieve the features in the corresponding gran-
ularity. Combining the feature and the different group of
software resources, the system can mine the Feature-Pattern
based on the resource-by-feature matrix. The last module,
Feature Recommender, outputs a set of features to stake-
holders and gather their feedback. Then, according to the
feedback, it will circulate the mining process and recommend
more relevant features to stakeholders.

3. THE CONSTRUCTION OF HESA

Figure 2: An example of the software profile

In this section, we present the key algorithms of the HESA
construction. You can find more details about our stages,
algorithms and data analysis in our previous work[30].

3.1 Social Feature Elements in Profiles
Social feature element is a kind of raw descriptions written

by different users of web repositories, which can indicate a
functional characteristic or concept of a software product.
In this paper, all the social feature elements are extracted
from Softpedia.com, Freecode.com and Sourceforge.net.

Due to the open, dynamic and uncontrollable natures of
the Internet[22], different people describe the functions in
terms of their personal understanding. We face two main
challenges of the unstructured social feature elements.

Hybrid Semantic level: The problem of hybrid seman-
tic level is that different social feature elements describe a
common theme in different semantic level, such as the fol-
lowing descriptions:

(1) “Internationalized GUI”;
(2) “Various language packs are available”;
(3) “Multi-language supported: including English, Simpli-

fied Chinese, Traditional Chinese, Japanese, Korean, Ger-
man, French, Spanish, Italian, Russian etc”;

The first two sentence describes the theme of multilingual
setting in a general level. However, the last sentence present
more details including what kind of languages would be sup-
ported. On the one hand, the massive number of social fea-
ture elements in different semantic-level are good materials
for the construction of flexible granularity ontology. On the
other hand, it is a great challenge for the traditional meth-
ods to cluster and reorganize these social feature elements.

Synonymic Element: The problem of synonymic ele-
ment happens when two features are used to describe some
common or very similar functional attributes.

Some social feature elements are almost the same with
each other, such as the three elements below:

(1) “Simple user interface”;
(2) “User-friendly interface”;
(3) “Easy and friendly user interface”;
Another typical problem is that each pair only shares few

core words, such as the following:
(1) “Ability to update that does not require downloading

full package”;
(2) “Incremental database updates and often to include in-

formation about latest threats”;
(3) “Incremental updating system minimizes the size of

regular update files”;
These three elements present the common attribute about

incremental updating database, but only the word “update”
is shared by the two sentences. Thus, social feature elements
should be merged together by an effective method.

3.2 Feature-Topic Model
According to the observation in our previous work[30], the

probabilistic topic model can be used to mine the semantic
structures hidden in the massive number of social feature
elements.

In a specific category, such as Video-Player, all the so-
cial feature elements in the corpus can be represented as
Fm = {f1, f2, . . . , fi, . . . , fm}, where fi denotes the ith ele-
ments in the corpus. Assuming that K latent topics Tk =
{t1, t2, . . . , tj , . . . , tk} are implicit in the social feature ele-
ments, where tj denotes the jth topic. Although a social
feature element can be bound up with several topics, it may
put more emphasis on some topics than the others. The
topic degree within fi can be represented as a K -dimensional
vector υi = (pi,1, pi,2, . . . , pi,j , . . . , pi,k), where pi,j is a topic
weight describing the extent to which the topic tj appears
in fi. When pi,j = 0, fi is irrelevant to tj . Thus, the
υi, i ∈ [1,m], represented by Vm, can be used to indicate
the semantic structure implied in social feature elements.
If the Vm can be obtained, the thematic similarity measure
would be induced for each pair of social feature elements and
the synonymic elements would be merged together. Because
topic models answer what themes or topics a document re-
lates to and quantify how strong such relations are, it is a
effective way to learn Vm.

In this paper, we choose Latent Dirichlet Allocation (LDA)
[6] to learn Vm, because it has been shown to be more ef-
fective for a variety of software engineering purposes[28][4]
than other topic models. A social feature element fi can
be viewed as a document which is preprocessed by remov-
ing commonly occurring words and then by stemming the
remaining words to their root form. According to category,
we apply LDA to process the documents using the MALLET
tool[19] which is an implementation of the Gibbs sampling
algorithm[10].

3.3 iAHC: improved Agglomerative Hierarchi-
cal Clustering

To support multi-grained reuse environment, the semantic
similar social feature elements should be merged and reorga-
nized as a flexible hierarchical structure defined as feature-
ontology. In this paper, we present the iAHC algorithm
(Algorithm 1) integrated with the LDA.

Algorithm 1 improved Agglomerative Hierarchical Clus-
tering

Require:
Fm = {f1, f2, . . . , fi, . . . , fm};
feature-topic distribution Vm;

Ensure:
The construction of feature-ongtology;

1: M ← D
2: featureSet← ∅
3: repeat
4: 〈ci, cj〉 = findTwoClosestClusters(M)
5: merge ci and cj as c
6: delete ci and cj from M
7: add c to M
8: centroid = calculateCentroid(c)
9: for ci ∈ c do

10: values = Similarity(ci, centroid)
11: degreet = calculateTopicDegree(ci)
12: scorem = κ · values + λ · degreet
13: add scorem to MedoidScore
14: end for
15: medoidC = findMaximumScores(MedoidScore)
16: scoreF = Similarity(medoidC)
17: featureC = mergeMedoid(medoidC , scoreF)
18: saveFeaturetoHESA(M, featureC)
19: until |M | = 1

Initially, every social feature elements is a distinct cluster.
Line 4-7 finds the closest two clusters ci and cj in the current
cluster set M , and merge them into a new cluster c and
update M . The proximity used to measure the distance
between every two clusters, defined as below:

proximity(ci, cj) =

∑
fi∈ci
fj∈cj

similarity(fi, fj)

|ci| × |cj |
(1)

Where ci, cj ⊆ Fm, similarity(fi, fj) used to calculate the
divergence between any two data point. Based on LDA,
the divergence can be understood as the thematic space
coordinate distance between the two elements. There are
several ways to calculate the divergence between any two
feature-topic distributions, such as cosine similarity, Jenson-
Shannon divergence and Kullback-Leibler divergence. Tak-
ing cosine similarity as an example, the Equation is shown
as below:

similarity(fi, fj) =
υi · υj

||υi|| ||υj ||

=

∑k
r=1 pir × pjr√∑k

r=1 p
2
ir ×

√∑k
r=1 p

2
jr

(2)

Where k is the topic number and p is the probability value
of υ.

Line 8-14 pick out a set of social feature elements from
the new cluster, defined as medoid, which can be used to

represent the theme of c. Two metrics, similarity value and
topic degree, are used to determine the medoid. Firstly, to
get the values, we calculate the similarity between ci ∈ c and
the centroid of c through Equation 2, where the vector υc̄ of

centroid is calculated by υc̄ =
∑|c|

i=1 υi

|c| . Then, the Equation

3 is used to calculate the degreet based on the following two
important observations of feature-topic distribution Vm in
our datasets.

degreet = xmax +
1

e

√∑k̂
r=1(xmax−pir)2

k̂

(3)

Where xmax is the maximum value of υi, and k̂ is the fre-
quency when υi not equal to zero, and pir is any value that
not equals to zero in υi.

Observation 1 The most probable topic reflects the most
prominent theme that the document (social feature element)
is about.

Observation 2 The more widely and evenly distributed
its topics are, the higher-level the document (social feature
element) is.

In brief, Equation 3 can ensure the social feature element
in the coarsest granularity have the highest score degreet ∈
(0, 2], where xmax ∈ (0, 1] can reflect the emphasis topic
and the formula 1

e

√∑k̂
r=1(xmax−wir)2

∈ (0, 1] can reflect the

semantic generality.
The scorem is used to measure the medoid calculated as

the Equation of line 12, where κ and λ is the empirical co-
efficients.

Finally, the medoid with the highest scorem would be se-
lected. Measuring the similarity for the each pair of elements
in medoidC (line 15), the featureC (line 17) can be formed
by merging distinguished social feature elements whose sim-
ilarity score below a threshold (set to 0.38). Each iteration
in the repeat clause saves the M and featureC to HESA.
On the termination of the algorithm, a feature-ontology for
the category is constructed.

After all the feature-ontologies under different categories
are generated, the construction process of HESA is finished.

4. FEATURE RECOMMENDATION
In this section, mining the hidden relationship between

software features, we present a novel strategy of feature rec-
ommendation. Firstly, we classify software resources into
different groups. Then, combining the feature with the pop-
ular and high-quality resources, we use association rules to
mine the feature-patterns. Finally, analyzing the hidden as-
sociations between the features, we can recommend relevant
features to stakeholders.

4.1 Software Resource Evaluation
When users try out a kind of software resource from web

repositories, they may give evaluations according to their ex-
perience. Taking software projects in Sourceforge.net, Soft-
pedia.com, Ohloh.com and Freecode.com as an example, we
have extracted a large number of user’s evaluations from
the software profiles including rating, vote, downloads, and
subscriptions as shown in table 2.

Because the core services of the web repository are differ-
ent, there are different types of user evaluation to measure
the popularity and quality. Some giant forges like Source-
forge.net host a massive amount of software source code,

Table 2: User evaluation in software profiles

Project Name Repository Rating (#Raters) Vote (#Voters) #Downloads #Subscriptions
Hard Disk Sentinel Softpedia 3.7 Stars (42) 19,347
Mozilla Firefox Sourceforge 4.0 Stars (60) 332
Mozilla Firefox Ohloh 4.4 Stars (3,492) 12,227
Chromium Ohloh 4.5 Stars (538) 1,883
PostgreSQL Freecode 145 Score (153) 755
phpMyAdmin Freecode 202 Score (213) 956

so the code #Downloads is adopted to quantify the project
popularity. However, the core service of some repositories
is providing social directories such as Ohloh.com. Thus, the
#Subscriptions is used to measure the project popularity.

In addition, the Rating and Vote can reflect the quality of
the software project. Most of the repositories use the Rating
from 1 to 5 stars to measure the project quality. Hence,
we convert the Vote into a five-point scale by the following
formula, where ` is the reliability of the web repository.

Rating = ` · Vote

#Voters
× 5 (4)

For example, if ` sets to 1, the Vote of PostgreSQL in
Freecode.com can convert to 4.74 points Rating by the for-
mula: 1× 145

153
× 5 ≈ 4.74.

Moreover, a project may have several different ratings
when it is hosted across multiple repositories. In this case,
to lower the users’ personal bias, we choose the rating based
on most users’ records. As depicted in Table 2, our system
automatically select 4.4 Stars in Ohloh.com to represent the
quality of Mozilla Firefox 56, because it is rated by more
users (3,492) than the rating in Sourceforge.net (60).

Rankingpq = α · #Downloads

MAX(#Downloads)
× β ·Rating (5)

Then, synthesizing the popularity and the quality, we use
the Equation 5 to rank the software projects, where α and
β (α · β = 1) are the empirical coefficients used to balance
the popularity with the quality. The #Downloads can be
replaced by the #Subscriptions and the Rankingpq ∈ (1, 5].

In this paper, we pick up the software projects over a
Rankingpq threshold. Actually, the software resources can
be divided into any number of groups, such as popular group,
high-quality group, unpopular group and low-quality group.
Combining with the features and different groups of soft-
ware resources, we can mine the hidden feature pattern and
recommend relevant features more accurately. Furthermore,
the software resources are manifold, such as software com-
ponents, code fragments, bug reports and so on. Based on
the feature location technique, we can recommend these re-
sources to stakeholders. We really expect to do this research
in future work.

4.2 Feature Pattern Mining
We merge the software projects and the software features

into a resource-by-feature matrix and a series of implicit fea-
ture rules can be discovered. As illustrated in Table 3, the
features about Video-Codec and Customizable Option are es-
sential for a new products in the Video-Play domain, because
the most of competing software implement these functional-
ities. The No.35 may be the latest and novel feature in this
domain, because only a few of high-quality products own this
functionality. In this paper, we define the Feature-Pattern
to represent the relationship between software features and

5http://www.ohloh.net/p/firefox
6http://sourceforge.net/projects/firefox.mirror/

Figure 3: Part of the feature-pattern in Video-Player domain

generate the feature-pattern based on the association rule
learning[11][29].

Let F = f1, f2, . . . , fm be a set of item in the resource-
by-feature matrix. An association rule is an implication of
the form {X ⇒ Y }, where X ⊂ F , Y ⊂ F and X ∩ Y = ∅.
The σ(X), called support count, is used to get the is the
number of transactions that contain the X itemset. There-
fore, support can indicate the frequency and the association
degree of the itemsets, defined as below:

support(X ⇒ Y) =
σ(X ∪ Y)

|F | (6)

The feature-pattern is a kind of directed graph, which can
be represented as GFP = 〈V,E〉, where V is a set of feature
itemsets and E is a sub set of E(V), E(V) = {(u, v)|u, v ∈
V }. The element e of E is the a pair of vertices and the
confidence is the weight assigned to the arcs. As shown in
Equation 7, confidence indicate the percentage of transac-
tions containing a given itemset that also contain the other
specific itemset.

confidence(X ⇒ Y) =
σ(X ∪ Y)

σ(X)
=
support(X ∪ Y)

support(X)
(7)

For example, in Table 3, the support(No.21 ⇒ No.41) =
1/4 and the confidence(No.21 ⇒ No.41) = 1/3. In Figure
3, the edge e = {(21), (21, 67)} represent the association rule
{No.21⇒ No.67} and the weight 0.3429 is the confidence
of this rule.

Firstly, we use Apriori algorithm [11] to generate the fre-
quent itemsets (support satisfies a threshold 0.35) as the ini-
tial value of V . Then, we add the infrequent itemsets except
the item within frequent itemsets (support below a thresh-
old 0.05) to the V . Finally, we connect the nodes together
based on the association rules and allocate the weights of
the edges in terms of their confidence values.

Figure 3 illustrates a part of feature-pattern in the Video-
Player domain. The solid lines show the connections of the
frequent itemsets. We discover that the subgraphs about

some fundamental features always have the homogeneous
weights and they are much flatter than the subgraphs of
common features. In a specific domain, the fundamental
features is implemented by the most of software such as
the feature No.21 about video-codec in the Video-Player do-
main, so it have the high support and widely co-occur with
other features, which leads the subgraph to become flat. If a
connection contains a element of the infrequent itemsets, we
use the dotted lines to represent it. We find that the infre-
quent features may be some innovative functionalities, such
as the feature No.13 about displaying video in customized
multiple screens. Thus, the connections between infrequent
and fundamental features are significant to the feature rec-
ommendation.

Table 3: An example of resource-by-feature matrix

Software
Feature

No.211 No.352 No.373 No.414 No.635 No.676

nDVD 0 0 1 1 1 0
FLV Player 1 0 1 1 1 0

Aviosoft DTV Player 1 1 0 0 1 1
Mac Blu-ray Player 1 0 0 1 1 1

1 Support multi-formats of video files such as FLV, MPEG4, DIVX, HD-
MOV, M2TS, MKA, 3GPP and so on.

2 Smart stretch lets video smart fit on all monitor with different aspect ratio,
avoid video loss or distortion.

3 Title repeat, chapter repeat, AB repeat function that lets you set your
favorite scenes for instant repeat.

4 Fast Forwards and Backwards with Customizable Speeds.
5 You can easily configure every option of the Player by using a nice pref-

erences dialog.
6 Brightness, contrast, hue, saturation and gamma settings.

4.3 Feature Recommendation Algorithm
When a user input his requirements, the system convert

the requirements to a set of features which is the same as
the preprocessing of raw social feature elements. If it can
be matched with the any one of the itemsets in the feature-
pattern, the system begin the process of feature recommen-
dation. Algorithm 2 present a breadth-first recommenda-
tion algorithm, where the input are user requirements, the
minimum confidence and the feature-pattern. The output
recSet is a set of relevant feautres for recommendation.

We firstly initialize the recSet with the matched itemset
(Line 1-2). If the matched itemset equals a fundamental
feature or feature set, we should update the feature-pattern
GFP . Line 4-5 find the maximum weightmaxconftmp within
the edges E(reqItem) and update the weight wi by using
blew formula:

weightnew =
wi

maxconftmp
∈ (0, 1] (8)

For example, as shown in Figure 3, when we matched
the feature No.21, we can find 0.4571 is the maxconftmp of
E(reqItem) and update the weight(0.3714) of {(21), (21,41)}
to 0.8125 = 0.3714

0.4571
. Therefore, although user set theminconf

over 0.75, the feature No.41 also can be recommended.
In addtion, Line 6 associate the E(reqItem) with the in-

frequent itemsets, which make some interesting features can
be recommended to users. Then, we merge the itemsets
into the recSet, whose the confidence values are over the
minconf and use the breadth-first search strategy to find
all relevant features (Line 8-12).

For example, supposing we begin with {21}, we would up-
date the weights of {(21), (21,37)}, {(21), (21,41)}, {(21),
(21,63)} and {(21), (21,67)} and the subgraph of the fea-
ture No.35 is added. Then, if we set the minconf to 0.8, we
would retrive (21,41), (21,63), (21,63,67) step by step. Fi-
nally, we merge them together and the recommendation set

is (21,41,63,67). Similarly, if we set the minconf to 0.75,
the feature No.35, No.63, No.67, No.13 would be selected
out one by one.

Feature recommadtion is a iterative process. Once users
choose the recommended features or give their feedback, our
system will refine the recommendations in the next stage.

Algorithm 2 a breadth-first recommendation algorithm

Require:
req the feature set of you need;
minconf the threshold of the confident; GFP the fea-
ture pattern graph;

Ensure:
recSet a set of features recommended to users;

1: reqItem←matchItemsets(req)
2: recSet← reqItem
3: if reqItem = fundSet then
4: maxconftmp ← getMaxWeight(E(reqItem))
5: updateConfidences(E(reqItem),maxconftmp)
6: addConnections(req, infreqSet)
7: end if
8: Tset← getInitialRecSet(GFP (reqItems),minconf)
9: repeat

10: recSet← recSet ∪ searchNextDepthSet(Tset)
11: until GFP END
12: return recSet

5. EMPIRICAL EVALUATION
In this section, we present our dataset and experiment

setting, research questions and answers, and describe some
threats to validity.

5.1 Dataset and Experimental Setting
Dataset: We have collected 187,711, 432,004 and 45,021

projects’ profiles from Softpedia.com, Sourceforge.net and
Freecode.com respectively. Compared with the other two
repositories, the quantity of projects from Freecode.com is
relatively small. Thus, we just adopt projects in Softpe-
dia.com and Sourceforge.net for the experiment.

The social feature elements have been classified into 385
categories and we randomly choose the data of 6 unique cat-
egories to evaluate our method including Antivirus, Audio-
Player, Browser, File-manger, Email and Video-Player. Fur-
thermore, the social feature elements are preprocessed by
removing commonly occurring words and then by stemming
the remaining words to their root form. To ensure the qual-
ity of data, we omit the preprocessed data with less than
6 words. In each category, we choose hundreds of candi-
date projects to find the popular and high-quality software
in the two repositories. Table 4 presents the details about
our experiment dataset.

Parameter Setting: As shown in Table 4, for LDA, the
number of topics K was empirically set as different value,
and the hyper-parameters α and β were set with α = 50/K
and β = 0.01 respectively, and the iteration of Gibbs Sam-
pling was set as 1000. In addition, the coefficients κ and λ
of Algorithm 1 were set as κ = 0.7 and λ = 0.3. We treat
the popularity is as important as the quality for a software
project, so we set α = 1 and β = 1 (Equation 5). The
Rankingpq threshold is set as 3.0.

Table 4: Preprocessed experiment datasets

Category #Feature sp #Feature sf #Project sp #Project sf #Topic

Antivirus 2919 1105 667 435 40
Audio-Player 3714 1283 379 530 60

Browser 3010 831 344 177 40
File-Manager 2270 970 330 177 40

Email 8511 1050 823 204 80
Video-Player 3318 2697 379 530 60

5.2 Research Questions
To demonstrate the effectiveness of the approach in this

paper, we are interested in the following research questions:
RQ1 How accurate is the clustering result of iAHC? Are

the hierarchical structures of HESA reasonable?
RQ2 What the popular and high-quality projects look

like? What rules can be mined based on the feature-pattern?
RQ3 Are the recommendations from our approach are

reasonable and effective?

5.3 Cross-Validation Design of the User Study
The cross-validation limits potential threats to validity

such as fatigue, bias towards tasks, and bias due to unrelated
factor. We randomly divided the 30 students from computer
school of NUDT into three groups to evaluate the questions.
Each group randomly picks up 2 categories and finishes the
evaluations in one day, and then we summarize the result.

RQ1: Clustering Result and HESA Structure. We
choose the K-Medoids (tf-idf), a traditional and widely used
clustering algorithm, and the Incremental Diffusive Cluster-
ing (IDC), the state-of-the-art technique proposed in paper
[8], as the baseline. Especially, the IDC use the feature
descriptions from Softpedia.com which is the same as our
dataset. We also use the modified version of Can’s metric[8]
to compute the ideal number of clusters. Then, we retrieve
the corresponding number of clusters from HESA for com-
parison. Precision is a percent of the reasonable elements
in a cluster. Figure 4 shows the average value and standard
deviation of the judgments given by different groups under
the Antivirus, Audio-Player and File-Manger categories.

We can see that our approach achieves the highest preci-
sion in all three categories and relatively low deviations. The
precisions and deviations are comparatively stable across dif-
ferent categories, which shows the probability that our ap-
proach is more generalizable in different domains. We plan
to conduct more quantitative experiments in future work.

According to the six categories, participants randomly
choose 30 clusters in different layers from HESA using the
search engine respectively. Each participant is randomly as-
signed 10 layers and asked to provide a 3-point Likert score
for each cluster to indicate whether they agree if the feature
is the most representative of all terms. Score 3 means “very
reasonable”, Score 2 means “reasonable but also have better
one”, Score 1 means “unreasonable”.

Table 5: Evaluation of HESA structure

Category Score-3 Score-2 Score-1 Likert

Antivirus 33.3% 50.0% 16.7% 2.17
Audio-Player 39.1% 46.3% 14.6% 2.25

Browser 36.8% 41.9% 21.3% 2.16
File-Manager 32.7% 52.4% 14.9% 2.18

Email 36.4% 52.8% 10.8% 2.26
Video-Player 47.2% 41.5% 11.3% 2.36

Average 37.58% 47.48% 14.93% 2.23

(a) the average value

(b) the standard deviation

Figure 4: The clustering results

Table 5 shows that 37.58% features are reasonable, 47.48%
partially reasonable and only 14.93% unreasonable. The
mean of Likert score is 2.23, which means that the feature
selected out by our approach is reasonably meaningful.

RQ2: Project Evaluation and Feature-pattern. As
shown in Table 6, we use our evaluation method to select out
a fraction of project synthesizing the software popularity and
the quality. We can get a reasonable number of candidate
features. Specially, to illustrate the importance of project
evaluation for feature pattern mining, we lower the threshold
(1.0) in File-Manager category. Hence, we get a unnormal
number of itemsets which exert a negative impact on feature-
pattern mining and feature recommendation.

Figure 3 shows an example of feature-pattern under the
Video-Player, where the feature No.21 (about video-codec)
and No.63 (about user interface) is the fundamental features.
Similarly, we find the feature about virus database updating
is one of essential functionalities for an antivirus software.

RQ3: Feature Recommendation. We show some mean-
ingful and interesting case in Table 7. In the Email category,
if you input “High level filter system for spam”, our system
can recommend 5 relevant features. The first three features
are directly related to the input, but the third feature about
privacy protection is very easy to leave out. The last two
features represent the fundamental abilities under the Email
category. From these examples, we can demonstrate our ap-

Table 6: Project Evaluation and Feature-pattern

Category #Project total #Project ranking Ratio #|Itemsets| #Feature fund

Antivirus 1,082 63 5.82% 75 7
Audio-Player 909 65 7.15% 68 13

Browser 521 57 10.94% 64 8
*File-Manager 447 192 42.95% 187 46

Email 1,027 39 3.80% 53 4
Video-Player 523 91 17.40% 68 5

Table 7: Feature recommandations

Category Input Recommendations
Email -High level filter system for spam. -Automatically start spam process when Windows starts.

-Attachment and keyword filtering.
-Privacy guaranteed-your emails never leave your network.

-Full support for international characters.
-Automatic import of local address book.

Video-Player -Support multi-formats of video. -Smart stretch lets video smart fit on all monitor with different
aspect ratio, avoid video loss or distortion.

-Customized player supports multiple windows and screens.
-Play anything including movie, video, audio, music and photo.

-Video desktop lets you view video in true background mode like wallpaper.
Audio-Player -Radio streaming. -Free Lossless Audio Codec.

-Easy to use and friendly User Interface. -Playlists for each day of week or date.
-Flexible XML based skinning engine,

Create your own skins, or choose one of the available skins.
-Contextual Help System.

proach is highly significant of the software development.

5.4 Threats to validity
First, the participants manually judge the clustering re-

sults and their ratings could be influenced by fatigue, prior
knowledge and the other external factors. These threats
were minimized by randomly distributing participants to the
various groups and dividing the tasks into multiple parts.
Second, the clustering error may exert a negative influence
on the recommendation. Third, due to our limited datasets,
parameters used in our approach, the evaluation is not com-
prehensive enough.

6. RELATED WORK
Recently, mining software repository has been brought

into focus and many outstanding studies have emerged to
support various aspects of software development[12]. How-
ever, to the best of our knowledge, fewer previous works have
been done for mining software feature and especially con-
struction of feature-ontology to manage software resources.
In this section, we review some previous works about feature
analysis, ontology learning and recommender system.

In feature analysis area, most approaches extract feature
related descriptions from software engineering requirements
and then use the clustering algorithm to identify associa-
tions and common domain entities[2][9][25]. Mathieu Acher
et al.[1] introduced a semi-automated method for easing the
transition from product descriptions expressed in a tabu-
lar format to feature models. Niu et al.[24] propose an on-
demand clustering framework that provided semi-automatic
support for analyzing functional requirements in a product
line. A decision support platform is proposed in paper [5] to
build the feature model by employing natural language pro-
cessing techniques, external ontology and MediaWiki sys-
tem. However, the quantity of the existing documents is so
limited that the brilliance of data mining techniques can-
not be fully exploited. To address this limitation, paper [8]
and [20] proposed the Incremental Diffusive Clustering to
discover features from a large number of software profiles
in Softpedia.com. Based on the features, a recommenda-

tions system is build by using association rule mining and
the k-Nearest-Neighbor machine learning strategy. Com-
pared with these studies, the clustering algorithm presented
in this paper is more effective by mining the semantic struc-
tures from social feature elements and especially focus on
the construction of feature-ontology.

Ontology learning from text aims at extracting ontological
concepts and relation from plain text or Web pages. Paper
[18] developed an ontology learning framework using hierar-
chical cluster and association rule for ontology extraction,
merging, and management. Jie Tang et al.[27] proposed a
generative probabilistic model to mine the semantic struc-
ture between tags and their annotated documents, and then
create an ontology based on it. Xiang Li et al.[16] enhance an
agglomerative hierarchical clustering framework by integrat-
ing it with a topic model to capture thematic correlations
among tags. In this paper, to support multi-grained reuse,
emphases of the feature-ontology’s construction is on the
measure of similarity and granularity instead of generality.

As an indispensable type of information filtering tech-
nique, recommender systems have attracted a lot of atten-
tion in the past decade[17]. In the field of collaborative
filtering, two traditional types of methods are widely stud-
ied: neighborhood-based approaches and model-based ap-
proaches. Based on the co-occurrence matrix, neighborhood-
based[7] methods mainly focus on finding the similar items
for recommendations. However, model-based approaches
train a compect model to explain the data firstly, and then
predict the hidden values. Recently, the low-dimensional
matrix approximation methods[26] are used widely in deal-
ing with large scale datasets. In future work, we will design
some comparative studies by using different methods and it
is possible to help us mining much more feature patterns.

7. CONCLUSION AND FUTURE WORK
The continuing growth of open source ecosystems creates

ongoing opportunities for mining reusable knowledge. In
this paper, we have explored the idea of mining large scale
repositories and constructed the Hierarchical rEpository of
Software feAture (HESA) to support software reuse. Then,

we generate the co-occurrence matrix by the features and the
software projects across multiple web repositories. Finally,
our approach induced the feature-pattern and circularly rec-
ommend the most relevant features to stakeholders.

In the future, we plan to improve the performance of our
method and aggregate richer software resources from soft-
ware repositories. For example, Stack Overflow community7

which is a programming question and answer websites, con-
tains abundant knowledge of software development. In addi-
tion, we will design several representative applications based
on HESA, such as software resource recommender system,
to support the reuse of multi-grained resources.

8. ACKNOWLEDGEMENT
This research is supported by the National High Technol-

ogy Research and Development Program of China (Grant
No. 2012AA011201) and the Postgraduate Innovation Fund
of University of Defense Technology (Grant No.B130607).

9. REFERENCES
[1] M. Acher, A. Cleve, G. Perrouin, P. Heymans,

C. Vanbeneden, P. Collet, and P. Lahire. On
extracting feature models from product descriptions.
In VaMoS, pages 45–54, 2012.

[2] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid,
P. Sawyer, P. Rayson, C. Pohl, and A. Rummler. An
exploratory study of information retrieval techniques
in domain analysis. In SPLC, pages 67–76, 2008.

[3] S. Apel and C. Kastner. An overview of
feature-oriented software development. pages 49–84,
2009.

[4] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor.
Software traceability with topic modeling. In ICSE
(1), pages 95–104, 2010.

[5] E. Bagheri, F. Ensan, and D. Gasevic. Decision
support for the software product line domain
engineering lifecycle. pages 335–377, 2012.

[6] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet
Allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[7] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. In Proceedings of the Fourteenth conference
on Uncertainty in artificial intelligence, pages 43–52.
Morgan Kaufmann Publishers Inc., 1998.

[8] H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang,
B. Mobasher, C. Castro-Herrera, and M. Mirakhorli.
On-demand feature recommendations derived from
mining public product descriptions. In ICSE, pages
181–190, 2011.

[9] W. B. Frakes, R. P. Dĺ laz, and C. J. Fox. Dare:
Domain analysis and reuse environment. pages
125–141, 1998.

[10] T. Griffiths. Gibbs sampling in the generative model
of Latent Dirichlet Allocation. Technical report,
Stanford University, 2002.

[11] J. Han, M. Kamber, and J. Pei. Data mining: concepts
and techniques. Morgan kaufmann, 2006.

[12] A. E. Hassan. The road ahead for mining software
repositories. 2008.

7http://stackoverflow.com

[13] A. E. Hassan and T. Xie. Mining software engineering
data. In ICSE (2), pages 503–504, 2010.

[14] K.C.Kang, S.G.Cohen, J.A.Hess, W.E.Novak, and
A.S.Peterson. Feature-oriented domain analysis (foda)
feasibility study. technical report. 1990.

[15] K. Lee, K. C. Kang, and J. Lee. Concepts and
guidelines of feature modeling for product line
software engineering. In ICSR, pages 62–77, 2002.

[16] X. Li, H. Wang, G. Yin, T. Wang, C. Yang, Y. Yu,
and D. Tang. Inducing taxonomy from tags: An
agglomerative hierarchical clustering framework. In
Advanced Data Mining and Applications, volume 7713,
pages 64–77. Springer Berlin Heidelberg, 2012.

[17] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King.
Recommender systems with social regularization. In
Proceedings of the fourth ACM international
conference on Web search and data mining, pages
287–296. ACM, 2011.

[18] A. Maedche and S. Staab. Learning ontologies for the
semantic web. In SemWeb, 2001.

[19] A. K. McCallum. Mallet: A machine learning for
language toolkit. http://mallet.cs.umass.edu, 2002.

[20] C. McMillan, N. Hariri, D. Poshyvanyk,
J. Cleland-Huang, and B. Mobasher. Recommending
source code for use in rapid software prototypes. In
ICSE, pages 848–858, 2012.

[21] H. Mei, G. Huang, and T. Xie. Internetware: A
software paradigm for internet computing. Computer,
45(6):26–31, June 2012.

[22] H. Mei, G. Huang, H. Zhao, and W. Jiao. A software
architecture centric engineering approach for
internetware. Science in China Series F: Information
Sciences, 49(6):702–730, 2006.

[23] H. Mei and X. Liu. Internetware: An emerging
software paradigm for internet computing. J. Comput.
Sci. Technol., 26(4):588–599, 2011.

[24] N. Niu and S. M. Easterbrook. On-demand cluster
analysis for product line functional requirements. In
SPLC, pages 87–96, 2008.

[25] S. Park, M. Kim, and V. Sugumaran. A scenario, goal
and feature-oriented domain analysis approach for
developing software product lines. pages 296–308,
2004.

[26] J. D. Rennie and N. Srebro. Fast maximum margin
matrix factorization for collaborative prediction. In
Proceedings of the 22nd international conference on
Machine learning, pages 713–719. ACM, 2005.

[27] J. Tang, H. fung Leung, Q. Luo, D. Chen, and
J. Gong. Towards ontology learning from
folksonomies. In IJCAI, pages 2089–2094, 2009.

[28] K. Tian, M. Revelle, and D. Poshyvanyk. Using latent
dirichlet allocation for automatic categorization of
software. In MSR, pages 163–166, 2009.

[29] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang,
H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y.
Philip, et al. Top 10 algorithms in data mining.
Knowledge and Information Systems, 14(1):1–37, 2008.

[30] Y. Yu, H. Wang, G. Yin, X. Li, and C. Yang. Hesa:
The construction and evaluation of hierarchical
software feature repository. In SEKE, pages 624–631,
2013.

