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Abstract. Self-supervised learning has achieved remarkable success in
acquiring high-quality representations from unlabeled data. The widely
adopted contrastive learning framework aims to learn invariant repre-
sentations by minimizing the distance between positive views originating
from the same image. However, existing techniques to construct positive
views highly rely on manual transformations, resulting in limited diver-
sity and potentially false positive pairs. To tackle these challenges, we
present GenView, a controllable framework that augments the diversity
of positive views leveraging the power of pretrained generative mod-
els while preserving semantics. We develop an adaptive view genera-
tion method that dynamically adjusts the noise level in sampling to
ensure the preservation of essential semantic meaning while introduc-
ing variability. Additionally, we introduce a quality-driven contrastive
loss, which assesses the quality of positive pairs by considering both
foreground similarity and background diversity. This loss prioritizes the
high-quality positive pairs we construct while reducing the influence
of low-quality pairs, thereby mitigating potential semantic inconsisten-
cies introduced by generative models and aggressive data augmentation.
Thanks to the improved positive view quality and the quality-driven
contrastive loss, GenView significantly improves self-supervised learning
across various tasks. For instance, GenView improves MoCov2 perfor-
mance by 2.5%/2.2% on ImageNet linear/semi-supervised classification.
Moreover, GenView even performs much better than naively augmenting
the ImageNet dataset with Laion400M or ImageNet21K.
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Fig. 1. The motivation of GenView: (a) and (b) show standard augmentation-based
positive pairs, while (c) and (d) are GenView-constructed pairs. Standard augmen-
tations may cause false positive pair (a) or less diverse pair (b). As a comparison,
GenView preserves subject semantics with variations (c and d) and assesses the pair
quality to guide contrastive learning.

1 Introduction

Self-supervised learning (SSL) has demonstrated remarkable capability in acquir-
ing robust and generalized visual representations from abundant unlabeled data
sources [2,14,15,25,26,29,31,32,38,49,62,63,89,93,96,103,105], which can be
transferred or leveraged in downstream tasks. Among the various approaches
within SSL, Contrastive Learning (CL) [11,12,15,16,18,38,51,105] has emerged
as a prominent method, showcasing its effectiveness in numerous downstream
tasks (e.g., classification [34,50,97], detection [8,33,52,71,86], and segmenta-
tion [27,47,48,58,91]). CL aims to learn invariant representations that remain
consistent across various conditions or environments by maximizing the simi-
larity of representations obtained from different distorted versions of a sample,
referred to as positive views. Consequently, the construction of high-quality pos-
itive views is crucial for CL. A high-quality positive view should retain the
semantics of the original images while introducing as much semantic-irrelevant
attribute diversity and environmental variations as possible, such that the
learned representations can be more generalizable for downstream tasks.

Current CL methods [11,12,15,16,29] often employ predefined image aug-
mentations (e.g., random cropping, color distortions, and Gaussian blur) on the
same instance to obtain positive views. However, they face two limitations: (1)
Limited Diversity: Standard augmentations only modify surface-level visual
characteristics and fail to introduce new content to capture high-level variations,
such as different object viewpoints, textures, or variations within a semantic cat-
egory. This limitation hinders performance in domains with high intra-category
diversity. (2) False Positive Risk: Aggressive augmentations are not always
precise, potentially leading to false positive pairs. As depicted in Fig. 1(a), ran-
dom cropping of distant patches may miss the entire object, which could mislead
the representation learning by minimizing the distance between the object and
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background in the embedding space. Additionally, as shown in Fig. 1(b), crop-
ping nearby patches may fail to introduce sufficient object variations, causing
limited diversity in another way. Advanced methods, such as employing stronger
augmentations while preserving task-relevant information [83], saliency-guided
sampling [78], and center-suppressed sampling [65], have been developed to cre-
ate informative positive pairs. Some methods expand the diversity of positive
pairs by utilizing information from the entire training dataset [11,22]. How-
ever, these methods primarily concentrate on optimizing positive views within
an instance without introducing new content or incorporating additional infor-
mation beyond the existing dataset. Consequently, they still have limited ability
to capture extensive high-level variations.

Generative models, such as Stable Diffusion [73] and DALL-E2 [68], have
been very successful in generating high-quality diversified images conditioned on
an image or embedding. These off-the-shelf pretrained models could help enrich
view contents given an image due to their abundant prior knowledge learned from
large-scale datasets [13,76]. Albeit they have been leveraged for image classifica-
tion to address data scarcity [7,9,21,75,84,99,104,106], integrating pretrained
generative models to pair the images for self-supervised learning is NOT a trivial
problem. Despite the strong generative ability, these models may be pretrained
on the datasets from different distributions, and the sampling process is not
determinant. As a result, they will still inevitably face the risk of generating
images with different semantics from the conditional images, resulting in false
positive pairs. This presents a key challenge: how to appropriately control the
randomness of generation while maintaining semantic consistency to help SSL
in a controllable way.

To address these challenges, we introduce GenView, a controllable frame-
work that enhances view quality for SSL using the powerful pretrained generative
model, and guide contrastive learning via quality assessment. In our framework,
as shown in Fig. 1, given an image as the source view, we construct its posi-
tive view using the synthetic image sampled from a pretrained generative model
conditioned on this image. To optimally balance the trade-off between diversity
and semantic fidelity, we develop an adaptive view generation method, which
dynamically adjusts the noise level of the generative model to control the extent
of perturbation applied to the conditional image embedding. We calculate the
proportion of the foreground area within an input image. If the subject is not
prominent with a low foreground proportion, it reduces the perturbation strength
to ensure the correct semantic content of the synthetic image. If the subject is
clear and distinguishable with a high foreground proportion, it increases the
perturbation strength to create more variations for more diverse content and
environments. As depicted in Fig. 1(c), the view constructed by our method has
a different pose and environment compared to the traditional way.

Even with our adaptive view generation, false positive pairs are still inevitable
because both the sampling of the generative model and cropping are not deter-
minant. To further mitigate the effect of potential false positive pairs that could
mislead contrastive learning, we introduce a quality-driven contrastive loss to
guide the contrastive learning with pair quality. Concretely, we assess the quality
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of positive pairs considering both foreground similarity and background diver-
sity. It prioritizes the positive pairs with high foreground similarity to ensure
semantic coherence, while also favoring the pairs with low background similar-
ity to promote diverse environments for learning invariant representations. We
then recalibrate the contrastive loss function by reweighting each pair with its
pair quality, which enhances the contributions of high-quality positive pairs, and
simultaneously reduces the influence of low-quality and even false pairs. As illus-
trated in Fig. 1(c) and (d), our quality-driven contrastive loss assigns a higher
score to the high-quality positive pair and a lower score to the pair with a rela-
tively lower quality. In summary, the contributions of this paper include:

– We introduce GenView framework, which enhances the view quality for SSL
leveraging the power of pretrained generative model in a controllable way. An
adaptive view generation method is developed to construct positive views,
balancing the trade-off between diversity and semantic fidelity.

– We propose a quality-driven contrastive loss that prioritizes high-quality pos-
itive pairs to guide the contrastive learning with pair quality, further miti-
gating the impact of low-quality and false pairs.

– In experiments, GenView significantly enhances the performance of popular
contrastive learning algorithms including MoCov2 [16], SimSiam [17], BYOL
[29], and MoCov3 [18] on various downstream tasks such as linear/semi-
supervised classification, semantic segmentation, and object detection. Par-
ticularly, GenView also performs better than naively augmenting the Ima-
geNet1K dataset with Laion400M or ImageNet21K.

2 Related Work

Self-Supervised Learning. Self-supervised learning is a promising paradigm
for representation learning, relying on unlabeled data and pretext tasks such as
auto-encoders [64,85], image pixel generation [28,43], rotation prediction [26],
jigsaw puzzles [62], and mask image modeling [4,31]. In recent years, contrastive
learning (CL) methods [15,16,32,39,63,82,93,105] have significantly improved
SSL by reducing the distance between representations of positive pairs and
increasing the distance between representations of negative pairs in the latent
feature space simultaneously. Complementing CL approaches, various non-CL
methods have emerged, seeking alternatives to negative samples and strategies
to prevent network output collapse [1,10–12,17,23,29,46,101].

The construction of a pair of views is crucial in contrastive learning [11,15,
82], and traditional SSL generates positive views through hand-designed aug-
mentations, which may face limited diversity and induce semantically irrelevant
pairs. Later studies introduce stronger augmentations preserving task-relevant
information [83], unsupervised saliency maps for cropping constraints [78], and
center-suppressed sampling for increased diversity [65]. Clustering-based meth-
ods [10,11] and neighborhood-based methods [22] expand the diversity of positive
pairs by leveraging information from the training dataset. However, the diversity
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introduced is ultimately confined to the scope of the training dataset, limiting
the ability to capture extensive diversity for learning more generalizable rep-
resentation. In our method, we break free from this limitation by utilizing the
pretrained image-conditioned generative model for high-quality view generation.

Generative Models. Various generative models, including VAEs [43,70],
GANs [6,28,41,53], autoregressive models [69], and diffusion models [5,36,37,
68,73,90] (DMs), have demonstrated the ability to create highly realistic images.
Particularly, DMs such as Imagen [74], GLIDE [61], Stable Diffusion [73], and
DALL-E2 [68], trained on extensive large-scale datasets such as LAION-5B [76]
and CC12M [13], have excelled in generating photorealism images. Recent
research has explored generative models for data augmentation in various tasks,
including classification [21,35,54,60,75,79,99], segmentation [47,55,87,91,95],
and test-time optimization [24]. In representation learning, GANs [80], instance-
conditioned GANs [3,98], neural transformation networks [42], and DMs [100]
have been employed to introduce more variations. However, the diversity intro-
duced is still constrained by the training dataset used for SSL.

Instead of training generative models from scratch, some methods use pre-
trained generative models to augment representation learning, leveraging the
prior knowledge learned from large-scale datasets [13,76] to enhance the high-
level diversity of the generated views [21,35,40,79,81,84,102]. However, these
models rely on constant [21,35,81,102] or random [79,84,106] hyperparameters
to determine the extent of deviation in the generated images. This can lead
to uncontrolled data generation characterized by inconsistent semantics with
the conditional image, reducing the quality of positive pairs. In contrast, our
approach employs adaptive view generation that controls the noise level when
sampling images to keep a balance between semantic fidelity and diversity based
on individual image characteristics. We also propose a quality-driven contrastive
loss to enhance the contributions of high-quality positive pairs while diminishing
the impact of low-quality and false pairs.

3 Method

In this section, we first provide a review of self-supervised learning in Sect. 3.1.
We introduce our framework in Sect. 3.2. Then, we develop adaptive view gen-
eration and quality-driven contrastive loss in Sect. 3.3 and Sect. 3.4.

3.1 Preliminaries on Self-Supervised Learning

Current SSL frameworks often create positive pairs (P1
i ,P

2
i ) for each instance Xi

in a batch of n images X1:n = {Xi}ni=1. These pairs are generated by applying
random predefined augmentations to the same instance:

P1
i = t1(Xi), P2

i = t2(Xi), (1)

where the augmentations, t1(·) and t2(·), can either be from the same (t1, t2 ∼ T )
or from different distributions (t1 ∼ T , t2 ∼ T ′). The encoder network f(·) is
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Fig. 2. GenView is composed of a view quality enhancement framework, an adaptive
view generation method to balance diversity and semantic fidelity, and a quality-driven
contrastive loss mechanism. The framework generates the enhanced view by passing the
noisy image embedding, which is extracted from the frozen CLIP encoder, to the image-
conditioned pretrained generative models (the Stable Diffusion generator). Positive
views are passed through encoders to compute the contrastive loss, with an emphasis
on those high-quality positive pairs. The encoders f can be the same encoder or different
ones, e.g. an encoder and its momentum-updated one. All the pretrained CLIP encoder
and Stable Diffusion have not accessed the dataset for SSL.

then applied to P1
i to extract the representation, resulting in h1

i = f(P1
i ). These

representations are projected into an embedding space using a two-layer non-
linear projection head, denoted as z1i = g(h1

i ). Additionally, P2
i can be encoded

using the same encoder and projection head as P1
i [11,17], or their momentum-

updated versions [29,32].
Various SSL frameworks, including SimCLR [15] and MoCo [32], use the noise

contrastive estimation objective LSSL, NCE to distinguish between instances:

LSSL, NCE = − log
exp(z1i · z2i /τ)

exp(z1i · z2i /τ) +
∑N

k=1 exp(z1i · zk/τ)
, (2)

with τ as the temperature parameter. Additionally, methods like BYOL [29]
and SimSiam [17] introduce a non-linear predictor head q(·) to map z to p,
minimizing negative cosine similarity LSSL, COS as:

LSSL, COS = − p1
i

‖p1
i ‖

· z2i
‖z2i ‖

. (3)

SwAV [11] employs a linear mapping of positive embeddings z1 and z2 to
learned prototypes to obtain “codes” z̃1 and z̃2. The targets are transformed
with a Sinkhorn-Knopp (SK) step. Then the Kullback-Leibler divergence loss
LSSL, KL is computed as:

LSSL, KL = DKL(z̃1‖SK(z̃2)). (4)

In experiments, we will integrate GenView on all these popular SSL methods
to test its generalizability.
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3.2 Our Framework

The framework of our method is depicted in Fig. 2. Traditional methods face
the challenge of limited view diversity by generating positive pairs by applying
augmentation twice to the same instance, as illustrated in Eq. (1). To this end,
we employ an image-conditioned pretrained generative model to enhance the
view quality. Specifically, we utilize the Stable unCLIP model, an extension of
Stable Diffusion [73] with unCLIP [68], fine-tuned to accept CLIP [67] ViT-
H/14 image embeddings in addition to text encodings. To improve the diversity
of positive views, we inject Gaussian noise perturbations to the conditional image
embedding through a diffusion process noisy(·, l), which adds l steps of Gaussian
noise to the conditional image embedding. The degree of variation in the final
images is controlled by the perturbation strength l, with a higher value leading
to an increased diversity.

The generation stage starts with a random normal distribution zT ∼ N (0, I),
where T represents the denoising steps of the generation process. The pretrained
diffusion model G(·), conditioned on the noisy image embeddings, iteratively
denoises the latent features. The synthetic positive view can be defined as:

X+
i = G(zT ,noisy(ci, l), w), (5)

where w refers to the pretrained parameters of the generative model, and ci rep-
resents the conditional image embedding obtained from the CLIP image encoder
as ci = C(Xi).

We then design a pair construction mechanism by leveraging the original
image as one view and pairing it with another view generated by the generative
model for contrastive learning. Specifically, hand-designed data augmentations
(t ∼ T for the original image and t+ ∼ T or T ′ for the synthetic image) are
applied to create an enhanced pair of positive views (Pi,P+

i ):

Pi = t(Xi), P+
i = t+(X+

i ). (6)

Through this mechanism, we significantly increase view diversity by leverag-
ing the capabilities of the generative model, as illustrated in Fig. 1. Meanwhile,
unlike most generative model-based augmentation methods [42,80,98], which
generate positive pairs from two synthetic images derived from the same origi-
nal image, GenView integrates the original image itself as one of the views. This
approach effectively controls potential feature drift caused by domain differences
between the dataset used to train the generative model and the current pre-
training dataset. Furthermore, when the synthetic image contains noise, such
as artifacts or semantic discrepancies, the presence of the original real image
prevents excessive deviation in feature learning. Thus, while enhancing the view
diversity, our framework maintains stability and fidelity when combining the
traditional augmentation with the strength of the generative model.

3.3 Adaptive View Generation

To address the concerns related to inappropriate noise levels during image gen-
eration, we develop an adaptive view generation method, which dynamically
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Fig. 3. Illustration of our adaptive view generation. For the images with lower fore-
ground proportion, a lower noise level is selected (in blue) because a higher noise
level could easily result in synthetic images whose semantic contents are changed (1st
column), disappeared (2nd column), or distorted (3rd column). For the images with
higher foreground proportion, a higher noise level is favored (in green) to introduce
diversity, e.g. (Color figure online) different pose (4th column), action (5th column),
and background (6th column).

adjusts the noise level based on the proportion of the foreground content. This
introduces diverse positive pairs while ensuring coherent subject semantics.
Given a conditional image Xi, we employ a pretrained CLIP image encoder
C(·) to extract latent features Zi ∈ R

H×W×K , where H, W , and K represent
the height, width, and the dimension of features, respectively. To separate the
image’s main object from the background, we perform Principal Component
Analysis (PCA) among features for all images and obtain the first component.
Then, we apply min-max normalization to generate attention maps Ai ∈ R

H×W ,
where higher values indicate a higher probability of being foreground content.
The proportion of foreground content, denoted as pi, is calculated as follows:

pi =
∑H

h=1

∑W
w=1 B(Ai,h,w, a)
H × W

, (7)

where B(·, a) represents a binary thresholding function with a as the threshold.
To map the proportion to the noise level lada, we introduce a function Fada. The
range of the ratio p is evenly divided into 5 intervals, and values are mapped to
discrete scales: {0, 100, 200, 300, 400}. To reduce the risk of excessive distortion
from higher noise levels, we limit the maximum at 400, even though noise levels
during training could reach up to 1000. The adaptive noise level ladai is calculated
as follows:

ladai = Fada(pi) = 100 ·
⌊ pi
0.2

⌋
, (8)

where �·� rounds down to the nearest integer. Our approach adapts noise levels to
the characteristics of images, and thus effectively balances the trade-off between
semantic fidelity and diversity in generated images. As illustrated in Fig. 3, the
selected noise level (in blue) is low for the images with a lower foreground pro-
portion to better preserve their semantic contents, while for those with a higher
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proportion, a high noise level is adopted (in green) to introduce more diversity
because the key subjects are less likely to be changed or disappeared in their
generated images. The adaptive generated positive view is defined as:

X+
i = G(zT ,noisy(ci, ladai ), w). (9)

This process works in an offline manner before SSL training, so does not
increase the burden on training time. Besides, the offline view generation is once-
for-all and the generation result can be re-used multiple times for various base-
lines.

3.4 Quality-Driven Contrastive Loss

In this section, we introduce a quality-driven contrastive loss that guides con-
trastive learning by assessing the quality of positive pairs. It prioritizes the pairs
with high foreground similarity and low background similarity to facilitate the
learning of invariant representations.

Given a pair of positive views (Pi,P+
i ), we employ a frozen encoder that is

pretrained by CLIP (without accessing the dataset for SSL), denoted as E(·), to
extract feature maps Fi,F+

i ∈ R
H′×W ′×K′

. PCA is performed on feature maps,
and min-max normalization is applied to the first component of PCA features,
generating foreground attention maps Mf

i ,Mf+
i ∈ R

H′×W ′
. The background

activation map for the i-th sample is defined as Mb
i = 1−Mf

i . Subsequently, we
use these maps to aggregate feature maps into foreground and background rep-
resentations, yielding zfi , zf+i , zbi , z

b+
i ∈ R

K′
, which can be computed as follows:

zfi = Mf
i ⊗ Fi, zf+i = Mf+

i ⊗ F+
i ,

zbi = Mb
i ⊗ Fi, zb+i = Mb+

i ⊗ F+
i ,

(10)

where the operation ⊗ represents spatial aggregation defined as z = M ⊗ F =∑H
h=1

∑W
w=1 Mh,wFh,w,∗. We calculate the foreground-foreground similarity sfi

and background-background similarity sbi as follows:

sfi = sim(zfi , zf+i ), sbi = sim(zbi , z
b+
i ), (11)

where sim(·, ·) denotes the cosine similarity of the input representations. Next,
we introduce a quality score for each positive pair:

qi = sfi − sbi . (12)

We then propose a re-weighting factor denoted as wi, based on the computed
pair qualities of a batch of images, to adjust the contribution of each pair to the
overall loss during contrastive training:

wi =
exp(qi)∑n
j=1 exp(qj)

. (13)



GenView 315

The re-weighting factor wi is used to balance the influence of different pairs,
allowing us to prioritize the pairs with higher foreground similarity and lower
background similarity, and also mitigate the potential influence of those low-
quality or wrong positive pairs. The final contrastive loss is defined as:

L̃SSL,* = wiLSSL,*, (14)

where LSSL,* can be any contrastive loss in Eqs. (2)-(4).

4 Experiments

We compare GenView with state-of-the-art SSL methods, including MoCov2
[32], BYOL [29], SwAV [11], SimSiam [17], and MoCov3 [18]. We experiment
with various network architectures, such as ResNet-18 [34], ResNet-50 [34], ViT-
S [20], and ViT-B [20]. By default, ResNet-50 serves as the backbone. ViT-S
and ViT-B are adopted for comparison with MoCov3. For details on adaptive
view generation and quality-driven contrastive loss implementations for different
pretraining datasets, please refer to the Appendices A and C.

4.1 Main Results

Table 1. Linear evaluation on IN-1K.
∗: our reproduction.

Method Architecture Epochs Top-1

InstDisc [93] ResNet-50 200 56.5

SimCLR [15] ResNet-50 200 66.8

PCL [46] ResNet-50 200 67.6

Adco [66] ResNet-50 200 68.6

InfoMin [83] ResNet-50 200 70.1

NNCLR [22] ResNet-50 200 70.7

LEVEL [38] ResNet-50 200 72.8

Barlow Twins [101] ResNet-50 300 71.4

CLIP [67] ResNet-50 - 74.3

MoCov2 [32] ResNet-50 200 67.5

MoCov2 + C-Crop [65] ResNet-50 200 67.8

MoCov2 + GenView ResNet-50 200 70.0

SwAV [11]∗ ResNet-50 200 70.5

SwAV + GenView ResNet-50 200 71.7

SimSiam [17] ResNet-50 200 70.0

SimSiam + GenView ResNet-50 200 72.2

BYOL [29]∗ ResNet-50 200 71.8

BYOL + GenView ResNet-50 200 73.2

MoCov3 [18] ResNet-50 100 68.9

MoCov3 + GenView ResNet-50 100 72.7

MoCov3 [18] ResNet-50 300 72.8

MoCov3 + GenView ResNet-50 300 74.8

MoCov3 [18] ViT-S 300 73.2

MoCov3 + GenView ViT-S 300 74.5

MoCov3 [18] ViT-B 300 76.7

MoCov3 + GenView ViT-B 300 77.8

Linear Classification. GenView is
framework-agnostic, allowing flexibil-
ity with SSL frameworks and associ-
ated training components like back-
bone networks, loss functions, and
optimizers. To ensure fair compar-
isons, we maintain consistent pre-
training settings as baseline meth-
ods on ImageNet-1K [19] (IN-1K). To
evaluate our method, we follow a stan-
dard linear classification protocol, as
described in previous works [15,16,
29]. The linear classifier is trained on
top of the frozen representation for 90
epochs with a batch size of 1,024, an
initial learning rate of 0.4, an SGD
optimizer with 0.9 momentum and no
weight decay, and the cosine-annealed
learning rate schedule [59]. For ViT-
based models, the initial learning rate
is set to 12. Table 1 presents the
results of top-1 accuracy on the val-
idation set of IN-1K. GenView con-
sistently improves SSL performance
across various frameworks, including
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Table 2. Comparison with existing
SSL methods for semi-supervised
learning on IN-1K. Models with
ResNet-50 backbone are pretrained on
IN-1K. ∗: our reproduction.

Method Epochs
1% Labels 10% Labels

Top-1 Top-5 Top-1 Top-5

PCL [46] 200 - 75.6 - 86.2

SwAV [11] 800 53.9 78.5 70.2 89.9

SimCLR [15] 1000 48.3 75.5 65.6 87.8

Barlow Twins [101] 1000 55.0 79.2 69.7 89.3

NNCLR [22] 1000 56.4 80.7 69.8 89.3

MoCov3 [18]∗ 100 50.4 76.6 66.8 88.4

MoCov3 + GenView 100 51.9 78.5 68.4 89.4

MoCov2 [32]∗ 200 42.1 70.9 60.9 84.2

MoCov2 + GenView 200 50.6 78.3 63.1 86.0

BYOL [29]∗ 200 53.2 78.8 68.2 89.0

BYOL + GenView 200 55.6 81.3 68.6 89.5

MoCov3 [18]∗ 300 56.2 80.7 69.4 89.7

MoCov3 + GenView 300 58.1 82.5 70.6 90.4

Table 3. Transfer learning on
MS-COCO object detection and
instance segmentation. Models with
ResNet-50 backbone are pretrained for
200 epochs on IN-1K. ∗: our reproduc-
tion.

Method
Object Det. Instance Seg.

AP AP50 AP75 AP AP50 AP75

ReSim [94] 39.8 60.2 43.5 36.0 57.1 38.6

DenseCL [88] 40.3 59.9 44.3 36.4 57.0 39.2

SimSiam [17]∗ 38.5 57.8 42.3 34.7 54.9 37.1

SimSiam + GenView 39.1 58.5 43.0 35.2 55.9 37.7

MoCov2 [16]∗ 39.7 59.4 43.6 35.8 56.5 38.4

MoCov2 + FreeATM [102] 40.1 - - - - -

MoCov2 + GenView 40.5 60.0 44.3 36.3 57.1 38.9

BYOL [29]∗ 40.6 60.9 44.5 36.7 58.0 39.4

BYOL + GenView 41.2 61.5 44.9 37.0 58.4 39.7

ResNet-50 and Transformer architectures like ViT-S and ViT-B. Its effectiveness
is maintained across different pretraining epochs, outperforming the MoCov3
baselines pretrained for 100 or 300 epochs. GenView outperforms C-Crop [65]
that also constructs better views, highlighting our advantage in utilizing pre-
trained generative models’ prior knowledge to create diverse views in a controlled
manner. GenView can complement both contrastive (e.g.MoCov2 and MoCov3)
and non-contrastive methods (e.g.BYOL, SimSiam, and SwAV), addressing their
limitations of positive pair quality. These results demonstrate GenView’s con-
sistent ability in enhancing the linear classification performance of various SSL
models. It’s noted that when GenView is integrated with MoCov3 utilizing a
ResNet-50 backbone and pretrained over 300 epochs, it achieves competitive
performance (74.8% with 1.28 million images) compared to CLIP (74.3% on
WebImageText with 400 million pairs), highlighting GenView’s efficiency.

Semi-supervised Classification. We evaluate the fine-tuning performance
of the pretraind models for semi-supervised classification with 1% and 10% of
labeled IN-1K samples, selected by SimCLR [15]. We fine-tune the models for
20 epochs with the classifier learning rate 1.0 (0.2) and backbone learning rate
0.00001 (0.02) for 1% (10%) subset with a cosine-annealed scheduler. Table 2
presents the results of top-1 and top-5 accuracy on the validation set of IN-1K.
Our method consistently outperforms the baseline approaches across different
training durations. With 1% labels, GenView pretrained for 200 epochs with
MoCov2 achieves an improvement of +8.5% in top-1 accuracy, and the one pre-
trained for 300 epochs with MoCov3 still improves top-1 accuracy by +1.9%.

Transfer Learning on Object Detection and Instance Segmentation.
We evaluate the transfer learning performance of the pretrained models on
MS-COCO object detection and instance segmentation benchmarks [57]. The
models are pretrained on IN-1K for 200 epochs, followed by fine-tuning on the
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Table 4. Comparison with naive data
augmentation methods under lin-
ear evaluation on IN-1K. Models with
ResNet-50 backbone are pretrained for 50
epochs on expanded datasets. The 4-th
row incorporates 0.3M synthetic images
produced by the generative model. The
last row uses our framework in Sect. 3.2.
with only 0.15M synthetic images.

Dataset Images Top-1 Top-5

IN-1K 1.28M 62.39 84.57

IN-1K + Laion400M [76] 1.28M + 0.3M 63.31 85.53

IN-1K + ImageNet-21K [72] 1.28M + 0.3M 64.10 85.86

IN-1K + Synthetic images 1.28M + 0.3M 63.36 85.14

IN-1K + Our framework 1.28M + 0.15M 65.62 87.25

Table 5. Comparison with other
view construction methods under
linear evaluation on different
datasets. ResNet-18 is used as the
backbone.

Methods CF10 CF100 TinyIN

Variance within instance

MoCov2 + C-Crop [65] 88.78 57.65 47.98

BYOL + C-Crop [65] 92.54 64.62 47.23

Variance within pretraining datasets

SimCLR + ViewMaker [80] 86.30 - -

SimCLR + NTN [42] 86.90 - -

MoCov2 + LMA [98] 92.02 64.89 -

SimSiam + LMA [98] 92.46 65.70 -

Simsiam + DiffAug [100] 87.30 60.10 45.30

Variance beyond pretraining datasets

W-perturb [30] 92.90 - 51.05

MoCov2 + GenView 93.00 67.49 56.76

BYOL + GenView 93.56 67.53 54.79

train2017 split and evaluation on the val2017 split. We use a batch size of 16
and follow Detetron2’s 1× schedule [92], consisting of 90k training iterations
with learning rate decay at the 60k-th and 80k-th iterations by a factor of 10.
Both tasks utilize Mask R-CNN [33] with ResNet-50-FPN [56] backbone. Table 3
presents the results of bounding box AP and instance mask AP. We observe
that GenView is also able to enhance the downstream performances. When inte-
grated on SimSiam, MoCov2, and BYOL, GenView excels in all metrics for
detection and instance segmentation, highlighting its capacity to improve rep-
resentation learning for complex localization and pixel-level tasks. Additionally,
FreeATM also generates the same number of images as GenView using aug-
mented prompts [102]. We notice that GenView surpasses FreeATM on object
detection even without relying on text prompts, emphasizing our approach’s
effectiveness.

Comparison with Naive Augmentation Methods. We evaluate our method
by comparing it to traditional data augmentation techniques. We extend IN-1K
by incorporating 0.3 million images from Laion400M [77] and 0.3 million from
ImageNet-21K [72] (IN-21K). All experiments utilize MoCov3 with ResNet-50,
which is pretrained for 50 epochs on these extended datasets. Table 4 presents the
results of linear evaluation on IN-1K. Expanding IN-1K with Laion400M (2nd
row) or synthetic images (4-th row) yields a slight improvement in top-1 accu-
racy, suggesting a limited contribution when directly incorporating images with
domain gap. Extending IN-1K with IN-21K improves more than Laion400M,
indicating the benefits from more training data in a similar domain. The most
impressive results are obtained when using our framework with only 0.15 million
generated images, leading to a remarkable 3.2% improvement in top-1 accuracy,
demonstrating that the effectiveness of our framework mainly stems from better
pair construction, instead of introducing more training data.
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Table 6. Influence of each compo-
nent under linear evaluation on IN-
100. ResNet-18 models are pretrained on
IN-100 for 100 epochs. Our framework
refers to using our framework to construct
views but without dynamically adjusting
the noise perturbation and the quality-
driven contrastive loss. Ada.View repre-
sents our proposed adaptive view genera-
tion method. Qual.Driv.Cont indicates
the use of our quality-driven contrastive
loss.

Our framework Ada.View Qual.Driv.Cont Top-1

× × × 65.52

× × � 66.97 (↑ 1.45)

� × × 71.50 (↑ 5.98)

� � × 73.96 (↑ 8.44)

� × � 74.88 (↑ 9.36)

� � � 75.40 (↑ 9.88)

Table 7. Influence of different noise
level selection strategies under lin-
ear evaluation on IN-100. ResNet-18
models are pretrained on IN-100 for 100
epochs.

Method CS(0) CS(100) CS(200) CS(300) CS(400) RS AS

Top-1 71.80 72.14 71.50 71.76 72.08 72.96 73.96

Top-5 92.19 92.34 91.88 92.02 92.36 92.78 93.22

Table 8. Influence of GenView appli-
cation probability under linear clas-
sification on IN-1K. Models with
ResNet-50 backbone are pretrained for 50
epochs on IN-1K.

α 0 0.1 0.3 0.5 0.8 1.0

Top-1 62.39 65.86 68.38 69.04 69.47 70.55

Top-5 84.57 87.10 89.02 89.29 89.49 90.34

Comparison with Other View Construction Methods. To evaluate Gen-
View’s effectiveness in enhancing SSL models compared to existing positive view
construction methods, we conduct pretraining and evaluation on CIFAR-10 [44]
(CF10), CIFAR-100 [44] (CF100), and Tiny ImageNet [45] (TinyIN) datasets.
We train ResNet-18 [34] for 500/500/200 epochs on CF10/CF100/TinyIN. For
linear evaluation on validation sets of these datasets, the classifier is trained for
100 epochs using the SGD optimizer with a cosine-annealed learning rate of 0.2,
no weight decay, and momentum of 0.9. As shown in Table 5, the methods are
categorized based on the source of variance they use in data augmentation: within
instance, within the pretraining datasets, and beyond the pretraining datasets.
GenView, when combined with MoCov2, consistently outperforms the other data
augmentation methods in SSL, demonstrating its effectiveness in borrowing rich
knowledge from large-scale datasets to construct high-quality positive views.

4.2 Ablations

Influence of Each Component. We evaluate the contributions of individ-
ual components as well as their combinations. ResNet-18 models are pretrained
on IN-100 for 100 epochs using MoCov3 as the baseline, with a batch size of
512. IN-100 is a subset of IN-1K selected by [82]. For conditioning the gen-
eration of positive views with GenView, we employ 50,000 randomly selected
class-balanced images from IN-100. We use a cosine decay learning rate sched-
ule and employ the LARS optimizer with a learning rate of 1.2, weight decay
of 1e-6, and momentum of 0.9. Linear evaluation settings are consistent with
those detailed in Table 1, with a training duration of 50 epochs. Table 6 offers
valuable insights: (1) Utilizing our framework but without our adaptive view
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generation significantly enhances accuracy, achieving a top-1 accuracy improve-
ment of 5.98% compared to the baseline. (2) The incorporation of adaptive view
generation further elevates model performance, resulting in an improvement of
8.44% (from 65.52% to 73.96%). (3) The quality-driven contrastive loss also
plays a pivotal role in our framework. It can further improve the performance
of adaptive view generation. Applying the quality-driven contrastive loss to the
baseline method leads to a modest gain of 1.45% (from 65.52% to 66.97%).
However, when combined with our framework, a more substantial performance
improvement of 3.38% (from 71.50% to 74.88%) is observed. This highlights the
effectiveness of our framework and also the importance of the proposed modules
in enhancing contrastive learning by improving the quality of positive pairs.

Influence of the Noise Level Selection Strategies. We examine the impact
of different noise level selection strategies on SSL performance in Table. 7. Three
strategies are compared: Constant Selection (CS), Random Selection (RS), and
Adaptive Selection (AS). CS applies a uniform noise level c to all samples,
with experiments conducted at various fixed levels (CS(0), CS(100), CS(200),
CS(300), CS(400)). RS introduces variability by randomly selecting noise lev-
els from the set 0, 100, 200, 300, 400. AS dynamically adjusts noise levels based
on the input image’s foreground proportion, as guided by Eq. (8). We use the
same pretraining and linear evaluation settings as Table 6. The results indicate
that AS achieves the highest accuracy at 73.96%, demonstrating the advantage
of dynamically adjusting noise levels according to input characteristics. CS and
RS yield lower performance, because static or random noise levels may result in
overly similar or false positive pairs.

Influence of the Probability to Apply GenView. The impact of different
probabilities (α) for applying GenView augmentation is shown in Table 8. An
increase of the probability (α) of applying GenView results in improved model
performance, with top-1 accuracy consistently increasing from 62.39% at α = 0
to 70.55% at α = 1.0. This highlights the significance of a higher GenView
application probability in enhancing the model’s ability to learn meaningful rep-
resentations. By default, we set α = 1 for all the experiments in our main results.

4.3 Qualitative Evaluation

A qualitative illustration of the positive views constructed by GenView is shown
in Fig. 4. The top rows display original images, and the bottom rows show images
generated by GenView. This visualization demonstrates GenView’s capacity to
introduce variations in background, pose, and view angle while preserving the
main semantics, which is crucial for learning invariant representations. More
visual examples are provided in the Appendix B.
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Fig. 4. The positive pair of views constructed by GenView conditioned on images from
IN-1K, and CF10.

5 Conclusion

In this paper, we aim to address the challenge of creating diverse and seman-
tically coherent positive views for SSL. We introduce GenView, a framework
that leverages the ability of pretrained generative model in a controllable way to
enhance the view quality. It employs an adaptive view generation method that
dynamically adjusts noise levels for controlled variability. The quality-driven con-
trastive loss prioritizes high-quality positive pairs with greater foreground sim-
ilarity and background diversity while diminishing the impact of low-quality or
even false pairs. Experiments demonstrate that GenView consistently improves
the SSL performance in various tasks, and outperforms other view augmentation
methods. Ablation studies analyze the efficacy of each component, and qualita-
tive evaluation shows its effectiveness in constructing views with background,
pose, and view angle variations.
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