
Reviewer Recommendation for Pull-Requests in GitHub:

What Can We Learn from Code Review and Bug Assignment?

Yue Yua,∗, Huaimin Wanga, Gang Yina, Tao Wanga

aNational Laboratory for Parallel and Distributed Processing,
College of Computer, National University of Defense Technology, Changsha, 410073, China

Abstract

Context: The pull-based model, widely used in distributed software development, offers
an extremely low barrier to entry for potential contributors (anyone can submit of contri-
butions to any project, through pull-requests). Meanwhile, the project’s core team must
act as guardians of code quality, ensuring that pull-requests are carefully inspected before
being merged into the main development line. However, with pull-requests becoming in-
creasingly popular, the need for qualified reviewers also increases. GitHub facilitates this,
by enabling the crowd-sourcing of pull-request reviews to a larger community of coders than
just the project’s core team, as a part of their social coding philosophy. However, having
access to more potential reviewers does not necessarily mean that it’s easier to find the right
ones (the “needle in a haystack” problem). If left unsupervised, this process may result in
communication overhead and delayed pull-request processing.
Objective: This study aims to investigate whether and how previous approaches used in
bug triaging and code review can be adapted to recommending reviewers for pull-requests,
and how to improve the recommendation performance.
Method: First, we extend three typical approaches used in bug triaging and code review for
the new challenge of assigning reviewers to pull-requests. Second, we analyze social relations
between contributors and reviewers, and propose a novel approach by mining each project’s
comment networks (CNs). Finally, we combine the CNs with traditional approaches, and
evaluate the effectiveness of all these methods on 84 GitHub projects through both quan-
titative and qualitative analysis.
Results: We find that CN -based recommendation can achieve, by itself, similar perfor-
mance as the traditional approaches. However, the mixed approaches can achieve significant
improvements compared to using either of them independently.
Conclusion: Our study confirms that traditional approaches to bug triaging and code re-
view are feasible for pull-request reviewer recommendations on GitHub. Furthermore, their
performance can be improved significantly by combining them with information extracted
from prior social interactions between developers on GitHub. These results prompt for
novel tools to support process automation in social coding platforms, that combine social
(e.g., common interests among developers) and technical factors (e.g., developers’ expertise).

Keywords: Pull-Request, Reviewer Recommendation, Social Network Analysis

Preprint submitted to Elsevier December 21, 2015

*Manuscript
Click here to view linked References

http://ees.elsevier.com/infsof/viewRCResults.aspx?pdf=1&docID=6051&rev=2&fileID=105351&msid={77D744EC-A0F7-4747-9077-B9CF79733FD1}

1. Introduction

The pull-based development model [1, 2], used to integrate incoming changes into a
project’s codebase, is one of the most popular contribution model in distributed software
development [3]. External contributors can propose changes to a software project without
the need to share access to the central repository with the core team. Instead, they can
create a fork of the central repository, work independently and, whenever ready, request
to have their changes merged into the main development line by submitting a pull-request.
The pull-based model democratizes contributing to open source projects supported by the
distributed version control system (e.g., git and Mercurial): anyone can contribute to any
repository via submitting pull-requests, even if they are not part of the core team.

Currently, the pull-based model is widely adopted by open source projects hosted on the
modern collaborative coding (or social coding [4]) platforms such as BitBucket, Gito-
rius, and GitHub. Especially, on GitHub, the pull-request mechanism is integrated with
multiple social media features, so users can freely watch the development activities of pop-
ular repositories, follow distinguished developers and comment others’ contributions. The
socialized pull-request paradigm offers greater conveniences for collaborative development
compared to the traditional development models [5, 6], e.g., email-based patching. A typi-
cal contribution process [7] in GitHub involves following steps, as summarized in Figure 1.
First of all, a potential contributor D locates an interesting project repository R , often by
following some well-known developers and watching their projects. Next, s/he can fork this
project, and contribute code locally, either by creating a new feature or fixing some bugs.
When the work is done, D sends the changes from the forked repository to R packaged as
a pull-request. Then, exploiting integration with the issue tracker, all developers of R have
the chance to review that pull-request. They can freely discuss whether the project needs
that feature, whether the coding style is conformant, or if the code quality is adequate, and
potentially make suggestions using the social media features. Next, D can make changes to
the pull-request, responsive to the reviewers’ suggestions, perhaps triggering more reviews
and discussion. Finally, a responsible manager of the core team (i.e., integrator [3]) takes
all the opinions of reviewers into consideration, and then merges or rejects that pull-request.

With the development of projects, the pull-request paradigm can be used in many sce-
narios beyond basic patch submission, e.g., for conducting code reviews and discussing new
features [3]. On GitHub alone, almost half of all collaborative projects use pull-requests [3],
and this number is only expected to grow. In those projects, the absolute number of new
pull-requests increases dramatically [8]. Ruby on Rails1 (i.e., rails), one of the most popu-
lar projects on GitHub, receives upwards of three hundred new pull-requests each month.
To ensure the project’s quality, new pull-requests should be evaluated before eventually ac-
cepted. In large projects, the high volume of incoming pull-requests poses a serious challenge

∗I am corresponding author
Email addresses: yuyue@nudt.edu.cn (Yue Yu), hmwang@nudt.edu.cn (Huaimin Wang),

yingang@nudt.edu.com (Gang Yin), taowang2005@nudt.edu.com (Tao Wang)
URL: yuyue.github.io (Yue Yu)

1https://github.com/rails/rails

2

Pull
Request

Pull
Request

Review CommentsContributor

Judge

Closed

Core Team

Merge

Reject

Submits

Discuss

Issue Tracker

Discuss

Update

Discuss

PR
PR

PR

PR
PR

PR

Project
Repository

Clone
Repository

Profile

√Contributions

√Followed Users

√Starred Projects

Management
√Workload

√Team size

Figure 1: Overview of the socialized pull-request mechanism in GitHub

to project integrators. Currently, the management of pull-requests is identified as the most
important project activity on GitHub [9].

To reduce human workload, GitHub synthesizes external services to support the eval-
uation process of pull-request, e.g., continuous integration [10, 11] for automatic testing.
However, on the one hand, the discussions among developers are still necessary to ensure
high quality of code [3]. For example, one of typical responses in the survey [3] from in-
tegrators explains that “we have a rule that at least 2 of the core developers must review
the code on all pull-requests”. On the other hand, the responsiveness of reviewers is a key
factor to affect the latency of pull-request evaluation [12]. According the survey [13], a lot of
contributors (15% of the participants in the survey) complain that their pull-requests hardly
get a timely feedback. Thus, if appropriate reviewers can be automatically recommended to
new pull-requests, the efficiency of pull-based development model would be improved.

Fortunately, the recommendation approaches for coping with similar challenges of bug
triaging and code inspections give us a great inspiration. In those contexts, the qualified
developers (always core members) measured by their expertise are recommended to fix in-
coming bug reports or evaluate the quality of newly received code changes. However, unlike
there, GitHub facilitates the evaluation process, by enabling the crowd-sourcing to a larger
community of coders rather than just a project’s core team, as a part of social coding phi-
losophy. Pull-request reviewers can and do come from outside the project, because all the
project watchers (even external developers) can received notifications at the time of new
pull-requests creation. The outsider reviewers play important roles on the evaluation pro-
cess, as they not only put forward some particular requirements for their own usage, but
also apply pressure to the integrators in order to influence the final decision [14] (i.e., re-
ject, merge or reopen). Thus, it is very interesting to study the performance of traditional

3

recommendation approaches transferring to pull-request model. Moreover, the outsiders are
usually not responsible for the pull-requests, but join the discussion driven by their inter-
est (i.e., willingness). Hence, the social factors (e.g., prior social interactions) would be
conducive to find potential reviewers in the new context (i.e., pull-based development).

In this paper, we firstly review the existing work for bug assignment and code-reviewer
recommendation, and extend three typical approaches based on the Machine Learning (ML),
Information Retrieval (IR) and File Location (FL) technique respectively into the new chal-
lenge of pull-request assignment. Besides, we construct a novel social network called Com-
ment Network (CN), and recommend potential reviewers based on it. Furthermore, we
combine the comment network with the traditional approaches.

The key contributions of this paper include:

• We extend the traditional approaches used in bug triaging and code-reviewer recom-
mendation to pull-request assignment. These approaches make a recommendation
based on measuring the expertise of potential reviewers.

• We propose a novel CN -based approach by analyzing comment networks, which can
capture common interests in social activities among developers.

• We combine the expertise factor with the common interest, and recommend appropri-
ate reviewers for pull-requests using the mixed approaches.

• We present a quantitative and qualitative analysis to evaluate above approaches in a
big dataset containing 84 projects of GitHub. We find that the lightweight approach
based on comment networks can reach the same level of performance as traditional
approaches; however, the mixed approaches represent significant improvements.

The remainder of this paper is structured as follows: Section 2 illustrates our motivation,
related work and research questions. Section 3 presents different recommendation approaches
in detail. Empirical analysis and discussion can be found in Section 4 and Section 5. Finally,
we draw our conclusions in Section 6. This paper is an extension of the paper [8] published
in the 21st Asia-Pacific Software Engineering Conference (APSEC 2014). Compared with
the prior work, our new contributions are summarized as follows:

• We extend two approaches based on file-location and information retrieval to pull-
request assignment. The file-location based approach [15] is one of state-of-art ap-
proaches for code-reviewer recommendation.

• We combine traditional approaches with comment networks, and make a comparison
between the mixed approaches and the independent approaches.

• We evaluate all approaches using both quantitative and qualitative analysis in a new
large dataset, which ensures the correctness and robustness of our findings.

4

Figure 2: Example of discussions among reviewers in a pull-request

2. Background and Related Work

2.1. Peer Review of Pull-Request in GitHub

Pull-request is one of the primary methods for code contributions to a public repository.
Both the core team and the users who have starred2 the repository can mechanically receive
notifications of new pull-requests. A pull-request can be manually assigned to one of core
developers by integrators. The assignee is in charge of the review process, which is similar
to the process in the bug tracking system. However, only a small part of pull-requests
have been triaged in that way (only 0.89% of pull-requests are assigned in our previous
study [7, 8]). Compared to the manually assignment way, the @mention tool is more widely
used among reviewers in the peer review process. If the @ tag is placed in front of a
users name, the corresponding developer will receive a special notification that he has been
mentioned in the discussion. More potential reviewers, both core members and outside
contributors, can be involved into the discussion process with the help of the @mention tool
on GitHub. Reviewers can publish two types of comments: general comments about the
overall contributions, and code-inline comments for the specific lines of changes.

We use a real pull-request, submitted by rono23 from project rails, as an example, to
explain how the review process works. To start with, as shown in the subgraph at the top
right corner of Figure 2, a core developer (integrator) called rafaelfranca is the first one to

2It is one of the GitHub-specific social media features, that allows anyone to flag, i.e., star, projects they
find interesting.

5

push forward the evaluation process. As he thought that javan’s work would be relevant
to it, he mentioned (@) javan to ask for his opinion. At the second post, we can see that
javan indeed joined the discussion. Meanwhile (see the subgraph at top left corner), other
two users, norman and pixeltrix, voluntarily participated in the discussion and presented
some important suggestions. Inspired by norman’s comment, rafaelfranca left his opinion
following. Later (see the subgraph at the bottom), the author updated the pull-request by
appending a new commit in terms of above suggestions, and then he mentioned (@) the two
key reviewers for acknowledgement. Finally, the pull-request was merged into the master
branch of rails by rafaelfranca.

As the example depicted above, apart from the responsible integrator (i.e., rafaelfranca),
other reviewers commented on that pull-request indirectly, including javan, norman and
pixeltrix. All their opinions affected the decision-making of that pull-request. As for javan,
a external contributor3, he is informed by the integrator manually using the @mention tool.
In practice, to accomplish this properly every time, the integrator have to not only check
each new pull-request manually, but also know every contributor’s work clearly. Supposing
the reassignment can be changed to automation (at least generating a recommendation list),
the workload of integrators obviously would be reduced. Likewise, if the unbidden reviewers,
such as norman and pixeltrix above, do not notice that pull-request in time, the evaluation
process would be longer. On the contrary, if the notifications can be automatically sent to
the appropriate reviewers (e.g., set up an robot-account that @mentions potential reviewers
at the time of a new pull-request creation), the time for reviewers aware of their interested
pull-requests would be reduced.

2.2. Effect of Pull-Request Assignment

Our previous work [12] found that the evaluation latency of pull-requests is a complex
issue, requiring many independent variables to explain adequately, e.g., the size of pull-
requests, the submitters’ track records and number of discussion comments. During that
work, we collected a large dataset4 containing 650,007 pull-requests across 919 main-line
projects in GitHub. Overall, the evaluation time (i.e., latency) is fluctuated over a range
of several minutes to half year (median: 14.78 hours; mean: 363.94 hours), as shown in
Figure 3. We used multiple linear regression to model the latency of evaluating pull-requests
on GitHub. More details can be found in the paper [12]. Here, we show two evidences
of the benefit from pull-request assignment. Controlling other social and technical factors
(22 variables), we find that the factor of first human response, explaining over 10% of the
variance, is highly significant and have a positive effect on the latency. It means the review
process of pull-request would take longer if reviewers do not notice and reply in time. Even
so, the first reviewer is more likely to be the responsible integrator, as shown in the example
above. It still needs more time to wait for other potential reviewers. Additionally, the factor
of @mention (i.e., @ tags appeared in the title or description of a pull-request) is highly

3GitHub use two labels, owner and collaborator, to identify the core team.
4https://github.com/yuyue/pullreq_ci

6

significant and have a negative effect on the latency. It clearly shows that pull-requests
reassigned to reviewers early tend to be processed quicker.

Pull Request Latency (log)

F
re

qu
en

cy

0
10

00
20

00
30

00

1 min 10 mins 1 day 1 week half year

Figure 3: Distribution of pull-request latency

From what has been discussed above, we argue that recommending highly relevant re-
viewers to pull-requests is a significant way to improve the efficiency of social coding.

2.3. Bug Assignment and Modern Code Review

Triaging bug reports [16, 17] and organizing code review [18, 19] are two importance
practices of open source development. For some large projects, tens of new bug reports
are submitted to the bug tracking system (e.g., Bugzilla). It is a labor-intensive and time-
consuming task that assigning incoming bug reports to appropriate bug fixers. Likewise,
there is a large number of new changes in modern code review system (e.g., Gerrit) waiting
to review before the integration.

There are plenty of researches based on Machine Learning (ML) [16, 20, 21, 22, 23] and
Information Retrieval (IR) [24, 25, 26] techniques to triage incoming bug reports (change
requests). Cubranic et al. [22] propose a text classification method for bug assignment
using the title, descriptions and keywords of bug reports. Anvik et al. [16] improve that
ML-based approach by filtering out unfixed bug reports and inactive developers with a
heuristic method. After the preprocessing stage, they can achieve the best precision levels
of 64% on the Firefox project using the SVM classifier. Jeong et al. [23] find that many
bugs have been reassigned to other developers, so they combine classifiers with tossing
graphs to mine potential developers. Based on that, Bhattacharya et al. [20, 21] introduce
an approach adding fine-grained incremental learning and multi-feature tossing graphs to
educe tossing path lengths and improve prediction accuracy. Other researchers also utilize
the IR techniques for automatic bug assignment. Canfora and Cerulo [24] use the textual
descriptions of resolved reports to index developers as documents in an information retrieval
system, and the new reports as a query. Kagdi [25] and Linares-Vasquez [26] extract the
comments and identifiers from the source code and index these data by the Latent Semantic

7

Indexing (LSI). For a new bug report, such indexes can be used to identify the fixers who
have resolved similar bugs in history. Compared with above methods, Tamrawi et al. [27]
build a model of the correlation between developers and technical terms to rank developers.
They select a portion of recent bug fixers as the candidates first, then the most relevant
developers are recommended by comparing their membership to the terms included in the
new bug reports.

Similarly, to support modern code review [28], Jeong et al. [29] extract the features,
such as file/module name, source lines of code, code keyword (e.g., else and return), and
then build a prediction model using the Bayesian Network. Balachandran [30] proposes a
tool called Review-Bot to predict the developers who have modified related code sections
in source files as appropriate reviewers. Thongtanunam et al. [31, 15] recommends code
reviewers based on the measure of file path similarity. They consider that files located in
similar folders should be reviewed by similar experienced code-reviewers. That state-of-art
approach [15] is 4 times more accurate than the Review-Bot.

In the context of pull-based development, the pull-requests is managed in a similar man-
ner as bug reports triaged in bug tracking system and code patches managed in code review
system. Each pull-request includes a title and description summarized its contributions, the
files it touched and actual code contents. Thus, we draw an analogy between pull-request
assignment and bug triaging and code-reviewer recommendation. We ask:

RQ1: How can traditional approaches used in bug triaging and code-reviewer
recommendation be extended to pull-request assignment?

In the process of bug triaging (similar to code inspection), each bug report is a obligatory
task for the corresponding bug fixer who takes the responsibility for fixing the bug. In
contrast, the evaluation process in pull-based development, except for project integrators,
the reviewers voluntarily join the discussion, especially for external developers. It implies
that some social factors concerning with willingness would be taken into consideration in
our new context.

2.4. Social Factors of Distributed Development

There are two fundamental elements on software development: technical and social com-
ponent [32]. Social factors have a very strong impact on the success of software development
endeavors and the resulting system [33]. Zhou and Mockus [34] find that the project’s cli-
mate (e.g., participation density) and the social interaction among developers are associated
with the odds that a new joiner to become a long term contributor. Vasilescu et al. [35]
argue that increased gender and tenure diversity are positive to improve the productivity of
GitHub teams. Thung et al. [36] investigate the social network structure of GitHub, and
use PageRank to identify the most influential developers and projects on GitHub. Yu et
al. [37] present the typical social patterns among developers by mining the follow-network
constructed from the following relations between developers on GitHub. Compared to the
traditional model of collaboration in open source [6, 38], social coding platforms (e.g., Bit-
Bucket, Gitorius and GitHub) provide transparent work environments [9, 39] for devel-
opers, which is benefit for innovation, knowledge sharing and community building. Apart
from the technical factors (e.g., code quality), the transparency allows project managers to

8

evaluate pull-requests utilizing a wealth of social information in submitters’ profile pages.
Tsay et al. [40] prove that the strength of the social connection between submitters and core
members has a strong positive association with the pull-requests acceptance using the logis-
tic regression model. They also find that the core team would be polite to new contributors
during the discussion [14].

Inspired from above findings, we consider that the review process of a pull-request is a
kind of social activity depending on the discussions among reviewers on GitHub. Thus,
prior human communication and social relations should be the key factors of reviewer rec-
ommendation. We ask:

RQ2: Can suitable pull-request reviewers be recommended using only social
relations? How effective is this approach compare to traditional approaches?

However, in the contexts of bug triaging and code-reviewer recommendation, most of
traditional approaches measure the developers’ expertise first, and then rank the reviewer
candidates based on it. Except for reviewer expertise, the social coding platforms make
the relationships among developers transparent. In this paper, we analyze the historical
comment relations in a given project, and propose a novel social network, i.e., comment
network, to measure the common interests between reviewers and contributors. We ask:

RQ3: Does combining prior social relations (RQ2) and review expertise
(RQ1) result in increased performance in pull-request assignment?

3. Recommending Reviewer for Pull-Request

First of all, we extend the Machine Learning (ML), Information Retrieval (IR) and File
Location (FL) based recommendation approaches used in bug triaging and code-reviewer
recommendation, to pull-request assignment. Next, we propose a novel and lightweight
approach (i.e., comment network based approach) to recommend reviewers by mining the
strength of prior social connections between the pull-request submitters and potential re-
viewers. Finally, we incorporate the comment network into traditional approaches.

3.1. Vector Space Model of Pull-Request

Each pull-request is characterized by its title and description, and can be labeled with
the names of developers who had commented at least once on it. Then, all stop words and
non-alphabetic tokens are removed, and remaining words are stemmed (Porter stemmer).
We then use vector space model to represent each pull-request as a weighted vector. Each
element in the vector is a term, and the value stands for its importance for the pull-request.
The more a given word appears in a pull-request, the more important it is for that pull-
request. Contrariwise, the more pull-requests a word appears in, the less useful it is to
distinguish among these pull-requests. Term frequency-inverse document frequency (tf-idf)
is utilized to indicate the value of a term, which can be calculated as Equation 1.

tfidf(t, pr, PR) = log(
nt

Npr

+ 1)× log NPR

|pr ∈ PR : t ∈ pr|
(1)

9

where t is a term, pr is a pull-request, PR is the corpus of all pull-requests in a given project,
nt is the count of appearance for term t in pull-request pr, and Npr and NPR are the total
number of terms in pr and pull-requests in corpus respectively.

3.2. SVM-based Recommendation

In general, each pull-request is reviewed by several developers, so a reviewer recommender
should provide more than one label for a pull-request testing instance. This is thus a multi-
label classification problem [41] in Machine Learning (ML). We train the ML classifiers
after preprocessing pull-requests by vector space model, as described in Section 3.1. For a
new pull-request, a ranked list of recommended candidates is generated from top-1 to top-k
according to the predicted probability of a given label by the ML classifiers, using the one-
against-all strategy. When the probability values are equal, we rank the developers in terms
of the number of pull-requests’ comments that they had submitted to the given project.
In this paper, we choose support vector machines (SVM) as our basis classifier, because it
usually has been proved to be a superior classifier in developers recommendation [16, 26]
than other common classifiers (e.g., naive bayes and decision tree). The SVM classifier is
implemented by using Weka [42].

3.3. IR-based Recommendation

We conceptualize new pull-requests as “bag of words” queries, and these queries and
resolved pull-requests from our corpus are indexed by vector space model described at Sec-
tion 3.1. We use cosine similarity to measure the semantic similarity [43, 44]. Given a new
pull-request, the ranked list of resolved pull-requests are generated according to similarity
scores, as show in Equation 2:

similarity(prnew, prrsl) =
υnew · υrsl

|υnew||υrsl|
(2)

where prnew is a new pull-request, prrsl is one of resolved pull-requests, υnew is the VSM of
prnew and υrsl is the VSM of prrsl.

Next, we calculate the expertise score of a candidate reviewer by summing all the simi-
larity scores of pull-requests that s/he has reviewed. Finally, the recommendation is based
on the ranking of reviewers’ expertise scores.

3.4. FL-based Recommendation

As discussed in Section 2, many approaches [31, 15, 29, 26] recommend reviewers by
mining file-level (including source code) data compared to text-level (semantic) data. In this
paper, we extend the state-of-art approach [15] for modern code review, File Location (FL)
based approach, to recommend pull-request reviewers. The intuition is that files located
at similar file system paths would be managed and reviewed by reviewers with similar
experiences. Thus, we calculate the similarity scores between file paths involved in new
pull-requests and file paths of completed pull-requests. Then we can assign reviewers to new
pull-requests based on the file path similarities to previously assigned pull-requests.

10

Reviewed PR

Files:
√src/module/a.java

√doc/a.txt

Files:
√src/view/a.java

√test/view/a_test.java

File:
√src/module/a.java

√test/view/a_test.java

Reviewers: Reviewers:

Reviewers:

Time

String
Comparison

Reviewer
Ranking

File-Path
Similarities

......

Scores: 0.85 0.62 0.31

Reviewed PR

New pull-request

Figure 4: File location-based reviewer recommendation for pull requests

Figure 4 shows an example of FL-based recommendation. We firstly extract the file
names from the new pull-request and old reviewed pull-requests. For each file, we use a
slash character as a delimiter to split the file path into components (i.e., each component is
a word). Next, we can get common components that appear in two files by using the same
string comparison technique5 in paper [15]. Then, the file-path similarity score between two
files can be calculated by dividing the number of common components by the maximum
number of file path components. The similarity scores are propagated to the candidates
who has commented the corresponding pull-requests via adding them together. Finally, we
sort all candidates according their expertise scores, and recommend top-k reviewers to the
new pull-request.

3.5. CN-based Recommendation

The basic intuition of Comment Network (CN) based recommendation is that the devel-
opers who share common interests with a pull-request originator are appropriate reviewers.
The common interests among developers can be directly reflected by commenting interac-
tions between pull-requests’ submitters and reviewers. We propose a novel approach to
construct comment networks by mining historical comment traces. Based on the comment
network, we predict highly relevant reviewers to incoming pull-requests. We can also com-
bine this measure with the scores arising from comment interest and reviewer expertise (e.g.,
using IR-based and FL-based approaches).

Comment Network Construction

5https://github.com/patanamon/revfinder/blob/master/stringCompare.py

11

In a given project, the structure of relations among pull-requests, submitters, and re-
viewers are many-to-many models. As shown in Figure 5, there are many contributors have
submitted pull-requests to Project P. A developer can be a contributor submitting several
pull-requests, and he could also be a reviewer in other contributors’ pull-requests. In addi-
tion, a pull-request would be commented by several reviewers more than once. For example,
reviewer R1 had presented 5 comments in the pull-request PR2 which is contributed from
submitter S2. A reviewer would inspect multiple pull-requests, such as reviewer R1 has
commented PR1 and PR2.

Submitter S1

Project P

Pull-request PR2

Pull-request PR1

Pull-request PRk

…

…

Reviewer R2

Reviewer R1

Reviewer Rt

…

5

1

j

2

Submitter S2

Submitter S3

Submitter Sn

Pull-request PRk+1

Figure 5: Comment relations between contributors (submitters) and reviewers

We consider that common interests among developers are project-specific, so we build a
comment network for each project separately. The comment network is defined as a weighted
directed graph Gcn = 〈V,E,W 〉, where the set of developers is indicated as vertices V and
the set of relations between nodes as edges E. If node vj has reviewed at least one of vi’s
pull-requests, there is a edge eij from vi to vj. The set of weights W reflects the importance
degree of edges, and the weight wij of eij can be evaluated by Equation 3. Our hypotheses
for Equation 3 are: 1) the comments in multiple pull-requests are more important than those
in one pull-request; 2) the new comments are more important than old ones.

wij =
k∑

r=1

w(ij,r) =
k∑

r=1

m∑
n=1

λn−1 × t(ij,r,n) (3)

where k is the total number of pull-requests submitted by vi, and w(ij,r) is a component
weight related to an individual pull-request r, and m is the sum of comments submitted by
vj in the same pull-request r. In order to distinguish the differences between the comments
submitted to multiple pull-requests against a single pull-request, we add a empirical factor λ.
When reviewer vj issued multiple comments (m 6= 1) in the same pull-request, his influence
is controlled by the decay factor λ (set to 0.8, because the CN-based recommendation can
get the highest F-Measure in our prior work [8]). For example, if reviewer vj commented on
5 different pull-requests of vi and meanwhile vq commented one of vi’s pull-requests 5 times,

12

the weight of wij is larger than wiq. Lastly, the element t(ij,r,n) is a time-sensitive factor of
corresponding comment which can be calculated as below:

t(ij,r,n) =
timestamp(ij,r,n) − start time

end time− start time
∈ (0, 1] (4)

where timestamp(ij,r,n) is the date that reviewer vj presented the comment n in pull-request
r which is reported by vi. The start time and end time are highly related to the selection
of training set. In our data set (see Section 4.1), we use the data of from 01/01/2012
to 31/05/2014 to learn the weights of comment network, the parameters start time and
end time are set to 31/12/2011 6 and 31/05/2014 respectively.

v2 commented v1's PR_1 on 2012-12-03

v2 commented v1's PR_1 on 2013-01-12

v2 commented v1's PR_2 on 2013-05-07

v3 commented v1's PR_2 on 2013-05-06

v1 commented v4's PR……

v2 commented v4's PR……

Project:
Ruby on Rails

w 13
=

0.9
5

v3 v4

v2v1

w12=2.19

w42=?w41=
? v5

w25=?

Figure 6: Example of the comment network

Figure 6 depicts a small part of the comment network in Ruby on Rails (i.e., rails). We
take it as an example to explain how to calculate the weights of edges. The comment-logs
show that two different pull-requests (PR 1 and PR 2) created by v1 have been commented
by v2 and v3, so there are two edges from v1 to v2 and v1 to v3. Evaluating the relation
between v1 and v2, k of Equation 3 equals 2, because v2 reviewed both two pull-requests.
For PR 1, v2 commented it twice, so we set m = 2. The first time-sensitive factor of the date
03/12/2013 can be computed by Equation 4 that:

t(12,1,1) =
value(03/12/2013)− value(31/12/2011)

value(31/05/2014)− value(01/01/2012)
≈ 0.654.

6We set the start time one day ahead of the earliest date to avoid wij,r = 0.

13

In addition, at the date of 12/01/2013 (t12,1,2 ≈ 0.731), another review created by v2 in PR 1

should be modulated by λ (set to 0.8) due to the diminishing impact of one user in the same
pull-request, so w(12,1) can be calculated as: t(12,1,1) + λ2−1× t(12,1,2) = 0.654 + 0.8× 0.731 ≈
1.24. Similarly, the weight w12 = w(12,1) + w(12,2) = 2.19, and w13 = 0.95. Thus, we can
predict that reviewer v2 share more common interests with contributor v1 compared with
v3, which has been quantified by the corresponding weights of edges.

The comment network has several desirable qualities.

• First, the global collaboration structure between contributors and reviewers in a given
project is modeled, and used to select reviewer candidates of incoming pull-requests.

• Secondly, the time-sensitive factor t is introduced to ensure that the recent comments
are more pertinent than the old comments.

• Thirdly, the decay factor λ is introduced to impose differences between the comments
submitted to multiple pull-requests against a single pull-request. For example, if re-
viewer vj commented on 5 different pull-requests of vi and meanwhile vq commented
one of vi’s pull-requests 5 times, the weight of wij is larger than wiq.

• Finally, it balances these two important factors to quantify the influence that a reviewer
has exerted on the contributor in a project.

Reviewers Recommendation
Based on comment networks, new pull-requests are divided into two parts based on their

submitters. The first part are the Pull-requests from Acquaintance Contributors denoted as
PAC. For a PAC, starting from the node of its submitter, we can find at least one neighbor
in the directed graph. For example, in Figure 6, when v1 submits a new pull-request, that
pull-request is a PAC because two neighbors starting from v1 can be reached. The other
part are Pull-requests from New Contributors denoted as PNC. For a PNC, the submitter
only plays a role of reviewer (integrator) but has not submitted any pull-request, or s/he is
a newcomer excluded from the training set, so there is no neighbor starting from it in the
comment network. Hence, we design different algorithms of reviewer recommendation for
PAC s and PNC s.

Recommendation for PAC : For a PAC, it is natural to recommend the user who
has previously interacted with the contributor directly, i.e.,, the node that is a connected
neighbor starting from the contributor node in the comment network. If there are more
than one neighbor, the node with the highest weights get selected first. Hence, reviewer
recommendation can be treated as a kind of directed graph traversal problem [45]. In
this paper, we improve the classical method of Breadth-First Search to recommend top-k
reviewers for new pull-requests as shown in Algorithm 1. First of all, we initialize a queue
and put the source node vs onto this queue. Then, starting from the unvisited edge with
the highest weight (RankNeighors) every time, we loop to select (BestNeighbor) and marked
the nearest neighbor as a candidate. If the number of contributor’s neighbors is less than
top-k, we further to visit the child nodes until top-k nodes are found.

14

Algorithm 1 Top-k recommendation for PAC

Require: Gcn is the comment network of a given project;
vs is the contributor of a new pull-request;
topk is the number of required reviewers;

Ensure: recSet is a set of sorted reviewers;
1: Q.enqueue(vs) and recSet← ∅
2: repeat
3: v ← Q.dequeue and Gcn.RankEdges(v)
4: repeat
5: if topk = 0 then
6: return recSet
7: end if
8: vnb ← Gcn.BestNeighbor(v)
9: Q.enqueue(vnb) and Gcn.mark(vnb)

10: recSet ∪ {vnb} and topk = topk − 1
11: until Gcn.Neighors(v) all marked
12: until Q is empty
13: return recSet

Recommendation for PNC : For a PNC, since there is no prior knowledge of which
developers used to review the submitter’s pull-request, we want to predict the candidates
who share common interests with this contributor by analyzing the overall structure of
comment network.

Firstly, for a contributor who is a node but without any connected neighbor in the
comment network, we mine the reviewers based on patterns of co-occurrence across pull-
requests. For example, if v2 and v3 have reviewed plenty of pull-requests together, we can
assume that they would share more common interests than others. Thus, when v3 submitted
a new pull-request (PNC), we recommend v2 to review his pull-request, and vice versa. Each
pull-request is a transaction, and the co-occurrent reviewers in that pull-request is the items.
We use Apriori algorithm of association rule mining [46] to generate top-k frequent itemsets,
and then rank the candidates according to their supports. After that, we can know that who
have always reviewed pull-requests together for top-k recommendation.

In addition, for a newcomer who is a node excluded from the comment network, the most
active reviewers in different kinds of communities become the most probable candidates.
Each community is a group of developers. Pairs of developers are more likely to be connected
if they are both members of the same community, and less likely to be connected if they
do not share communities. In Figure 7, there are three communities (i.e., C1, C2 and
C3). Each set of nodes (i.e., developers) in the same community is densely connected
internally. We find that communities will form spontaneously within developers sharing
common interests in the comment network ; this mirrors a well-known phenomenon in email
social networks [47] and the “following” network [37]. However, the structure of the comment
network shows that developers are not always uniformly dispersed, as shown in Figure 7. It

15

BB

CC

DD

AA

C1
C2

C3

Figure 7: Community structure of the comment network

is likely that the most active reviewers belong to the biggest community, such as the top-2
most active nodes A and B belong to the same community C1. Therefore, we would like
our recommendation list to cover multiple communities, instead of always choosing from
the biggest communities. In our implementation, we extract the community structure from
the comment network using the Gephi [48] which integrates and optimizes a well-known
algorithm of community detection due to Blondel et al. [49]. The size of the communities
is represented by the number of developers it contains, and the activity of a reviewer is
reflected by the number of pull-requests s/he has reviewed in history (i.e., the in-degree of
a node in the comment network). The recommendation set is generated by following steps:

1) Rank the communities by their size (number of nodes) and omit the extremely small
communities involving less than 2 nodes;

2) Calculate the in-degree of nodes in the remaining communities;
3) Select out the highest in-degree nodes from these communities each time according to

the community-ranking until we have got enough number of reviewers.

3.6. Combination Recommendation

Because the reviewer expertise and the comment interest are two different dimensional
features, our conjecture is that the recommendation result would be improved if we integrate
them together.

When a new pull-request is submitted, we can get a ranking list of reviewer candidates
with expertise scores using the IR-based or FL-based approach. Then, the common interests
can be calculated by starting from the submitter in the comment network. In this paper, we
regard that the factor of common interest is as important as the factor of expertise in each

16

project. Thus, we standardize the each factor ranging from 0 to 1 separately, and then add
them together to recommend top-k reviewers for the new pull-request. In future, we plan to
deeply analyze the influence of each factor exerted on different kinds of projects (e.g., scale
of team size).

4. Empirical Evaluation

4.1. Data Collection

Projects and Pull-requests: In our previous work [12], we have composed a compre-
hensive dataset7 to study the pull-based model, involving 650,007 pull-requests across 919
main-line projects in GitHub (dump dated 10/11/2014 based on GHTorrent [50, 51]). In
this paper, we need the projects containing enough number of pull-requests for training and
test. Thus, we firstly identify candidate projects (154 projects) that received at least 1000
pull-requests throughout their history. Then, for each project, we gather the meta-data
(i.e., title, description, comments and files’ full path) of the pull-requests submitted from
01/01/2012 to 31/05/2014 as the training set, and the rest part (last 6 months) as the test
set. In order to learn the valid classifiers, we first do stop words removal and stemming over
the descriptions and titles. Then, we retain those pull-requests with more than 5 words.
In the test sets, a part of pull-requests are so tractable that need not be discussed by de-
velopers. Hence, we remain the pull-requests commented by at least 2 different reviewers
(excluding the submitter), because two reviewers find an optimal number during code re-
view [52, 53, 19]. Lastly, we filter unbalanced projects based on their sizes of training set
and test set, e.g., some young projects contain more pull-requests in the test set than in the
training set.
Reviewer Candidates: For each project, we identify the reviewer candidates as those
developers who have reviewed others’ pull-requests in our training set, and calculate the total
number of pull-requests they have commented. We remove the reviewers who occasionally
commented only one pull-request. In other words, we remain the candidates who have
reviewed at least two pull-requests in the training set. We assume that those candidates are
more likely to review pull-requests repeatedly, if they already do that over twice in the past.
Finally, a ranking list of the rest of candidates can be generated according to the number of
comments they posted before.

The final dataset consisted of 84 projects written in the most popular languages on
GitHub, including some of the most popular projects (e.g., rails, jquery and angular.js), as
shown in Table 1. The pool of reviewer candidates is relative large. For example, we need to
identity the suitable reviewers out of 197 candidates in the project angular.js. The minimum
number of pull-requests for a project is 527 in the training set (training pullreqs), 10 pull-
requests in the test set (test pullreqs), 13 reviewer candidates (candidates), and 331
different files (files) in that project have been touched by pull-requests.

7https://github.com/yuyue/pullreq_ci

17

Table 1: Summary statistics for 84 GitHub projects

Statistic num projects Mean St. Dev. Min Max

training pullreqs 84 1,251.464 759.275 527 4,816
training comments 84 6,156.762 4,662.763 1,478 22,088
test pullreqs 84 75.250 81.860 10 444
test comments 84 911.214 1,015.041 43 4,688
candidates 84 63.905 67.424 13 457
files 84 2,871.786 2,464.207 331 14,171

4.2. Evaluation Metrics

We evaluate the performances of our approaches over each project by precision, recall
and F-Measure which are widely used as standard metrics in previous work of bug assign-
ment [16, 54, 55, 56] and code-reviewer recommendation [57, 29]. In the reviewer recommen-
dation context, precision is the fraction of recommended reviewers that are relevant to the
actual reviewers, and recall is the fraction of the actual reviewers that are successfully rec-
ommended. F-Measure considers both the precision and the recall of the test. These metrics
are computed for different sizes of recommendation ranging from the top-1 to top-10. The
formulae for our metrics are listed below:

Precision =
| Rec Reviewers ∩ Actual Reviewers |

| Rec Reviewers |

Recall =
| Rec Reviewers ∩ Actual Reviewers |

| Actual Reviewers |

F −Measure =
2 ∗ Precision ∗Recall
Precision+Recall

(5)

5. Results and Discussion

In this section, we present our experiment results and analyze the results compared with
a baseline method.

5.1. Experiment Baseline

In reality, it is common that most of pull-requests are reviewed by a few of core developers.
To demonstrate the effectiveness of sophisticated approaches, we design a baseline method
that every new pull-request is assigned to the top-k most active developers ranked according
to the number of pull-requests they had reviewed before the creation time of the new pull-
request.

18

5.2. Recommendation Evaluation

Independent approaches: Firstly, we evaluate the SVM-based, IR-based, FL-based and
CN-based approaches independently compared to each other. Figure 8 exhibits the per-
formances of above approaches. Overall, all approaches are superior to the baseline, and
achieve the best performance in terms of F-Measure when recommending top-4 and top-5
reviewers. As shown in Figure 8(a), the IR-based approach performs best compared to other
methods, and achieves the highest F-Measure of 50.5% at top-4 recommendation. Except
for the IR-based approach, the F-Measures of other approaches are similar to each other.
The curve of SVM-based recommendation is lowest at the beginning, and then take the lead
from top-7 to top-10 recommendation compared with the CN-based and FL-based approach
in Figure 8(a). Furthermore, we show the performances of different approaches in detail via
the chart of precision versus recall. Each curve has a point for each recommendation from
top-1 to top-10 recommendation in Figure 8(b). The performance of SVM-based approach
is unstable from top-1 to top-6. It gets the worst result both precision and recall at top-1,
and then exceeds CN-based and FL-based approach at top-3 recommendation. However, it
descends sharply at top-4 recommendation. On the contrary, the curves of other approaches
decline steadily from top-1 to top-10, because there is a trade-off between precision and re-
call. The CN-based approach performs as good as the FL-based approach (the state-of-art
approach in code-reviewer recommendation), which achieves 64.3% of precision and 19.3%
of recall at top-1 recommendation, and 26.5% of precision and 77.3% of recall at top-10
recommendation.

1 2 3 4 5 6 7 8 9 10
Top-k Recommendation

0.25

0.30

0.35

0.40

0.45

0.50

0.55

A
v
g
.
F-

M
e
a
su

re

Baseline
SVM-based approach
IR-based approach
FL-based approach
CN-based approach

(a) F-Measure

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Avg. Recall

0.2

0.3

0.4

0.5

0.6

0.7

A
v
g
.
P
re

ci
si

o
n

Baseline
SVM-based approach
IR-based approach
FL-based approach
CN-based approach

(b) Precision vs. Recall

Figure 8: Performances of different approaches compared to the baseline

Mixed approaches: We evaluate the combination approaches among the IR-based, FL-
based approach (used to measure reviewer expertise) and CN-based (used to measure social
relations), compared to one of them individually. As depicted in Figure 9, the mixed ap-
proach of IR and CN achieves the best performance, which can get 67.3% of precision and

19

1 2 3 4 5 6 7 8 9 10
Top-k Recommendation

0.25

0.30

0.35

0.40

0.45

0.50

0.55

A
v
g
.
F-

M
e
a
su

re

IR+CN
FL+CN
IR
FL
Baseline

(a) F-Measure

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Avg. Recall

0.2

0.3

0.4

0.5

0.6

0.7

A
v
g
.
P
re

ci
si

o
n

IR+CN
FL+CN
IR
FL
Baseline

(b) Precision vs. Recall

Figure 9: Performances of mixed approaches compared to independent approaches

25.2% of recall at top-1 recommendation, and 33.8% of precision and 79.0% of recall at
top-10 recommendation. Similarly, the mixed approach of FL and CN make a significant
improvement compared to the FL-based approach and the baseline. Furthermore, both F-
Measure curves of mixed approaches (i.e., combing reviewer expertise and social relations)
decrease more slightly and smoothly than other approaches.
Multiple Contrast Test: In our previous work [8], we find there is no consistent per-
formance across all projects using the same approach. In addition, we can see that some
curves interweave together in Figure 8 and Figure 9. Thus, we need to assess whether the
distributions of the F-Measure are different between the single and mixed recommendation
approaches. Traditionally, comparison of multiple groups follows a two-step approach [58]:
first, a global null hypothesis is tested, and then multiple comparisons are used to test sub-
hypotheses pertaining to each pair of groups. Unfortunately, the global test null hypothesis
may be rejected while none of the sub-hypotheses are rejected, or vice versa [59]. Therefore,

the one-step approach, multiple contrast test procedure T̃ [60], is preferred in this paper.
This method produce confidence intervals which always lead to the same test decisions as
the multiple comparisons. We implement the procedure T̃ by nparcomp package [61] in
R to evaluate the F-Measure of all the approaches running on 84 projects in our dataset
from top-1 to top-10 recommendation. We set the Tukey (all-pairs) contrast to compare all
groups pairwise. Since we evaluate 6 different approaches (SVM, IR, FL, CN, IR+CN and
FL+CN), we conduct A2

6 = 15 comparisons and report the results in Table 2. For each pair
of groups, we analyse the 95% confidence interval to test whether the corresponding null
sub-hypothesis can be rejected. If the lower boundary of the interval is greater than zero for
groups A and B, then we claim that the metric value is higher in A than in B. Similarly, if
the upper boundary of the interval is less than zero for groups A and B, then we claim that
the metric value is lower in A than in B. Finally, if the lower boundary of the interval is less
than zero and the upper boundary is greater than zero, we conclude that the data does not

20

provide enough evidence to reject the null hypothesis.
In Table 2, all the p − values are over 0.05 in the first four rows, and there are flips

between lower boundaries (Lower < 0) and up boundaries (Upper > 0) in the fifth and
sixth rows. Thus, there is no statistical significant difference among SVM, IR, FL and CN
based recommendation. However, the two mixed approaches (i.e., IR+CN and FL+CN
in Table 2) represent statistical significant improvement compared to use those approaches
independently. For example, as shown in the last row of Table 2, the p − value < 0.05
and both lower boundary and upper boundary are greater than zero. It means that the
F-Measure of the mixed approach of IR+CN is significant higher than the F-Measure of
CN-based approach. Likewise, since the p − value < 0.05 and both lower boundary and
upper boundary are less than zero, as shown in the next-to-last row, the F-Measure of IR
alone is significant lower than the F-Measure of IR+CN combination.

Table 2: Results of multiple contrast test procedure

Group A vs. B Estimator Lower Upper Statistic p.Value

FL vs. CN 0.009 -0.032 0.051 0.651 0.987e− 01
SVM vs. CN 0.004 -0.037 0.045 0.291 9.997e− 01

IR vs. FL 0.023 -0.018 0.065 1.587 0.607e− 01
SVM vs. FL -0.005 -0.047 0.037 -0.357 0.992e− 01
IR vs. CN 0.033 -0.008 0.073 2.292 0.197e− 01

SVM vs. IR -0.028 -0.069 0.013 -1.969 0.360e− 01
IR+CN vs. FL+CN 0.026 -0.011 0.062 2.014 0.334e− 01

FL vs. FL+CN -0.079 -0.118 -0.038 -5.582 2.696e− 07
FL+CN vs. CN 0.088 0.049 0.127 6.431 1.034e− 09
IR vs. FL+CN -0.056 -0.095 -0.016 -4.035 7.813e− 04
IR+CN vs. FL 0.105 0.065 0.143 7.557 4.374e− 13

SVM vs. FL+CN -0.084 -0.123 -0.044 -6.027 1.518e− 08
SVM vs. IR+CN -0.110 -0.148 -0.071 -8.038 1.688e− 14

IR vs. IR+CN -0.081 -0.120 -0.043 -6.039 2.109e− 08
IR+CN vs. CN 0.114 0.076 0.152 8.489 4.441e− 16

5.3. Conclusions of Quantitative Analysis

Based on the experiment results and analysis above, we can draw our conclusions as
following:

• For RQ1, the IR-based recommendation is the most effective approach for pull-request
assignment among the traditional approaches based on our overall analysis.

• For RQ2, the CN -based approach gets the similar results compared to traditional
approaches. All approaches achieve the best performance at top-4 and top-5 recom-
mendation.

21

• For RQ3, our results show that the mixed approaches can achieve significant improve-
ment. We argue that combining social relations and reviewer expertise, complementary
to each other, is a novel and effective way for reviewer recommendation of pull-request.

5.4. Qualitative Analysis

We manually analyze 50 recommendation cases to deeply investigate the benefits of com-
bining developer expertise with social relations. We start from 5 popular projects with over
5,000 stars in GitHub, written in 5 different languages (i.e., rails8 in Ruby, cocos2d-x 9 in
C++, ipython10 in Python, zf2 11 in PHP, and netty12 in Java). Then, we randomly choose
10 pull-requests (from the test data) from every project as the samples for the qualitative
analysis. We can get an overall sense of the evaluation process, involving 1) what review-
ers usually concern with in pull-request evaluation compared to modern code review (e.g.,
finding defects is the first motivation during the modern code review [28]); 2) what chal-
lenges the recommendation approaches. By performing the random sampling, we are more
likely to avoid some researcher biases [62]. Next, as shown in Figure 8 and Figure 9, the
IR-based recommendation is the most effective approach for pull-request assignment among
all independent approaches, and the mixed approach of IR and CN achieves the greatest
improvement. Therefore, we focus on the top-10 recommended results generated from the
IR-based approach (used to measure reviewer expertise), the CN-based approach (used to
measure social relations), and the mixed approach of IR and CN, respectively. We ana-
lyze the properties and historical activities of those recommended reviewers, including their
social status (i.e., project owner, collaborator, external contributor or user), the amount
of pull-requests previously reviewed, the content of past comments, and the ranking posi-
tion in the corresponding recommendation approach. Finally, we discuss the advantages of
combining developer expertise with social relations to recommend reviewers, and perform
a purposeful sampling to validate the conclusions. We select out 5 specific cases where the
mixed approach works well (F-Measure over 60%), but the independent approaches get a
relative low performance (F-Measure below 40%), on average from top-1 to top-10.

First of all, reviewers generally evaluate the quality of a pull-request, including technical
details and coding standards. We use a few sampling comments from the project rails to
present our findings. To evaluate technical details, the reviewers discuss the correctness
of the parameters and functions involved in pull-requests. As shown in Example 1 and
Example 2, the reviewers ran the patches themselves, and then pointed out the technical
mistakes. Apart from manual testing, reviewers can also judge the initial quality of new pull-
requests based on the failures detected by a continuous integration system [11]. Additionally,
the code style, documentation, and test case inclusion would be checked to make sure the
new pull-requests meet their coding standards. As shown in Example 3 and Example 4,
the project prefers to accept clean, compact and well-documented contributions.

8https://github.com/rails/rails
9https://github.com/cocos2d/cocos2d-x

10https://github.com/ipython/ipython
11https://github.com/zendframework/zf2
12https://github.com/netty/netty

22

Example 1: “I tried that code, but when id:false is used, the generator isn’t
created so you can’t set the value of the generator.”
Example 2: “Previously I just had an initializer with the following line:
ActionController::Parameters.permit all parameters=true, but after your
change this does not work any more.”
Example 3: “Maybe we should keep the old code removed in the PR I pointed. It
seems to be simpler.”
Example 4: “Commented what is missing. After you change those things please
add a CHANGELOG entry and squash your commits.”

Second, a part of projects have dominant reviewers, who comment on a majority of
pull-requests. These dominant reviewers are usually the projects owners (e.g., takluyver in
ipython), or the core-collaborators (e.g., normanmaurer in netty). In addition to evaluating
the technical quality of a pull-request, they are also in charge of reassigning it to appropriate
reviewers (Example 5 from zf2), managing the project roadmap (Example 6 from rails),
and attracting new contributors (Example 7 from ipython).

Example 5: “Assigning to @EvanDotPro for review this PR.”
Example 6: “Good on leaving it out of 4-2-0 branch. 4-1-stable I’m not sure, but I
think it’s fine to backport.”
Example 7: “Merged-thanks, and congratulations on your first contribution.”

From our case study, we find that the recommendation approaches based on developers’
expertise achieve a relatively low hit-rate for the projects with multiple dominant reviewers.
Taking the IR-based approach as an example, the technical words in a reviewer’s local corpus,
such as module and function names (e.g., GUIReader, ActionController and send raw()), are
the most important features to characterize the expertise of that reviewer at semantic level.
These technical words for a reviewer are derived from the old pull-requests commented
by them in the past, for any kind of reason discussed above (e.g., managing the project
roadmap or attracting the contributors). When a reviewer has commented on many pull-
requests (i.e., when s/he becomes a dominant reviewer), the local corpus would contain
almost all the frequent technical words that appear in the corresponding project. Thus, if a
project has multiple dominant reviewers, all of them are likely to be recommended to a new
pull-request, and are likely to be comparably (highly) ranked by their expertise scores. The
performance of the IR-based approach would therefore not decrease if all of them indeed
participated in the review process for pull-requests. However, in fact, it is not uncommon
that the dominant reviewers alternate with each other to review some new pull-requests
which are not very complicated (e.g., a pull-request only changed a parameter location to
parameter filtered location to make the meaning of that variable clear). It means the
decision of those pull-requests (i.e., reject or merge into main branch) can be made by only

23

one or two of those dominant reviewers, which is more likely to happen in the project where
pull-requests are mostly reviewed by insiders. In this case, it is hard to distinguish who is
the most suitable reviewer for the pull-requests among all dominant reviewers in terms of
expertise, since the technical words in their local corpus are similar.

By analyzing the mixed approach, we find that the recommendation order of the IR-
based approach is optimized for the social factor. As described in Section 3.5, our novel
comment network can be used to measure the social relations among submitters and re-
viewers. When the technical factor (i.e., reviewers’ expertise) is not significant for assigning
pull-requests, the social relations among submitters and potential reviewers would provide
more information to help select out the highly relevant reviewers. We explain the improve-
ment by using the examples in the project ipython. There are 4 dominant reviewers in that
project (i.e., takluyver, minrk, ellisonbg and fperez), who have reviewed over 50% of the
pull-requests in the training set. When using the IR-based approach to recommend review-
ers for pull-requests in the test set, they are ranked at top-4 recommendation in 39.5% of
test cases (i.e., there are 114 test pull-requests in the test set of ipython. For 45 test cases
out of 114, those 4 dominant reviewers are ranked at top-4 using the IR-based approach).
Within those cases, the differences of expertise scores between those 4 dominant reviewers
are very small. For example, when recommending reviewers to pull-request:6267 13 submit-
ted by user:11835, takluyver is ranked at the first place with 1.000 score (the expertise score
has been standardized ranging from 0 to 1), minrk at the second place with 0.991, fperez at
the third place with 0.969, and ellisonbg at the fourth place with 0.894. After integrating
with the CN-based approach, minrk is adjusted to the first place from the second place and
ellisonbg is moved to the second place from the fourth place, since they have stronger social
relations with the submitter than takluyver and fperez have (i.e., compared to other review-
ers, minrk and ellisonbg have commented on more pull-requests submitted by user:11835,
or evaluated pull-requests more frequently together with user:11835 in the past). In real-
ity, only minrk and ellisonbg indeed did review that pull-request, where ellisonbg discussed
the technical details and minrk managed the project roadmap (adding the pull-request to
the 3.0 milestone). Therefore, the precisions from top-1 to top-4 recommendation for the
IR-based approach are 0.00, 0.50, 0.33, and 0.50 respectively. Compared to the IR-based
approach, the mixed approach achieves 1.00, 1.00, 0.66, and 0.50 of precisions from top-1
to top-4 recommendation. We also confirm the above finding by analyzing 5 specific cases
chosen by our purposeful sampling. There are 4 cases in which the performance of the mixed
approach is improved in a very similar way as the example discussed above. The other one
achieves improvement, because two outsiders are adjusted to the fourth and the seventh
place from the tenth and the place beyond the top-10 recommendation. It means there is
lack of evidence that assigning the pull-request to those two outsiders based on their prior
expertise in this project. The social interactions provide complementary information for our
recommendation in this case. We leave a comprehensive study, aiming to find more merits
of social factors and its combination, to future work.

13There is a unique ID for each pull-request and each user in our dataset.

24

5.5. Threats to Validity

In this section, we discuss threats to construct validity, internal validity and external
validity which may affect the results of our study.
Construct validity:

Firstly, the strength of social relations among contributors and reviewers is measured
based on the comment network. In addition, GitHub also provides other social information
(e.g., follow relations) that can use to model the social distance between developers. In
future work, we intend to explore how to use other types of social networks, e.g., follow-
fork or watcher-fork networks, to capture more complemented social factors among outside
contributors and core members.

Secondly, some technical details in reviewers’ comments (e.g., Example 2 in Section 5.4)
would be missing in the descriptions of pull-requests. However, all the technical words are
important to measure the expertise of a reviewer, when we utilize the ML-based and IR-
based approach. In the future, we plan to categorize the reviewers’ comments, and then add
the technical comments into our models.

Thirdly, our mixed approaches combine two dimensional features, i.e., developer exper-
tise and social relation, by adding them together to recommend reviewers for every project.
However, the technical and social factors would exert different influences on the projects
with different features, such as project size (e.g., scale of code size or team size) and pop-
ularity (e.g., number of external contributors). For example, a reviewer working on the
project with a well-modularized structure would be more likely to review those pull-requests
touching the specific modules that s/he is responsible for. The technical words (e.g., module
names) are useful to distinguish reviewers in this case, so we need to enhance the impact of
technical factors. In the future, we plan to study how to adjust the social or technical effect
in accordance with the characteristics of projects.
Internal validity:

Firstly, because some pull-requests have not been closed when we dumped the test set, a
part of following reviewers have not been taken into consider which may affect our experiment
results. If we exclude all open pull-requests, it is regretful that some of projects would contain
sufficient training pull-requests but have a lack of test pull-requests.

Secondly, for every project, we use an uniform process to generate the training set and
the test set, as described in Section 4.1. After that process, some projects remain a relative
small scale of pull-requests (e.g., 10 pull-requests in the test set). Thus, evaluating our
approaches on those projects would be introduce a bias compared to other projects.
External validity:

Our empirical findings are based on open source projects in GitHub, and it is unknown
whether our results can be generalized to the commercial projects or the open source projects
hosted on other social coding platforms (e.g., BitBucket).

Additionally, for a given project, there is a small part of the core developers who are in
charge of the final decision of pull-requests. They joined so many pull-requests’ discussions
in the training set that all the approaches tend to assign the new pull-request to these active
developers at top-1 recommendation. Hence, the workload of these active reviewers may not
be reduced. However, if more and more external contributors present their suggestions to

25

pull-requests, the social network based approach would refresh the weights of corresponding
edges, so new pull-requests would be assigned more balanced than before.

6. Conclusion and Future Work

Social coding is opening a new era of distributed software development and evolution. In
GitHub, the high volume of incoming pull-requests poses a serious challenge to project in-
tegrators. To improve the evaluation process of pull-requests, we propose various approaches
for reviewer recommendation, and evaluate their performances on 84 projects of GitHub
using precision, recall and F-Measure. The results show that 1) the traditional approaches
using in bug assignment and code-reviewer recommendation perform better than the base-
line, especially in top-4 recommendation; 2) our novel approach based on social network
analysis achieves similar F-Measure as traditional approaches; 3) the mixed approaches, in-
tegrating reviewers’ expertise and comment interests, represent significant improvements in
precision and recall, and the overall performances of mixed approaches are more stable than
using different approaches independently. The results indicate that combining the social
factors (e.g., common interests among developers) and technical factors (e.g., developersex-
pertise) is an efficient way to build recommender systems in social coding platforms, e.g.,
recommending reviewer, bug fixer or coding partner.

In this paper, the traditional approaches (i.e., SVM-based, IR-based and FL-based ap-
proach) is regarded as recommending reviewers to new pull-requests using the same dimen-
sional feature, i.e., technical expertise. Therefore, we separately combine two traditional but
effective approaches with CN-based recommendation (i.e., IR+CN and FL+CN) to study
the performances. In our future work, we plan to explore the combinations of IR+FL, and
IR+FL+CN. In the same dimension, the mixed approach of IR and FL may not be ex-
pected to rival with the combination of IR and CN, which using two dimensional features
(i.e., social and technical features). However, the mixed approach of IR, FL and CN maybe
achieve the best performance, or the same level of performance in statistics as the best
mixed approach in this paper. Besides, we intend to explore how to use other types of social
networks, e.g., watcher-fork networks, to capture more complemented social factors among
outside contributors and core teams.

7. Acknowledgement

This research is supported by the National Science Foundation of China (grants 61432020,
61472430 and 61502512) and the Postgraduate Innovation Fund of University of Defense
Technology (Grant No.B130607). We thank Premkumar Devanbu and Bogdan Vasilescu for
their very useful feedback on this paper.

References

[1] E. T. Barr, C. Bird, P. C. Rigby, A. Hindle, D. M. German, P. Devanbu, Cohesive and isolated
development with branches, in: FASE, Springer, 2012, pp. 316–331.

26

[2] G. Gousios, M. Pinzger, A. v. Deursen, An exploratory study of the pull-based software development
model, in: ICSE, ACM, 2014, pp. 345–355.

[3] G. Gousios, A. Zaidman, M.-A. Storey, A. Van Deursen, Work practices and challenges in pull-based
development: The integrator’s perspective, in: ICSE, IEEE, 2015, pp. 358–368.

[4] A. Begel, J. Bosch, M.-A. Storey, Social networking meets software development: Perspectives from
GitHub, MSDN, Stack Exchange, and TopCoder, IEEE Software 30 (1) (2013) 52–66.

[5] A. Mockus, R. T. Fielding, J. D. Herbsleb, Two case studies of open source software development:
Apache and Mozilla, TOSEM 11 (3) (2002) 309–346.

[6] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, G. Hsu, Open borders? Immigration in open source
projects, in: MSR, IEEE, 2007, pp. 6–6.

[7] Y. Yu, H. Wang, G. Yin, C. Ling, Reviewer recommender of pull-requests in GitHub, in: ICSME,
IEEE, 2014, pp. 609–612.

[8] Y. Yu, H. Wang, G. Yin, C. Ling, Who should review this pull-request: Reviewer recommendation to
expedite crowd collaboration, in: APSEC, IEEE, 2014, pp. 609–612.

[9] L. Dabbish, C. Stuart, J. Tsay, J. Herbsleb, Leveraging transparency, IEEE Software 30 (1) (2013)
37–43.

[10] R. Pham, L. Singer, O. Liskin, K. Schneider, Creating a shared understanding of testing culture on a
social coding site, in: ICSE, IEEE, 2013, pp. 112–121.

[11] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, V. Filkov, Quality and productivity outcomes relating to
continuous integration in GitHub, in: ESEC/FSE, IEEE, 2015, pp. 805–816.

[12] Y. Yu, H. Wang, V. Filkov, P. Devanbu, B. Vasilescu, Wait for it: Determinants of pull request
evaluation latency on GitHub, in: MSR, IEEE, 2015, pp. 367–371.

[13] G. Georgios, A. Bacchelli, Work practices and challenges in pull–based development: The contributor’s
perspective, Internal report, Delft University of Technology (2014).

[14] J. Tsay, L. Dabbish, J. Herbsleb, Let’s talk about it: Evaluating contributions through discussion in
GitHub, in: FSE, ACM, 2014, pp. 144–154.

[15] T. Patanamon, T. Chakkrit, K. Raula Gaikovina, Y. Norihiro, I. Hajimu, M. Ken-ichi, Who should
review my code? a file location-based code-reviewer recommendation approach for modern code review,
in: SANER, IEEE, 2015, pp. 141–150.

[16] J. Anvik, L. Hiew, G. C. Murphy, Who should fix this bug?, in: ICSE, ACM, 2006, pp. 361–370.
[17] J. Anvik, Automating bug report assignment, in: ICSE, ACM, 2006, pp. 937–940.
[18] M. Fagan, Design and code inspections to reduce errors in program development, in: M. Broy, E. Denert

(Eds.), Software Pioneers, Springer, 2002, pp. 575–607.
[19] P. C. Rigby, D. M. German, L. Cowen, M.-A. Storey, Peer review on open-source software projects:

Parameters, statistical models, and theory, ACM Trans. Softw. Eng. Methodol. 23 (4) (2014) 35:1–35:33.
[20] P. Bhattacharya, I. Neamtiu, Fine-grained incremental learning and multi-feature tossing graphs to

improve bug triaging, in: ICSM, IEEE, 2010, pp. 1–10.
[21] P. Bhattacharya, I. Neamtiu, C. R. Shelton, Automated, highly-accurate, bug assignment using machine

learning and tossing graphs, Journal of Systems and Software 85 (10) (2012) 2275–2292.
[22] D. Cubranic, G. C. Murphy, Automatic bug triage using text categorization, in: SEKE, 2004, pp.

92–97.
[23] G. Jeong, S. Kim, T. Zimmermann, Improving bug triage with bug tossing graphs, in: FSE, ACM,

2009, pp. 111–120.
[24] G. Canfora, L. Cerulo, Supporting change request assignment in open source development, in: SAC,

ACM, 2006, pp. 1767–1772.
[25] H. Kagdi, D. Poshyvanyk, Who can help me with this change request?, in: ICPC, IEEE, 2009, pp.

273–277.
[26] M. Linares-Vasquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, D. Poshyvanyk, Triaging incoming

change requests: Bug or commit history, or code authorship?, in: ICSM, IEEE, 2012, pp. 451–460.
[27] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, T. N. Nguyen, Fuzzy set and cache-based approach for

bug triaging, in: FSE, ACM, 2011, pp. 365–375.

27

[28] A. Bacchelli, C. Bird, Expectations, outcomes, and challenges of modern code review, in: ICSE, IEEE,
2013, pp. 712–721.

[29] G. Jeong, S. Kim, T. Zimmermann, K. Yi, Improving code review by predicting reviewers and ac-
ceptance of patches, Research on Software Analysis for Error-free Computing Center Tech-Memo
(ROSAEC MEMO 2009-006).

[30] V. Balachandran, Reducing human effort and improving quality in peer code reviews using automatic
static analysis and reviewer recommendation, in: ICSE, IEEE, 2013, pp. 931–940.

[31] P. Thongtanunam, R. G. Kula, A. E. C. Cruz, N. Yoshida, H. Iida, Improving code review effectiveness
through reviewer recommendations, in: CHASE, ACM, 2014, pp. 119–122.

[32] M. Cataldo, J. D. Herbsleb, K. M. Carley, Socio-technical congruence: a framework for assessing the
impact of technical and work dependencies on software development productivity, in: ESEM, ACM,
2008, pp. 2–11.

[33] M. John, F. Maurer, B. Tessem, Human and social factors of software engineering: workshop summary,
ACM SIGSOFT Software Engineering Notes 30 (4) (2005) 1–6.

[34] M. Zhou, A. Mockus, What make long term contributors: Willingness and opportunity in oss commu-
nity, in: ICSE, IEEE, 2012, pp. 518–528.

[35] B. Vasilescu, D. Posnett, B. Ray, M. G. J. van den Brand, A. Serebrenik, P. Devanbu, V. Filkov, Gender
and tenure diversity in GitHub teams, in: CHI, ACM, 2015, pp. 3789–3798.

[36] F. Thung, T. F. Bissyande, D. Lo, L. Jiang, Network structure of social coding in github, in: CSMR,
IEEE, 2013, pp. 323–326.

[37] Y. Yu, G. Yin, H. Wang, T. Wang, Exploring the patterns of social behavior in github, in: Proceedings
of the 1st International Workshop on Crowd-based Software Development Methods and Technologies,
CrowdSoft 2014, ACM, 2014, pp. 31–36.

[38] M. Gharehyazie, D. Posnett, B. Vasilescu, V. Filkov, Developer initiation and social interactions in
OSS: A case study of the Apache Software Foundation, Emp. Softw. Eng. (2014) 1–36.

[39] L. Dabbish, C. Stuart, J. Tsay, J. Herbsleb, Social coding in GitHub: Transparency and collaboration
in an open software repository, in: CSCW, ACM, 2012, pp. 1277–1286.

[40] J. Tsay, L. Dabbish, J. Herbsleb, Influence of social and technical factors for evaluating contribution
in GitHub, in: ICSE, ACM, 2014, pp. 356–366.

[41] G. Tsoumakas, I. Katakis, Multi-label classification: An overview., IJDWM 3 (2007) 1–13.
[42] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten, The weka data mining

software: an update, ACM SIGKDD explorations newsletter 11 (1) (2009) 10–18.
[43] J. Zobel, A. Moffat, Exploring the similarity space, in: ACM SIGIR Forum, Vol. 32, ACM, 1998, pp.

18–34.
[44] M. Bilenko, R. J. Mooney, Adaptive duplicate detection using learnable string similarity measures, in:

KDD, ACM, 2003, pp. 39–48.
[45] S. Even, Graph Algorithms, 2nd Edition, Cambridge University Press, New York, NY, USA, 2011.
[46] R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large databases, in: VLDB,

Morgan Kaufmann Publishers Inc., 1994, pp. 487–499.
[47] C. Bird, D. Pattison, R. D’Souza, V. Filkov, P. Devanbu, Latent social structure in open source projects,

in: FSE, ACM, 2008, pp. 24–35.
[48] M. Bastian, S. Heymann, M. Jacomy, Gephi: an open source software for exploring and manipulating

networks, in: ICWSM, 2009, pp. 361–362.
[49] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large

networks, Journal of Statistical Mechanics: Theory and Experiment 2008 (10) (2008) P10008.
[50] G. Gousios, The GHTorrent dataset and tool suite, in: MSR, IEEE, 2013, pp. 233–236.
[51] G. Gousios, B. Vasilescu, A. Serebrenik, A. Zaidman, Lean GHTorrent: GitHub data on demand, in:

MSR, ACM, 2014, pp. 384–387.
[52] C. Sauer, D. R. Jeffery, L. Land, P. Yetton, The effectiveness of software development technical reviews:

A behaviorally motivated program of research, IEEE Transactions on Software Engineering 26 (1) (2000)
1–14.

28

[53] P. C. Rigby, C. Bird, Convergent contemporary software peer review practices, in: FSE, ACM, 2013,
pp. 202–212.

[54] M. S. Zanetti, I. Scholtes, C. J. Tessone, F. Schweitzer, Categorizing bugs with social networks: A case
study on four open source software communities, in: ICSE, IEEE, 2013, pp. 1032–1041.

[55] X. Xia, D. Lo, X. Wang, B. Zhou, Accurate developer recommendation for bug resolution, in: WCRE,
IEEE, 2013, pp. 72–81.

[56] W. Wu, W. Zhang, Y. Yang, Q. Wang, Drex: Developer recommendation with k-nearest-neighbor
search and expertise ranking, in: APSEC, IEEE, 2011, pp. 389–396.

[57] J. B. Lee, A. Ihara, A. Monden, K.-i. Matsumoto, Patch reviewer recommendation in oss projects, in:
APSEC, IEEE, 2013, pp. 1–6.

[58] B. Vasilescu, A. Serebrenik, M. Goeminne, T. Mens, On the variation and specialisation of workload –
a case study of the Gnome ecosystem community, Emp. Softw. Eng. 19 (4) (2013) 955–1008.

[59] K. R. Gabriel, Simultaneous test procedures–some theory of multiple comparisons, The Annals of
Mathematical Statistics (1969) 224–250.

[60] F. Konietschke, L. A. Hothorn, E. Brunner, et al., Rank-based multiple test procedures and simulta-
neous confidence intervals, Electronic Journal of Statistics 6 (2012) 738–759.

[61] F. Konietschke, M. F. Konietschke, Package nparcomp.
[62] J. R. Fraenkel, N. E. Wallen, H. Hyun, How to Design and Evaluate Research in Education, McGraw-

Hill, 1993.

29

