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ABSTRACT Foundation models (e.g., ChatGPT, DALL-E, PengCheng Mind, PanGu-�) have demonstrated
extraordinary performance in key technological areas, such as natural language processing and visual
recognition, and have become the mainstream trend of artificial general intelligence. This has led more and
more major technology giants to dedicate significant human and financial resources to actively develop their
foundation model systems, which drives continuous growth of these models’ parameters. As a result, the
training and serving of these models have posed significant challenges, including substantial computing
power, memory consumption, bandwidth demands, etc. Therefore, employing efficient training and serving
strategies becomes particularly crucial. Many researchers have actively explored and proposed effective
methods. So, a comprehensive survey of them is essential for system developers and researchers. This
paper extensively explores the methods employed in training and serving foundation models from various
perspectives. It provides a detailed categorization of these state-of-the-art methods, including finer aspects
such as network, computing, and storage. Additionally, the paper summarizes the challenges and presents
a perspective on the future development direction of foundation model systems. Through comprehensive
discussion and analysis, it hopes to provide a solid theoretical basis and practical guidance for future research
and applications, promoting continuous innovation and development in foundation model systems.

INDEX TERMS Foundation model system, training, serving, network, computing, storage.

I. INTRODUCTION
The combination of deep learning techniques and powerful
computational capabilities continuously drives the develop-
ment of artificial general intelligence, ushering us into the era
of foundation models. However, achieving successful applica-
tions of foundation models is inseparable from comprehensive
support at the system level. A foundation model system is
built upon extensive training data, state-of-the-art models,
high-performance computing resources, and meticulously op-
timized training and serving algorithms. The primary purpose
of this system is to handle complex tasks with heightened

precision, such as GPT3 [1], LLaMA [2], PanGu-� [3],
PengCheng Mind [4] etc.

Foundation models have demonstrated extraordinary per-
formance in many tasks. This has led more and more major
technology giants to dedicate significant human and finan-
cial resources to actively develop their foundation model
systems, which increases the parameter size (Fig. 1). How-
ever, as the parameter size of foundational model systems
continues to grow, challenges are posed throughout the life-
cycle of foundation models, particularly during the training
and serving phases. In the training phase, the substantial
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FIGURE 1. Evolutionary Chart of Model Sizes Over Time.

parameter size results in significant demands for computation
and storage, creating immense pressure on hardware resources
and computational efficiency. Consequently, training these
models usually takes a long time and requires efficient uti-
lization of computational resources. In the serving phase,
with the widespread application of foundation models, the
significant increase in workload has become an unavoidable
challenge. This heightened demand may lead to issues for
serving systems, such as latency, performance decline, or
resource bottlenecks. Therefore, employing highly efficient
training and serving strategies becomes particularly crucial.
Many researchers have actively explored and proposed ef-
fective methods for training and serving. However, different
approaches have different application scenarios. So, it poses
a challenge for system developers who struggle to identify
the most suitable method for their problems. This challenge
is precisely why this paper was proposed.

Although there have been some surveys on foundation
models, Most surveys [5], [6], [7], [8], [9], [10], [11] pre-
dominantly focus on model design and downstream task
adaptation, with only a minority delving into foundation
model training. However, there are two notable shortcomings
in these training-centric surveys [12]: firstly, they lack in-
depth exploration from the perspective of updates in network,
computing, and storage; secondly, their primary emphasis is
on the training phase, neglecting considerations for the serv-
ing phase. Therefore, a comprehensive survey of foundation
model training and serving methods is essential for system
developers and researchers. Accordingly, this paper presents
an in-depth analysis of the state-of-the-art methods in this do-
main. This paper provides systems developers and researchers
valuable information through comprehensive analysis and
comparison. It assists them in making the right decisions when
confronted with the challenges associated with foundation
model systems.

II. BASIC CONCEPTS
This section comprehensively explains the fundamental con-
cepts in foundation model systems.

FIGURE 2. Lifecycle of the foundation model system.

A. THE LIFECYCLE OF THE FOUNDATION MODEL SYSTEM
The lifecycle of the foundation model system (Fig. 2) en-
compasses several crucial stages. ➊ Initially, the collection
and preprocessing of data ensure the quality and availability
required for model training. Subsequently, choosing an ap-
propriate model. ➋ Transitioning to the training phase, the
model undergoes adjustments through the backpropagation
algorithm, demanding substantial computational resources to
enhance its fitting capability to the training data. ➌ Model
evaluation and fine-tuning involve assessing performance with
test data and adjusting for improved generalization. Once the
model performs satisfactorily, it can be deployed into practical
applications. ➍ In the serving stage, effective deployment and
integration are crucial to ensuring harmonious collaboration
with existing systems. The primary focus in this phase cen-
ters on performance optimization, aiming to enhance serving
speed and reduce latency through strategies such as model
quantization and hardware acceleration.

B. TRANSFORMER FOR FOUNDATION MODELS
Transformer [13] is a deep learning model architecture com-
prised of encoders and decoders. Its core innovation lies in
the self-attention mechanism, an important component widely
utilized in foundational models. The main idea is to enable the
model to focus on dynamic associations between different po-
sitions, thereby better capturing long-distance interdependent
features in a sentence. In the current field of deep learn-
ing, the Transformer architecture has become the preferred
choice for numerous foundational models. This architecture
stands out for its outstanding performance and flexibility,
particularly in excelling at natural language processing tasks.
Many pivotal foundational models, such as GPT, LLaMA,
and PengCheng Mind, have adopted the design of the Trans-
former. The successful applications of the Transformer archi-
tecture demonstrate its universality in foundational models,
providing powerful modeling tools for various tasks.

III. MODEL TRAINING
In foundation model training, the most significant challenges
are the high demands for memory and computational power.
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TABLE 1. Overview of Network, Computing, and Storage Optimization Strategies in Foundation Model Training

Therefore, this section explores the implementation of opti-
mization strategies in foundation model training from three
perspectives, network, computing, and storage, to address
these challenges, as shown in Table 1.

A. ADVANCED TECHNIQUES IN PARALLEL COMPUTING
1) DATA PARALLELISM: ACCELERATING WORKLOADS
EFFECTIVELY
In data parallelism, each computational node possesses a
replica of the model and independently processes a subset
of data assigned to it. As shown in Fig. 3(a), each node uses
its model replica for forward and backward propagation and

gradient calculation. So, it requires gradient aggregation and
synchronization operations to update the global model pa-
rameters. This distributed approach significantly reduces the
computational load on individual nodes and speeds up the
training process by parallelizing the workload.

Distributed Data Parallel (DDP) [14] utilizes gradient
bucketing, computation-communication overlap, and gradi-
ent synchronization skipping to enhance the efficiency of
distributed data parallelism. In DDP, storing the entire model’s
parameters on each node simplifies training but significantly
increases memory demand, especially for foundation models.
To solve this problem, several solutions have been proposed.
Facebook introduced a technique called Fully Sharded Data
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FIGURE 3. Schematic diagram of parallelization strategies in foundation model systems. Different color blocks indicate different layers in the network.

Parallel (FSDP) [15] to tackle this issue. It divides model
parameters into smaller units, restoring the complete model
parameters through communication before computation and
discarding them immediately after the calculation. Similarly,
Xu et al. [16] proposed an automatic cross-replica sharding
technique for weight updates in data-parallel training to op-
timize memory and communication efficiency during model
training.

2) TENSOR PARALLELISM: SCALING FOUNDATION MODELS
Tensor parallelism is developed to address the challenges of
training foundation models that exceed the memory capac-
ity of a single device. In tensor parallelism (As shown in
Fig. 3(b)), the parameters and computations of the model are
divided (or sliced) across multiple computing devices, effec-
tively reducing the memory load on each device.

Megatron-LM [17] introduced an efficient form of 1D
tensor parallelism. For a given computational task, it in-
volves two GEMM operations and a GeLU non-linearity:
Y = GeLU(XA), Z = Y B. A can be partitioned into [A1, A2 ].
So each processor can independently compute the Yi:

[Y1,Y2] = [GeLU (XA1) , GeLU (XA2)] .

The second weight matrix B can be split into
[

B1
B2

]
, so Z is

equal to [Y1,Y2]
[

B1
B2

]
. With this approach, YiBi can be computed

separately on individual processors. In Transformer models,
the method of 1D tensor parallelism is effectively applied to
the computation of multi-head attention. This allows multiple
processing units to simultaneously calculate different atten-
tion heads without waiting for the results of others.

Optimus [18] proposed an efficient and scalable 2D tensor
parallelism. It is introduced based on the scalable universal
matrix multiplication algorithm (SUMMA) [19]. Compared to
1D tensor parallelism, 2D parallelism distributes the computa-
tional load across more processing units, significantly enhanc-
ing overall computational efficiency. Although 2D parallelism
offers a more fine-grained model partitioning approach, it
can introduce higher communication overhead. To solve this
problem, Tesseract [20] introduces the 2.5D tensor parallelism
mechanism, which is based on the development of the 2.5D
matrix multiplication [21]. Tesseract also develops different

parallelization schemes for the matrix multiplication portion
and the non-matrix multiplication portion, respectively, which
minimize the communication by leveraging additional device
requirements, thereby reducing the communication overhead
and lowering the memory required per GPU.

To balance computation, memory, and communication
loads effectively, 3D tensor parallelism [22] employs a 3-D
Parallel Matrix Multiplication algorithm to accurately map
and execute the computation process of the Transformer
model. This algorithm optimizes the use of computational
resources by intelligently distributing and computing different
parts of the input and weight matrices on designated proces-
sors.

3) PIPELINE PARALLELISM: ENHANCING FOUNDATION
MODEL SCALABILITY
In pipeline parallelism (Fig. 3(c)), the entire model is divided
into several stages, with each part allocated to an independent
GPU. However, a typical issue in pipeline parallel processing
is the idle time created due to waiting for dependent data
or processing results, commonly referred to as the bubble
phenomenon. Therefore, effectively reducing these bubbles
to enhance GPU utilization in pipeline parallelism becomes
a critical issue.

GPipe [23] is one of the first significant works to apply
the concept of pipeline parallelism to the training of foun-
dation models. However, GPipe requires waiting for each
micro-batch to complete forward propagation before starting
backward propagation, as shown in Fig. 4(a). Therefore, the
intermediate results (activations) produced during the forward
computation of each micro-batch need to be cached in mem-
ory for subsequent backpropagation, resulting in increased
memory usage. Meanwhile, this approach can also lead to the
creation of a significant number of bubbles.

So PipeDream [24] utilizes a one-forward-one-backward
(1F1B) strategy, as shown in Fig. 4(b), to solve these prob-
lems, in which the backward propagation process immediately
follows the completion of forward propagation for a micro-
batch. Varuna [25] improves upon PipeDream by performing
recomputation earlier during the backward pass, effectively
reducing bubbles and memory usage. However, the training
mode based on PipeDream introduces two types of parameter
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FIGURE 4. Schematic diagram of pipeline parallelization and 1F1B
pipeline parallelization.

inconsistency. PipeDream utilizes weight stashing and vertical
sync methods to address these issues. Instead, DAPPLE [26]
performs synchronization after completing the forward and
backward propagation for micro-batches. This synchroniza-
tion ensures the consistency of model parameters across
micro-batches, avoiding parameter inconsistency issues.

PipeDream utilizes a weight storage scheme to use the same
weight version in forward and backward propagation for the
same input. In the worst case, the number of stored weight
versions equals the pipeline depth. Therefore, this can result in
increased memory consumption. PipeDream-2BM [27] main-
tains only two versions of model weights within the pipeline.
By storing only two versions, it significantly reduces memory
usage. In Megatron-LM [17], pipeline parallelism is imple-
mented using an Interleaved Schedule approach. To reduce
pipeline bubbles, the Interleaved Schedule method assigns
each device to two sets of model chunks, allowing each device
to handle multiple stages. By utilizing the idle time of devices
that would otherwise be waiting for backward computation,
it can perform forward computation for the second set of
model chunks, effectively reducing the size of bubbles in
the pipeline. In contrast, Chimera [28] utilizes a bidirectional
pipeline by deploying multiple stages of the model on a sin-
gle GPU. Chimera minimizes idle time and maximizes GPU
utilization by interleaving the computation of forward and
backward propagation across different stages. Different from
Chimera, Hanayo [29] avoids the strategy of model replica-
tion. Instead, it employed a wave-like pipeline scheme, further
reducing bubble rates and enhancing performance. Similarly
employing a bidirectional pipeline, MixPipe [30] achieves
a better balance between pipeline and device utilization by
adjusting the number of micro-batches. Additionally, MixPipe
designs a hybrid scheduling strategy that combines 1F1B and
2F1B to achieve a more balanced memory usage, further de-
creasing bubble rates. To further reduce bubbles, AvgPipe [31]
employs the approach of multiple parallel pipelines, with each
pipeline handling a batch of data in each iteration. It trains
parallel models using an elastic averaging training method.
By processing more batches, AvgPipe can subdivide each
batch into finer-grained micro-batches, effectively reducing
the generation of bubbles.

In traditional pipelines, feeding a batch of samples with
equal lengths into the GPU for training is common. In
each batch, padding is applied to the input sequences to
accommodate the length of the longest sequence, leading
to evident memory wastage. Dynapipe [32] introduces a
method of dynamic micro-batching, where the core idea is
to ensure consistent sequence lengths among samples within
each micro-batch without requiring uniformity across micro-
batches. This approach reduces the padding overhead in
micro-batch processing, effectively lowering memory con-
sumption. To address memory balancing in the pipeline,
Bpipe [33] uses an activation balancing approach that ensures
that all GPUs can fully utilize comparable amounts of mem-
ory by transferring intermediate activations between different
GPUs during training. This innovation solves the problem that
some GPUs may face high memory pressure while others fail
to fully utilize the performance.

The continuous growth of the foundation’s scale has
triggered a substantial demand for training resources. In
addressing this issue, Bamboo [34] significantly reduces train-
ing costs by using preemptible instances optimally. When
idle, these instances are available at a lower cost but may
be preempted once users submit priority requests. Bamboo
optimizes the training pipeline by introducing redundant com-
putations to overcome this challenge. Specifically, each node
performs computations not only on its layer but also on ad-
jacent layers. Bamboo cleverly incorporates these additional
computations into redundant layers, thus providing greater
flexibility at a lower cost. The pipeline methods previously
discussed primarily involve a simplistic partitioning of a
model’s adjacent layers. This approach can lead to imbalanced
workload distribution across GPUs. As an improvement, FT-
Pipe [35] introduces mixed-pipe partitioning technology. It
employs a heuristic algorithm to allocate GPUs based on
any computational blocks in the computation graph, not just
adjacent layers.

4) EXPERT PARALLELISM: ENHANCING SPECIALIZED
COMPUTING CAPABILITIES
Expert parallelism, as depicted in Fig. 3(d), involves seg-
menting a specific part of a model into several specialized
sub-models, referred to as experts, and distributing them
across various computational devices. A gating network is
used to determine how to allocate input data efficiently among
these different experts.

Google’s GShard [36] introduces the MoE [37] structure for
the first time in training foundation Transformer-based mod-
els, aiming to address scalability issues in foundation model
training. To optimize the performance of the MoE model,
FastMoE [38] was proposed. It is the first high-performance
MoE open-source system that supports the PyTorch [39]
framework. FastMoE pairs the FFN layer in the Transformer
and adopts a finer parallelization strategy. This strategy sig-
nificantly speeds up the computation of the FFN part of
the Transformer model. During the training process of MoE

VOLUME 5, 2024 111



ZHOU ET AL.: TRAINING AND SERVING SYSTEM OF FOUNDATION MODELS: A COMPREHENSIVE SURVEY

systems, challenges such as dynamic load imbalance and
congested end-to-end communication need to be addressed.
To tackle these challenges, FasterMoE [40] proposes a dy-
namic shadowing method to handle load imbalances. By
dynamically adjusting task allocation and scheduling, sys-
tem resources are utilized more evenly, improving overall
efficiency. DeepSpeed-MoE [41] achieves significant break-
throughs in model parameter efficiency and performance cost
optimization through the novel Pyramid-Residual MoE ar-
chitecture and model compression techniques. Concurrently,
DeepSpeed-TED [42] presents a novel 3D hybrid parallel
algorithm that integrates data, tensor, and expert parallelism
to further scale the training of MoE models. In addition, it
incorporates memory optimization during the optimizer phase
and enhances communication efficiency to reduce redundant
data transfers.

On the other hand, to address the dynamic computational
workload of MoE models, the SmartMoE [43] system in-
troduces a unique expert placement strategy. Building upon
the classic combination of parallel strategies, this strategy
achieves dynamic load balancing. By intelligently adjusting
the deployment positions of various experts in the model,
the SmartMoE system effectively balances the computational
workload and improves overall system efficiency. In dis-
tributed data parallelism, contention may occur between the
all-to-all communication among MoEs and the all-reduce
operations, leading to prolonged training times. Therefore,
Lina [44] integrates tensor partitioning and pipelining to per-
form micro-operation scheduling, reducing blocking periods
in distributed training. All of the above approaches use an
expert-centric paradigm, keeping the expert in place and pro-
viding information to the expert through an all-to-all process.
However, Janus [45] proposes a new data-centric paradigm:
maintaining the data in place and moving the experts between
GPUs. Janus hides the communication time by scheduling
the requests of fetching experts in a fine-grained manner,
thus reducing cross-node traffic. Moreover, Janus develops a
topology-aware priority strategy, ensuring smooth intra-node
expert exchanges without resource contention.

5) HYBRID PARALLELISM: COMBINING THE POWER OF
DIFFERENT PARALLEL COMPUTING APPROACHES
Although various parallel technologies have shown signifi-
cant effects in theoretical and experimental research, a single
parallel strategy often fails to meet the growing computa-
tional demands and complexity in actual deep learning model
training. Therefore, hybrid parallelism becomes critical to ad-
dressing this challenge. The core of hybrid parallelism lies
in its ability to make customized strategy choices based on
the specific requirements of the task and available hardware
resources, thereby maximizing training efficiency while en-
suring model performance.

Combining multiple parallelization techniques for en-
hanced efficiency is common when conducting pre-training of
foundation models with parameter scales in tens to hundreds

of billions. Smith et al. [46] utilized a combination of pipeline
and tensor parallelism techniques to parallelize the Trans-
former block in Megatron-Turing NLG during their training
using DeepSpeed [47] and Megatron-LM. They expanded the
training scale by incorporating data parallelism, allowing for
training on more GPUs. To simplify the application and en-
hance the efficiency of parallelization strategies, Alpa [48]
integrates all parallelization strategies into a single frame-
work, establishing a compiler that automatically generates
optimal parallelization strategies. Similarly, Galvatron [49]
introduces a decision tree approach that leverages logical intu-
ition for pruning, thereby significantly cutting down the search
space. In addition, Galvatron employs a dynamic program-
ming search algorithm to determine the most effective hybrid
parallelization strategy.

B. GPU MEMORY OPTIMIZATION IN TRAINING
As the model size increases, the demand for GPU memory
grows exponentially. However, limited by hardware resources,
insufficient GPU memory often becomes a bottleneck, re-
stricting the scale and performance of the training. Therefore,
developing effective GPU memory optimization techniques
is essential to reduce memory consumption. Subsequent
sections will explore various innovative GPU memory opti-
mization techniques targeting these overheads.

1) CHECKPOINTING AND RECOMPUTATION FOR MEMORY
EFFICIENCY
In foundation model training, activation checkpointing tech-
nology reduces memory consumption by only saving key
activation values and uses recomputation technology to regen-
erate these values during backpropagation.

It was Chen et al. [50] who first proposed the concept of
activation checkpointing to tackle the high memory consump-
tion in foundation model training. By selectively removing
unneeded intermediate activations in the forward propagation
process and reconstructing them during backward propagation
through additional computations, this method significantly re-
duces GPU memory usage while allowing for the training of
more extensive networks. However, recomputation imposes
an additional time overhead. Therefore, it requires a trade-off
between training time and memory requirements. To address
this problem, Jain et al. proposed the Checkmate [51], which
models the problem to minimize computation time while en-
suring that task scheduling does not exceed the memory limit
of the device. The Checkmate effectively manages memory
usage by dynamically determining when to store activations
and recompute them. This enables the training of larger-scale
networks within the constraints of limited memory resources,
providing an effective solution to address memory limitations
in foundation model training.

2) OPTIMIZING WITH MIXED PRECISION TRAINING
Mixed Precision Training [52] is a technique used in founda-
tion models that simultaneously employs both low-precision
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and high-precision data types. Representing the training data
types as 16-bit floating-point numbers can reduce the amount
of computation while lowering the memory requirement.
However, the 16-bit floating-point representation will in-
evitably impact model convergence. Jia et al. [53] utilized the
LARS algorithm [54] to solve this problem. The algorithm
works by using different learning rates for different layers.
However, the test found that applying the LARS algorithm to
the training of half-precision models directly caused a great
loss of accuracy. This is because after multiplying by the
LARS coefficients, many parameters directly go to zero due
to the small range of the half-precision values, so Jia et al.
converted the half-precision parameters into single-precision
and then combined them with the LARS.

3) MEMORY SWAPPING TECHNIQUES IN OPTIMIZATION
The basic idea of memory swapping technology is to offload
the computational burden from the GPU to other devices,
such as CPUs or NVMe. It migrates some model parameters
and computational tasks from the GPU to other devices. This
relieves the GPU’s workload and enables it to handle the
remaining computational tasks more efficiently.

This idea was first introduced in vDNN [55], which aims to
reduce the pressure on the GPU memory by moving data that
does not require immediate access from the GPU to the CPU
memory. The implementation of vDNN represents an initial
application of swapping technology. However, with tech-
nological advancements, more sophisticated methods have
emerged. SwapAdvisor [56] employs genetic algorithms to
automatically search for the best data transfer strategy as an
alternative to manual judgment-based approaches. The benefit
of this automated approach is that it reduces the need for
human intervention, thereby increasing efficiency. In contrast,
Autotm [57] uses an integer linear programming approach to
search for suitable transfer strategies.

Stronghold [58] introduces a work window method, which
keeps only part of the model’s layers and parameters in the
GPU. Under this mechanism, the GPU processes only the
model layers within the work window, transferring the rest
to the CPU. The corresponding resources are only moved
from the CPU to the GPU when the work window shifts.
Additionally, Stronghold models the window size, and lever-
ages computation and communication overlap to hide the
communication costs between the CPU and GPU effectively.
Meanwhile, FlashNeuron [59] considers that offloading data
directly to the CPU might interfere with other tasks running
on the CPU and thus uses SSDs for data offloading and
prefetching. DeepUM [60] enhances Unified Memory (UM)
by incorporating prefetching techniques, effectively reduc-
ing the additional overhead caused by address translations
and page faults. Similarly, G10 [61] innovatively extends the
Unified Memory of GPUs, amalgamating GPU memory, host
memory, and flash memory into a unified memory space. This
fusion is achieved by storing flash memory page addresses in
the UM page table. Consequently, a unified page table can

point to host, GPU, or flash memory addresses. By preemp-
tively analyzing the lifecycle of tensors, G10 enables efficient
tensor swapping when needed, maximizing the overlap be-
tween GPU computation and tensor migration. Furthermore,
Patrickstar [62] proposes a memory management method
based on chunks, a series of consecutive tensors of the same
size. This method is similar to storing files in fixed-sized disk
blocks in a distributed file system. During training, chunks
with different lifecycles can share memory, reducing mem-
ory usage. Additionally, Patrickstar collects memory usage
information during the warm-up iteration phase to optimize
memory management.

Beyond the methods above, other works like ZeRO-Offload
and ZeRO-Infinity have also employed Memory Swapping
Techniques. To comprehensively introduce the ZeRO series
of research, this paper includes these additional works in the
next section.

4) ZERO REDUNDANCY OPTIMIZERS
Microsoft has developed a technology called Zero Redun-
dancy Optimization (ZeRO) [63] as the core of the DeepSpeed
distributed training framework. The core idea of ZeRO is
to reduce the GPU memory by sacrificing some of the
communication overhead. ZeRO divides the model param-
eters, gradients, and optimizer states into multiple parts,
with each GPU maintaining only a portion of them during
training and obtaining the rest when needed through an All-
Gather operation. Building upon the foundation laid by ZeRO,
ZeRO-Offload [64] leverages the idea of Heterogeneous DL
training [56] to alleviate the pressure on GPU memory by
effectively utilizing CPU memory. It divides the model pa-
rameters into two parts. One part of the parameters is kept in
GPU memory for efficient computation during forward and
backward propagation. The other part of the parameters is
offloaded to CPU memory and accessed when needed. Fur-
ther advancing these concepts, ZeRO-Infinity [65], similar to
ZeRO-Offload, leverages GPU, CPU, and NVMe memory to
enable the training of foundation models on limited resources
without the need for code refactoring. With ZeRO-Infinity,
the model parameters and gradients are still computed on the
GPU, while the optimizer state and activations are offloaded
to more suitable NVMe memory and CPU, respectively.

C. COMMUNICATION OPTIMIZATION
As demonstrated in the previous sections, communication
overhead is a significant bottleneck in the distributed training
of foundation deep learning models. This issue is especially
pronounced when synchronizing model parameters, gradi-
ents, and optimizer states across multiple GPUs or nodes.
The mainstream solutions focus on reducing the amount
of communication, optimizing communication patterns, and
enhancing the overlap between computation and communica-
tion.

For instance, Gan et al. developed an MPI-style commu-
nication library called Bagua [66]. The library provides a
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series of flexible and modular primitives to support state-
of-the-art system relaxation techniques of distributed train-
ing. Bagua achieves efficient implementation and scalability
through this design for various cutting-edge distributed learn-
ing algorithms. The method proposed by Wang et al. [67]
involves decomposing the original communication and com-
putational operations into more fine-grained tasks, thereby
achieving an overlap between communication and computa-
tion that effectively reduces data communication overhead.
Mobius [68] introduces a pipeline strategy for heterogeneous
memory, which overlaps communication with computation
by prefetching data from the CPU to the GPU memory for
the next stage. Additionally, it employs a Cross-mapping
strategy to reduce communication contention, further opti-
mizing overall performance. Simultaneously, Out-Of-Order
BackProp [69] maximizes the overlap between communica-
tion and computation by optimizing the sequence of com-
puting output gradients, weight gradients, and parameter
updates.

ZeRO achieves parallel computation by distributing model
weights, gradients, and optimizer states across multiple
GPUs, increasing communication volume and frequency.
As an improvement, ZeRO++ [70] employs weight quan-
tization, meaning model parameters are compressed into
smaller data types (such as INT8) in real-time before com-
munication, reducing the required communication bandwidth
and time. Moreover, ZeRO++ maintains a complete model
copy on each machine, enhancing intra-machine communi-
cation bandwidth. COCKTAILSGD [71] integrates various
communication compression techniques, cleverly overlapping
communication with local gradient computation. During the
communication steps, it combines three different compres-
sion techniques (random sparsification, top-K sparsification,
and quantization) to achieve more excellent compression than
each method individually. Lastly, Optimus-CC [72] utilizes
three techniques: compression of back-propagation gradients,
merging of embedding layer synchronization operations, and
selective phase compression to reduce inter-node communica-
tion volume. Optimus-CC selectively compresses based on the
communication needs of different training stages, thus mini-
mizing unnecessary communication overhead and enhancing
overall training efficiency.

IV. MODEL SERVING
This section discusses five principal areas of optimization
in foundation model serving systems: batch processing opti-
mization, sparse acceleration techniques, resource scheduling
optimization, GPU memory optimization, and multi-model
inference (As shown in Table 2). It presents various in-
novative techniques and technologies designed to enhance
processing efficiency, minimize latency, and improve memory
usage. These strategies are categorized within the “network-
computing-storage” optimization framework.
� Network optimization is accomplished through efficient

batch processing and resource scheduling, optimizing
data flow and task execution.

TABLE 2. Summary of Optimization Techniques in Foundation Model
Serving

� Computing optimization is characterized by multi-model
inference, enabling the efficient utilization of computa-
tional resources.

� Storage optimization involves GPU memory manage-
ment and the application of sparse acceleration tech-
niques, collectively reducing memory footprint and com-
putational overhead.

Integrating these “network-computing-storage” principles
ensures a comprehensive optimization approach, which is cru-
cial for the performance of foundation model serving systems.

A. BATCH PROCESSING OPTIMIZATION
Batch processing allows models to handle multiple requests
efficiently by grouping input data into batches. This method
allows for more efficient use of computational resources by
leveraging parallel processing capabilities, significantly im-
proving the throughput and reducing the latency of model
inferences. DVABatch [73] proposes a multi-entry and multi-
exit strategy that employs operations like new, split, and
stretch to dynamically customize batch sizes for different
stages of the model, thereby optimizing efficiency, through-
put, and reducing latency. In addition to this approach,
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Orca [74] introduces a selective batching mechanism that
strategically applies batch processing and padding to fully
connected layers, maximizing efficiency. Simultaneously, it
refrains from applying this method to attention layers, min-
imizing memory overhead. Furthermore, Orca presents an
iterative-level scheduling strategy that offers adaptability by
enabling batch size adjustments after each processing itera-
tion. The evaluation of Orca on Azure’s high-end hardware
may not necessarily apply to typical environments with lim-
ited resources. On the other hand, DVABatch’s testing on
NVIDIA Titan RTX GPUs, despite being more accessible,
failed to consider multi-GPU configurations.

B. SPARSE ACCELERATION TECHNIQUES
Sparse acceleration techniques play a crucial role in op-
timizing the performance of Transformer-based foundation
models when faced with limited computational and memory
resources. These methods leverage the inherent sparsity in
model parameters, attention mechanisms, and KV Cache to
prioritize computation and storage. By focusing on the most
influential components of the model and reducing the over-
head on less critical areas, sparse acceleration approaches
enable high model performance while accommodating de-
ployment in resource-constrained environments.

Addressing the computational intensity of self-attention
mechanisms in Transformers, Dai et al. [75] introduce a
method that leverages the intrinsic sparsity within self-
attention matrices. The method applies structured sparse
attention masks, refined through entropy-aware fine-tuning,
to concentrate computation on crucial attention parameters
extracted from the model’s attention distribution. These atten-
tion masks shape the parameters into patterns such as blocks
or stripes, enhancing computational efficiency. Another no-
table work is Deja Vu [76], which offers a strategic solution
by leveraging the concept of contextual sparsity. The proposed
approach effectively identifies and activates selective attention
heads and FFN parameters that are crucial in processing the
given input. The Deja Vu utilizes an MLP to predict the
critical attention heads and FFN parameters precisely. In cases
where the KV Cache retrieval fails, it triggers a recomputation
process. Another relevant work is that the H2O [77] method
suggests that in attention blocks, the cumulative attention
scores of tokens follow a power-law distribution, with only
a few tokens playing a pivotal role in generation. To conserve
memory, H2O retains only the KV Cache for these pivotal
tokens, which are identified as highly contributive KV Cache
based on their elevated cumulative attention scores. This ap-
proach substantially reduces the memory requirement while
retaining the essential KV Cache of the attention mechanism.

In low-resource scenarios on edge devices, both compu-
tation and memory are constrained. STI [78] partitions the
model into manageable shards. To balance accuracy and la-
tency, a central scheduler dynamically allocates shards at
optimal precision levels, taking into account their importance
and resource availability. In the realm of model quantization

acceleration, OliVe [79] presents the concept of Outlier-
Victim Pair (OVP) quantization. This approach recognizes
the importance of outliers for model accuracy, identifying
adjacent normal values, termed ’victim values’, that can be
pruned without significant performance degradation. OliVe
strategically retains outliers while selectively pruning adjacent
normal values, aligning this approach with hardware design
principles. Studies such as Deja Vu demonstrate that models
can maintain high accuracy even when subjected to 75% spar-
sity, indicating that performance is not directly proportional
to sparsity levels. Furthermore, the strategic implementation
of sparsity, as seen in the STI study, can decrease com-
putational requirements while preserving or even improving
model performance. This emphasizes the potential of sparsity
in optimizing performance within resource limitations without
significantly impacting task-specific results.

C. RESOURCE SCHEDULING OPTIMIZATION
Effective resource scheduling is essential in optimizing ser-
vice delivery. To effectively manage variable workloads in
GPU-based inference services, several systems incorporate
techniques such as multi-GPU optimization, dynamic task dis-
tribution, and advanced scheduling algorithms. These meth-
ods ensure adherence to Quality of Service (QoS) by mini-
mizing latency through operator fusion, adapting to demand
surges through model parallelism, and employing preemptive
and adaptive queuing to maintain throughput. DeepSpeed In-
ference [81] offers a multi-GPU inference solution designed
to handle foundation models while adhering to limited GPU
memory constraints. DeepSpeed Inference presents a tailored
pipeline-parallel schedule for autoregressive decoders, which
effectively reduces latency while harnessing the combined
power of GPU, CPU, and NVMe storage resources. Addi-
tionally, it incorporates operator fusion within Transformer
modules to optimize memory utilization and improve over-
all throughput. AlphaServe [83] utilizes model parallelism
in order to distribute the inference of foundation models
across multiple GPUs. This approach effectively mitigates
memory limitations and reduces latency. Additionally, Al-
phaServe implements a two-layer algorithm that facilitates
efficient cluster distribution and ensures compliance with
service-level objective (SLO) requirements. These processes
are automated within the Alpha framework. Taking optimiza-
tion further, FastServe [84] employs preemptive scheduling
with a skip-join Multi-Level Feedback Queue to reduce job
times and minimize request wait times. This approach ef-
ficiently directs jobs to the most suitable queue, avoiding
unnecessary transitions and delays. However, despite these so-
phisticated approaches, Current methods [85], [86] that make
decisions for each request individually often result in GPU
over-provisioning during short-term high loads, leading to
low resource utilization. To address this issue, Shepherd [87]
improves predictability by batching individual requests and
employs a two-stage algorithm. This algorithm utilizes load
data to partition the GPU cluster for service groups and incor-
porates preemptive scheduling to prioritize large batches that
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meet the service-level objective (SLO) for optimized through-
put.

In scenarios with strong latency requirements, some works
have addressed the issue. Clockwork [80] ensures predictable
DNN inference times, combating tail latency from diverse
tasks, hardware, and inputs to satisfy SLOs and minimize
delays. By limiting options at each computational layer for
uniform execution times and deploying a central controller
that assigns tasks with known durations, Clockwork maintains
strict timing assurances. REEF [82] is a system designed for
efficient and timely DNN inference on GPUs. It schedules
tasks in a way that prioritizes real-time tasks, quickly inter-
rupts other tasks if needed, and allocates computing units first
to real-time kernels, then distributes the remaining units to
best-effort kernels. And OSML [88] predicts QoS fluctua-
tions by analyzing architectural metrics. It consists of three
models: Model A is used to allocate resources and detect
scenarios where resources are running low, referred to as
“resource cliff” situations. Model B reallocates resources to
prioritize QoS-sensitive services, while Model C makes real-
time adjustments to allocation to ensure sustainable service
performance.

D. GPU MEMORY OPTIMIZATION IN INFERENCE
During the process of inference, the weight parameters of
a model significantly consume GPU memory. Various stud-
ies have concentrated on optimizing these model parameters.
For instance, FlexGen [90] is a throughput-oriented gener-
ative inference system that optimizes offloading strategies.
A standout characteristic of FlexGen is its zig-zag block
scheduling strategy. The zig-zag block scheduling strategy
explores the computation graph by advancing column-by-
column and reusing weights within each column to minimize
loading times. When the memory limits for activations are
reached, the process transitions to the next column, optimizing
GPU memory utilization and efficiently processing the model
through a zig-zag pattern. Additionally, it dynamically loads
and unloads activation values and KV Cache as required. In
another study, Jeong et al. [91] utilized Direct-Host-Access
(DHA) for direct GPU memory access, reducing latency for
layers like the embedding layer. They also applied Parallel
Model Transmission, dividing the model per GPU for parallel
loading via PCIe. The sections are then quickly transferred to
the primary GPU using NVLink, optimizing layer execution.

Inference of foundation models faces challenges when it
comes to GPU memory limits, particularly due to the in-
creased size of the KV Cache as token counts grow, which
can lead to potential memory overflows. To address this is-
sue, frameworks often limit iteration lengths and pre-allocate
memory for the KV Cache. However, these measures can
result in memory fragmentation and hinder the efficiency
of inference. Several techniques have been proposed to op-
timize this aspect. The PageAttention mechanism proposed
by vLLM [92] addresses the issues of GPU memory over-
allocation and fragmentation. It accomplishes this by emu-
lating OS page table mapping and segmenting GPU memory

into blocks. A block mapping table is then used to ensure
logically sequential but physically discrete storage. This dy-
namic approach effectively meets the demand of the KV
Cache, reducing memory fragmentation and improving infer-
ence throughput. Drawing inspiration from the virtual nature
of operating systems, The gpulet [89] concept introduces an
abstraction for partitioning GPUs, creating virtual GPUs that
possess a fraction of the physical GPU resources. The pro-
posed multidimensional search-based scheduling framework
optimizes GPU tasks by considering data batch sizes along
with the temporal and spatial sharing of resources.

E. MULTI-MODEL INFERENCE
Multi-model inference involves utilizing multiple models for
serving. An important research question in this context is
how to effectively combine these diverse models and op-
timize resource allocation to achieve optimal performance.
PetS [93] introduces a multi-task Parameter Efficient Trans-
formers (PET) framework that fine-tunes a shared core model
with task-specific Adapters [94], enabling unified task pro-
cessing while saving memory and simplifying deployment.
In the context of hierarchical models ranging from small to
large, one approach is presented by Tabi [95]. It employs
well-calibrated confidence scores using temperature scaling
to determine whether a query can be promptly resolved us-
ing the smaller model or if it should be escalated to the
larger model. For escalated queries, Tabi reduces system
overhead by employing attention-based word pruning and a
weighted ensemble approach. Another technique introduced
by Google Research is Speculative Decoding [96], which uti-
lizes a smaller model to generate tokens sequentially while
a larger model concurrently verifies the correctness of each
token in parallel. This approach allows for the generation
of multiple tokens in a single iteration of the larger model.
LLMCad [97] differs from Google’s Speculative Decoding
by employing a tree-based token generation approach that
facilitates the concurrent evaluation of multiple tokens. To ac-
complish this, LLMCad utilizes a smaller language model to
construct a comprehensive vocabulary tree comprising various
word paths. The larger LLM then efficiently and concurrently
evaluates these paths.

In a resource-constrained environment, maintaining per-
formance in multi-model inference necessitates strategic re-
source management. One approach to achieve this is through
the deployment of resource isolation. Another strategy is dy-
namic allocation, which adjusts resources in real-time based
on usage to optimize system efficiency. A critical facet of
this strategy is priority scheduling, which entails the dynamic
adjustment of resource allocation based on task urgency,
business priorities, and other indicators. This ensures that
crucial tasks have sufficient resources to meet performance
requirements. Additionally, load balancing is employed as an
intelligent request distribution mechanism to evenly assign
workload across various model instances. This not only pre-
vents individual models from becoming overloaded but also
enhances overall resource utilization.
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V. CHALLENGE AND FUTURE DIRECTIONS
➊ Privacy protection: Regarding privacy protection, the key
challenge for foundation models lies in the potential unautho-
rized collection, usage, and inadvertent disclosure of personal
information. Future efforts should focus on incorporating pri-
vacy protection mechanisms into the design and application of
models to ensure robust safeguards for user data, preventing
unauthorized use and disclosure threats.

➋ Security: Foundation models exhibit a relatively weak
ability to defend against malicious attacks, making them sus-
ceptible to activities such as command injection and prompt
injection. Particularly in critical domains such as politics,
military, finance, and healthcare, any form of malicious attack
could severely affect the stability of national society and the
safety of people’s lives and property. Therefore, future efforts
must focus on enhancing security measures for foundation
models to ensure their reliable protection in critical domains.

➌ Energy sustainability: Foundation systems face a sig-
nificant challenge in terms of energy sustainability during
both training and serving. This entails a high demand for
substantial computational resources, which may result in ad-
verse environmental impacts. The key to future efforts lies
in enhancing the energy efficiency of models and adopting
more energy-efficient hardware innovations. Through inno-
vative green computing and sustainable development, these
efforts aim to make foundation model systems more environ-
mentally friendly and efficient, reducing energy dependence
and mitigating environmental impact.

VI. CONCLUSION
The primary contribution of this paper is that it offers a com-
prehensive view on the training and serving of foundational
model systems, especially through its detailed analysis in the
aspects of networking, storage, and computing. In the train-
ing section, it discusses various parallel computing strategies.
Each strategy has unique advantages and application scenar-
ios. Additionally, it explores GPU memory optimization and
communication optimization techniques. The serving section
discusses key technologies such as batch processing, sparse
acceleration, resource scheduling, GPU memory optimiza-
tion, and multi-model inference. These strategies are essential
for ensuring the efficiency and practicality of the foundation
model system in real-world scenarios. In summary, the train-
ing and serving of foundation model systems is an evolving
field. With the emergence of new technologies, it anticipates
solving more challenges and further advancing the field of
artificial general intelligence.

REFERENCES
[1] T. Brown et al., “Language models are few-shot learners,” in Proc. Adv.

Neural Inf. Process. Syst., 2020, pp. 1877–1901.
[2] H. Touvron et al., “Llama: Open and efficient foundation language

models,” 2023, arXiv:2302.13971.
[3] X. Ren et al., “PanGu-�: Towards trillion parameter language model

with sparse heterogeneous computing,” 2023, arXiv:2303.10845.
[4] “PengCheng Mind,” Peng Cheng Laboratory. [Online]. Available: http:

//cloudbrain.pcl.ac.cn/

[5] Y. Chang et al., “A survey on evaluation of large language models,”
ACM Trans. Intell. Syst. Technol., pp. 1–45, 2023.

[6] Hadi et al., “Large language models: A comprehensive survey
of its applications, challenges, limitations, and future prospects,”
Authorea Preprints, 2023.

[7] H. Zhao et al., “Explainability for Large Language Models: A Sur-
vey,” ACM Trans. Intell. Syst. Technol., vol. 15, no. 2, pp. 1–38,
2023.

[8] X. Wang et al., “Large-scale multi-modal pre-trained models: A com-
prehensive survey,” Mach. Intell. Res., vol. 20, no. 4, pp. 447–482,
2023.

[9] S. Yin et al., “A survey on multimodal large language models,” 2023,
arXiv:2306.13549.

[10] Y. Zhou et al., “Vision Language Applications: A Survey,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2023,
pp. 826–842.

[11] C. Zhou et al., “A comprehensive survey on pretrained foundation
models: A history from bert to chatgpt,” 2023, arXiv:2302.09419.

[12] W. X. Zhao et al., “A survey of large language models,” 2023,
arXiv:2303.18223.

[13] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 6000–6010.

[14] S. Li et al., “PyTorch distributed: Experiences on accelerating data
parallel training,” 2020, arXiv:2006.15704.

[15] Y. Zhao et al., “PyTorch FSDP: Experiences on scaling fully sharded
data parallel,” in Proc. VLDB, 2023, pp. 3848–3860, arXiv:2304.11277.

[16] Y. Xu et al., “Automatic cross-replica sharding of weight update in data-
parallel training,” 2020, arXiv:2004.13336.

[17] D. Narayanan et al., “Efficient large-scale language model training on
GPU clusters using megatron-Lm,” in Proc. Int. Conf. High Perform.
Comput., Netw., Storage Anal., 2021, pp. 1–15.

[18] Q. Xu and Y. You, “An efficient 2D method for training super-large deep
learning models,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.,
2023, pp. 222–232.

[19] R. A. Van De Geijn et al., “SUMMA: Scalable universal matrix mul-
tiplication algorithm,” Concurrency: Pract. Experience, vol. 9, no. 4,
pp. 255–274, 1997.

[20] B. Wang et al., “Tesseract: Parallelize the tensor parallelism efficiently,”
in Proc. Int. Conf. Parallel Process., 2022, pp. 1–11.

[21] E. Solomonik et al., “Communication-optimal parallel 2.5 D matrix
multiplication and LU factorization algorithms,” in Proc. Eur. Conf.
Parallel Process., 2011, pp. 90–109.

[22] Z. Bian et al., “Maximizing parallelism in distributed training for huge
neural networks,” 2021, arXiv:2105.14450.

[23] Y. Huang et al., “Gpipe: Efficient training of giant neural networks using
pipeline parallelism,” in Proc. Adv. Neural Inf. Process. Syst., 2019.

[24] D. Narayanan et al., “PipeDream: Generalized pipeline parallelism for
DNN training,” in Proc. 27th ACM Symp. Operating Syst. Princ., 2019,
pp. 1–15.

[25] S. Athlur et al., “Varuna: Scalable, low-cost training of massive deep
learning models,” in Proc. 17th Eur. Conf. Comput. Syst., 2022, pp. 472–
487.

[26] S. Fan et al., “DAPPLE: A pipelined data parallel approach for train-
ing large models,” in Proc. 26th ACM SIGPLAN Symp. Princ. Pract.
Parallel Program., 2021, pp. 431–445.

[27] D. Narayanan et al., “Memory-efficient pipeline-parallel DNN train-
ing,” in Proc. Int. Conf. Mach. Learn., 2021, pp. 7937–7947.

[28] S. Li et al., “Chimera: Efficiently training large-scale neural networks
with bidirectional pipelines,” in Proc. Int. Conf. High Perform. Comput.,
Netw., Storage Anal., 2021, pp. 1–14.

[29] Z. Liu et al., “Hanayo: Harnessing wave-like pipeline parallelism for
enhanced large model training efficiency,” in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal., 2023, pp. 1–13.

[30] W. Zhang, B. Zhou, X. Tang, Z. Wang, and S. Hu, “MixPipe: Efficient
bidirectional pipeline parallelism for training large-scale models,” in
Proc. 60th ACM/IEEE Des. Automat. Conf., 2023, pp. 1–6.

[31] Z. Chen et al., “Elastic Averaging for Efficient Pipelined DNN Train-
ing,” in Proc. 28th ACM SIGPLAN Annu. Symp. Princ. Pract. Parallel
Program., 2023, pp. 380–391.

[32] C. Jiang et al., “DynaPipe: Optimizing multi-task training through dy-
namic pipelines,” in Proc. EuroSys, 2024, arXiv:2311.10418.

[33] T. Kim et al., “BPIPE: Memory-balanced pipeline parallelism for train-
ing large language models,” in Proc. Int. Conf. Mach. Learn., 2023,
pp. 16639–16653.

VOLUME 5, 2024 117

http://cloudbrain.pcl.ac.cn/
http://cloudbrain.pcl.ac.cn/


ZHOU ET AL.: TRAINING AND SERVING SYSTEM OF FOUNDATION MODELS: A COMPREHENSIVE SURVEY

[34] J. Thorpe et al., “Bamboo: Making preemptible instances resilient for
affordable training of large DNNs,” in Proc. 20th USENIX Symp. Netw.
Syst. Des. Implementation 2023, pp. 497–513.

[35] S. Eliad et al., “Fine-tuning giant neural networks on commodity hard-
ware with automatic pipeline model parallelism,” in Proc. USENIX
Annu. Tech. Conf., 2021, pp. 381–396.

[36] D. Lepikhin et al., “Gshard: Scaling giant models with conditional
computation and automatic sharding,” in Proc. Int. Conf. Learn. Rep-
resentations, 2021, arXiv:2006.16668.

[37] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,” Neural Computation, vol. 3, no. 1, pp. 79–87,
Mar. 1991.

[38] J. He et al., “Fastmoe: A fast mixture-of-expert training system,”
2021,arXiv:2103.13262.

[39] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Proc. Adv. Neural Inf. Process. Syst., 2019.

[40] J. He et al., “FasterMoE: Modeling and optimizing training of large-
scale dynamic pre-trained models,” in Proc. 27th ACM SIGPLAN Symp.
Princ. Pract. Parallel Program., 2022, pp. 120–134.

[41] Rajbhandari et al., “Deepspeed-Moe: Advancing mixture-of-experts
inference and training to power next-generation AI scale,” in Proc. Int.
Conf. Mach. Learn. 2022, pp. 18332–18346.

[42] S. Singh et al., “A hybrid tensor-expert-data parallelism approach to
optimize mixture-of-experts training,” in Proc. 37th Int. Conf. Super-
computing, 2023, pp. 203–214.

[43] M. Zhai et al., “SmartMoE: Efficiently training sparsely-activated mod-
els through combining offline and online parallelization,” in Proc.
USENIX Annu. Tech. Conf., 2023, pp. 961–975.

[44] J. Li et al., “Accelerating distributed MoE training and inference with
Lina,” in Proc. USENIX Annu. Tech. Conf., 2023, pp. 945–959.

[45] J. Liu et al., “Janus: A unified distributed training framework for sparse
mixture-of-experts models,” in Proc. ACM SIGCOMM Conf., 2023,
pp. 486–498.

[46] S. Smith et al., “Using deepspeed and megatron to train megatron-
turing NLG 530b, a large-scale generative language model,” 2022,
arXiv:2201.11990.

[47] J. Rasley et al., “Deepspeed: System optimizations enable training deep
learning models with over 100 billion parameters,” in Proc. 26th ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2020, pp. 3505–3506.

[48] L. Zheng et al., “Alpa: Automating inter-and intra-operator parallelism
for distributed deep learning,” in Proc. 16th USENIX Symp. Operating
Syst. Des. Implementation, 2022, pp. 559–578.

[49] X. Miao et al., “Galvatron: Efficient transformer training over mul-
tiple GPUS using automatic parallelism,” in Proc. VLDB, 2022,
arXiv:2211.13878.

[50] T. Chen et al., “Training deep nets with sublinear memory cost,” 2016,
arXiv:1604.06174.

[51] P. Jain et al., “Checkmate: Breaking the memory wall with optimal
tensor rematerialization,” in Proc. Mach. Learn. Syst., 2022, vol. 2,
pp. 497–511.

[52] P. Micikevicius et al., “Mixed precision training,” Proc. Int. Conf.
Learn. Representations, 2018, arXiv:1710.03740.

[53] X. Jia et al., “Highly scalable deep learning training system with mixed-
precision: Training imagenet in four minutes,” 2018, arXiv:1807.11205.

[54] Y. You et al., “Imagenet training in minutes,” in Proc. 47th Int. Conf.
Parallel Process., 2018, pp. 1–10.

[55] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vDNN: Virtualized deep neural networks for scalable, memory-
efficient neural network design,” in Proc. 49th Annu. IEEE/ACM Int.
Symp. Microarchitecture, 2016, pp. 1–13.

[56] C. C. Huang et al., “Swapadvisor: Pushing deep learning beyond the
GPU memory limit via smart swapping,” in Proc. 25th Int. Conf. Archi-
tectural Support Program. Lang. Operating Syst., 2020, pp. 1341–1355.

[57] M. Hildebrand et al., “AutoTM: Automatic tensor movement in hetero-
geneous memory systems using integer linear programming,” in Proc.
25th Int. Conf. Architectural Support Program. Lang. Operating Syst.,
2020, pp. 875–890.

[58] X. Sun et al., “Stronghold: Fast and affordable billion-scale deep learn-
ing model training,” in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal., 2022, pp. 1–17.

[59] J. Bae et al., “FlashNeuron:SSD-enabled large-batch training of very
deep neural networks,” in Proc. 19th USENIX Conf. File Storage Tech-
nol., 2021, pp. 387–401.

[60] J. Jung et al., “DeepUM: Tensor migration and prefetching in unified
memory,” in Proc. 28th Int. Conf. Architectural Support Program. Lang.
Operating Syst., 2023, pp. 207–221.

[61] H. Zhang et al., “G10: Enabling an efficient unified GPU memory and
storage architecture with smart tensor migrations,” in Proc. 56th Annu.
IEEE/ACM Int. Symp. Microarchitecture, 2023, pp. 395–410.

[62] J. Fang et al., “Parallel training of pre-trained models via chunk-based
dynamic memory management,” IEEE Trans. Parallel Distrib. Syst.,
vol. 34, no. 1, pp. 304–315, Jan. 2023.

[63] S. Rajbhandari et al., “Zero: Memory optimizations toward training
trillion parameter models,” in Proc. Int. Conf. High Perform. Comput.,
Netw., Storage Anal., 2020, pp. 1–16.

[64] J. Ren et al., “ZeRO-Offload: Democratizing billion-scale model train-
ing,” in Proc. USENIX Annu. Techn. Conf., 2021, pp. 551–564.

[65] S. Rajbhandari et al., “Zero-infinity: Breaking the gpu memory wall
for extreme scale deep learning,” in Proc. Int. Conf. High Perform.
Comput., Netw., Storage Anal., 2021, pp. 1–14.

[66] S. Gan et al., “Bagua: Scaling up distributed learning with system
relaxations,” 2021, arXiv:2107.01499.

[67] S. Wang et al., “Overlap communication with dependent computation
via decomposition in large deep learning models,” in Proc. 28th ACM
Int. Conf. Architectural Support Program. Lang. Operating Syst., 2023,
pp. 93–106.

[68] Y. Feng et al., “Mobius: Fine tuning large-scale models on commodity
GPU servers,” in Proc. 28th ACM Int. Conf. Architectural Support
Program. Lang. Operating Syst., 2023, pp. 489–501.

[69] H. Oh et al., “Out-of-order backprop: An effective scheduling tech-
nique for deep learning,” in Proc. 17th Eur. Conf. Comput. Syst., 2022,
pp. 435–452.

[70] G. Wang et al., “ZeRO : Extremely efficient collective communication
for giant model training,” 2023, arXiv:2306.10209.

[71] J. Wang et al., “CocktailSGD: Fine-tuning foundation models over
500 Mbps networks,” in Proc. Int. Conf. Mach. Learn., 2023,
pp. 36058–36076.

[72] J. Song et al., “Optimus-CC: Efficient large NLP model training with
3D parallelism aware communication compression,” in Proc. 28th ACM
Int. Conf. Architectural Support Program. Lang. Operating Syst., 2023,
pp. 560–573.

[73] W. Cui et al., “DVABatch: Diversity-aware multi-entry multi-exit batch-
ing for efficient processing of DNN services on GPUs,” in Proc.
USENIX Annu. Techn. Conf., 2022, pp. 183–198.

[74] G. I. Yu et al., “Orca: A distributed serving system for transformer-
based generative models,” in Proc. 16th USENIX Symp. Operating Syst.
Des. Implementation, 2022, pp. 521–538.

[75] S. Dai, H. Genc, R. Venkatesan, and B. Khailany, “Efficient trans-
former inference with statically structured sparse attention,” in Proc.
60th ACM/IEEE Des. Autom. Conf., 2023, pp. 1–6.

[76] Z. Liu et al., “Deja Vu: Contextual sparsity for efficient llms at inference
time,” in Proc. Int. Conf. Mach. Learn., 2023, pp. 22137–22176.

[77] Z. Zhang et al., “H2O: Heavy-hitter oracle for efficient generative in-
ference of large language models,” in Proc. Int. Conf. Mach. Learn.,
2023.

[78] L. Guo et al., “STI: Turbocharge NLP inference at the edge via elastic
pipelining,” in Proc. 28th ACM Int. Conf. Architectural Support Pro-
gram. Lang. Operating Syst., 2023, pp. 791–803.

[79] C. Guo et al., “OliVe: Accelerating large language models via hardware-
friendly outlier-victim pair quantization,” in Proc. 50th Annu. Int. Symp.
Comput. Architecture, 2023, pp. 1–15.

[80] A. Gujarati et al., “Serving DNNs like clockwork: Performance pre-
dictability from the bottom up,” in Proc. 14th USENIX Symp. Operating
Syst. Des. Implementation, 2020, pp. 443–462.

[81] R. Y. Aminabadi et al., “DeepSpeed-inference: Enabling efficient
inference of transformer models at unprecedented scale,” in Proc.
Int. Conf. High Perform. Comput., Netw., Storage Anal., 2022,
pp. 1–15.

[82] M. Han et al., “Microsecond-scale preemption for concurrent GPU-
accelerated DNN inferences,” in Proc. 16th USENIX Symp. Operating
Syst. Des. Implementation, 2022, pp. 539–558.

[83] Z. Li et al., “AlpaServe: Statistical multiplexing with model parallelism
for deep learning serving,” in Proc. 17th USENIX Symp. Operating Syst.
Des. Implementation, 2023, pp. 663–679.

[84] B. Wu et al., “Fast distributed inference serving for large language
models,” 2023, arXiv:2305.05920.

118 VOLUME 5, 2024



[85] D. Crankshaw et al., “InferLine: Latency-aware provisioning and scal-
ing for prediction serving pipelines,” in Proc. 11th ACM Symp. Cloud
Comput., 2020, pp. 477–491.

[86] F. Romero et al., “INFaaS: Automated model-less inference serving,” in
Proc. USENIX Annu. Techn. Conf., 2021, pp. 397–411.

[87] H. Zhang et al., “SHEPHERD: Serving DNNs in the wild,” in Proc. 20th
USENIX Symp. Netw. Syst. Des. Implementation, 2023, pp. 787–808.

[88] L. Liu et al., “Intelligent resource scheduling for Co-located latency-
critical services: A multi-model collaborative learning approach,” in
Proc. 21st USENIX Conf. File Storage Technol., 2023, pp. 153–166.

[89] S. Choi et al., “Serving heterogeneous machine learning models on
multi-GPU servers with spatio-temporal sharing,” in Proc. USENIX
Annu. Techn. Conf., 2022, pp. 199–216.

[90] Y. Sheng et al., “FlexGen: High-throughput generative inference of
large language models with a single GPU,” in Proc. Int. Conf. Mach.
Learn., 2023, pp. 31094–31116.

[91] J. Jeong et al., “Fast and efficient model serving using multi-GPUs
with direct-host-access,” in Proc. 18th Eur. Conf. Comput. Syst., 2023,
pp. 249–265.

[92] W. Kwon et al., “Efficient memory management for large language
model serving with pagedattention,” in Proc. 29th Symp. Operating
Syst. Princ., 2023, pp. 611–626.

[93] Z. Zhou et al., “PetS: A unified framework for parameter-efficient
transformers serving,” in Proc. USENIX Annu. Techn. Conf., 2022,
pp. 489–504.

[94] Z. Lin et al., “The adapter-bot: All-in-one controllable conversational
model,” in Proc. AAAI Conf. Artif. Intell., 2021, pp. 16081–16083.

[95] Y. Wang et al., “Tabi: An efficient multi-level inference system for
large language models,” in Proc. 18th Eur. Conf. Comput. Syst., 2023,
pp. 233–248.

[96] Y. Leviathan et al., “Fast inference from transformers via speculative
decoding,” in Proc. Int. Conf. Mach. Learn., 2023, pp. 19274–19286.

[97] D. Xu et al., “LLMCad: Fast and scalable on-device large language
model inference,” 2023, arXiv:2309.04255.

JIAHANG ZHOU is currently working toward the
Ph.D. degree with the School of Systems Sci-
ence and Engineering, Sun Yat-Sen University,
Guangzhou, China. His research interests include
software engineering, artificial Intelligence, and
foundation models system software.

YANYU CHEN is currently working toward the
master’s degree with the School of Informatics,
Xiamen University, Xiamen, China. His research
interests include large language models, knowl-
edge graph, and graph neural networks.

ZICONG HONG received the B.Eng. degree in
software engineering with the School of Data
and Computer Science, Sun Yat-sen University,
Guangzhou, China. He is currently working toward
the Ph.D. degree with the Department of Comput-
ing, The Hong Kong Polytechnic University, Hong
Kong. His research interests include blockchain,
edge/cloud computing, and federated learning.

WUHUI CHEN (Member, IEEE) received the
bachelor’s degree from Northeast University,
Shenyang, China, in 2008, and the master’s and
Ph.D. degrees from The University of Aizu,
Aizuwakamatsu, Japan, in 2011 and 2014, respec-
tively. From 2014 to 2016, he was a Research
Fellow with the Japan Society for the Promotion
of Science, Japan. From 2016 to 2017, he was
a Researcher with The University of Aizu. He is
currently an Associate Professor with Sun Yat-sen
University, Guangzhou, China. His research inter-

ests include edge/cloud computing, cloud robotics, and blockchain.

YUE YU (Member, IEEE) is currently a Researcher
with Pengcheng Lab and an Associate Professor
with the College of Computer, National Univer-
sity of Defense Technology, Changsha, China.
His research findings have been published on
IEEE TRANSACTIONS ON SOFTWARE ENGINEER-
ING, IEEE TRANSACTIONS ON INSTRUMENTATION

AND MEASUREMENT, CHI, CSCW, ICSE, FSE,
and ACL. His research interests include cloud
computing, software engineering, and artificial In-
telligence. He is a Technical Committee Member

of OpenI Community.

TAO ZHANG received the B.Eng. and M.S. de-
grees from the Nanjing Institute of Communication
Engineering, Nanjing, China, in 1994 and 1997,
respectively, and the Ph.D. degree from the PLA
University of Science and Technology in 2001. He
is currently a Professor with the School of System
Science and Engineering, Sun Yat-sen University,
Guangzhou, China. His main research interests in-
clude network security, system security, and CPS
resilience.

HUI WANG received the Ph.D. degree in sys-
tems engineering from the National University of
Defense Technology, Changsha, China, in 2005.
He is currently a Researcher with Peng Cheng
Laboratory, Shenzhen, China. His main research
interests include distributed machine learning, fed-
erated learning, computing power networks, NLP,
and application.

CHUANFU ZHANG received the M.Eng. and
Ph.D. degrees in mechatronics engineering and au-
tomation from the National University of Defense
Technology, Changsha, China, in 2002 and 2011,
respectively. He is currently an Associate Professor
with the School of Systems Science and Engineer-
ing, Sun Yat-sen University, Guangzhou, China.
His research interests include modern cryptogra-
phy application technology, information security
modeling, and simulation theory.

ZIBIN ZHENG (Senior Member, IEEE) received
the Ph.D. degree from the Chinese University of
Hong Kong, Hong Kong in 2011. He is currently
a Professor with the School of Computer Science
and Engineering, Sun Yat-sen University, China.
He has authored or coauthored more than 300
international journal and conference papers, in-
cluding nine ESI highly cited papers. His research
interests include blockchain, artificial intelligence,
and software reliability. He was the recipient of
several awards, including the Top 50 Influential

Papers in Blockchain of 2018, ACM SIGSOFT Distinguished Paper Award
at ICSE2010, and Best Student Paper Award at ICWS2010.

VOLUME 5, 2024 119



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


