
Trusted Computing Dynamic Attestation
by Using Static Analysis based Behavior Model

Fajiang Yu ∗ †, Xianglei Tang‡, Yue Yu∗, Tong Li∗ and Tong Yang∗
∗School of Computer, Wuhan University,

Wuhan, Hubei, P.R.C. 430072
Email: qshxyu@126.com

†Key Laboratory of Aerospace Information Security and Trusted Computing,
Ministry of Education in China

‡Zhejiang Provincial Testing Institute of Electronic Products,
Hangzhou, Zhejiang, P.R.C. 310012

Abstract—Current technology of trusted computing can not
comply with the requirement of trusted behavior. One method
for trusted computing dynamic attestation was proposed in this
paper. This method uses the behavior model based on static
analysis of binary code. One same source code may have several
different binary versions, this paper proposed one method of
building almost the same core function model for different
binary versions. This paper also overcame the difficulty that
some dynamic behaviors can not be obtained by static analysis.
The paper also gave out some solutions of dynamic attestation
for some complex programs, such as recursion program, library
link program and multi threads program.

Keywords-trusted computing; dynamic attestation; behavior
model; static analysis

I. INTRODUCTION

Trusted computing is an information system security solu-
tion for the basic computing security problem [1]. The tech-
nology which trusted computing platforms currently adopted
guarantees the integrity of its feature code and configuration
data is the same as expected, before the components of the
computing platform take control of the main CPU, which
is called trusted computing static attestation, but it does not
comply with the requirements that the behaviors are trusted.
We need to verify the dynamic behavior of components as
well, which is called trusted computing dynamic attestation.

The related researches mainly include MCC (Model Car-
rying Code), PCC (Proof Carrying Code), semantic remote
attestation, and etc.

MCC [2] [3] was proposed by R. Sekar et al., its key
idea is: Code producer generates behavior information about
program security (Model), a consumer receives both the
model and the program from the producer. The consumer
checks whether the model satisfies the consumer’s security
policy by formal reasoning. Document [4] and [5] have
done some implementations of MCC on JVM (Java Virtual
Machine). The MCC developer should know program’s
source code, but this assumption does not always be true.

PCC [6] was proposed by George C. Necula et al.,
its key idea is: The producer carries analysis on code

and generates formal safety proofs, which is based on the
consumer’s policy. The proofs are bounded in addition to
source code, which usually is implemented by the compiler.
The consumer uses type based logic to check the program
automatically. The implementation of PCC also needs know
program’s source code.

Document [7] proposed one semantic remote attestation
(SRA) framework . SRA is based on trusted Java virtual
machine (Trusted VM) on client, and server attests Java
program’s hierarchies, restricted interfaces, runtime state,
input information, and etc. But there is no good solutions of
building the semantic model of one program.

This paper mainly makes the following contributions: 1)
Behavior model is built based on static analysis of binary
code. 2) This paper proposed one method of building almost
the same core function model for different binary versions
of same code. 3) This paper also overcame the difficulty
that some dynamic behaviors can not be obtained by static
analysis. 4) The paper also gave out the solutions of dynamic
attestation for some complex programs.

II. STATIC ANALYSIS BASED PROGRAM BEHAVIOR
MODEL BUILDING

Program runtime behavior attestation is the main part
of trusted computing dynamic attestation. The first step of
program behavior attestation is building program behavior
model. You can see the detail stages and algorithms about
building trusted behavior model based on static analysis of
PE binary file in our previous work [8].

A. Variance between Debug and Release Version

The same code is compiled with same compiler but choos-
ing different compiling options, different binary versions
could be obtained, among which the most typical is Debug
and Release version. Program behavior model constructing
should not only support static analysis of Release version,
but also the Debug version.

Ninth IEEE International Symposium on Parallel and Distributed Processing with Applications Workshops

978-0-7695-4429-8/11 $26.00 © 2011 IEEE

DOI 10.1109/ISPAW.2011.14

1

Ninth IEEE International Symposium on Parallel and Distributed Processing with Applications Workshops

978-0-7695-4429-8/11 $26.00 © 2011 IEEE

DOI 10.1109/ISPAW.2011.14

1

Ninth IEEE International Symposium on Parallel and Distributed Processing with Applications Workshops

978-0-7695-4429-8/11 $26.00 © 2011 IEEE

DOI 10.1109/ISPAW.2011.14

1

Ninth IEEE International Symposium on Parallel and Distributed Processing with Applications Workshops

978-0-7695-4429-8/11 $26.00 © 2011 IEEE

DOI 10.1109/ISPAW.2011.14

1

We use Visual C++ 6.0 for compiling one instance
to a Debug version, and then disassemble it by using
IDA. It can be observed that the program entry point is
_mainCRTStratup, and the forms of API calling in some
sub-functions are like:

c a l l ds : imp GetVersion@0 ;
c a l l ds : imp OpenFile@12 ;

And we use Visual C++ 6.0 for the same code to a Release
version. It can be observed that the disassembled code’s
entry point is start, and the API calling in some sub-
functions is very direct:

c a l l ds : G e t V e r s i o n ;
c a l l ds : GetCommandLineA ;
c a l l e s i : OpenF i l e ;

So when we start constructing program behavior model
for Debug version, we need do some preprocessing, such as
removing prefixes like __imp__ and suffixes like @*.

In addition, there is also a big difference in the number
of sub-function between Debug and Release version.

Both Debug and Release Version have a quite large
number of sub functions in the disassembled result of cor-
responding binary program. The main cause is the compiler
will add some essential additional codes. The reason why
Debug version has more sub functions than Release is
that Debug version contains plenty of debug information,
and must include more API calling, such as DebugBreak,
InterlockedIncrement, and etc.

Although there is big difference, the core function behav-
ior model based on Debug version should be fairly consistent
with Release version.

B. Variance between Different Compilers

The same code is compiled with different compiler, dif-
ferent binary versions could be obtained. We use one empty
Win32 console program as an instance (Example 1). This
program is compiled with Visual C++ 6.0, Visual Studio
2005 and Visual Studio 2010 respectively. And then we
disassemble these versions, the sub function numbers in the
disassembled results of corresponding binary versions are
different.

Example 1: empty.c

void main (i n t argc , char∗ a rgv [])
{ re turn ; }

Different compilers cover API in different wraps. VS2010
covers most API in wraps as sub functions, all implementa-
tions are based on sub function calling, such as sub_401E83
only wrap one API EncodePointer, sub_401E83 only
wrap one API TlsAlloc. So the behavior models of differ-
ent binary versions have different number of sub functions.

To make sure program running safely, some com-
pilers lay more emphases on initialization, which also

lead to the variance of sub function number in dif-
ferent binary versions’ behavior models. For example,
VS2010 invokes HeapSetInformation to set stack infor-
mation, while VS2005 and VC6 do not. VS2005 invokes
__security_init_cookie to initialize Cookie for pre-
venting buffer overflow. VS2010 wraps the following API
sequence in a sub function sub_40250F, to accomplish
the same initialization of __security_init_cookie. But
VC6 does not carry this work.

GetSystemTimeAsFileTime−>G e t C u r r e n t P r o c e s s I d−>
G e t C u r r e n t T h r e a d I d−>GetTickCount−>
QueryPe r fo rmanceCoun te r

Besides, there are some different API callings in dif-
ferent program versions from different compilers. This is
because some same functions are implemented by different
APIs. Such as VC6 and VS2005 use GetStartupInfoA to
gain the information in initiating stage, while VS2010 uses
GetStartupInfoW. Some new compilers use extended API
to replace the old ones, such as GetVersion used by VC6
has already been replaced by GetVersionEx.

C. Modeling Management for Different Binary Versions

Although there is big variance between different binary
versions of one same code, they should have fairly same
core function behavior model.

We obtain the corresponding binary program (Bcdr
ϕ) with

a specific compiler and compiling options to compiler
“empty program” (Pϕ, see Example 1), its program behavior
model is denoted as M cdr

ϕ , which can act as a reference
template when we construct model for other normal program
with the same compiler and compiling options.

At the time of behavioral modeling of a certain normal
binary program (Bn), we can get the specific compiler name
and determine Bn is a Release version or Debug version by
performing a static analysis of Bn, and then Bn can be
specified as Bcdr

n . We get the optimized model of Bcdr
n ,

denoted as M cdr
n . Referring to the corresponding “empty

program” behavior model M cdr
ϕ , we can remove the relevant

parts about initialization and exit operation in M cdr
n , the core

function behavior model M cdr
nc = M cdr

n −M cdr
ϕ . Then the

different binary versions of the same Pn could have fairly
same core function behavior model.

III. PROGRAM DYNAMIC BEHAVIOR ATTESTATION

After building the model of the program expected behav-
ior, we also need to monitor the program’s running behavior.
We use the library of Microsoft Detours to monitor the
program behavior, and monitor 311 core API functions in
Ntdll.dll.

A. Preprocessing Program Behavior

When one program runs on the operating system, some
Win32 APIs called by the program can not be obtained by
static analysis of the program self. We need to do some

2222

program behaviors preprocessing, then we can use the static
analysis based program behavior model to do attestation.

1) Preprocessing program initialization and exit behavior
When running the console program which is compiled

from Example 1 on Windows XP SP3, we can monitor the
following API sequence:

GetF i l eType−>LockResource−>GetCommandLineA

And the API LockResource can not be obtained by static
analysis of the corresponding binary program self.

When we run the same program on Windows 7, the
monitored API sequence is:

GetF i l eType−>SetHandleCount−>GetCommandLineA

Obviously, the same program runs on different operating
systems, some Win32 APIs called by the program are also
different.

We take the API sequence called by “empty program” as
a standard, which is used to verify the program’s actual API
sequence during the process of initialization and exit. And
then the other API sequences left can be verified by using
static analysis based program behavior model.

2) Preprocessing complicated Win32 API behavior
When one program calls some complicated Win32 APIs,

the system will call some other relevant APIs to complete
the complicated function. These relevant APIs also can not
be obtained by static analysis of the program self.

For example, when running the console program which
is compiled from Example 1, we can monitor the following
API sequence:

OpenFi le−>SearchPathA−>SearchPathW−>C r e a t e F i l e A−>
Crea teF i leW−>GetFi leTime−>
FileTimeToDosDateTime

While carrying a static analysis of the corresponding
binary program, we can only obtain the API of OpenFile.
So we firstly need to preprocess the relevant APIs, then we
can use the static analysis based program behavior model to
do attestation.

3) Preprocessing Unicode API behavior
On the Windows NT-based operating system, the Win32

API calling related char operation (including ANSI char
and Unicode char) ultimately will call Unicode API. For
example, if the API is GetModuleHandleA in the static
analysis based behavior model of one program, then when
running the program, we can monitor the two APIs:
GetModuleHandleA and GetModuleHandleW. So we need
to preprocess the program behavior of Unicode API, then we
can use the static analysis based program behavior model to
do attestation.

B. General Program Dynamic Attestation

The preprocessed program behavior is denoted as w =
a1a2 · · · an, where ai(i = 1, 2, · · · , n) is the name of Win32
API. Now we can use the static analysis based program

behavior model to verify w, just see whether the constructed
global PDA MG = (QG,ΣG,ΓG, δG, qG0, ZG0, FG)
(ZG0 = ε) can accept w.

Whether MG can accept w depends on whether MG can
be transformed from the initial Instantaneous Description
ID(qG0, w, ε) to ID(pG, ε, ε) (pG ∈ FG) by making some
moves, which is denoted as:

(qG0, w, ε) ⊢∗
MG

(pG, ε, ε), pG ∈ FG

⊢MG
denotes that MG make a move, including ε move

and non-ε move.

C. Single Thread Program Attestation

On Window XP SP3, we use VC6 to compile the code
in Example 2, and then build the behavior model of the
corresponding binary program. After being simplified by
following the procedures described in subsection II-C, we
get the core function model of Example 2’s program, Ms =
(Qs,Σs,Γs, δs, qs0, Zs0, Fs), which is shown as Figure 1.

Example 2: file.c

void main (i n t argc , char∗ a rgv []) {
.
p f1 = (HANDLE) OpenFi l e (fn1 ,& of , OF READWRITE) ;
i f (p f1) {

r t = R e a d F i l e (pf1 , bf1 , s i z e o f (b f1) ,& r s i z e , NULL) ;
i f (r t) {

pf2 =(HANDLE) OpenFi l e (fn2 ,& of , OF READWRITE) ;
i f (p f2) {

r t = W r i t e F i l e (pf2 , bf2 , s t r l e n (bf2) ,& wsize ,NULL) ;
CloseHand le (p f2) ;

}
}
CloseHand le (p f1) ;

}
}

_main

-6

OpenFile

_main

-2

CloseHandle

_main

-0

_main-

3

OpenFile

_main-

5
WriteFile

CloseHandle

CloseHandle

ReadFile

CloseHandle

, Push 0001

_main-

1

_main

-4

, Pop 0001

, Pop 0001

Start-

10

Start-

8

Figure 1. Core function behavior model of Example 2

We run the console program which is compiled from Ex-
ample 2 on Windows XP SP3, and preprocess the monitored
Win32 API sequence by following the procedures described
in subsection III-A. The preprocessed API sequence (ws) is:

O p e n f i l e−>ReadFi l e−>OpenFi le−>W r i t e F i l e−>
CloseHandle−>CloseHand le

The initial instantaneous description of Ms is
ID(Start-8, ws, ε). Let us see whether Ms can accept

3333

ws:

(Start-8, ws, ε) ⊢Ms (main-0, ws, ‘0001’)
.

(main-4, ε, ‘0001’) ⊢Ms (Start-10, ε, ε)

Start-10 is one final state, so ws can be accepted by
Ms. It means the program behavior during this run time
passed the dynamic attestation.

D. Recursion Program Attestation

We use one instance to illustrate how to do dynamic
attestation for a recursion program, whose source code is
shown in Example 3.

Example 3: Recursion.c

i n t Recu (i n t i , HANDLE p f i l e , DWORD r s i z e) ;
void main (i n t argc , char∗ a rgv []) {

.
p f i l e =(HANDLE) OpenFi l e (FPATH , &of , OF READWRITE) ;
i f (p f i l e) {
Recu (i , p f i l e , r s i z e) ;
C loseHand le (p f i l e) ;

}
}
i n t Recu (i n t i , HANDLE p f i l e , DWORD r s i z e) {

i f (i <=0) { . . . }
e l s e {

W r i t e F i l e (p f i l e , buf , s t r l e n (buf) ,& r s i z e ,NULL) ;
R e c u r s i o n (i −1, p f i l e , r s i z e) ;
R e a d F i l e (p f i l e , buf , s i z e o f (buf) , &r s i z e , NULL) ;

}
re turn 0 ;

}

We build the behavior model of the corresponding binary
program by following the procedures described in section II,
and get the core function model of the recursion program,
Mr = (Qr,Σr,Γr, δr, qr0, Zr0, Fr), which is shown as
Figure 2.

1

WriteFile

ReadFile0

ReadFile

, Push 0002 , Pop 0002

32

Figure 2. Core function model of recursion program

We run the recursion program which is compiled from
Example 3, and preprocess the monitored Win32 API se-
quence by following the procedures described in subsection
III-A. The preprocessed API sequence (wr) is:

OpenFi l e
−>W r i t e F i l e−>W r i t e F i l e−>W r i t e F i l e−>ReadFi l e−>

ReadFi l e−>R e a d F i l e
−>CloseHand le

The first API OpenFile and the last API CloseHandle
are called by main(). We only use the model of recursion
function to verify the API sequence (w′

r) between first API
OpenFile and the last API CloseHandle.

The initial instantaneous description of Mr is
ID(0, w′

r, ε). Let us see whether Mr can accept w′
r:

(0, ‘WriteFile’ w′1
r , ε) ⊢Mr (1, w′1

r , ε)

.

(3, ‘ReadFile’, ε) ⊢Mr (2, ε, ε)

2 is one final state, so w′
r can be accepted by Mr. It

means the program behavior during this run time passed the
dynamic attestation. This shows our method can solve the
difficulty of dynamic attestation for recursion program.

E. Library Link Program Attestation

We use one link library instance (source code is in
Example 4 to illustrate how to do dynamic attestation for
a library link program.

Example 4: Export function FOp in one link library

void FOp (char ∗PathS , char ∗PathD) {
.
pfS =(HANDLE) OpenFi l e (PathS ,& of , OF READWRITE) ;
i f (pfS) {

r t = R e a d F i l e (pfS , tmp , s i z e o f (tmp) ,& r s i z e ,NULL) ;
i f (r t) {
pfD =(HANDLE) OpenFi l e (PathDt ,& of , OF READWRITE) ;
i f (pfD) {

W r i t e F i l e (pfD , tmp , s i z e o f (tmp) ,& r s i z e , NULL) ;
CloseHand le (pfD) ;

}
}
CloseHand le (pfS) ;

}
}

One program uses one link library in two ways: static link
and dynamic link. The source code of one program bounded
with the static link library (Example 4) is shown in Example
5.

Example 5: Bounding with a static link library

#pragma comment (l i b , ” v e r D l l . l i b ”)
d e c l s p e c (d l l i m p o r t) void FOp (char ∗ps , char ∗pd) ;

void main (i n t argc , char∗ a rgv []) {
.
F i l eOp (Src , Des) ;
re turn ;

}

We build the behavior model of the corresponding binary
program from Example 4 and Example 5 by following the
procedures described in section II, and get the core function
model, Msl = (Qsl,Σsl,Γsl, δsl, qsl0, Zsl0, Fsl), which is
shown as Figure 3.

We run the program which is compiled from Example
5, and preprocess the monitored Win32 API sequence by
following the procedures described in subsection III-A. The
preprocessed API sequence (wsl) is:

OpenFi le−>ReadFi l e−>OpenFi le−>W r i t e F i l e−>
CloseHandle−>CloseHand le

4444

FOp-

6

OpenFile

FOp

-2

CloseHandle

FOp

-0

FOp

-3OpenFile

FOp

-5

WriteFile

CloseHandle

CloseHandle
ReadFile

CloseHandle

, Push 0001

FOp

-1

FOp

-4

, Pop 0002

_main

-0

, Push 0002

_main

-1
, Pop 0002

, Pop 0001
Start-

10

Start-

8

Figure 3. Behavior model of static link library program

The initial instantaneous description of Msl is
ID(Start-8, wsl, ε). Let us see whether Msl can accept
wsl:

(Start-8, wsl, ε) ⊢Msl
(main-0, wsl, ‘0001’)

.

(main-1, ε, ‘0001’) ⊢Msl
(Start-10, ε, ε)

Start-10 is one final state, so wsl can be accepted by
Msl. This shows our method can solve the difficulty of
dynamic attestation for static link library program.

When one program is bounded with the dynamic link
library, due to that the link library is dynamically loaded
to program space, the actual address of export functions in
library can not be obtained by static analysis. In our future
work, we will get the name of export function in link library
by carrying analysis of Win32 API arguments, and complete
the attestation for dynamic link library program.

F. Multi-thread Program Attestation

We build the behavior model of one multi-thread bi-
nary program by following the procedures described in
section II, and get the core function model, Mm =
(Qm,Σm,Γm, δm, qm0, Zm0, Fm).

The current behavioral model does not include API ar-
gument value, so there is no way to embed the automaton
of each sub-thread into that of the main thread, and form a
complete global automaton.

Due to the irregularity of parallel programs execution
in operating system, the API calls of each thread appear
alternately, and the appearance order of API also is different
at each run-time. In addition to record the API name, we
should also record the thread ID who calls the corresponding
API when monitoring the dynamic behavior of multi-thread
program.

We do the dynamic attestation for every sub-thread’s
behavior independently. The specific method is similar to
singe thread program attestation (see III-C). The difference
from the single thread program is that we need try to
determine the correspondence relation between the actual
behavior and sub-function’s behavioral model of a certain
thread by making multi attempts.

In our future work, we will get the name of sub-
thread function by carrying analysis of the arguments in
CreateThread, and then the behavior model of sub-thread
function can be embedded into the model of main thread.

IV. ANTI-ATTACK EXPERIMENT

We use two typical attacking experiments to prove that
the method of dynamic attestation proposed in this paper is
effective.

A. DLL Hijacking

When one Windows program calls the API in one system
DLL, the system will search the corresponding DLL in the
system directory. This experiment uses one pseudo DLL in
system directory to launch the attack.

The object being attacked is a socket program (Ps). We
build the behavior model of the corresponding binary file of
Ps by following the procedures described in section II, and
get its function model, Ms = (Qs,Σs,Γs, δs, qs0, Zs0, Fs).
There has the following valid API sequence in Ms:

WSAStartup−>s o c k e t−>h tons−>bind−>l i s t e n −>a c c e p t−>
send−>recv−>c l o s e s o c k e t

Because the socket program has to call the APIs from
ws2_32.dll, we use one “malicious” DLL to replace
the original ws2_32.dll. Except for send(), all other
functions in the pseudo DLL are completely in the same way
like original ws2_32.dll. send() is modified as using the
following API sequence to stole sensitive information.

OpenFi le−>W r i t e F i l e−>CloseHandle−>send

We run the program (Ps) on the platform with the mali-
cious ws2_32.dll, and preprocess the monitored Win32
API sequence by following the procedures described in
subsection III-A. The preprocessed API sequence (ws) is:

WSAStartup−>s o c k e t−>h tons−>bind−>l i s t e n −>a c c e p t−>
OpenFi le−>W r i t e F i l e−>CloseHandle−>send−>recv−>
c l o s e s o c k e t

Let us see whether Ms can accept ws. When Ms reads
in OpenFile, there is no path to complete the transition,
denoted as:

(ps, ‘OpenFile’w
′
s, Zsβ) ⊬∗

Ms
(qs, w

′
s, γβ)

At this time, ps /∈ Qs, ‘OpenFile’w
′
s ̸= ε, Zsβ ̸= ε.

This means Ms can not accept ws, and Ps’s running
behavior can not pass the dynamic attestation. We can see
our method can protect the system against DLL Hijacking
attack.

B. Buffer Overflow

The object being attacked is a program (Pb) for file con-
tent copy. Pb reads some data from the first file, and writes
the data into the second file. We build the behavior model of
Pb by following the procedures described in section II, and
get its function model, Mb = (Qb,Σb,Γb, δb, qb0, Zb0, Fb).
There has the following valid API sequence in Mb:

O p e n f i l e−>ReadFi l e−>OpenFi le−>s p r i n t f −>s t r c p y−>
W r i t e F i l e−>CloseHandle−>CloseHand le

5555

We build a piece of Shell Code, which will call
MessageBox, and then write the Shell Code into the first
file. When Pb uses strcpy, the Shell Code will be called.
We run the program (Pb) on the platform with the Shell Code
file, and preprocess the monitored Win32 API sequence by
following the procedures described in subsection III-A. The
preprocessed API sequence (wb) is:

O p e n f i l e−>ReadFi l e−>OpenFi le−>s p r i n t f −>s t r c p y−>
MessageBoxA−>W r i t e F i l e−>CloseHandle−>
CloseHand le

Let us see whether Mb can accept wb. When Mb reads in
MessageBoxA, there is no path to complete the transition,
denoted as:

(pb, ‘MessageBoxA’w
′
b, Zbβ) ⊬∗

Mb
(qb, w

′
b, γβ)

At this time, pb /∈ Fb, ‘MessageBoxA’w′
b ̸= ε, Zbβ ̸=

ε.This means Mb can not accept wb, and Pb’s running
behavior can not pass the dynamic attestation. We can see
our method can protect the system against buffer overflow
attack.

Our methods are also effective against other unknown
attacks.

V. CONCLUSION AND FUTURE WORK

Our method for trusted computing dynamic attestation
uses the behavior model based on static analysis of binary
code. This paper proposed one method of building almost
the same core function model for different versions of
same code. This paper also overcame the difficulty that
some dynamic behaviors can not be obtained by static
analysis. The paper also gave out some solutions of dynamic
attestation for some complex programs.

Our current method can not protect programs against
mimicry attack [9] [10]. Some researchers have proposed
some methods to protect program against mimicry attack.
Based on these researches, we will build program behav-
ior model by using EFSA (Extended FSA) to describe
arguments value. The behavior model including arguments
also can help solve the difficulty of dynamic link library
programs’ behavior attestation.

The method in this paper can not ensure security of
mobile code program (such as Web script), which only can
ensure the security of script execution host program (such
as Browser). We will carry further research on the dynamic
attestation of mobile code program and parallel program.

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-
ence Foundation of China (Grant No. 60673071, 60970115,
91018008), the Fundamental Research Funds for the Central
Universities in China (Grant No. 3101044), and open foun-
dation of Zhejiang Key Laboratory of Information Security
in China.

REFERENCES

[1] Shen Changxiang, Zhang Huanguo, Wang Huaimin and et
al. Research and development of trusted computing. Science
China: Information Science, 2010, 40(2): 139-166. (in Chi-
nese)

[2] R. Sekar, V. N. Venkatakrishnan, Samik Basu, et al. Model-
Carrying Code: A Practical Approach for Safe Execution of
Untrusted Applications. Proceedings of the nineteenth ACM
symposium on Operating systems principles (SOSP’03), Bolton
Landing, New York, USA, ACM Press, 2003: 15-28.

[3] R. Sekar, C. R. Ramakrishnan, I.V. Ramakrishnan, and et
al. Model-Carrying Code (MCC): A New Paradigm for
Mobile-Code Security. Proceedings of the 2001 New Security
Paradigms Workshop (NSPW’01), Cloudcroft, New Mexico,
USA, ACM Press, 2001: 23-30.

[4] Wei Da, Jin Ying, Zhang Jing,and et al. Enforcing Security
Policie s in Open Source JVM. ACTA ELECTRONICA SINICA,
2009, 37 (4A): 36-41. (in Chinese)

[5] Jin Ying, Li Zepeng, Zhang Jing, and et al. Static Checking
of Security Related Behavior Model for Multithreaded Java
Programs. Chinese Journal of Computers, 2009, 32 (9): 1856-
1868. (in Chinese)

[6] George C. Necula. Proof-Carrying Code. Proceedings of 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL’97), Paris, France, ACM Press,
1997: 106-119.

[7] Vivek Haldar, Deepak Chandra, Michael Franz. Semantic Re-
mote attestation: A Virtual Machine Directed Approach to
Trusted Computing. Proceedings of the 3rd conference on
USENIX Virtual Machine Research and Technology Sympo-
sium, San Jose, California, USA, USENIX Association, 2004:
29-41.

[8] Yu Fajiang, Yu Yue. Static analysis-based behavior model
building for trusted computing dynamic verification. Wuhan
University Journal of Natural Sciences, 2010, 15(3): 195-200.

[9] David Wagner, Paolo Soto. Mimicry attacks on host based
intrusion detection systems. Proceedings of the 9th ACM
conference on Computer and Communications Security, Wash-
ington, DC, USA, ACM Press, 2002: 255-264.

[10] Li Wen, Dai Yingxia, Lian Yifeng, and et al. Context sensitive
host-based IDS using hybrid automaton. Journal of Software,
2009, 20(1): 138-151. (in Chinese)

6666

