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Near-Online Multi-pedestrian Tracking via
Combining Multiple Consistent Appearance Cues

Weijiang Feng, Long Lan, Yong Luo, Yue Yu, Xiang Zhang, and Zhigang Luo, Member, IEEE

Abstract—An important cue for multi-pedestrian tracking in
video is the consistent appearance of an individual for quite
a while. In this paper, we address multi-pedestrian tracking
by learning a robust appearance model from the paradigm
of tracking by detection. To separate detections of different
pedestrians while assembling detections of the same pedestrian,
we take advantage of the cue of consistent appearance and exploit
three types of evidence from the recent, past and near-future.
Existing online approaches only exploit the detection-to-detection
and sequence-to-detection metrics, which focus on the recent and
past appearance patterns respectively, while the future pedestrian
appearance is simply ignored. This drawback is remedied in this
paper by further considering the sequence-to-sequence metric,
which resorts to near-future appearance presentation. Adaptive
combination weights are learned to fuse these three different
metrics. Moreover, we propose a novel Focal Triplet Loss to make
the model focus more on hard examples than the easy ones. We
demonstrate that this can significantly enhance the discriminating
power of the model compared with treating every sample equally.
Effectiveness and efficiency of the proposed method is verified by
conducting comprehensive ablation studies and comparing with
many competitive (offline/online/near-online) counterparts on the
MOT16 and MOT17 Challenges.

Index Terms—multi-pedestrian tracking, sequence-to-sequence
metric, adaptive weights, Focal Triplet Loss

I. INTRODUCTION

MULTIPLE pedestrian tracking estimates the locations
of all concerned pedestrians in a scene and maintain

their identities across consecutive frames to produce their
respective trajectories. Multiple pedestrian tracking in videos
is one of the basic components in various computer vision
applications, such as video surveillance, autonomous driving,
human behavior analysis. Recent advances in object detection
[1], [2] make it possible to generate high-quality detection
responses of pedestrians in the form of bounding boxes. With
these bounding boxes, the currently predominant approaches to
multiple pedestrian tracking follow the paradigm of tracking-
by-detection [3], which studies how to associate discrete
bounding boxes distributed in different frames to produce a
complete trajectory for each individual. Through this kind of
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data association formulation, the multiple pedestrian tracking
community has made significant progress. However, multiple
pedestrian tracking is still a challenging task due to the pres-
ence of frequent occlusions and interactions, sudden missing
and appearing, abrupt appearance changes, pose variations,
real-time requirements, etc. The tracking-by-detection paradig-
m contains two critical components: the affinity model and the
data association. The first component measures how likely
two concerned detection hypotheses share the same identity.
Based on their similarity, the second component focuses on
how to link these detections into longer tracklets and finally
the full trajectories. To achieve a high-performance multiple
pedestrian tracking algorithm, both the components should be
carefully considered.

Data association is widely recognized as the backbone of
multiple pedestrian tracking. Many works have been done
in this field. Generally, according to different scenes, data
association can be categorized into two types, namely, offline
[4]–[8] and online approaches [9]–[11]. Online approaches,
which associate detections by only looking back to the pre-
vious frames, are well-suited for time-critical applications.
Due to the recursive nature, the association may be prone to
many identity switches and is difficult to correct, especially for
scenes where pedestrians frequently interact with each other.
On the other hand, offline methods, which utilize all video
frames, achieve a higher data association accuracy than their
online counterparts. However, the shortage of offline methods
is that they suffer a temporal delay. Some recent methods focus
on near-online methods [12], [13], which consider previous
frames and a few near-future frames, offering a compromise,
and achieving promising results at the cost of only a slight
temporal delay. Inspired by the benefits of near-online meth-
ods, we focus on near-online approaches in this paper.

As to affinity models, most methods emphasize the simi-
larity between detection and detection [14]–[16] or detection
and tracklet [10], [11], [17] (consisting of several already
associated detections), as shown in Figure 1. These two
settings are easy to achieve in the case of online tracking
mode, as the robust detections or tracklets can be readily
obtained. However, appearance modeling only utilizes the past
frames is not enough, the unexpected occlusions cut off the
link of pedestrians from successive frames and require the
trackers to look into the future frames. Similarity measurement
between sequences [18]–[20] commonly happens in the offline
case where short tracklets can be constructed beforehand
after given the whole frames. As the short tracklets are
generated in advance and supposed to be robust, there is no
rollback mechanism, even some unreasonable associations are
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Fig. 1. Three different kinds of affinity models. Detections in the left of the
vertical dotted line are from the past frames and form the tracker sequence.
Detections in the right of the vertical dotted line are from current and near-
future frames and form the hypothesis detection sequence. This figure shows
the information used by three affinity models.

observed in the later step. An obvious defect is that these pre-
constructed short tracklets may exist false positives, thus the
measurement between tracklets are unreliable. A very recent
work [19] exploits the cleaving of unreliable tracklets to obtain
reliable shorter tracklets that contains the same identity when
associating the tracklets into a much longer trajectory in the
offline setting. Inspired by the recent advances, we study
the near-online affinity modeling, which, on one hand, learns
sequence to sequence affinity with several future frames, as
shown by the light blue bracket in Figure 1, on the other hand,
adopts a rollback mechanism to reconstruct the short tracklets
if the detections contained in them take different pedestrian
identities.

Specifically, in this paper, we firstly design a novel
sequence-to-sequence appearance measurement in a near-
online tracking model to handle the frequent occlusions of
pedestrians. We assume that the first sequence is constructed
from the past and is robustly assigned to a specific pedestrian,
the second sequence is temporally generated from the near
future and can rollback into detections after the measurement
finished. By this setting, we thus can extend our affinity model
to measure appearance consistency of occlusion in the online
tracking case.

To construct a robust affinity model in the setting of
near-online. Our final affinity model incorporates similarity
from three different aspects. The detection-to-detection met-
ric utilizes the most recent and informative evidence, the
sequence-to-detection metric takes advantage of the historical
information, and the sequence-to-sequence metric looks ahead
to a few future frames. The explored three metrics work
together to enhance the discriminative power of the affinity
model. Specifically, the detection-to-detection metric measures
the pedestrian similarity from two nearby frames, it is the
simplest way of affinity model. The sequence-to-detection
metric draws support from the previous frames to enhance
the robustness as the appearance of an individual pedestrian
hold consistent for quite a while. The sequence-to-sequence
metric in our setting computes the similarity between tracked
sequence and detection sequence. The tracked sequence is

comprised of detection responses in the past frames, while
the hypothesis detection sequence contains detection responses
in the near future frames. We believe a specific pedestrian
will also keep its appearance in the near future even after oc-
clusion. Since detection-to-detection affinity model, sequence-
to-detection affinity model, and sequence-to-sequence affinity
model all provide cues from different perspectives for com-
puting similarity between trackers and detection responses,
we combine these three kinds of metrics into a synthesized
affinity model. In order to find an optimal combination of
these affinity models, we take advantage of Hedge algorithm
[21] to adaptively learn the combination weights.

When considering associating a tracker T with two detec-
tions d1 and d2 based on similarities s (T, d1) and s (T, d2)
(assuming T and d1 share the same identity, while T and d2
have different identities), it is crucially important for the affini-
ty models to let s (T, d1) be greater than s (T, d2). To achieve
this, we utilize triplet loss [22] to train our affinity models.
The triplet loss learns an embedding space for the pedestrian
appearance in which the distances (inverse of similarities)
between samples with the same identity are much shorter than
those of samples with different identities. What’s more, many
works [11], [23] have shown that mining hard training triplets
is beneficial to the triplet loss based models. For classification
tasks, researchers proposed Focal Loss [24] that automatically
down-weights the contribution of easy training samples and
makes the model focus more on hard samples. In this paper,
we apply the idea of Focal Loss to triplet loss and propose
Focal Triplet Loss to adaptively improve the contribution of
hard triplets training samples to the loss function.

Experimental results on challenging MOT16 and MOT17
benchmarks [25] demonstrate the effectiveness of the proposed
affinity model in our near-online setting, even only using the
simple greedy data association method [26].

Our main contributions in this paper can be listed:
1) Besides the conventional detection-to-detection and

sequence-to-detection affinity metrics, we propose a
sequence-to-sequence affinity metric that computes the
similarity between known track sequences and hypoth-
esis detection sequences comprised of detections in
the near future frames. Based on them, we optimally
combine the evidence provided by these three kinds
of affinity metrics into a synthesized appearance model
using the Hedge algorithm.

2) To assure the learned affinity metric has a better per-
formance to distinguish appearance similar pedestrians,
we extend Focal Loss to triplet loss and propose Focal
Triplet Loss to learn our affinity models and prove
the Focal Triplet loss really relieve the drifts of multi-
pedestrian tracking.

3) A comprehensive ablation experiment is exerted to study
the significance of each component of our appearance
model. Our final near online tracker even with the
simplest data association achieves a very promising
performance.

The rest of the paper is organized as follows: In section
2, we review the related literature. In section 3, we present
our tracking framework. Section 4 details the implementation,
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results of our approach on tracking benchmark challenge and
ablation analysis. Conclusions are drawn in Section 5.

II. RELATED WORKS

A. Affinity Models

A proper choice of affinity measure is crucial for achieving
promising tracking performance. Many works explicitly learn
affinity metrics. Siamese network [27] and triplet network [28]
are intuitive methods to measure the similarity between two
objects. Leal-Taixé et al. [14] introduce a two-stage learning
scheme to compare pairs of detections. They first train a
Siamese convolutional neural network (CNN) to learn local
spatial-temporal descriptors, then combine a set of contextual
features with the CNN output in a gradient boosting framework
to generate the final affinity metrics. Wang et al. [15] jointly
learn Siamese CNNs and temporally constrained metrics to
obtain an appearance-based tracklet affinity model. Son et
al. [16] propose Quadruplet CNN by generalizing Siamese
and triplet networks. Quad-CNN uses quadruplet losses to
enforce an additional constraint that makes temporally adja-
cent detections more closely located than the ones with large
temporal gaps. Ma et al. [19] propose a tracklet-to-tracklet
based Siamese Bi-Gated Recurrent Unit (GRU) to compute the
affinity between tracklets. Feng et al. [29] use a ReID network
that takes a modified version of GoogLeNet Inception-v4 as its
backbone CNN to compute detection-to-detection similarity.
Most of the previous works address only one type of metric
when measuring the similarity of appearance.

Recurrent Neural Networks (RNNs) are able to summarize
the general characteristics of images from the same tracklet
and have been successfully applied in multi-pedestrian track-
ing for tracklet-to-detection affinity measure. Milan et al. [30]
first train a Long Short-Term Memory (LSTM) in a fully end-
to-end manner for online multi-pedestrian tracking. Sadeghian
et al. [17] combines appearance, motion and interaction cues
into a unified RNN network. Kim et al. [10] propose a
novel Bilinear LSTM to improve the learning of long-term
appearance models.

In contrast to our approach, most of the aforemen-
tioned methods compute detection-to-detection or sequence-
to-detection affinity metrics. The works [18]–[20] that com-
pute the sequence-to-sequence affinity metric work in an
offline setting. While we use the sequence-to-sequence affinity
measure in a near online manner.

B. Near-online Data Association

Data association is an important procedure of all multi-
pedestrian tracking methods following the tracking-by-
detection paradigm. The data association is usually formulated
to various optimization problems. Most of offline approaches
are variants of graph segmentation problem, and many online
processing methods use Hungarian Algorithm [31] to solve
a bipartite graph matching problem. The near online data
association [12], [13] considers tracking between targets and
detections in a temporal window, and performs this process
repeatedly at every frame. In contrast, we use detections in the
future frames to enhance the affinity measure between existing

tracks and detections in the current frame, and conduct data
association only for detections in the current frame. In practice,
a greedy approach is often sufficient. In this paper, we simply
use a greedy scheme [26] and focus on obtaining a promising
affinity model.

C. Triplet Loss and Its Variants
Weinberger et al. [22] propose the large margin nearest

neighbor loss, and this is treated as the original triplet loss.
FaceNet [32] formally defines margin based triplet ranking
loss and its soft version. Balntas et al. [23] presents in-triplet
hard negative mining to ensure the hardest negative inside the
triplet is used for calculating the loss. Yi et al. [33] propose
to generate the triplet with the hardest positive and hardest
negative for each anchor sample in the min-batch. Zhang et al.
[34] propose the most similar idea to ours. They combine focal
loss with triplet loss for the task of person re-identification.
Specifically, they map the original distance in the Euclidean
space to an exponential kernel space, thus the hard triplets are
penalized much more than the easy ones.

In this paper, we propose the Focal Triplet Loss to auto-
matically increase the importance of the hard triplet samples
without reducing the importance of simple ones. Different
from [34], which has a large scale training datasets and thus
increases the importance of hard examples meanwhile reduces
the importance of easy examples for person re-identification,
we apply Focal Triplet Loss to the task of efficiently training
affinity models. Since the training dataset in our problem
is limited, Focal Triplet Loss in our work does not reduce
the importance of easy training samples compared with the
original triplet loss.

D. End-to-end Tracking Model
Recently, some researchers make efforts to model the objec-

t’s affinities and the data association across frames by an end-
to-end network, and obtain a promising tracking performance.
Deep Affinity Network (DAN) [35] jointly learns targets’
affinity and their association in a pair of frames in an end-
to-end fashion, where the appearance modeling accounts for
hierarchical feature learning of objects and their surroundings
at multiple levels of abstraction, and association is estimated
under exhaustive permutations of compact features. FAM-
Net [36] refines Feature extraction, Affinity estimation and
Multi-dimensional assignment in a single deep network. The
feature sub-network extracts features for detections, and the
affinity sub-network estimates the higher-order affinity for all
association hypothesis. All layers of FAMNet are designed
differentiable and thus optimized jointly. Ma et al. [37] pro-
pose an end-to-end Deep Association Network by combining
a CNN, a Motion Encoder, and a Graph Neural Network
(GNN). The CNN is utilized to extract appearance features of
bounding boxes, the Motion Encoder is designed to describe
the bounding box information such as position, size, and
shape, and the GNN replaces hand-crafted algorithm for graph
optimization.

In this paper, the appearance feature extraction sub-model
and affinity sub-model can be jointly designed by an end-to-
end network. However, due to the limited training examples in
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the MOT sequences, we separate the feature extraction sub-
model and the affinity sub-model by designing one feature
extraction sub-network and three affinity sub-networks rather
than three joint end-to-end “feature extraction - affinity”
networks. The three independent affinity sub-models with a
feature extraction sub-models obtain lower training costs than
training them end to end. We note the separately learned
affinity followed even by the simplest data association method
could achieve a very promising tracking performance.

III. THE PROPOSED FRAMEWORK

The performance of MOT algorithms relies heavily on
the quality of affinity measure. However, affinity models in
online approaches are prone to identity switches, because these
models only consider information up to the current frame.
On the other hand, affinity models in offline methods pose
a major limitation for time-critical applications. In this paper,
we devote to the near-online approach to make a compromise.

In our framework, we use trackers to record trajectories of
tracked objects. Each tracker is an ordered set of detections,
and we denote each tracker by T = {dt}, where dt =
[dt (x) , dt (y) , dt (w) , dt (h) , dt (img)], t is the frame index,
dt (x) , dt (y) , dt (w) , dt (h) are the top-left coordinate, width
and height of the corresponding bounding box of detection dt,
and dt (img) is its corresponding patch in image It.

A. Overall Design

Fig. 2. State transitions of trackers.

Each time a detection response d is associated by a tracker
T , the detection d will be appended to the tracker T . Trackers
may be in different states, as shown in Figure 2. Each object
detection will firstly be scored by the false alarm model to
determine whether this detection is a false alarm no not. We
will explain the false alarm model in section III-B. If the score
is greater than τs, we will initialize a tracker using this object
detection, and the state of the tracker is “tracked”. Despite the
false alarm model, false positive detections may still initialize
trackers. Thus, we use heuristics to remove these false trackers.
Specifically, if a tracker in “tracked” state continuously misses
τn2 frames, but the number of its associated detections is less
than τn1, then the state of the tracker will be converted to
“discarded”. Some objects may be occluded by other objects
or may leave the scene. The transition from “tracked” state to
“disappeared” state accounts for this situation. If the number
of associated detections of a tracker is no less than τn1, but
the tracker continuously misses τn3 frames, we will transition
the tracker from “tracked” state to “disappeared” state. When

conducting tracking, we only consider trackers in the “tracked”
state, and ignore trackers in the “disappeared” state. While the
final tracking results will include both the “tracked” trackers
and the “disappeared” trackers.

Figure 3 shows the main parts of our proposed near-online
multi-pedestrian tracking framework. We outline the whole
framework in the following steps:
• Step 1. Initially, the set of trackers T is empty and t = 0.
• Step 2. At time t + 1, the current detection set Dt+1

contains all detection responses in image It+1. For the j-
th detection djt+1, j ∈ [1, |Dt+1|] in Dt+1, a false alarm
model calculates its score, and detections whose score is
smaller than τs are removed from Dt+1.

• Step 3. For the j-th remaining detection djt+1 in Dt+1

(Here, we reuse this symbol to denote detection sets after
false alarms being removed), construct one hypothesis
detection sequence Dj

t+1 by looking forward K frames.
• Step 4. Use a Re-ID network to extract appearance

features for detections in trackers and detections in hy-
pothesis detection sequences.

• Step 5. Compute similarity Sdvd
(
dit, d

j
t+1

)
between the

last detection dit of tracker T i in “tracked” state and
detection djt+1 using detection-to-detection affinity mod-
el; Compute similarity Ssvd

(
T i, djt+1

)
between T i and

djt+1 using sequence-to-detection affinity model; Com-
pute similarity Ssvs

(
T i, Dj

t+1

)
between T i and hypoth-

esis detection sequence Dj
t+1 using sequence-to-sequence

affinity model. Then compute the synthesised similarity
score S

(
T i, djt+1

)
between tracker T i and detection

djt+1 with the optimal combination weights learned by
the Hedge algorithm.

• Step 6. Associate detections with trackers in “tracked”
state using greedy data association algorithm based on
similarity score S.

• Step 7. Append associated detections to their matched
trackers, and update states of Kalman Filters of these
trackers using the new matched detections. For trackers
in “tracked” state that do not match, predict their position
using their Kalman Filters. For isolated detection results,
initialize new trackers and corresponding Kalman Filters.
Then update the state of all trackers according to Figure
2.

• Step 8. Repeat steps from 2 to 7 for the next frame by
setting t = t+ 1, until no more frames arrive.

For simplicity, we do not contain the false alarm model and
Kalman Filters in Figure 3. Note that, we design the affinity
model in a near-online manner to improve its robustness by
introducing a sequence-to-sequence affinity model, but we
conduct the data association procedure in an online manner.

B. False Alarm and False Negative Model

False positive detection responses, or false alarms due to
the inaccuracy of object detectors are detrimental to multi-
pedestrian tracking in several ways. Firstly, false positives are
not desired for some applications such as crowd analysis or
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Fig. 3. The main parts of our proposed near-online multi-pedestrian tracking framework. Current time step is t+ 1. Based on detection dt+1, we construct
a hypothesis detection sequence D. Firstly, we extract ReID features for all detections in the tracker T and the hypothesis sequence D. Secondly, we use
the detection-to-detection affinity model, sequence-to-detection affinity model, and sequence-to-sequence affinity model to compute the synthesised similarity
score between tracker T and detection dt+1. All these three affinity models are trained with the novel Focal Triplet Loss. Thirdly, we conduct a greedy data
association based on the synthesized similarity score.

people motion analysis, where very reliable trajectories are
desirable. Secondly, trackers may be wrongly associated with
false alarms, and this causes undesirable identity switches,
false positives, and false negatives. Thirdly, it costs extra com-
putation and memory resources for both affinity models and
data association algorithms. Thus, it is a desirable property of
multi-pedestrian tracking approaches to remove false alarms.
Many researchers remove false alarms using heuristics, such as
dropping detections whose confidence scores are lower than a
threshold, or dropping tracked targets that do not associate
detection responses for a period of time, according to the
intuition that false positive objects cannot be consistently
detected. Xiang et al. [38] train a binary Support Vector
Machine (SVM) to predict whether a detection response is a
false alarm or not. The inputs of the SVM model include 2D
coordinates, width, height and score of detection responses.
Though these heuristics or SVM model do contribute to false
alarms’ removal, these methods are not robust enough to
handle complex scenes, since these methods neglect the spatial
information and appearance features of objects.

In this paper, to remove false alarms, we adopt the object
classification model proposed by Long et al. [39]. Their object
classifier uses a region-based fully CNN (R-FCN) [40] as
the backbone architecture, and employs the position-sensitive
region of interest pooling layer to explicitly encode spatial
information. For each detection response, the false alarm
model calculates a score, and we discard detection response
whose score is less than a threshold τs.

On the other hand, despite the advances of detectors, they
may still miss some detections, resulting in false negatives.
To reduce the number of false negatives caused by missed
detections, we propose to maintain a Kalman Filter for each
tracked pedestrian. For a pedestrian tracker without assigning
a detection at the current time step, it will predict a bounding
box using its corresponding Kalman Filter. In this way, we
significantly reduce the number of false negatives.

C. Appearance Representation with ReID Features

Appearance information is an important cue to build simi-
larity scores. Convolutional neural networks (CNN) have been
well studied and employed to encode appearance cue. These
deeply learned features by a data-driven approach typically
outperform traditional hand-crafted features. In this paper, to
learn the similarity function, we employ a CNN to extract
feature vectors from RGB images.

Multi-pedestrian tracking has a very close relationship with
the person re-identification. Generally, person re-identification
addresses the person matching cross different cameras while
most multi-pedestrian tracking methods only focus on a single
camera. Thus, appearance modeling in person re-identification
faces more challenges as many inconsistencies exist in differ-
ent cameras.

To better discriminate different pedestrians, we utilize the
ReID network [41] to extract appearance features for all
detection responses. The ReID network Hreid consists of
a sub-network of the first version of GoogLeNet [42] and
several branches of part-aligned fully connected layers. We
refer to [41] for more details on the network architecture.
Given an RGB image d (img) of detection d, the appearance
representation is formulated as freid = Hreid (d (img)).
In implementation, we extract appearance features from all
detections using the ReID network Hreid as a pre-processing
step, and store the appearance feature, rather than the RGB
image for each detection.

D. Affinity Models with Focal Triplet Loss

1) Triplet Loss Revisit: Triplet loss aims to train a model as
an embedding function gθ : Rd1 → Rd2. During the training
procedure, samples in training datasets are formed as a set
of triplets

{〈
ai, pi, ni

〉}
, where a is called anchor sample,

p is called positive sample, and n is called negative sample
respectively.

〈
ai, pi

〉
is a positive pair with the same identity,

and
〈
ai, ni

〉
is a negative pair with different identities. Let
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ds,t denote the Euclidean distance of sample s and t in the

embedding space, i.e., ds,t =

√
‖gθ (s)− gθ (t)‖2, then the

triplet loss for triplet 〈a, p, n〉 is formulated as:

LTri = max (da,p − da,n +m, 0) , (1)

where m > 0 is a predefined margin. Triplet loss tries to
make the distance in the embedding space between the anchor
sample a and positive sample p closer than that of the anchor
sample a and negative sample n, by at least margin m.

2) Focal Triplet Loss: One shortcoming of triplet loss is
that the number of triplets increase cubically with the number
of training dataset, making the training of all possible triplets
impractical. Thus, it is desirable to focus on hard examples.
Motivated by Focal loss [24] which automatically focuses the
model on hard examples and down-weights the contribution of
easy examples, we propose Focal Triplet Loss to automatically
up-weight the hard triplets without down-weight the easy
triplets. The formulation of Focal Triplet Loss for triplet
〈a, p, n〉 is as following:

LFTL = max (da,p − da,n +m, 0) ·max (da,p − da,n, 1)
λ, (2)

where λ ≥ 0 is the focusing parameter.
Similar to Focal Loss, we adds a scaling factor

max
(
dai,pi − dai,ni , 1

)λ
to the standard triplet loss. Hard

triplets mean that larger d (a, p) and smaller d (a, n). With
the help of the scaling factor, the loss of hard triplets will be
enlarged, while the loss of easy triplets keeps unchanged. The
harder the input triplets are, the more penalty they will get
relatively. As a result, Focal Triplet Loss can automatically
focus on “hard” triplets. Different from Focal Loss which
takes effect by reducing the relative loss of easy samples, the
proposed Focal Triplet Loss takes effect via increasing the
relative loss of hard samples.

Based on Focal Triplet Loss, we train our detection-
to-detection, sequence-to-detection, and sequence-to-sequence
affinity models.

Fig. 4. Network architecture for the detection-to-detection affinity model.

3) Detection-to-detection Affinity Model: This affinity mod-
el uses information up to the current frame t + 1. Assume a
tracker T i in “tracked” state with the latest detection dit, and
two detection responses djt+1, d

k
t+1 at current frame t + 1,

whose identities are the same as and different from that
of the tracker, we use the network architecture shown in
Figure 4 to compute the detection-to-detection similarity score
Sdvd

(
dit, d

j
t+1

)
, where we take dit as a proxy to T i. During

the training phase, inputs to the network are ReID features
of detections dit, d

j
t+1, d

k
t+1, and we consider these features as

anchor sample, positive sample and negative sample of a triplet
respectively. We use a three-layers multi-layer perceptron
(MLP) as the embedding function gθ.

Since the goal of the network is to compute similarity score
between each pair of tracker T i and detection djt+1, after
getting the distance ddit,d

j
t+1

between the latest detection dit

of tracker T i and the detection djt+1 in the embedding space
during the evaluation phase, we calculate the similarity score
between dit and djt+1 as follows,

Sdvd

(
dit, d

j
t+1

)
= exp

(
−ddit,djt+1

)
. (3)

Fig. 5. Network architecture for the sequence-to-detection affinity model.

4) Sequence-to-detection Affinity Model: This affinity mod-
el also uses information up to the current frame t+1. Assume
a tracker T i in “tracked” state, and two detection responses
djt+1, d

k
t+1 at current frame t+1, whose identities are the same

as and different from that of the tracker, we use the network
architecture shown in Figure 5 to compute the sequence-to-
detection similarity score Ssvd

(
T i, djt+1

)
. During the training

phase, inputs to the network are ReID features of the latest
K detections dit−K+1, · · · , dit of tracker T i and ReID features
of detections djt+1, d

k
t+1. To deal with the length K sequence

of the tracker, we use a LSTM RNN followed by an average
pooling layer, and we consider its output as the anchor sample
of a triplet. The ReID features of djt+1, d

k
t+1 are considered as

positive sample and negative sample of a triplet respectively.
Similar to the detection-to-detection network, we use a three-
layers MLP as the embedding function gθ. After getting the
distance dT i,djt+1

between the tracker T i and the detection

djt+1 in the embedding space during the evaluation phase,
we calculate the similarity score between the tracker T i and
detection djt+1 as follows,

Ssvd

(
T i, djt+1

)
= exp

(
−dT i,djt+1

)
. (4)

Fig. 6. Network architecture for the sequence-to-sequence affinity model.

5) Sequence-to-sequence Affinity Model: This affinity mod-
el uses near future information up to the frame t+K. Assume
a tracker T i in “tracked” state, and two detection responses
djt+1, d

k
t+1 at current frame t+1, whose identities are the same

as and different from that of the tracker, we use the network
architecture shown in Figure 6 to compute the sequence-to-
sequence similarity score Ssvs

(
T i, Dj

t+1

)
. Here we use the

sequence Dj
t+1 as a proxy to detection djt+1.
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By looking forward K frames, we first construct hypothesis
detection sequence Dj

t+1and Dk
t+1 based on detections djt+1

and dkt+1 respectively, this process is shown in Algorithm 1.
During the training phase, inputs to the network are ReID
features of the latest K detections dit−K+1, · · · , dit of track-
er T i, ReID features of detections in sequence Dj

t+1, and
ReID features of detections in sequence Dk

t+1, which can be
considered as anchor sample, positive sample, and negative
sample respectively. The embedding function gθcontains a
LSTM RNN followed by an average pooling layer, and a three-
layers MLP. After getting the distance dT i,Djt+1

between the

tracker T i and the hypothesis detection sequence Dj
t+1 in the

embedding space during the evaluation phase, we calculate the
similarity score between T i and Dj

t+1 as follows,

Ssvs

(
T i, Dj

t+1

)
= exp

(
−dT i,Djt+1

)
. (5)

Algorithm 1 Hypothesis detection sequence construction al-
gorithm.

Require: Object detection sets {Dt+k}Kk=1 after removing
false alarms, and the number of frames of current video
N .

Ensure: Hypothesis detection sequences
{
Di
t+1

}|Dt+1|
i=1

.
1: Initialize trackers T i =

{
dit+1

}
, null detection dφ with

zero appearance features
2: for k = 2 to K do
3: if t+ k > N then
4: break
5: end if
6: for i = 1 to |Dt+1| do
7: Compute similarity scores between T i and all detec-

tions in Dt+k using the detection-to-detection affinity
model

8: end for
9: Conduct greedy data association based on similarity

scores
10: end for
11: for i = 1 to |Dt+1| do
12: Denote the number of T i as n
13: if n < K then
14: Append (K − n) dφ to T i

15: end if
16: Di

t+1 = T i;
17: end for

E. Synthesized Similarity Score
With the detection-to-detection similarity score

Sdvd

(
dit, d

j
t+1

)
, the sequence-to-detection similarity score

Ssvd

(
T i, djt+1

)
, and the sequence-to-sequence similarity

score Ssvs

(
T i, Dj

t+1

)
, we define the synthesised similarity

score between the tracker T i and the detection djt+1 as
follows:

S
(
T i, djt+1

)
= αSdvd

(
dit, d

j
t+1

)
+ βSsvd

(
T i, djt+1

)
+γSsvs

(
T i, Dj

t+1

) , (6)

where 0 ≤ α, β, γ ≤ 1 and α + β + γ = 1. The first
two terms in the right hand side of equation (6) uses online
affinity model, while the third term utilizes near-online model.
If α = 1, equation (6) degrades to the common detection-to-
detection similarity model. If β = 1, equation (6) degrades to
the sequence-to-detection similarity model. By setting α = 0
or β = 0, we switch off the detection-to-detection similarity
model or the sequence-to-detection similarity model. By set-
ting γ = 0, we switch off the sequence-to-sequence similarity
model.

To learn the optimal combination weights, that are α, β, γ,
we apply the well-known Hedge algorithm [21]. It is an online
learning algorithm, and the key idea is to maintain a dynamic
weight distribution over a set of strategies. During the online
learning process, the distribution is updated by exponentially
decreasing the weight of every strategy with respect to its
suffered loss. The learning process is shown in Algorithm 2,
in which I is an indicator function.

Algorithm 2 Hedge algorithm for learning the combination
weights.
Require: Discount weight η ∈ (0, 1), initial combination

weights α = β = γ = 1
3 , and training data of size T .

Ensure: Optimal combination weights α, β, γ.
1: for i = 1 to T do
2: Receive:

(
ai, pi, ni

)
3: f

(α)
i = dai,pi − dai,ni based on detection-to-detection

affinity model
4: f

(β)
i = dai,pi − dai,ni based on sequence-to-detection

affinity model
5: f

(γ)
i = dai,pi − dai,ni based on sequence-to-sequence

affinity model

6: Update α ← αη
I
(
f
(α)
i >0

)
, β ← βη

I
(
f
(β)
i >0

)
, γ ←

γη
I
(
f
(γ)
i >0

)
7: s = α+ β + γ
8: α← α/s, β ← β/s, γ ← γ/s
9: end for

F. Greedy Data Association Algorithm

This paper focuses on developing a robust affinity model,
and we just use the simple greedy data association algorithm
to conduct data association. This algorithm works as follows:
First, a similarity matrix S for each pair (tr, d) of tracker tr
and detection d is computed. Then, the pair (tr∗, d∗) with
the maximum similarity score is iteratively selected, and the
rows and columns belonging to tracker tr∗ and detection d∗

in S are deleted. This process is repeated until no further valid
pair is available. Finally, only the associated detections with a
similarity score above a threshold are used, ensuring that an
associated detection actually is a good match to a tracker.

G. Kalman Filter Status Update

For each tracker, we maintain a Kalman filter. The s-
tate space for these Kalman Filters is 8-dimensional vec-
tors [x, y, a, h, vx, vy, va, vh]

T (These elements mean center

Page 7 of 14 IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

position, aspect ratio, height, and their respective velocities
of a bounding box). Each time we initialize a new tracker
using detection dt = [dt (x) , dt (y) , dt (w) , dt (h) , dt (img)],
we initialize the state of its corresponding Kalman Filter as[
dt (x) +

dt(w)
2 , dt (y) +

dt(h)
2 , dt(w)

dt(h)
, dt (h) , 0, 0, 0, 0

]
. For a

matched tracker at frame t + k, we update the state of its
Kalman Filter by running a Kalman Filter correction step using
its associated detection; while for an unassociated tracker, we
estimate the location of the target by running a Kalman Filter
prediction step.

IV. EXPERIMENTS

A. Implementation Details

This framework is written in Python with TensorFlow [43]
support. For the feature extraction ReID network, we use the
learned weights of [39]. With the feature extraction network,
we only use the public tracking dataset to train our affinity
models. The public data we use is the training video sequences
from the MOT16 and MOT17 benchmarks. We set parameters
of our method empirically as follows: detection score thresh-
old τs = 0.3, number of detections of the shortest tracker
τn1 = 3, number of missing frames before being converted to
“discareded” state τn2 = 5, number of missing frames before
being converted to “disappeared” state τn3 = 30, number of
frames being looked forward K = 6, pre-defined margin of
Focal Triplet Loss m = 0.2, focusing parameter λ = 0.2.
The numbers of units of fully connected layers are 1024, 512
and 256 respectively. Rectified Linear Unit (ReLU) activation
function is applied for the first two fully connected layers. The
number of hidden units of the LSTM cell is 512.

Fig. 7. The curve of the combination weights of three affinity models with
the learning process.

The learning result of the Hedge algorithm is shown in
Figure 7. We set the initial value of these weights to 1/3.
As expected, the weights of the sequence-to-detection and
sequence-to-sequence models β, γ gradually increased, and
the weight of the detection-to-detection model α decreased.
In the end, the sequence-to-sequence model has the largest
weight, the sequence-to-detection model has the second, and
the detection-to-detection model has the smallest. According

to the results of the Hedge algorithm, we set the combination
weights: α= 0.292,β= 0.343,γ= 0.365.

Training data generation. In order to generate training
samples, we first assign identities to all detections. The identity
of detection is the same as that of a ground truth bounding
box which has the largest IOU with the detection. Assume a
training video v contains N frames and M objects, and we
denote the detection whose identity is i at frame t as dit. For the
detection-to-detection affinity model, we construct its training
triplets as all possible:〈

dit, d
i
t+gap, d

j
t+gap

〉
s.t., i 6= j, 1 ≤ gap ≤ 10, IOU

(
dit+gap, d

j
t+gap

)
> 0

(7)
The IOU constraint makes the training samples focus on

hard examples, and greatly reduces the number of possible
triplets. For the sequence-to-detection affinity model, we con-
struct its training triplets as all possible:〈{

ditK , d
i
tK−1

· · · , dit2 , d
i
t1

}
, dit1+gap, d

j
t1+gap

〉
s.t., tK < tK−1 < · · · < t2 < t1, tk − tk+1 ≤ τn3
i 6= j, 1 ≤ gap ≤ 10, IOU

(
dit1+gap, d

j
t1+gap

)
> 0

(8)

where τn3 is defined in Figure 2, which is the threshold to
change a “tracked” tracker into a “disappeared” one. For the
sequence-to-sequence affinity model, we construct its training
triplets as all possible:〈 {

ditK , d
i
tK−1

· · · , dit2 , d
i
t1

}
,{

dit1+gap, · · · , d
i
t1+gap+K−1

}
,{

djt1+gap, · · · , d
j
t1+gap+K−1

}
〉

s.t., tK < tK−1 < · · · < t2 < t1, tk − tk+1 ≤ τn3
i 6= j, 1 ≤ gap ≤ 10, IOU

(
dit1+gap, d

j
t1+gap

)
> 0

. (9)

Since we only look forward K frames during the tracking
process, we construct the positive sample sequence and the
negative sample sequence in a frame window of size K. If the
number of detections of these two sequences is less than K,
we append zero bounding boxes with zero appearance features
to these sequences until the length of all sequences is K.

Training. When training the similarity models with the new
proposed Focal Triplet Loss, we use the Adam [44] optimizer,
and set the initial learning rate to 1e−4, decay by 0.9 every 20
epochs for 100 epochs in total. Mini-batch size is set to 4096.
To learn the combination weights by the Hedge algorithm,
we split part of the training data for the sequence-to-sequence
affinity model as its online learning data.

B. Evaluation on MOT16 and MOT17

The proposed framework is evaluated on the MOT16 and
MOT17 benchmark. The MOT17 dataset comprises 7 training
sequences and 7 test sequences in different scenarios, and these
sequences are captured with various types of cameras. Each
sequence is provided three kinds of public detections: DPM,
FRCNN, and SDP. MOT16 shares the same video sequences
as MOT17, while sequences in MOT16 are only provided
DPM detection input. What’s more, MOT17 has fixed the
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TABLE I
TRACKING RESULTS ON THE MOT16 TEST DATASET. THE BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED BY RED AND BLUE, RESPECTIVELY.

Tracker Type MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓
GMMCP [45] offline 38.1 35.5 75.8 8.6 50.9 6607 105315 937

MHT bLSTM6 [10] offline 42.1 47.8 75.9 14.9 44.4 11637 93172 753

QuadMOT16 [16] offline 44.1 38.3 76.4 14.6 44.9 6388 94775 745

EDMT [46] offline 45.3 47.9 75.9 17.0 39.9 11122 87890 639

MHT DAM [47] offline 45.8 46.1 76.3 16.2 43.2 6412 91758 590

FWT [48] offline 47.8 44.3 75.5 19.1 38.2 8886 85487 852

PHD GSDL16 [9] online 41.0 43.1 75.9 11.3 41.5 6498 99257 1810

DMAN [11] online 46.1 54.8 73.8 17.4 42.7 7909 89874 532

MOTDT [39] online 47.6 50.9 74.8 15.2 38.3 9253 85431 792

LSST16O [29] online 49.2 56.5 74.0 13.4 41.4 7187 84875 606

LINF1 16 [13] near-online 41.0 45.7 74.8 11.6 51.3 7896 99224 430

NOMT 16 [12] near-online 46.4 53.3 76.6 18.3 41.4 9753 87565 359

ours near-online 49.8 44.6 77.0 15.0 40.6 2835 87813 868

TABLE II
TRACKING RESULTS ON THE MOT17 TEST DATASET. THE BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED BY RED AND BLUE, RESPECTIVELY.

Tracker Type MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓
IOU17 [49] offline 45.5 39.4 76.9 15.7 40.5 19993 281643 5988

MHT bLSTM [10] offline 47.5 51.9 77.5 18.2 41.7 25981 268042 2069

EDMT17 [46] offline 50.0 51.3 77.3 21.6 36.3 32279 247297 2264

MHT DAM [47] offline 50.7 47.2 77.5 20.8 36.9 22875 252889 2314

jCC [50] offline 51.2 54.5 75.9 20.9 37.0 25937 247822 1802

FWT 17 [48] offline 51.3 47.6 77.0 21.4 35.3 24101 247921 2648

LSST17 [29] offline 54.7 62.3 75.9 20.4 40.1 26091 228434 1243

GMPHD KCF [51] online 39.6 36.6 74.5 8.8 43.3 50903 284228 5811

EAMTT [52] online 42.6 41.8 76.0 12.7 42.7 30711 288474 4488

PHD GSDL17 [9] online 48.0 49.6 77.2 17.1 35.6 23199 265954 3998

DMAN [11] online 48.2 55.7 75.7 19.3 38.3 26218 263608 2194

HAM SADF17 [53] online 48.3 51.1 77.2 17.1 41.7 20967 269038 1871

MOTDT17 [39] online 50.9 52.7 76.6 17.5 35.7 24069 250768 2474

LSST17O [29] online 52.7 57.9 76.2 20.4 40.1 22512 241936 2167

ours near-online 52.7 49.4 77.0 17.7 38.2 10819 253890 2396

ground truth of MOT16 and make them more accurate. These
dataset provide a wide range of challenges including occlusion,
crowded scenarios, and moving backgrounds. Many related
works have reported their results on this dataset, allowing the
straightforward comparison of our approach with other state-
of-the-art methods.

For quantitative evaluation, we use the widely adopted
CLEAR MOT metrics [54] and trajectory-based metrics (TB-
M) [55]. MOTA evaluates accuracy in the presence of false
positives (FP), false negatives (FN), and identity switches
(IDS). MOTP evaluates the intersecting area of the tracking
output and the ground truth. IDF1 is the ratio of correctly
identified detections over the average number of ground-
truth and computed detections, and it indicates the average
maximum consistent tracking rate. TBM is used to estimate the
completeness of each trajectory, and it is an important supple-
mental metric for better evaluation of multi-pedestrian tracking

methods. Specifically, MT evaluates the mostly tracked trajec-
tories that are successfully tracked at least 80%. ML evaluates
the mostly lost trajectories that are successfully tracked at most
20%. IDS counts the total number of identity switches. Frag
counts the total number of times a trajectory in the ground
truth is interrupted during tracking. Hz indicates the processing
speed (in frames per second). Among these metrics, MOTA
and IDF1 are usually considered the most important.

We compare our method with state-of-the-art methods, and
show the results of MOT16 and MOT17 in Table I and Table II
respectively. As evident from Table I and Table II, our tracker
performs competitively with other trackers on both the MOT16
and MOT17 challenges in terms of MOTA and IDF1. Our
tracker achieves the best MOTA on the MOT16 benchmark,
and ranks the second place on the MOT17 benchmark in terms
of MOTA, where the best tracker uses an offline method. In
terms of IDF1, there is an area of improvement for our tracker.
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Our hypothesis is that the proposed Kalman Filter is not
accurate enough to predict missing detections of an external
detector, and the proposed false alarm model may wrongly
remove some true positives, thus our tracker has the smallest
number of False Positives, but has a relative large number of
False Negatives, as shown in both Table I and Table II, and this
results in small ratio of correctly identified detections over the
average number of ground-truth. We leave the more accurate
motion model and false alarm removal model as our future
work.

We show in Figure 8 the qualitative results of our tracker
on the MOT17 challenge using SDP detections, three repre-
sentative images per sequence. Consistency of the estimated
trajectories is indicated by bounding boxes of the same color
and the same ID number over time. As can be seen from this
figure, our tracker yields visually plausible results even on
challenging scenarios with many pedestrians or occlusions.

C. Ablation Study

To inspect how different components influence the tracking
quality, we conducted an ablation study on an evaluation
dataset, which contains the following sequences: “MOT17-02-
SDP”, “MOT17-05-SDP”, “MOT17-09-SDP” and “MOT17-
10-SDP”. For this section, the training dataset contains the
following sequences: “MOT17-04-SDP”, “MOT17-11-SDP”
and “MOT17-13-SDP”.

Fig. 9. Analysis of the impact of different components in terms of MOTA
(1), IDS (2), FP (3), and FN (4). (A) Full model with the Focal Triplet
Loss. (B) Only detection-to-detection similarity model. (C) Only sequence-to-
detection similarity model. (D) Only sequence-to-sequence similarity model.
(E) Without the false alarm model. (F) Without Kalman Filter. (G) Full model
with triplet loss.

Figure 9 shows the impact of different components in terms
of MOTA, IDS, FP, and FN respectively. The full model, (A)
and (G) in Figure 9, includes all the three similarity models,
the false alarm model, and Kalman Filter. The similarity
models of (B)-(F) are trained using the Focal Triplet Loss.
We will discuss their performance following.

Impact of the similarity models. The sequence-to-
sequence similarity model utilizes more information than the
sequence-to-detection similarity model, which, however, uses
more information than the detection-to-detection similarity
model. As a consequence, the robustness decreases gradu-
ally from the sequence-to-sequence similarity model to the
detection-to-detection similarity model. The change of IDS in
Figure 9 (2) explicitly depicts this trend. However, these three

similarity models are not completely redundant. By combining
all the three similarity models, we achieved the highest MOTA
as shown in Figure 9 (1).

TABLE III
RANK1, RANK5, RANK10, RANK20 RECOGNITION RATE (IN %) AND MAP

OF DIFFERENT SIMILARITY MODELS ON AN EXTRACTED DATASET FROM
MOT16 TRAINING SETS.

Similarity model Rank1 Rank5 Rank10 Rank20 mAP

detection-to-detection 81.5 87.5 89.5 90.3 68.6
sequence-to-detection 89.8 94.3 95.5 96.0 69.9
sequence-to-sequence 96.9 97.7 98.3 98.9 72.4

To validate the assertion that the robustness increases grad-
ually from the detection-to-detection similarity model to the
sequence-to-sequence similarity model, we also conducted
person re-identification experiments using the MOT16 dataset.
For each pedestrian trajectory in the MOT16 training sets, we
extracted one query image and at most 30 gallery images, and
in total obtained 352 query images and 10121 gallery images
as a result. Person re-identification can be evaluated based on
the Cumulative Matching Characteristics by treating person
re-identification as a ranking problem or based on the mean
average precision (mAP) by treating it as a retrieval problem.
Here we report both rankm and mAP. The results are shown
in Table III. It’s obvious that all the studied performance
metrics improved when comparing the three similarity models,
which confirmed our assertion that the robustness increases
correspondingly.

Impact of the false alarm model. It can be seen from
the figure that removing the false alarm model drop the
MOTA significantly, meanwhile, it causes the worst FP when
compared with the full model, which together demonstrate
the effectiveness of the proposed false alarm model. What’s
more, reducing the number of false positives can also reduce
the possibility of associating trackers with false alarms, thus
reducing IDS and FN.

Impact of Kalman Filters. After we removed the Kalman
Filters from the full model, FN increased as shown in Figure
9 (4). This demonstrates that these Kalman Filters are capable
of predicting bounding boxes for missed detection responses.
However, these Kalman Filters may wrongly predict bounding
boxes, since incorporating Kalman Filters also increased FP
as shown in Figure 9 (3).

Fig. 10. Predicted bounding boxes by Kalman Filters.

Figure 10 shows some predicted bounding boxes predicted
by Kalman Filters. It can be seen that the predicted bounding
boxes are highly confident “detection responses”. Thus the
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Fig. 8. Qualitative tracking results on different test sequences of the MOT17 dataset, featuring complex scenarios including many pedestrians, luminance
changes and low contrasts among many other challenges.
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number of false negatives can be effectively reduced by
introducing Kalman Filters.

Fig. 11. Hard samples for data association where two detection responses
compete for one tracker. The red bounding box of each sample indicates the
newest detection response of a tracker, and the green bounding boxes indicate
two detection responses to be associated at the current frame.

Impact of Focal Triplet Loss. The full model with the
Focal Triplet Loss outperforms the full model with the original
triplet loss in terms of all considered metrics, demonstrating
the superiority of our proposed Focal Triplet Loss.

Fig. 12. Hard samples for data association where two trackers compete for
one detection response. The red bounding boxes of each sample indicate
the newest detection response of two trackers, and the green bounding box
indicates one detection response to be associated at the current frame.

To investigate the reason for the superiority of Focal Triplet
Loss over triplet loss, we show some hard examples for data
association in Figure 11 and Figure 12. These examples are
challenging since two detection responses compete for one
tracker (Figure 11) or two trackers compete for one detection
response (Figure 12). For all these samples, the distance
between a tracker and a detection response coming from the
same trajectory is smaller by similarity models trained with
focal triplet loss (dist with FTL) than that by similarity models
with triplet loss (dist with tri), and the distance between
a tracker and a detection response coming from different
trajectories is larger by similarity models trained with focal
triplet loss than that by similarity models with triplet loss.
Thus it is easier for data association using similarity models
trained with focal triplet loss than using those trained with
triplet loss.

D. Time Analysis

In table IV, we show the running time of our tracker on
different test sets of detections given the detections and the
extracted ReID features. All experiments were conducted on
a server with a Tesla V100 GPU. Note that the running time
varies between these sets of detections. This is mainly due to
the fact that different detections feature different numbers of

TABLE IV
RUNNING TIME AND SPEED OF OUR TRACKER ON DIFFERENT TEST SETS

OF DETECTIONS.

Detections Frames Boxes Density Running time(s) Speed(fps)

DPM 5919 135376 22.87 388.1 15.25
FRCNN 5919 110141 18.61 397.7 14.88

SDP 5919 128653 21.74 508.2 11.65
total 17757 374170 21.07 1264 14.05

detection bounding boxes, which leads to the varying time for
both the computation of the similarity matrix and the process
of greedy data association. The quality of detection bounding
boxes also affects the running time. For example, the number
of original DPM detection bounding boxes is much larger than
that of original SDP detection. However, many DPM detection
bounding boxes are false alarms, and these false alarms are
removed by our false alarm model. The valid number of DPM
detection bounding boxes is smaller than the valid number of
SDP detection, and thus processing speed of DPM detection
(15.25 fps) is larger than that of SDP detection (11.65 fps).

V. CONCLUSION

In this paper, we have presented a robust affinity model
for multi-pedestrian tracking in the paradigm of tracking by
detection. Based on the appearance consistent assumption, we
fully utilize information from the current, past and future, and
form three different types of metrics respectively to measure
the appearance similarity. As these three metrics complement
to each other, they provide comprehensive evidence to the data
association of multi-pedestrian tracking.

To make our designed metrics have better performance to
distinguish the appearance-similar pedestrians when they come
close, which frequently happens but is the most challenging
in multi-pedestrian tracking, we extend the triplet loss into
a Focal Triplet Loss by automatically emphasize the hard
examples.

The experiments conducted on the MOT16 and MOT17
Challenges show that our proposed affinity model achieves
a very competitive performance even using a simple data
association strategy.
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