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ABSTRACT
Deep neural networks (DNNs) have demonstrated their outper-
formance in various domains. However, it raises a social concern
whether DNNs can produce reliable and fair decisions especially
when they are applied to sensitive domains involving valuable re-
source allocation, such as education, loan, and employment. It is
crucial to conduct fairness testing before DNNs are reliably de-
ployed to such sensitive domains, i.e., generating as many instances
as possible to uncover fairness violations. However, the existing
testing methods are still limited from three aspects: interpretabil-
ity, performance, and generalizability. To overcome the challenges,
we propose NeuronFair, a new DNN fairness testing framework
that differs from previous work in several key aspects: (1) inter-
pretable - it quantitatively interprets DNNs’ fairness violations
for the biased decision; (2) effective - it uses the interpretation
results to guide the generation of more diverse instances in less
time; (3) generic - it can handle both structured and unstructured
data. Extensive evaluations across 7 datasets and the correspond-
ing DNNs demonstrate NeuronFair’s superior performance. For
instance, on structured datasets, it generates much more instances
(∼×5.84) and saves more time (with an average speedup of 534.56%)
compared with the state-of-the-art methods. Besides, the instances
of NeuronFair can also be leveraged to improve the fairness of
the biased DNNs, which helps build more fair and trustworthy
deep learning systems. The code of NeuronFair is open-sourced at
https://github.com/haibinzheng/NeuronFair .

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; • Soft-
ware and its engineering→ Software reliability.
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1 INTRODUCTION
Deep neural networks (DNNs) [38] have been increasingly adopted
in many fields, including computer vision [5], natural language
processing [19], software engineering [13, 18, 32, 39, 45, 48], etc.
However, one of the crucial factors hindering DNNs from further
serving applications with social impact is the unintended individual
discrimination [44, 47, 55]. Individual discrimination exists when a
given instance different from another only in sensitive attributes
(e.g., gender, race, etc.) but receives a different prediction outcome
from a given DNN [3]. Taking gender discrimination in salary pre-
diction as an example, for two identical instances except for the gen-
der attribute, male’s annual income predicted by the DNN is often
higher than female’s [35]. Thus, it is of great importance for stake-
holders to uncover fairness violations and then to reduce DNNs’
discrimination so as to responsibly deploy fair and trustworthy
deep learning systems in many sensitive scenarios [12, 25, 30, 42].

Much effort has been put into uncovering fairness violations [7,
8, 11, 16, 23, 26, 29, 43, 53]. The most common method is fairness
testing [2, 3, 9, 22, 24, 52, 56, 57], which solves this problem by
generating as many instances as possible. Initially, fairness testing
is designed to uncover and reduce the discrimination in traditional
machine learning (ML) with low-dimensional linear models. How-
ever, such methods are suffering from several problems. First, most
of them (e.g., FairAware [22], BlackFT [3], and FlipTest [9]) cannot
handle DNNs with high-dimensional nonlinear structures. Then,
though some of them (e.g., Themis [24], SymbGen [2], and Ae-
quitas [52]) can be applied to test DNNs, they are still challenged
by the high time cost and numerous duplicate instances. Recently,
several methods have been specifically developed for DNNs, such
as ADF [57] and EIDIG [56], etc. These methods make progress in
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effectiveness and efficiency through gradient guidance, but they
still suffer from the following problems.

First, these methods can hardly be generalized to unstructured
data. As we know, DNNs are originally designed to process unstruc-
tured data (e.g., image, text, speech, etc.), but almost no existing
fairness testing method can be applied to these data. It is mainly
because these methods cannot determine which features are related
to sensitive attributes, and cannot implement appropriate modi-
fications to these features, e.g., how to determine pixels related
to gender attribute in face images, and how to modify these pixel
values to change gender [54]. However, even a seemingly simple
task such as face detection [34] is subject to extreme amounts of
fairness violations. It is especially concerning since these facial
systems are often not deployed in isolation but rather as part of
the surveillance or criminal detection pipeline [4]. Therefore, these
testing methods still cannot serve DNNs widely until we solve the
problem of data generalization.

Second, the generation effectiveness of these methods is chal-
lenged by gradient vanishing. They leverage the gradient-guided
strategy to improve generation efficiency, but the gradient may
vanish and cause instance generation to fail. Additionally, when
the gradient is small, the generated instances are highly similar.
However, the purpose of fairness testing is to generate not only the
numerous instances, but also the diverse instances.

Third, almost all existing methods hardly provide interpretabil-
ity. They only focus on generating numerous instances, but cannot
interpret how the biased decisions occurred. DNNs’ decision results
are determined by neuron activation, then we try to study these
neurons that cause biased decisions. We find that the instances gen-
erated by existing testing methods will miss the coverage of these
neurons that cause biased decisions (refer to the experiment result
in Fig. 6). More seriously, we cannot even know which neurons
related to biased decisions have been missed for testing when there
is a lack of interpretability. Therefore, we need an interpretable test-
ing method so as to interpret DNNs’ biased decisions and evaluate
instances’ utility for uncovering fairness violations. Based on these,
the interpretation results can guide us to design effective testing
to uncover more discrimination. In summary, the current fairness
testing challenges lie in the lack of data generalization, generation
effectiveness, and discrimination interpretation.

To overcome the above challenges, our design goals are as fol-
lows: 1) we intend to uncover and quantitatively interpret DNNs’
discrimination; 2) then, we plan to apply this interpretation results
to guide fairness testing; 3) furthermore, we want to generalize our
testing method to unstructured data. Due to the decision results
of DNNs are determined by the nonlinear combination of each
neuron’s activation state, thus we imagine whether the biased de-
cisions are caused by some neurons. Then, we try to observe the
neuron activation state in DNNs’ hidden layers through feeding
instance pair, which is two identical instances except for the sensi-
tive attribute. Surprisingly, we find that the activation state follows
such a pattern, i.e., neurons with drastically varying activation val-
ues are overlapping for different instance pairs. We observe that
DNNs’ discrimination is reduced when these overlapped neurons
are zeroed out. Therefore, we conclude that these neurons cause

the DNNs’ discrimination. Then, we intend to quantitatively in-
terpret DNNs’ discrimination by computing the neuron activation
difference (ActDiff) values.

According to the interpretation results, we further design a test-
ing method, NeuronFair, to optimize gradient guidance. First, we
determine the main neurons that cause discrimination, called bi-
ased neurons. Then, we search for discriminatory instances with
the optimization object of increasing the ActDiff values of biased
neurons. Because the optimization from the biased neuron short-
ens the derivation path, it reduces the probability of the gradient
vanishing and time cost. Moreover, we can produce more diverse
instances through the dynamic combination of biased neurons. All
in all, we leverage the interpretation results to optimize gradient
guidance, which is beneficial to the generation effectiveness.

We leverage adversarial attacks [14, 27, 36] to determine which
features are related to sensitive attributes, and make appropriate
modifications to these features. The adversarial attack is originally
to test the DNNs’ security, e.g., slight modifications to some image
pixels will cause the predicted label to flip [10, 15, 20, 50]. Taking
the gender attribute of face image as an example, we consider
training a classifier with ‘male’ and ‘female’ as labels, then adding
the perturbation to the face image until its predicted gender label
flips. Based on this generalization framework, we can modify the
sensitive attributes of any data, thereby generalizing NeuronFair to
any data type.

In summary, we first implement to quantitatively interpret the
discrimination using neuron-based analysis; then, we leverage the
interpretation results to optimize the instance generation; finally,
we design a generalization framework for sensitive attribute modi-
fication. The main contributions are as follows.
• Through the neuron activation analysis, we quantitatively inter-
pret DNNs’ discrimination, which provides a new perspective
for measuring discrimination and guides DNNs’ fairness testing.

• Based on the interpretation results, we design a novel method for
DNNs’ discriminatory instance generation, NeuronFair, which
significantly outperforms previous works in terms of effective-
ness.

• Inspired by adversarial attacks, we design a generalization frame-
work to modify sensitive attributes of unstructured data, which
generalizes NeuronFair to unstructured data.

• We publish our NeuronFair as a self-contained open-source
toolkit online.

2 BACKGROUND
To better understand the problem we are tackling and the method-
ology we propose in later sections, we first introduce DNN, data
form, individual discrimination, and our problem definition.

DNN. A DNN can be represented as 𝑓 (𝑥 ;Θ) : X → Y, including
an input layer, several hidden layers, and an output layer. Two
popular architectures of DNNs are fully connected network (FCN)
and convolutional neural network (CNN). For a FCN, we denote the
activation output of each neuron in the hidden layer as: 𝑓 𝑘

𝑙
(𝑥 ;Θ),

where Θ is the weights, 𝑙 ∈ {1, 2, ..., 𝑁𝑙 }, 𝑁𝑙 is the number of neural
layers, 𝑘 ∈ {1, 2, ..., 𝑁𝑘

𝑙
}, 𝑁𝑘

𝑙
is the number of neurons in the 𝑙-th

layer. For a CNN, we flatten the output of the convolutional layer
for the calculation of neuron activation. The loss function of DNNs
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Figure 1: Illustration of discriminatory instance generation
on Adult dataset [35]. (i) The discriminatory instance gen-
eration process. The normal instance pair is < 𝑥, 𝑥 ′ > and
the discriminatory instance pair is < 𝑥𝑑 , 𝑥

′
𝑑
>. 𝑥 ′=𝑥+Δ𝑠𝑒𝑛𝑎𝑡𝑡 ,

𝑥𝑑=𝑥+Δ𝑏𝑖𝑎𝑠 , 𝑥 ′𝑑=𝑥+Δ𝑠𝑒𝑛𝑎𝑡𝑡+Δ𝑏𝑖𝑎𝑠 , where Δ𝑏𝑖𝑎𝑠 is the bias per-
turbation, Δ𝑠𝑒𝑛𝑎𝑡𝑡 is the perturbation added to the gender
attribute to flip gender. (ii) Discrimination exists when the
instance’s predicted label changes as the gender attribute is
flipped, i.e., the instance crosses the decision boundary.

is defined as follows:

𝐽 (𝑥,𝑦;Θ) = − 1
𝑁

[∑︁𝑁−1
𝑖=0

∑︁𝑀−1
𝑗=0

(
𝑦𝑖, 𝑗 ×log(𝑦𝑖, 𝑗 )

) ]
(1)

where 𝑁 is the number of instances,𝑀 is the number of classes, 𝑦𝑖
is the ground-truth of 𝑥𝑖 , 𝑦𝑖 = 𝑓 (𝑥𝑖 ;Θ) is the predicted probability,
log(·) is a logarithmic function.

Data Form. Denote 𝑋 = {𝑥𝑖 }, 𝑌 = {𝑦𝑖 } as a normal dataset, and
its instance pairs by <𝑋,𝑋 ′>= {<𝑥𝑖 , 𝑥 ′𝑖 >}, 𝑖 ∈ {0, 1, ..., 𝑁 − 1}. For
an instance, we denote its attributes by𝐴 = {𝑎𝑖 }, 𝑖 ∈ {0, 1, ..., 𝑁𝑎−1},
where 𝐴𝑠 ⊂ 𝐴 is a set of sensitive attributes, and 𝐴𝑛𝑠 = {𝑎𝑛𝑠

𝑖
|𝑎𝑛𝑠
𝑖

∈
𝐴, and 𝑎𝑛𝑠

𝑖
∉ 𝐴𝑠 } is a set of non-sensitive attributes. Note that

sensitive attributes (e.g., gender, race, age, etc.) are usually given in
advance according to specific sensitive scenes.

Individual Discrimination. As stated in previous work [3, 22,
37], individual discrimination exists when two valid inputs which
differ only in the sensitive attributes but receive a different predic-
tion result from a given DNN, as shown in Fig. 1. Such two valid
inputs are called individual discriminatory instances (IDIs).

Definition 1: IDI determination. We denote < 𝑋𝑑 , 𝑋
′
𝑑

>= {<
𝑥𝑑,𝑖 , 𝑥

′
𝑑,𝑖

>} as a set of IDI pairs, which satisfies:
𝑓 (𝑥𝑑,𝑖 ;Θ) ≠ 𝑓 (𝑥 ′

𝑑,𝑖
;Θ)

s.t. 𝑥𝑑,𝑖 [As] ≠ 𝑥 ′
𝑑,𝑖

[As], 𝑥𝑑,𝑖 [Ans] = 𝑥 ′
𝑑,𝑖

[Ans]
(2)

where 𝑖 ∈ {0, 1, ..., 𝑁𝑑 − 1}, 𝑥𝑑,𝑖 [As] represents the value of 𝑥𝑑,𝑖
with respect to attribute 𝐴𝑠 . Note that our instances are generative
(e.g., maybe the age of a generated instance is 150 years old on
Adult dataset), thus we need to clip their attribute values that do
not exist in the input domain I.

Problem Definition. A DNN which suffers from individual dis-
crimination may produce biased decisions when an IDI is presented
as input. Below are the three goals that we want to achieve through
the devised fairness testing technique. First, observe the activation
state of neurons, find the correlation between neuron activation
pattern and biased decision, and interpret the reason for discrimi-
nation. Then, based on the interpretation results, we generate IDIs
with maximizing DNN’s discrimination as the optimization object.
In the generation process, we consider not only the generation
quantity, but also the diversity. Finally, we conduct fairness testing
on unstructured datasets.

Figure 2: An overview of NeuronFair.

3 NEURONFAIR
An overview of NeuronFair is presented in Fig. 2. NeuronFair has
two parts, i.e., discrimination interpretation and IDI generation
based on interpretation results. During the discrimination interpre-
tation, we first interpret why discrimination exists through neuron-
based analysis. Then, we design a discrimination metric based on
the interpretation result, i.e., AUC value, as shown in Fig. 2 (i). AUC
is the area under AS curve, where the AS curve records the percent-
age of neurons above the ActDiff threshold. Finally, we leverage the
AS curve to adaptively identify biased neurons, which serves for
IDI generation. During the IDI generation, we employ the biased
neurons to perform global and local generations. The global phase
guarantees the diversity of the generated instances, and the local
phase guarantees the quantity, as shown in Fig. 2 (ii). On the one
hand, the global generation uses the normal instance as a seed and
stops if an IDI is generated or it times out. On the other hand, the
generated IDIs are adopted as seeds of local generation, leading to
generate as many IDIs as possible near the seeds. Besides, we imple-
ment dynamic combinations of biased neurons to increase diversity,
and use the momentum strategy to accelerate IDI generation. In
the following, we first quantitatively interpret DNNs’ discrimina-
tion, then present details of IDI generation based on interpretation
results, and finally generalize NeuronFair to unstructured data.

3.1 Quantitative Discrimination Interpretation
First, we draw AS curve and compute AUC value to measure DNNs’
discrimination. Then, based on themeasurement results, we identify
the key neurons that cause unfair decisions as biased neurons.

3.1.1 Discrimination Measurement. The ActDiff is calculated as
follows:

𝑧𝑘
𝑙
=

1
𝑁

∑︁𝑁−1
𝑖=0

[abs(𝑓 𝑘
𝑙
(𝑥𝑖 ;Θ) − 𝑓 𝑘

𝑙
(𝑥 ′𝑖 ;Θ))] (3)

where 𝑧𝑘
𝑙
is the ActDiff of the 𝑘-th neuron in the 𝑙-th layer, 𝑙 ∈

{1, 2, ..., 𝑁𝑙 }, 𝑁𝑙 is the layer number, 𝑁 is the number of normal
instance pairs <𝑋,𝑋 ′>= {<𝑥𝑖 , 𝑥

′
𝑖
>}, 𝑖 ∈ {0, 1, 2, ..., 𝑁 −1}, abs(·)
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Figure 3: Illustration of the neuron-based discrimination in-
terpretation. Dataset: Adult [35]; dimension: 13; FCN-based
DNN structure: [13, 64, 32, 16, 8, 4, 1].

Algorithm 1: AS curve drawing and AUC calculation.
Input: The activation output 𝑓 𝑘

𝑙
(𝑥 ;Θ), ActDiff threshold

interval 𝑠𝑡𝑒𝑝−𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 0.005, instance pairs <𝑋,𝑋 ′>.
Output: AS curve and AUC value of each layer.

1 Calculate the average ActDiff of each neuron:
𝑧𝑘
𝑙
= 1

𝑁

∑𝑁−1
𝑖=0 [abs(𝑓 𝑘

𝑙
(𝑥𝑖 ;Θ) − 𝑓 𝑘

𝑙
(𝑥 ′

𝑖
;Θ))]

2 For 𝑙 = 1 : 𝑁𝑙
3 𝑧𝑙 = Tanh(𝑧𝑙 )
4 𝑚𝑎𝑥−𝑧 = max(𝑧𝑙 )
5 𝑥𝑡𝑚𝑝 = 0 : 𝑠𝑡𝑒𝑝−𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 : 𝑚𝑎𝑥−𝑧
6 𝑦𝑡𝑚𝑝 = [ ]
7 For 𝑐𝑜𝑢𝑛𝑡 = 1 : length(𝑥𝑡𝑚𝑝 )
8 𝑦𝑡𝑚𝑝 = [𝑦𝑡𝑚𝑝 , length(find(𝑧𝑙 > 𝑥𝑡𝑚𝑝 [𝑐𝑜𝑢𝑛𝑡]))]
9 End For
10 𝑦𝑡𝑚𝑝 = 𝑦𝑡𝑚𝑝/length(𝑧𝑙 ) × 100%
11 𝑎𝑟𝑒𝑎 =

∑
𝑐𝑜𝑢𝑛𝑡=1 (𝑦𝑡𝑚𝑝 [𝑐𝑜𝑢𝑛𝑡] × 𝑠𝑡𝑒𝑝−𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)

12 Plot the AS curve based on (𝑥𝑡𝑚𝑝 , 𝑦𝑡𝑚𝑝 ).
Save 𝑎𝑟𝑒𝑎 as the AUC of the 𝑙-th layer.

13 End For

returns an absolute value, 𝑓 𝑘
𝑙
(𝑥 ;Θ) returns the activation output of

the 𝑘-th neuron in the 𝑙-th layer, Θ represents the model weights.
Based on Eq. (3), we plot AS curve and compute AUC value. We

first compute each neuron’s ActDiff and normalize it by hyperbolic
tangent function Tanh(·), as shown in Fig.3 (i). “L1” means the
1-st hidden layer of a DNN with 64 neurons. Then, we set several
ActDiff thresholds at equal intervals, count the neuron percentages
above the ActDiff thresholds, and record them as sensitive neuron
rate (SenNeuR). Finally, we plot AS curve according to the SenNeuR
under different ActDiff thresholds, and then compute the area under
AS curve as AUC value, as shown in Fig.3 (ii), where the x-axis is the
ActDiff value normalized by Tanh function, the y-axis is SenNeuR.
Repeat such an operation for each layer, we can intuitively observe
the discrimination in each layer and find the most biased layer with
the largest AUC value. As shown in Fig. 2 (i), the 2-nd layer ‘L2’ is
selected as the most biased layer with AUC=0.7513.

More specific operations on AS curve drawing and AUC calcu-
lation are shown in Algorithm 1. First, we compute the average
ActDiff values of each neuron 𝑧𝑘

𝑙
at line 1. In the loop from lines

7 to 9, for each neural layer, we get SenNeuR for plotting the AS
curve. Then, we compute AUC value by integration at line 11.

3.1.2 Biased Neuron Identification. The most biased layer is se-
lected for adaptive biased neuron identification. A neuron with a

Algorithm 2: Global generation guided by biased neurons.
Input: Normal instance 𝑋 = {𝑥𝑖 }, initial set Ω𝑔 = ∅,
𝑋𝑐 = KMeans(𝑋 , 𝑁𝑐 ), 𝑐 ∈ {1, 2, ..., 𝑁𝑐 }, the number of
seeds for global generation 𝑛𝑢𝑚𝑔 , the maximum number
of iterations for each seed𝑚𝑎𝑥−𝑖𝑡𝑒𝑟𝑔 , the perturbation size
of each iteration 𝑠𝑡𝑒𝑝−𝑠𝑖𝑧𝑒𝑔 , the decay rate of momentum
𝜇𝑔 , the step size for random disturbance 𝑟−𝑠𝑡𝑒𝑝𝑔 .
Output: A set of IDI pairs found globally Ω𝑔 .

1 For 𝑖 = 0 : INT(𝑛𝑢𝑚𝑔/𝑁𝑐 )−1
2 For 𝑐 = 1 : 𝑁𝑐

3 Select seed 𝑥 from 𝑋𝑐 , 𝑔0 = 𝑔′0 = 0.
4 For 𝑡 = 0 : 𝑚𝑎𝑥−𝑖𝑡𝑒𝑟𝑔
5 If ( mod(𝑠𝑡𝑒𝑝−𝑠𝑖𝑧𝑒𝑔 , 𝑟−𝑠𝑡𝑒𝑝𝑔) == 0 ) Then
6 𝑟 = 𝑅𝑎𝑛𝑑 (0,1) (𝑝𝑟 )
7 End If
8 Create <𝑥, 𝑥 ′> s.t. 𝑥 [As ]≠ 𝑥 ′ [As ], 𝑥 [Ans ]= 𝑥 ′ [Ans ].
9 If (𝑓 (𝑥 ;Θ) ≠ 𝑓 (𝑥 ′;Θ)) Then
10 Ω𝑔 = Ω𝑔 ∪ <𝑥, 𝑥 ′>
11 break
12 End If
13 𝑔𝑡+1 = 𝜇𝑔×𝑔𝑡 + ∇𝑥 𝐽𝑑𝑙 (𝑥 ;Θ)
14 𝑔′

𝑡+1 = 𝜇𝑔×𝑔′𝑡 + ∇𝑥 ′ 𝐽𝑑𝑙 (𝑥 ′;Θ)
15 𝑑𝑖𝑟𝑒 = sign(𝑔𝑡+1+ 𝑔′𝑡+1)
16 𝑑𝑖𝑟𝑒 [As] = 0
17 𝑥 = 𝑥 + 𝑑𝑖𝑟𝑒×𝑠𝑡𝑒𝑝−𝑠𝑖𝑧𝑒𝑔
18 𝑥 = Clip(𝑥, I)
19 End For
20 End For
21 End For

large 𝑧𝑘
𝑙
value demonstrates that it responds violently to the modi-

fication of sensitive attributes, thus it carries more discrimination.
We define biased neuron as follows.

Definition 2: Biased neuron. For a given discrimination threshold
𝑇𝑑 of the most biased layer, the biased neurons satisfy the condition
𝑧𝑘 > 𝑇𝑑 . 𝑧𝑘 is the average ActDiff normalized by Tanh(·) of the
𝑘-th neuron in the most biased layer, 𝑘 ∈ {1, 2, ..., 𝑁𝑘 }, 𝑇𝑑 ∈ (0, 1).

Based on the Definition 2, we know that once 𝑇𝑑 is determined,
biased neurons can be found. Here we give a strategy for adaptively
determining 𝑇𝑑 . We draw a line 𝑦 = 𝑥 that intersects the AS curve.
The x-axis’s value of this intersection is 𝑇𝑑 . As shown in Fig. 3
(ii), the intersection is the point (0.33, 32.81%) and 𝑇𝑑=0.33, After
determining 𝑇𝑑 , we record these biased neurons and save their
position 𝑝 , where 𝑝 is a vector with 𝑁𝑘 elements.

3.2 Interpretation-based IDI Generation
NeuronFair generates IDIs in two phases, i.e., a global generation
phase and a local generation phase. The global phase aims to ac-
quire diverse IDIs. The IDIs’ diversity in the global phase is crucial
since these instances serve as seeds for the local phase. Instead, to
guarantee the IDIs’ quantity, the local phase aims to search for as
many IDIs as possible near the seeds.

3.2.1 Global Generation. To increases the IDIs’ diversity, we design
a dynamic loss as follows:,

𝐽𝑑𝑙 (𝑥 ;Θ) = − 1
𝑁

𝑁−1∑︁
𝑖=0

𝑁𝑘∑︁
𝑘=1

[ (𝑝𝑘 |𝑟𝑘 ) × 𝑓 𝑘 (𝑥′𝑖 ;Θ) × log(𝑓 𝑘 (𝑥𝑖 ;Θ)) ] (4)

where 𝑥 ′
𝑖
comes from 𝑥𝑖 after flipping its sensitive attribute, 𝑁𝑘 is

the number of neurons in the most biased layer, 𝑓 𝑘 is the activation
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Algorithm 3: Local generation guided by biased neurons.
Input: IDI pairs Ω𝑔 = {<𝑥𝑑,𝑖 , 𝑥 ′𝑑,𝑖 >}, 𝑖 = {0, 1, ..., 𝑁𝑔−1},
initial set Ω𝑙 = ∅, the maximum number of iterations
for each seed 𝑚𝑎𝑥−𝑖𝑡𝑒𝑟𝑙 , the perturbation size of each
iteration 𝑠𝑡𝑒𝑝−𝑠𝑖𝑧𝑒𝑙 , the decay rate of momentum 𝜇𝑙 , step
size for random disturbance 𝑟−𝑠𝑡𝑒𝑝𝑙 .
Output: A set of IDI pairs found locally Ω𝑙 .

1 For 𝑖 = 0 : 𝑁𝑔−1
2 Select seed <𝑥, 𝑥 ′> from Ω𝑔 , 𝑔0 = 𝑔′0 = 0.
3 For 𝑡 = 0 : 𝑚𝑎𝑥−𝑖𝑡𝑒𝑟𝑙
4 If ( mod(𝑠𝑡𝑒𝑝−𝑠𝑖𝑧𝑒𝑙 , 𝑟−𝑠𝑡𝑒𝑝𝑙 ) == 0 ) Then
5 𝑟 = 𝑅𝑎𝑛𝑑 (0,1) (𝑝𝑟 )
6 End If
7 𝑔𝑡+1 = 𝜇𝑙×𝑔𝑡 + ∇𝑥 𝐽𝑑𝑙 (𝑥 ;Θ)
8 𝑔′

𝑡+1 = 𝜇𝑙×𝑔′𝑡 + ∇𝑥 ′ 𝐽𝑑𝑙 (𝑥 ′;Θ)
9 𝑑𝑖𝑟𝑒 = sign(𝑔𝑡+1 + 𝑔′𝑡+1)
10 𝑝dire = SoftMax( |𝑔𝑡+1 + 𝑔′𝑡+1 |

−1)
11 For 𝑎𝑛𝑠 ∈ 𝐴𝑛𝑠

12 Generate a random number 𝑝𝑡𝑚𝑝 ∈ (0, 1].
13 If (𝑝𝑡𝑚𝑝 < 𝑝dire [𝑎𝑛𝑠 ]) Then
14 𝑥 [𝑎𝑛𝑠 ] = 𝑥 [𝑎𝑛𝑠 ] + 𝑑𝑖𝑟𝑒 [𝑎𝑛𝑠 ]×𝑠𝑡𝑒𝑝−𝑠𝑖𝑧𝑒𝑙
15 End If
16 End For
17 𝑥 = Clip(𝑥, I)
18 Create <𝑥, 𝑥′> s.t. 𝑥 [As ]≠ 𝑥′ [As ], 𝑥 [Ans ]= 𝑥′ [Ans ].
19 If (𝑓 (𝑥 ;Θ) ≠ 𝑓 (𝑥 ′;Θ)) Then
20 Ω𝑙 = Ω𝑙 ∪ <𝑥, 𝑥 ′>
21 End If
22 End For
23 End For

output of the𝑘-th neuron. 𝑝 is the position of biased neurons, 𝑟 is the
position of randomly selected neurons to increase the dynamics of
𝐽𝑑𝑙 (𝑥 ;Θ). 𝑟 = 𝑅𝑎𝑛𝑑 (0,1) (𝑝𝑟 ), where 𝑅𝑎𝑛𝑑 (0,1) (𝑝𝑟 ) returns a random
vector with only ‘0’ or ‘1’. 𝑟 has the same size as 𝑝 and satisfies∑
𝑟 = INT(𝑁𝑘×𝑝𝑟 ), where INT(·) returns an integer. Here, we set

𝑝𝑟 = 5%. ‘|’ means ‘or’, 𝑝𝑘 |𝑟𝑘 =0 if and only 𝑝𝑘 =0 and 𝑟𝑘 =0. The
optimization object of IDI generation is: arg max 𝐽𝑑𝑙 (𝑥 ;Θ).

Algorithm 2 shows the details of global generation with mo-
mentum acceleration. We first adopt k-means clustering function
KMeans(𝑋, 𝑁𝑐 ) to process 𝑋 into 𝑁𝑐 clusters, and then get seeds
from clusters in a round-robin fashion at line 3. We update random
vector 𝑟 at equal intervals from lines 5 to 7, not only to increase the
dynamics but also to avoid excessively disturbing the generation
task. According to Definition 1, we determine the IDIs from lines 8
to 12. We employ the momentum acceleration operation at lines
13 and 14, which can effectively use historical gradient and reduce
invalid searches. Note that we keep the value of the sensitive at-
tribute in 𝑥 at line 16. Finally, we clip the value of 𝑥 to satisfy the
input domain I.

3.2.2 Local Generation. Since the local generation aims to find
as many IDIs as possible near the seeds, we increase the iteration
number of each seed𝑚𝑎𝑥−𝑖𝑡𝑒𝑟𝑙 , and reduce the bias perturbation
added in each iteration, as shown in Algorithm 3. Compared to
the global phase, the major difference is the loop from lines 11 to
16, where we add perturbation to the non-sensitive attributes of
large gradients with a small probability. We automatically get the
probability of adding perturbation to each attribute in 𝑥 at line 10.

Figure 4: An overview of generalization framework on im-
age data type.

3.3 Generalization Framework on
Unstructured Data

We intend to solve the challenge of 𝐴𝑠 modification to generalize
NeuronFair to unstructured data. Here we take image data as an
example. Attributes of an image are determined by pixels with nor-
malized values between 0 and 1, i.e., the input domain of images
is I ∈ [0, 1]. Motivated by the adversarial attack, we design a gen-
eralization framework to implement the image’s 𝐴𝑠 modification,
which modifies 𝐴𝑠 through adding a small perturbation to most
pixels, as shown in Fig. 4.

We consider a fairness testing scenario for face detection, which
determines whether the input image contains a face. The face de-
tector consists of a CNN module (i.e., Fig. 4 (i)) and a FCN module
(i.e., Fig. 4 (ii)). As shown in Fig. 4, for a given face image 𝑥 and a
detector 𝑓 (𝑥,Θ), there are three steps: 1○ build a sensitive attribute
classifier; 2○ produce Δ𝑠𝑒𝑛𝑎𝑡𝑡 based on Eq. (5), Δ𝑠𝑒𝑛𝑎𝑡𝑡 is the pertur-
bation added to image to flip sensitive attribute; 3○ generate Δ𝑏𝑖𝑎𝑠
based on NeuronFair, where Δ𝑏𝑖𝑎𝑠 is the bias perturbation added
to an image to flip the detection result.

First, we need a sensitive attribute classifier 𝑓𝑠𝑎 (𝑥 ;Θ𝑠𝑎) that
can distinguish the face image’s 𝐴𝑠 (e.g., gender). We build the 𝐴𝑠

classifier by adding a new FCN module (i.e., Fig. 4 (iii)) to the face
detector’s CNN module (i.e., Fig. 4 (i)). Then, we froze the weights
of the CNN module, and train the weights of the newly added FCN
module.

Next, we modify the face image’s 𝐴𝑠 based on the adversarial
attack. A classic adversarial attack FGSM [27] is adopted to flip the
predicted result of the sensitive attribute by generating Δ𝑠𝑒𝑛𝑎𝑡𝑡 as
follows:

Δ𝑠𝑒𝑛𝑎𝑡𝑡 = 𝜖×sign(∇𝑥 𝐽 (𝑥,𝑦𝑠𝑎 ;Θ𝑠𝑎))
satisfying that 𝑓𝑠𝑎 (𝑥 ;Θ𝑠𝑎) ≠ 𝑓𝑠𝑎 (𝑥+Δ𝑠𝑒𝑛𝑎𝑡𝑡 ;Θ𝑠𝑎)

(5)

where 𝜖 is a hyper-parameter to determine perturbation size, sign(·)
is a signum function return “-1”, “0”, or “1”, 𝑥 is an input image,
𝑦𝑠𝑎 is the ground-truth of 𝑥 about sensitive attributes, Θ𝑠𝑎 is the
weights of the 𝐴𝑠 classifier.

Finally, we leverage NeuronFair to generate Δ𝑏𝑖𝑎𝑠 , and then
determine whether the instance pair <𝑥+Δ𝑏𝑖𝑎𝑠 , 𝑥+Δ𝑏𝑖𝑎𝑠+Δ𝑠𝑒𝑛𝑎𝑡𝑡 >
satisfy Definition 1. We determine the discrimination at each layer
of the detector at first. For the CNN module, the activation output
of the convolutional layer is flattened. Then, in the process of image
IDI generation, only the global generation is employed, which is
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due to the different data forms between image and structured data.
Taking the input image in Fig. 4 as an example, its attributes can
be regarded as 𝐴 ∈ R64×64×3. Based on a seed image IDI generated
in the global phase, numerous image IDIs will evolve in the local
phase. However, these image IDIs are similar, with only a few pixel
differences, which have little effect on fairness improvement of the
face detector. Besides, cancel the signum function sign(·) at line 15
of Algorithm 2 for image data.

4 EXPERIMENTAL SETTING
4.1 Datasets
We evaluate NeuronFair on 7 datasets of which five are structured
datasets and two are image datasets. Each dataset is divided into
three parts, i.e., 70%, 10%, 20% as training, validation, and testing,
respectively.

The 5 open-source structured datasets include Adult, German
credit (GerCre), bank marketing (BanMar), COMPAS, and medical
expenditure panel survey (MEPS). The details of these datasets are
shown in Tab. 1. All datasets can be downloaded from GitHub 1

and preprocessed by AI Fairness 360 toolkit (AIF360) [6].
The 2 image datasets (i.e., ClbA-IN and LFW-IN) are constructed

by ourselves for face detection. ClbA-IN dataset consists of 60,000
face images from CelebA [41] and 60,000 non-face images from
ImageNet [17]. LFW-IN dataset consists of 10,000 face images from
LFW [31] and 10,000 non-face images from ImageNet [17]. The
pixel value of each image is normalized to [0,1].

4.2 Classifiers
We implement 5 FCN-based classifiers [6, 57] for structured datasets
and 2 CNN-based face detectors [28, 49] for image datasets since
FCN and CNN are the most widely used basic structures in real-
world classification tasks.

The 5 FCN-based classifiers can be divided into two types. The
one is composed of 5 hidden layers for processing low-dimensional
data (i.e., Adult, GerCre, BanMar), denoted as LFCN. The another is
composed of 8 hidden layers for processing high-dimensional data
(i.e., COMPAS and MEPS), denoted as HFCN. The activation func-
tions in hidden layers and the output layer are ReLU and Softmax,
respectively. The hidden layer structures of LFCN and HFCN are
[64, 32, 16, 8, 4] and [256, 256, 64, 64, 32, 32, 16, 8], respectively.

The 2 CNN-based face detectors serve for face detection, which
are variants from two pre-trained models (i.e., VGG16 [49] and
ResNet50 [28]) of keras.applications. We use the CNN module of
VGG16 and ResNet50 as Fig. 4 (i), and design the FCN module of
Fig. 4 (ii) and (iii) as [512, 256, 128, 64, 16].

4.3 Baselines
We implement and compare 4 state-of-the-art (SOTA) methods with
NeuronFair to evaluate their performance, including Aequitas [52],
SymbGen [2], ADF [57], and EIDIG [56]. Note that Themis [24] has
been shown to be significantly less effective for DNN and thus is
omitted [2, 57]. We obtained the implementation of these baselines

1https://github.com/Trusted-AI/AIF360/tree/master/aif360/data

Table 1: Details of the datasets.

Datasets Scenarios Sensitive Attributes # records Dimensions
Adult census income gender, race, age 48,842 13
GerCre credit gender, age 1,000 20
BanMar credit age 41,188 16
COMPAS law race 5,278 400
MEPS medical care gender 15,675 137
ClbA-IN face detection gender, race 120,000 64×64×3
LFW-IN face detection gender, race 20,000 64×64×3

from GitHub 2 3. All baselines are configured according to the best
performance setting reported in the respective papers.

4.4 Evaluation Metrics
Five aspects of NeuronFair are evaluated, including generation
effectiveness, efficiency, interpretability, the utility of AUC metric,
and generalization of NeuronFair.

4.4.1 Generation Effectiveness Evaluation. We evaluate the effec-
tiveness of NeuronFair on structured data from two aspects: gener-
ation quantity and quality.

(1)Quantity. To evaluate the generation quantity, we first count
the total number of IDIs, then count the global IDIs’ number and
local IDIs’ number respectively, recorded as ‘#IDIs’. Note that the
duplicate instances are filtered.

(2) Quality. We use generation success rate (GSR), generation
diversity (GD), and IDIs’ contributions to fairness improvement
(DM-RS [52, 56, 57]) to evaluate IDIs’ quality.

GSR =
# IDIs

# non−duplicate instances
× 100% (6)

where non-duplicate instances represent the input space.

GDNF (𝜌cons, baseline) = CRNF−bl
CRbl−NF

(7)

where CRNF−bl =
# IDIs of baselines fall in ΠNF

# IDIs of baseline represents the cover-
age rate of the NeuronFair’s IDIs to baseline’s IDIs, ΠNF is the area
with NeuronFair’s IDIs as the center and cosine distance 𝜌cons as
the radius; similar to CRbl−NF =

# IDIs of NeuronFair fall in Πbl
# IDIs of NeuronFair . The

NeuronFair’s IDIs are more diverse when GDNF >1.
The generated IDIs serve to improve DNN’s fairness by using

these IDIs to retrain it. DM-RS is the percentage of IDIs in randomly
sampled instances. High DM-RS value represents that the DNN is
biased, i.e., the IDI’s contribution to fairness improvement is low.

DM−RS =
# IDIs

# instances randomly sampled
× 100% (8)

4.4.2 Efficiency Evaluation. We evaluate the efficiency of Neuron-
Fair by generation speed [57], i.e., the time cost of generating 1,000
IDIs (#sec/1,000 IDIs).

4.4.3 Interpretability Evaluation based on Biased Neurons. To in-
terpret the utility of NeuronFair, we refer to paper [46] to design
the coverage of biased neurons, which is defined as follows: for a
given instance, compute the activation output of the most biased
layer; normalize the activation values; select neurons with activa-
tion values greater than 0.5 as the activated neurons; compare the
coverage of the activated neurons to the biased neurons.

2https://github.com/pxzhang94/ADF
3https://github.com/LingfengZhang98/EIDIG

https://github.com/Trusted-AI/AIF360/tree/master/aif360/data
https://github.com/pxzhang94/ADF
https://github.com/LingfengZhang98/EIDIG


NeuronFair: Interpretable White-Box Fairness Testing through Biased Neuron Identification ICSE 2022, May 21-29, 2022, Pittsburgh, PA, USA

Table 2: Parameter setting of experiments.
No. Parameters Values (Glo. / Loc.) Descriptions
1 𝑁𝑐 4 / % the number of clusters for global generation
2 𝑛𝑢𝑚𝑔 1,000 / % the number of seeds for global generation
3 𝑚𝑎𝑥−𝑖𝑡𝑒𝑟 40 / 1,000 the maximum number of iterations for each seed
4 𝑠𝑡𝑒𝑝−𝑠𝑖𝑧𝑒 1.0 / 1.0 the perturbation size of each iteration
5 𝜇 0.1 / 0.05 the decay rate of momentum, 𝜇 ∈ (0.01, 0.20)
6 𝑟−𝑠𝑡𝑒𝑝 10 / 50 the step size for random disturbance, 𝑟−𝑠𝑡𝑒𝑝 ∈ (5, 100)

Table 3: The accuracy of classifiers and face detectors.

Datasets Adult GerCre BanMar COMPAS MEPS ClbA-IN LFW-IN
Classifiers LFC-A LFC-G LFC-B HFC-C HFC-M VGG16 ResNet50

accuracy 88.36% 100.00% 96.71% 92.20% 98.13%
99.83%/
92.80%/
94.30%

99.56%/
94.40%/
94.20%

4.4.4 Utility Evaluation of AUC Metric. In our work, based on
the interpretation results, we design AUC value to measure the
discrimination. We evaluate the utility of AUC metrics from three
aspects: consistency, significance, and complexity between AUC
and DM-RS.

(1) Consistency. To evaluate the consistency, we adopt Spear-
man’s correlation coefficient, as follows:

𝜌𝑠 = 1 −
6
∑𝑛
𝑖=1 𝑑

2
𝑖

𝑛(𝑛2 − 1)
(9)

where 𝑑𝑖 = 𝑎𝑖 − 𝑏𝑖 , 𝑖 ∈ {1, 2, ..., 𝑛}, 𝑎𝑖 and 𝑏𝑖 are the rank of AUC
and DM-RS values, respectively. High 𝜌𝑠 means more consistent.

(2) Significance. To evaluate whether AUC can measure dis-
crimination more significantly than DM-RS, we use the standard
deviation, as follows:

𝜎 =

√︂∑
𝑖=1 𝑛(𝑐𝑖 − 𝜇)2

𝑛 − 1
(10)

where 𝑐𝑖 is AUC orDM-RS of different testingmethods, 𝑖 ∈ {1, 2, ..., 𝑛},
𝜇 is the mean value of 𝑐𝑖 . Large 𝜎 means more significant.

4.4.5 Generalization Evaluation on Image Data. We evaluate the
generalization of NeuronFair on image data from two aspects: gen-
eration quantity, and quality.

(1)Quantity. To evaluate the generation quantity on image data,
we only count the global image IDIs’ number, recorded as ‘#IDIs’.

(2) Quality. We adopt GSR and IDIs’ contributions to face detec-
tor’s fairness improvement based on AUC value to evaluate IDIs’
quality, then compute its detection rate (DR) after retraining.

4.5 Implementation Details
To fairly study the performance of the baselines and NeuronFair,
our experiments have the following settings: (1) the hyperparam-
eters of each method are set according to Tab. 2, where ‘Glo.’ and
‘Loc.’ represent the global and local phases, respectively; (2) for the
FCN-based classifier, we set the learning rate to 0.001, and choose
Adam as the optimizer; for the CNN-based face detector, we set
the learning rate to 0.01, and choose SGD as the optimizer; the
training results are shown in Tab. 3, where “99.83%/92.80%/94.30%”
represents the accuracy of face detector, gender classifier, and race
classifier, respectively.

We conduct all the experiments on a server with one Intel i7-
7700K CPU running at 4.20GHz, 64 GB DDR4 memory, 4 TB HDD
and one TITAN Xp 12 GB GPU card.

Table 4: Comparison with Aequitas, ADF, and EIDIG based
on the total number of generated IDIs.

Datasets Sen.
Att.

Aequitas ADF EIDIG NeuronFair
#IDIs GSR #IDIs GSR #IDIs GSR #IDIs GSR

Adult
gender 1,995 8.35% 33,365 16.42% 57,386 27.24% 122,370 28.19%
race 13,132 8.65% 57,716 23.32% 88,650 32.81% 172,995 34.19%
age 24,495 10.48% 188,057 46.94% 251,156 48.69% 358,201 49.39%

GerCre gender 4,347 15.24% 57,386 15.43% 64,075 17.23% 68,218 36.57%
age 44,800 38.63% 236,551 58.74% 239,107 59.38% 255,971 63.35%

BanMar age 10,138 27.21% 167,361 30.75% 197,341 36.26% 302,821 47.76%
COMPAS race 658 18.87% 12,335 2.22% 13,451 2.32% 11,232 1.62%
MEPS gender 6,132 13.51% 77,794 16.37% 101,132 21.28% 130,898 27.91%

5 EXPERIMENTAL RESULTS
We evaluate NeuronFair through answering the following five re-
search questions (RQ): (1) how effective is NeuronFair; (2) how effi-
cient is NeuronFair; (3) how to interpret the utility of NeuronFair;
(4) how useful is the AUC metric; (5) how generic is NeuronFair?

5.1 Research Questions 1
How effective is NeuronFair in generating IDIs?

When reporting the results, we focus on the following aspects:
generation quantity and quality.

Generation Quantity. The evaluation results are shown in
Tabs. 4, 5, and 6, including three scenarios: the total number of
IDIs, the IDIs number in global phase, and the IDIs number in local
phase.

Implementation details for quantity evaluation: (1) SymbGen
works differently from other baselines, thus we follow the compar-
ison strategy of Zhang et al. [57], i.e., evaluating the generation
quantity of NeuronFair and SymbGen within the same time (i.e., 500
sec) limit, as shown in Tab. 5; (2) for a fair global phase comparison,
we generate 1,000 non-duplicate instances without constrained by
𝑛𝑢𝑚𝑔 , then count IDIs number and record it in Tab. 6, where the
seeds used are consistent for different methods; (3) for a fair lo-
cal phase comparison, we mix IDIs generated globally by different
methods, and randomly sample 100 as the seeds in local phase;
then generate 1,000 non-duplicate instances for each seed without
constrained by𝑚𝑎𝑥−𝑖𝑡𝑒𝑟𝑙 , count the IDIs number on average for
each seed and record it in Tab. 6.
• NeuronFair generates more IDIs than baselines, especially for
densely coded structured data. For instance, in Tab. 4, on Adult
dataset with different attributes, the IDIs number of NeuronFair
is 217,855 on average, which is 16.5 times and 1.6 times that of
Aequitas and EIDIG, respectively. In addition, in Tab. 5, Neuron-
Fair generates much more IDIs than SymbGen on all datasets.
The outstanding performance of NeuronFair is mainly because
the optimization object of NeuronFair takes into account the
whole DNNs’ discrimination information through the biased
neurons while Aequitas and EIDIG only depend on the output
layer. However, the IDIs number on COMPAS dataset with race
gender is 11,232, which is slightly lower than that of EIDIG. Since
the COMPAS is encoded as one-hot in AIF360 [6], we speculate
the reason is that too sparse data coding reduces the derivation
efficiency from biased neurons.

• As shown in Tab. 6, NeuronFair generates much more IDIs than
all baselines in the global phase, which is beneficial to increase
the diversity of NeuronFair’s IDIs in the subsequent local phase.
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Table 5: Comparison with SymbGen based on the number of
IDIs generated in 500 seconds.

Datasets Sen. Att. SymbGen NeuronFair
#IDIs GSR #IDIs GSR

Adult
gender 195 13.89% 4,048 25.24%
race 452 11.01% 4,532 39.54%
age 531 12.17% 5,760 50.74%

GerCre gender 821 18.92% 3,610 27.55%
age 1,034 37.19% 3,796 51.40%

BanMar age 672 30.79% 3,095 56.79%
COMPAS race 42 1.33% 124 2.08%
MEPS gender 404 14.22% 3,252 26.35%

Table 6: ‘#IDIs’ measurement in the global and local phases.

Datasets Sen.
Att.

Global Phase Local Phase
Aequi
tas

Symb
Gen ADF EIDIG Neuron

Fair
Aequi
tas

Symb
Gen ADF EIDIG Neuron

Fair

Adult
gender 35 51 261 404 864 57 63 128 142 143
race 98 143 332 459 959 134 158 174 193 189
age 115 331 538 695 974 213 267 350 361 367

GerCre gender 69 128 541 577 599 63 86 106 111 113
age 175 247 598 599 600 256 301 396 400 426

BanMar age 74 244 678 697 999 137 198 247 283 303
COMPAS race 94 187 745 749 930 7 6 17 18 12
MEPS gender 73 210 650 692 1,000 84 92 120 146 149

For instance, on all datasets, the IDIs number of NeuronFair is 866
on average, which is 9.45 times and 1.42 times that of Aequitas
and EIDIG, respectively. This is mainly because the optimization
object of NeuronFair takes into account the dynamics through
the dynamic combination of biased neurons. Thus, NeuronFair
searches a larger space to generate more global IDIs.

• In the local phase, NeuronFair is much more efficient than base-
lines in general. For instance, in Tab. 6, on average, NeuronFair
returns 78.97%, 45.35%, 10.81%, and 2.90% more IDIs than Ae-
quitas, SymbGen, ADF, and EIDIG, respectively. Recall that Ae-
quitas, ADF, EIDIG, and NeuronFair all guide local phase through
a probability distribution, which is the likelihood of IDIs by mod-
ifying several certain attributes (i.e., the loop from lines 11 to 16
of Algorithm 3). The probability determination of NeuronFair
takes into account the momentum and SoftMax activation (i.e.,
at line 10 of Algorithm 3) while the baselines do not. Hence,
NeuronFair generates more local IDIs.
GenerationQuality. The evaluation results are shown in Tabs. 4,

5, 7, and Fig. 5, including the generation success rate (GSR), genera-
tion diversity (GD), and fairness improvement (DM-RS).

Implementation details for quality evaluation: (1) for a fair di-
versity comparison, we seed each method with the same set of 10
global IDIs and apply them to generate 100 local IDIs for each seed
without considering𝑚𝑎𝑥−𝑖𝑡𝑒𝑟𝑙 , as shown in Fig. 5; (2) we randomly
select 10% IDIs of each method to retrain DNNs, then compute their
fairness improvement results; to avoid contingency, we repeat 5
times and record the average DM-RS value in Tab. 7.
• As shown in Tabs. 4 and 5, the GSR values of NeuronFair are
higher than that of baselines on almost all datasets, i.e., Neuron-
Fair can search for a larger valid input space, where the input
space is calculated by ‘#IDIs/GSR’. For instance, in Tab. 4, on
all datasets, Aequitas has a GSR of 17.62% on average, whereas
NeuronFair achieves a GSR of 36.12%, which is ∼×2.1 more than
that of Aequitas. The outstanding performance of NeuronFair is
mainly because it not only considers the whole DNN’s discrimi-
nation through biased neurons, but also takes into account the
dynamics of the optimization object through the combination of

Table 7: Fairness improvement measured by DM-RS, where
‘Before’ and ‘After’ represent the original and the retrained
DNNs, respectively.

Datasets Sen.
Att. Before After

Aequi
tas

Symb
Gen ADF EIDIG Neuron

Fair

Adult
gender 2.88% 0.45% 0.44% 0.26% 0.21% 0.19%
race 8.91% 0.61% 0.81% 0.75% 0.69% 0.57%
age 14.56% 4.40% 4.38% 4.18% 3.74% 3.30%

GerCre gender 5.16% 0.76% 0.67% 0.55% 0.56% 0.49%
age 30.90% 3.66% 3.46% 3.31% 3.21% 2.32%

BanMar age 1.38% 0.68% 0.52% 0.76% 0.55% 0.39%
COMPAS race 2.03% 1.48% 1.20% 0.75% 0.76% 0.52%
MEPS gender 5.10% 1.30% 2.15% 1.28% 1.27% 1.26%

(a) Comparison with Aequitas (b) Comparison with ADF

Figure 5: Generation diversity of NeuronFair compared to
Aequitas (left) and ADF (right).

biased neurons. Thus, NeuronFair searches a larger valid input
space than Aequitas.

Meanwhile, the GSR value of NeuronFair on different sensitive
attributes is more robust than ADF and EIDIG. For instance, in
Tab. 4, on the GerCre dataset with gender and age attributes, the
GSR values of NeuronFair are 36.57% and 63.35%, whereas that
of EIDIG are 17.23% and 59.38%. We speculate the reason is that
the discrimination about the gender attribute in the output layer
is not obvious, but NeuronFair can find potential fairness viola-
tions through the internal discrimination information of biased
neurons. Therefore, we can realize stable testing for different
sensitive attributes.

In addition, the valid input space of NeuronFair is larger than
baselines in general, i.e., a larger input space supports more
diverse IDI generation. For instance, in Tab. 5, the average input
space of NeuronFair is 3.30 times that of SymbGen. It is mainly
because the momentum acceleration strategy employs historical
gradient as auxiliary guidance, which reduces the number of
invalid searches. Hence, NeuronFair generates more IDIs in a
large input space.

• In all cases, NeuronFair can generate more diverse IDIs, which
is beneficial to discover more potential discrimination and then
improve fairness through retraining. For instance, in Fig. 5, com-
pare to Aequitas and ADF, the GDNF values are all greater than
‘1’ under different radius values 𝜌cons, and as the radius increases,
the value of GDNF gradually converges to ‘1’. It demonstrates
that the IDIs generated by NeuronFair can always cover that
of baselines. We speculate the reason is that the dynamic loss
function expands the valid input space by combining different
biased neurons as the optimization object.
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Table 8: Time (sec) taken to generate 1,000 IDIs.

Datasets
Sen.
Att.

Aequi
tas

Symb
Gen ADF EIDIG

Neuron
Fair

Adult
gender 345.68 1,568.20 298.46 156.38 121.56
race 1,219.35 5,168.24 268.34 146.14 114.25
age 484.00 2,431.09 213.76 118.85 105.64

GerCre gender 436.00 2,014.68 488.19 344.10 296.46
age 531.00 2,834.12 209.44 116.14 103.91

BanMar age 557.00 3,015.21 472.59 246.64 116.52
COMPAS race 524.13 2,315.94 253.69 199.93 187.50
MEPS gender 498.16 2,537.58 217.65 182.34 152.36

Besides, a close investigation shows that there is a similar
trend in the generation diversity for the same sensitive attribute.
For instance, when 𝜌cons <0.1 in Fig. 5 (a) or 𝜌cons <0.02 in
Fig. 5 (b), the line ‘L2’ with race is always the highest, the line
‘L4’ with age is always the lowest, while lines ‘L1’ and ‘L3’ with
gender are in the middle. Since both datasets Adult and GerCre
are related to money (i.e., salary and loans), we speculate that
there is similar discrimination for gender in classifiers LFC-A
and LFC-G for similar tasks, thus GDNF shows similar trends in
gender attribute.

• In all cases, NeuronFair can obtain larger DM-RS values, i.e., the
IDIs generated by NeuronFair contribute more to the DNNs’ fair-
ness improvement. For instance, in Tab. 7, measured by DM-RS,
NeuronFair realizes fairness improvement of 87.24% on average,
versus baselines, i.e., 81.18% for Aequitas, 80.78% for SymbGen,
83.30% for ADF, and 84.49% for EIDIG. It is because the IDIs of
NeuronFair are more diverse than those of baselines, so it can
discover more potential fairness violations and implement higher
fairness improvement through retraining.

Answer to RQ1: NeuronFair outperforms the SOTAmethods (i.e.,
Aequitas, SymbGen, ADF, and EIDIG) in two aspects: (1) quantity
- it generates ∼×5.84 IDIs on average compared to baselines;
(2) quality - it searches∼×3.03 input space with more than∼×1.65
GSR on average compared to baselines, it generates IDIs that
are ∼×6.24 and ∼×1.38 more diverse than Aequitas and ADF
on average with 𝜌cons <0.02, it is beneficial to DNNs’ fairness
improvement of 87.24% on average.

5.2 Research Questions 2
How efficient is NeuronFair in generating IDIs?

When answering this question, we refer to the generation speed.
The evaluation results are shown in Tab. 8, where the time cost of
SymbGen includes generating the explainer and constraint solving.
Here we have the following observation.
• NeuronFair generates IDIs more efficiently, which meets the ra-
pidity requirements of software engineering testing. For instance,
in Tab. 8, on average, NeuronFair takes only 26.07%, 5.47%, 49.47%,
and 79.32% of the time required by Aequitas, SymbGen, ADF, and
EIDIG, respectively. The outstanding performance of NeuronFair
is mainly because it uses a momentum acceleration strategy and
shortens the derivation path to reduce computational complexity.
Hence, it takes less time than baselines.

Answer to RQ2: NeuronFair is more efficient in generation speed
- it produces IDIs with an average speedup of 534.56%.

(a) Activated neurons by IDIs (b) Activated neurons by non-IDIs

Figure 6: The overlap of biased neurons and neurons acti-
vated by different instances.

5.3 Research Questions 3
How to interpret NeuronFair’s utility by biased neurons?

When interpreting the utility, we refer to the biased neuron
coverage. The evaluation results are shown in Fig. 6.

Implementation details for interpretation: (1) we conduct exper-
iments on the Adult dataset with gender attribute for the LFC-A
classifier; (2) we compare the interpretation results of NeuronFair
with ADF and EIDIG; (3) for a fair interpretation, we randomly se-
lect 10% IDIs and 10% non-IDIs (i.e., the generated failure instances)
for each method, and then compute the coverage of biased neurons,
as shown in Fig. 6.
• Biased neurons can be adopted to interpret the utility of IDIs
and NeuronFair. First, IDIs trigger discrimination by activating
biased neurons. For instance, the neurons activated by IDIs can
cover most of the biased neurons in Fig. 6 (a), while the coverage
of the biased neurons by non-IDIs of different methods is 0 in
Fig. 6 (b). We can further interpret the utility of testing methods
is related to the coverage of biased neurons, i.e., NeuronFair is
more effective than ADF and EIDIG because they miss some
discrimination contained in biased neurons while NeuronFair
does not. For instance, in Fig. 6 (a), the NeuronFair’s IDIs activate
all 24 biased neurons in the 2-nd layer of LFC-A classifier, while
the neurons activated by other IDIs cannot cover all (15 for ADF
and 18 for EIDIG).

Answer to RQ3: The main reason for NeuronFair’s utility is that
its IDIs can activate more biased neurons. NeuronFair’s IDIs ac-
tivate 100% biased neurons, while 62.5% for ADF and 75% for
EIDIG.

5.4 Research Questions 4
How useful is the AUC metric for measuring DNNs’ fairness?

When answering this question, we refer to the following as-
pects: the consistency, significance, and complexity between AUC
and DM-RS. The evaluation results on Adult and GerCre datasets
with multiple sensitive attributes are shown in Tab. 9. From the
results, we have the following observations.
• In all cases, AUC can correctly distinguish DNNs’ fairness vio-
lations, i.e., AUC can serve the discrimination measurement of
DNN. For instance, in Tab. 9, all of the 𝜌𝑠 values are 1.00, indi-
cating that the discrimination ranking results of different DNNs
based on AUC are completely consistent with those based on DM-
RS. Since DNN’s decision results are determined by the neurons’
activation, we speculate that the biased decisions are also caused
by the neurons’ activation, i.e., neurons contain discrimination
information. Therefore, we can leverage the discrimination in-
formation in neurons to determine DNNs’ fairness.
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Table 9: The consistency and significance between DM-RS
and AUC (𝝆𝑠 , 𝝈 ). Note that here we only use normal instance
pairs to compute each layer’s AUC, and select themaximum
AUC as the classifier’s discrimination.

Datasets Sen.
Att. Metrics Before After

𝝆𝑠 𝝈Aequi
tas

Symb
Gen ADF EIDIG Neuron

Fair

Adult

gender DM-RS 2.88% 0.45% 0.44% 0.26% 0.21% 0.19% 1.00 0.0106
AUC 0.7513 0.1492 0.1482 0.1331 0.1098 0.0897 0.2563

race DM-RS 8.91% 0.61% 0.81% 0.75% 0.69% 0.57% 1.00 0.0336
AUC 0.8045 0.1466 0.1795 0.1652 0.1599 0.1070 0.2677

age DM-RS 14.56% 4.40% 4.38% 4.18% 3.74% 3.30% 1.00 0.0433
AUC 0.8591 0.1565 0.1520 0.1482 0.1347 0.1082 0.2941

GerCre
gender DM-RS 5.16% 0.76% 0.67% 0.55% 0.56% 0.49% 1.00 0.0186

AUC 0.6308 0.1733 0.1568 0.1422 0.1524 0.0960 0.2004

age DM-RS 30.90% 3.66% 3.46% 3.31% 3.21% 2.32% 1.00 0.1132
AUC 0.8608 0.2046 0.1691 0.1568 0.1432 0.1204 0.2879

Table 10: ‘#IDIs’ and ‘GSR’measurements in the global phase
on image datasets.

Datasets Sen. Att. ADF EIDIG NeuronFair
#IDIs GSR #IDIs GSR #IDIs GSR

ClbA-IN gender 1,087 11.58% 2,895 12.50% 10,578 69.90%
race 11,908 33.54% 25,180 59.87% 51,529 90.15%

LFW-IN gender 1,204 33.20% 1,105 40.10% 3,950 61.40%
race 2,269 31.70% 5,304 62.40% 5,457 64.17%

Table 11: Fairness improvement of face detectors.

Datasets Sen.
Att.

Before After
ADF EIDIG NeuronFair

AUC DR AUC DR AUC DR AUC DR

ClbA-IN gender 0.3587 99.83% 0.3328 97.20% 0.3091 95.40% 0.1650 98.40%
race 0.4438 0.4045 96.50% 0.3720 95.50% 0.2501 98.90%

LFW-IN gender 0.3910 99.56% 0.3524 95.30% 0.3678 92.30% 0.1091 98.90%
race 0.4251 0.3984 98.10% 0.3933 96.40% 0.2240 99.10%

• In all cases, AUC can distinguish the different DNN’s discrimi-
nation more significantly than DM-RS, which is beneficial for
a more accurate evaluation of IDIs of different testing methods.
For instance, in Tab. 9, all 𝜎 values of AUC are higher than those
of DM-RS, and the average 𝜎 value of AUC is 8.46 times that
of DM-RS. The outstanding performance of AUC is mainly be-
cause we use the neurons’ ActDiff to measure the discrimination,
which extracts more bias-related information from the whole
DNN; while MD-RS only uses the bias-related information from
the output layer.

• The computational complexity of AUC is much lower than that
of MD-RS, which is beneficial to quickly distinguish DNNs’ dis-
crimination or the IDIs’ effect. The time frequency of AUC is
T(𝑁𝑙 ) = (7+𝑐𝑜𝑢𝑛𝑡)×𝑁𝑙 +1 based onAlgorithm 1. Thus the time
complexity of AUC is O(𝑁𝑙 ), while that of DM-RS is O(𝑛 log𝑛),
where 𝑛 is the instance number, 𝑁𝑙 is the layer number, 𝑛 >> 𝑁𝑙 .
It is mainly because AUC only conducts matrix operations, while
DM-RS requires iterative operations until convergence.

Answer to RQ4: The AUC is useful for discrimination measure-
ment. Compared to the results in Tab. 9, AUC is (1) 100% consistent
with DM-RS, (2) ×8.46 more significant than DM-RS, (3) low com-
putational complexity with O(𝑁𝑙 ).

5.5 Research Questions 5
How generic is NeuronFair for the task of image IDI generation?

When reporting the results, we focus on two aspects: generation
quantity and quality.

Implementation details for NeuronFair generalized on image
data: (1) we only perform comparisons with ADF and EIDIG at
global phase, because the effect of ADF and EIDIG on DNNs is
much better than that of Aequitas and SymbGen; (2) we remove the
KMeans(·) operation, set 𝑠𝑡𝑒𝑝−𝑠𝑖𝑧𝑒𝑔=0.15 for image, and all face
images are used as input; (3) we retrain the face detector with all
image IDIs of each method and measure its fairness improvement
by AUC, (4) we measure the bias perturbation Δ𝑏𝑖𝑎𝑠 and sensitive
attribute perturbation Δ𝑠𝑒𝑛𝑎𝑡𝑡 by 𝐿2-norm.

Generation Quantity. The evaluation results are shown in
Tab. 10 measured by the IDIs number in global phase. From the
results, we have the following observation.
• In all cases, NeuronFair can obtain more IDIs than ADF and
EIDIG, especially for the discrimination against race attribute.
For instance, in Tab. 10, on average, NeuronFair generates 4.34
times and 2.07 times IDIs of ADF and EIDIG, respectively. The
outstanding performance of NeuronFair is because it adopts dy-
namic loss to expand the valid input space while ADF and EIDIG
do not consider the dynamics of search. Meanwhile, the number
of IDIs generated by NeuronFair for race is 3.91 times that for
gender. We speculate the reason is that the pixel information
related to race is mainly skin color (i.e., light & dark, or black
& white), while the pixel information related to gender is more
diverse (such as hair, makeup, face shape, etc.). Therefore, the
image IDIs generation for race is easier through manipulating
skin color.
GenerationQuality. The evaluation results are shown in Tabs. 10

and 11, including three scenarios: the generation success rate (GSR),
the fairness improvement (AUC), and the detection rate (DR).
• Among image data, image IDIs of NeuronFair are of higher qual-
ity than those of ADF and EIDIG, which can be applied to retrain
face detectors and contribute to their fairness improvement in
face detection scenarios. For instance, in Tab 10, on average, the
GSR value of NeuronFair is 2.60 times and 1.63 times that of ADF
and EIDIG, respectively. It is because NeuronFair reduces the
probability of gradient vanishing, which in turn improves the
probability of non-duplicate IDIs generation guided by the gradi-
ent. Hence, all GSR values of NeuronFair are higher than those
of baselines. Meanwhile, the valid input space of NeuronFair is
1.67 times and 1.27 times that of ADF and EIDIG, respectively.
Since the probability of falling into a local optimum is reduced
by dynamically combining biased neurons, we can perform valid
searches in limited instance space.

• NeuronFair contributes more to the fairness improvement of the
face detector, i.e., its generalization on image data is better than
that of ADF and EIDIG. For instance, in Tab. 11, on average, the
discrimination of detectors retrained with IDIs of NeuronFair
dropped by 53.77%, while the AUC values of ADF and EIDIG
only dropped by 8.06% and 10.90%, respectively. We speculate
that the valid input space of NeuronFair is larger, so its IDIs can
find potential discrimination that other methods’ IDIs cannot.
Then improve the detector’s fairness through retraining.

• NeuronFair hardly affects the detector’s DR values while improv-
ing its fairness. For instance, in Tab. 11, on average, the DR value
of detectors retrained with NeuronFair’s IDIs only dropped by
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0.87%, while that of ADF and EIDIG dropped by 2.92% and 4.80%,
respectively. We compare the 𝐿2 norm of Δ𝑏𝑖𝑎𝑠 and Δ𝑠𝑒𝑛𝑎𝑡𝑡 gen-
erated by different methods, and find that Δ𝑏𝑖𝑎𝑠 of NeuronFair is
much lower than that of ADF and EIDIG. Therefore, NeuronFair
can not only improve the detector’s fairness but also maintain
its detection performance.

Answer to RQ5: The generalization performance of NeuronFair
on the image dataset is better than the SOTA methods (i.e., ADF
and EIDIG) in two aspects: (1) quantity - it generates ∼×4.34 and
∼×2.07 image IDIs on average compared to ADF and EIDIG, re-
spectively; (2) quality - it searches ∼×1.47 input space with more
than ∼×2.11 GSR on average, it is beneficial to detectors’ fairness
improvement of 53.77% on average but hardly affects their detec-
tion performance. Thus, NeuronFair shows better generalization
performance than ADF and EIDIG.

6 THREATS TO VALIDITY
Correlation between attributes. The attributes of unstruc-

tured data are not as clear as structured data, so we provide a gener-
alization framework that can modify sensitive attributes. However,
there is a correlation between attributes, i.e., after the perturbation
for one sensitive attribute is added, another attribute may also be
changed. Since the transferability of perturbation is not robust. the
slight attribute change will not affect our IDI generation.

Sensitive attributes. We consider only one sensitive attribute
at a time for our experiments. However, considering multiple pro-
tected attributes will not hamper the effectiveness or generalization
offered by our novel testing technique, but will certainly lead to
an increase in execution time. This increase is attributed towards
the fact that the algorithm in such a case, needs to consider all the
possible combinations of their unique values.

Access to DNNs. NeuronFair is white-box testing that gener-
ates IDIs based on the biased neurons inside DNNs, which means it
requires accessing to DNNs. It is widely accepted that DNN testing
could have full knowledge of the target model in software engineer-
ing.

7 RELATEDWORKS
Fairness Testing. Based on the software engineering point of

view, several works on testing the fairness of traditional ML models
are proposed [1, 2, 24, 51, 52, 55]. To uncover their fairness viola-
tions, Galhotra et al. [24] firstly proposed Themis, a fairness testing
method for software, which measures the discrimination in soft-
ware through counting the frequency of IDIs in the input space.
However, its efficiency for IDIs generation is unsatisfactory. To im-
prove the generation speed of Themis, Udeshi et al. [52] proposed
a faster generation algorithm, Aequitas, which uncovers fairness
violations by probabilistic search over the input space. Aequitas
adopts a two-phase operation in which the IDIs generated globally
are used as seeds for the local generation. However, Aequitas uses
a global sampling distribution for all the inputs, which leads to the
limitation that it can only search in narrow input space and easily
falls into the local optimum. Thus, Aequitas’s IDIs lack diversity. To
further improve the instance diversity, Agarwal et al. [2] designed
a new testing method, SymbGen, which combines the symbolic
execution along with the local interpretation for the generation

of effective instances. SymbGen constructs the local explainer of
the complex model at first and then searches for IDIs based on
the fitted decision boundary. Therefore, its instance effectiveness
almost depends on the performance of the explainer.

The above-mentioned methods mainly deal with traditional ML
models, which cannot directly be applied to deal with DNNs. Re-
cently, several methods have been proposed specifically for DNNs.
For instance, Zhang et al. [57] first proposed a fairness testing
method specifically for DNNs, ADF, which guides the search direc-
tion through gradients. The authors proved that its effectiveness
and efficiency of IDIs generation for DNNs are greatly improved
based on the guidance of gradients. Based on the ADF [57], Zhang
et al. [56] designed a framework EIDIG for discovering individual
fairness violations, which adopts prior information to accelerate
the convergence of iterative optimization. However, there is still a
problem of gradient vanishing, which may lead to local optimiza-
tion.

Neuron-based DNN Interpretation. Kim et al. [33] first intro-
duced concept activation vectors, which provide an interpretation
of a DNN’s internal state (i.e., the activation output in the hidden
layer). They viewed the high-dimensional internal state of a DNN as
an aid, and interpreted which concept is important to the classifica-
tion result. Inspired by the concept activation vectors, Du et al. [21]
suggested that interpretability can serve as a useful ingredient to
diagnose the reasons that lead to algorithmic discrimination. The
above methods study the activation output of one hidden layer,
while Liu et al. [40] studied the activation state of a single neuron.
They observed that the neuron activation is related to the DNNs’
robustness, and used the abnormal activation of a single neuron
to detect backdoor attacks. These methods leverage the internal
state to interpret DNNs’ classification performance and robustness,
which inspires us to use it to interpret DNNs’ biased decision.

8 CONCLUSIONS
We propose an interpretable white-box fairness testing method,
NeuronFair, to efficiently generate IDIs for DNNs based on biased
neurons. Our method provides discrimination interpretation and
IDI generation for different data forms. In the discrimination inter-
pretation, AS curve and AUC measurement are designed to quali-
tatively and quantitatively interpret the severity of discrimination
in each layer of DNNs, respectively. In the IDI generation, a global
phase and a local phase collaborate to systematically search the
input space for IDIs with the guidance of momentum accelera-
tion and dynamic loss. Further, NeuronFair can process not only
structured data but also unstructured data, e.g., image, text, etc.
We compare NeuronFair with four SOTA methods in 5 structured
datasets and 2 face image datasets against 7 DNNs, the results show
that NeuronFair has significantly better performance in terms of
interpretability, generation effectiveness, and data generalization.
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