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also implemented to balance computation across stages un- (b) Two key observations in 1F1B pipeline.

der the transformation. Evaluations on Llama-2 and GPT-3

models of various sizes demonstrate that Obscura achieves Figure 1: The timeline of three pipeline schedules.
throughput improvements of up to 1.33x compared to widely

used recomputation baselines. distributed computation and storage through various paral-

lelism strategies [8, 13,20]. Among these strategies, pipeline
parallelism [5, 8] stands out due to its lower communica-
tion overhead, which enables efficient scaling across multiple
nodes and supports the training of larger models.

The 1F1B (one-forward, one-backward) pipeline [5] is the
most commonly used approach in pipeline parallelism, but it
encounters a memory bottleneck in the early stages [10,29].
Specifically, 1F1B pipeline alternates the scheduling of for-
ward and backward pass across a large number of micro-
batches. To maximize pipeline utilization, earlier stages exe-
cute more forward passes than later stages before initiating the
first backward pass. This results in greater accumulation of
micro-batch activations, leading to significantly higher mem-
ory usage in the early stages. For example, when training
Llama 2-13B model using an 8§-way 1F1B pipeline, memory
usage in stage 0 surpasses that in stage 7 by 35 GB.
*Corresponding author: chenwuh @mail.sysu.edu.cn Recomputation [12], an effective technique for reducing

1 Introduction

A new Al paradigm leveraging large language models (LLMs)
has emerged, significantly improving performance across var-
ious domains [3,4,6,21,23,25]. However, the lack of exten-
sive GPU resources poses significant challenges for small and
medium enterprises (SMEs) in adopting this trend to meet
their specific needs. Fine-tuning a Llama-2 13B [23] model,
for example, demands approximately 400GB of GPU mem-
ory to store model states, activations, and other operations.
This far exceeds the 80 GB memory of a single A100 GPU,
necessitating at least six A100 GPUs to complete the task.
To accommodate larger models, distributed training has
become a standard approach, leveraging multiple devices for
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memory usage caused by activations, involves discarding acti-
vations during the forward pass and recomputing them during
the backward pass. In cases of out-of-memory (OOM) errors,
as illustrated in Figure 1(al), the conventional approach is to
recompute all micro-batches across stages, discarding most
activations to avoid OOM. However, this approach introduces
substantial computational overhead and extends the pipeline
duration due to the recomputation of each micro-batch. To
alleviate this, several studies [11,27] have proposed selec-
tively recomputing cost-effective operators—those with high
memory usage but low recomputation overhead—to minimize
computational overhead. Nonetheless, under severe memory
constraints, many non-cost-effective operators still need to be
recomputed, which keeps the overhead substantially high.

In our exploration of integrating recomputation into
pipeline parallelism, we apply recomputation only to stages
experiencing memory bottlenecks, termed On-Demand Re-
computation, achieving better performance than All-Stage
Recomputation. Through an analysis of On-Demand Recom-
putation, we make the following key observations: Backward
Bubbles Can Conceal Recomputation Overhead: Back-
ward Bubbles, defined as bubbles between the first and last
backward passes, are effectively utilized. As shown in Figure
1(b), in stage 0, backward bubbles are primarily filled by the
recompute forward pass and the backward pass of micro-batch
4, which prevents delays in subsequent micro-batches. More-
over, Forward Bubbles are Unutilized: Forward Bubbles,
defined as bubbles between the first forward pass and the first
backward pass, are non-utilized. As they occur before the first
backward pass, making them unavailable for recomputation.

Building on these findings, we propose a novel pipeline
transformation: converting forward bubbles into backward
bubbles to better conceal recomputation overhead. To achieve
this, we introduce a strawman pipeline based on 1F1B
pipeline through the following adjustments: First, stages that
exceed memory constraints are identified as "adjusted stages,"
where recomputation is applied. Next, in adjusted stages,
forward passes that occur after the first backward pass are
migrated to execute before the first backward pass. This trans-
formation converts forward bubbles into backward bubbles,
enabling them utilization to conceal recomputation overhead.
Therefore, the resulting pipeline, illustrated in Figure 1(a2),
leverages the converted backward bubbles effectively conceal
the recomputation overhead of micro-batches 0 and 1.

Although the strawman pipeline better conceals recompu-
tation overhead to accelerate training, it still encounters three
performance-related challenges: 1) How to Fully Utilize
Backward Bubbles: Due to tight data dependencies—where
micro-batches are executed sequentially from the first stage
to the last—each backward bubble can only conceal the re-
computation of its preceding backward pass. This limitation
leads to the underutilization of available bubbles. 2) How
to Reduce Extra Memory Usage: Compared to the 1F1B
pipeline, adjusted stages in the strawman pipeline perform

additional forward passes before the first backward pass. This
results in the accumulation of more activations, increasing
the likelihood of exceeding memory constraints. 3) How to
Address the Computation Imbalance: On-demand recom-
putation creates workload imbalances between adjusted and
non-adjusted stages. While bubbles conceal some of the re-
computation, their limited number and the increasing over-
head with larger micro-batches leave some recomputation
unconcealed, creating idle bubbles in non-adjusted stages.

To address these challenges, we propose Obscura, a com-
putationally efficient pipeline training system for LLMs that
leverages pipeline transformation to better conceal recomputa-
tion overhead, as illustrated in Figure 1(a3). Obscura enhances
the strawman pipeline by introducing three key components
to further improve performance:
Dependency Relaxation. To relax data dependencies, Ob-
scura introduces a left-shifting method for the remaining un-
adjusted forward passes, strategically inserting them alter-
nately between backward passes. This transformation forms
the Obscura pipeline, ensuring that backward bubbles are
fully utilized to effectively conceal recomputation overhead.
Swapping-Aware Recomputation. Obscura leverages acti-
vation swapping in adjusted stages to reduce activation foot-
prints before the first backward pass. Furthermore, it models
pipeline execution as an optimization problem to derive an
optimal recomputation strategy that minimizes both commu-
nication and recomputation overhead.
Partition Adjustment. To address computation imbalance,
Obscura introduces a stage partitioning adjustment algorithm
that redistributes layers from adjusted stages to non-adjusted
stages. For instance, adjusted stages are assigned fewer layers,
while non-adjusted stages handle more, thereby balancing
workloads and improving overall performance.

The primary contributions of Obscura are as follows:

* We identify a novel opportunity to conceal recomputa-

tion overhead by utilizing pipeline bubbles and propose
a strawman pipeline to achieve overhead concealment.

* We introduce Obscura, which incorporates three
key components—Dependency Relaxation, Swapping-
Aware Recomputation, and Partition Adjustment—to
improve pipeline training performance.

* We implement Obscura on DeepSpeed, demonstrating
a throughput improvement of up to 1.32x compared to
widely used recomputation strategies on NVIDIA GPUs.

2 Background and Related Work

2.1 Pipeline Parallelism

Pipeline parallelism [5, 8, 15] partitions model layers into dis-
tinct stages distributed across multiple GPUs. The input batch
is divided into smaller micro-batches, which are processed
sequentially in a pipelined manner. Communication between
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Figure 2: Scheduling of the 1F1B pipeline.

stages is required before and after each forward or backward
pass to transfer activations and gradients.

GPipe [8] processes the forward passes of all micro-batches
sequentially before initiating the backward passes. This
scheduling approach requires storing activations for all micro-
batches, resulting in significant GPU memory usage.

In contrast, the 1F1B pipeline [5] reduces memory over-
head by initiating backward passes earlier, effectively avoid
memory usage of activations accumulation from all micro-
batches. Its schedule, shown in Figure 2, comprises three
phases: warmup, steady, and ending. The warmup phase spans
from the first forward pass to the start of the first backward
pass, with memory usage rising linearly as only forward
passes are executed. The steady phase, the core of 1F1B, al-
ternates backward and forward passes, reusing memory freed
by backward passes to store activations from forward passes,
ensuring stable memory usage. The ending phase mirrors
the warmup phase in reverse. Additionally, we define two
types of bubbles: forward bubbles (diagonal blocks), occur-
ring between the last forward and first backward passes, and
backward bubbles (crossed-line blocks), occurring between
the first and last backward passes.

To reduce pipeline bubbles, several scheduling strategies
[1,14-16,26] based on the 1F1B schedule have been proposed,
though they often increase memory pressure or affect conver-
gence. For example, Chimera [14] reduces bubbles through
bidirectional scheduling but at the cost of higher memory con-
sumption. PipeDream [15] eliminates bubbles by overlapping
the forward pass of the second micro-batch with the backward
pass of the first, but it faces challenges with convergence.

Although the 1F1B pipeline offers better memory effi-
ciency than GPipe, it faces a memory bottleneck in the early
stages [10,29]. Specifically, stage s out of p stages must store
activations for up to p — s micro-batches. As a result, earlier
stages (s — 0) experience higher memory usage. As shown
in Figure 3, for the 13B model, the memory usage in stage 0
is significantly higher than in stage 7, with a gap of up to 24
GB. For the 18B model, the memory usage in stage 0 exceeds
the GPU memory limit (OOM), causing training failures.

2.2 Recomputation

A straightforward approach to reducing the memory usage of
activations is the recomputation technique, which is incorpo-

100

Memory Limit

©
o

Memory (GB)
n
o

o

Stage ID

Figure 3: Memory usage across stages during the training of
13B and 18B Llama-2 models in the 1F1B pipeline. Results
for the 18B model are estimated.

rated into various parallel strategies in modern frameworks
like DeepSpeed [18] and Megatron [20].

Formally, a pipeline stage consists of a set of operators,
each producing and storing activations during the forward
pass. The recomputation technique reduces memory usage
by discarding a portion of these activations during the for-
ward pass and recomputing them during the backward pass.
Although this approach effectively lowers memory consump-
tion, it introduces additional computation overhead, as the
discarded activations must be generated by re-executing the
corresponding operators in the backward pass.

Various studies [7,9, 11,22,27] have investigated strategies
to minimize recomputation overhead within specific memory
constraints. These works leverage the varying computation
and space complexities of operators to identify an optimal
recomputation strategy, consisting of cost-effective operators
with high memory usage but low recomputation overhead.
However, relying solely on recomputation for memory sav-
ings is highly model-dependent and inevitably introduces
substantial overhead, particularly under strict memory limits.

To address this limitation, several works [2,17,24,28] com-
bine offloading with recomputation, utilizing tensor liveness
analysis and dynamic memory states to decide whether to
swap data out or discard it. While these techniques reduce re-
computation overhead through swapping, they are constrained
by PCle bandwidth, often introducing significant communi-
cation overhead. Additionally, they may interfere with the
communication required for pipeline parallelism [17] and, in
some cases, incur extra CPU computation latency [19].

BPipe [10] introduces a pipeline-specific approach that
leverages high-bandwidth inter-GPU connections to transfer
activations from earlier stages to the spare memory of later
stages, alleviating memory bottlenecks. Additionally, it incor-
porates selective recomputation [11] to further reduce memory
usage. However, the limited spare memory available in later
stages constrains the effectiveness of BPipe’s swapping tech-
nique, necessitating a greater reliance on recomputation under
stringent memory constraints. Due to its lack of optimized
integration between inter-GPU swapping and recomputation,
BPipe still incurs significant recomputation overhead.

In summary, recomputation overhead remains a significant
challenge. Our work, Obscura, identifies an opportunity to
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hide recomputation overhead within pipeline bubbles and in-
troduces a novel pipeline schedule designed to better conceal
this overhead. This approach also enables a more effective in-
tegration of recomputation and swapping, achieving efficient
memory savings. To our knowledge, we are the first to explore
reducing overhead by strategically concealing recomputation.

3 Motivation

3.1 Observations in 1F1B Pipeline Schedule

Existing works typically implement recomputation across
all stages (referred to as All-Stage Recomputation) when the
pipeline encounters OOM errors. However, as discussed in
§2.1, the memory bottleneck is primarily concentrated in the
early stages, where only a subset exceeds the memory limit
while others remain underutilized. Therefore, recomputation
should be selectively applied to the early stages that surpass
the memory limit. We refer to this approach as On-Demand
Recomputation and derive the following observations.

Observation 1: On-Demand Recomputation Achieves
Better Performance than All-Stage Recomputation. We
evaluate the execution time of various on-demand recom-
putation pipelines with four stages. The Full recomputation
strategy discards nearly all activations and performs an extra
forward pass during the backward pass. As shown in Fig-
ure 5(a), Recomp-N denotes recomputation applied to stages
with s < N, Recomp-All represents recomputation applied to
all stages, and Recomp-Non indicates no recomputation. By
comparing stage 0 across all configurations, we observe that
Recomp-0 and Recomp-1 increase execution time by 19% and
25%, respectively, compared to Recomp-Non, outperforming
Recomp-All, which increases execution time by 33%.

To investigate the benefits of on-demand recomputation,
we dive into the 1F1B pipeline schedule in Figure 4 with
recomputation selectively applied to stages 0 and 1 (Recomp-
1), leading to another critical observation.

Observation 2: Backward Bubbles Can Conceal Recom-
putation Overhead. As illustrated in Figure 4, after applying
Recomp-1, the backward bubbles in stage 1 are largely filled
by the time extension caused by the recomputation of micro-
batch 6, preventing it from impacting subsequent executions.
In contrast, micro-batches 0-5, which lack sufficient back-
ward bubbles to absorb the recomputation overhead, cause the

I Fwd+Bwd Fwd BB E=Recomp Bwd BB

I Stage 0 I Stage 1 I Stage 2 I Stage 3
6
6
5 Y 501
5 477 456!
3 4.01 =\ ! '
“E>4 %3.67 i A ! :
= /%7@ Yoo 7 M
3 = M H iH i
ISR, jus mum i AR R s i fEs maRiint
HHH g mamm I inaa ra f H A
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(a) Various on-demand recomputation pipeline with Full recomputation strategy.

i
S NN [ MM

oL AT 1T ]
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L =
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(c) Strawman pipeline with

MLP recomputation strategy.

(b) Strawman pipeline with
Full recomputation strategy.

Figure 5: Computation and bubble times for a single iteration.
Fwd+Bwd denotes the total forward and backward time; Fwd
BB and Bwd BB represent forward and backward bubble times,
respectively; and "Recomp’ indicates the recomputation time.

overall execution to shift rightward, extending the pipeline.
A similar pattern is observed for the recomputation of both
micro-batch 6 and micro-batches 0-5 in stage 0.

To validate this finding, we analyze the changes in com-
putation and bubble times shown in Figure 5(a). Comparing
Recomp-Non with Recomp-0 in stage O reveals that back-
ward bubbles are replaced by recomputation task. A similar
phenomenon is observed in stages 0 and 1 of Recomp-1. In
contrast, the backward bubbles in Recomp-All remain unaf-
fected because the last stage lacks backward bubbles and all
stages incur the same recomputation time, making the last
stage the slowest. This delay then propagates through inter-
stage dependencies, preventing earlier stages from utilizing
their backward bubbles.

Although backward bubbles can partially conceal recom-
putation overhead, their limited availability allows them to
hide only a small portion of it. To explore opportunity for in-
creasing backward bubbles, we present the third observation.

Observation 3: Forward Bubbles Are Unutilized. As
illustrated in Figure 4, forward bubbles remain unused in re-
computation stages. This is because forward bubbles are gen-
erated before the first backward pass, whereas recomputation
inherently occurs during the backward pass. Furthermore, the
duration of forward bubbles is significantly longer than that
of backward bubbles. In a p-stage pipeline, stage s contains
2(p —s— 1) forward bubbles, which is double the number of
backward bubbles (p —s — 1).

In Figure 5(a), compared to Recomp-Non, the forward bub-
bles in stage 0 of Recomp-0 remain unchanged, with the bub-
ble time being longer than the backward bubble time (0.50s
vs. 0.37s, not a double relation due to synchronized com-
munication between stages). Similar trends are observed in
Recomp-1 and Recomp-All, where the forward bubbles are
slightly extended. This occurs because the recomputation in
stage s delays the initiation of the first backward pass in stage

668 2025 USENIX Annual Technical Conference
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Figure 6: Pipeline transformation process (top) and the result-
ing strawman pipeline (bottom).

s — 1, thereby increasing the duration of forward bubbles.

3.2 A Strawman Pipeline: Optimization Opportu-
nity of Recomputation Overhead Concealing

Building on our three key observations, we propose convert-
ing forward bubbles into backward bubbles to more effec-
tively conceal recomputation overhead. To implement this
concept, we introduce a strawman pipeline, derived from the
1F1B pipeline using a pipeline transformation, as illustrated
in Figure 6(a). This transformation consists of two key steps:

Step 1: Identify and Recompute. In the 1F1B pipeline,
stages that exceed the memory limit are identified as "adjusted
stages" and are subjected to recomputation. The remaining,
referred to as "non-adjusted stages," are left unchanged.

Step 2: Migrate. For adjusted stages, the forward passes in
the steady phase are migrated leftward into forward bubbles
as much as possible, causing the forward bubbles to shift
rightward and convert into backward bubbles.

Figure 6(b) illustrates the proposed strawman pipeline,
whose performance is evaluated in Figure 5(b). The term
Strawman-N corresponds to the same meaning as Recomp-N.
Compared to Recomp-0 and Recomp-1, the recomputation
overhead in Strawman-0 and Strawman-1 is reduced to 8%
and 17%, respectively. This is achieved by eliminating for-
ward bubbles and replacing them with recomputation tasks.

In practice, instead of applying the Full recomputation strat-
egy to the adjusted stage, a selective strategy that discards
only partial activations to precisely meet memory constraints
proves more effective. This approach results in reduced re-
computation overhead and improved overhead concealment.
However, it introduces three key challenges:

Challenge 1: How to Fully Utilize Backward Bub-
bles.The tight data dependency between adjusted and un-
adjusted stages—where micro-batches are executed sequen-
tially in the forward pass and in reverse during the backward
pass—restricts the ability of backward bubbles to conceal
recomputation. Backward bubbles can only hide preceding
recomputation, not subsequent ones. For example, as depicted
in Figure 6(b), the recomputation for micro-batch 1 cannot

RecomP‘No“RecomP‘O RecomP‘\ S“,awmaﬂ-o S“—awma“’\

Stage 0 48.01 34.40 34.40 46.18 46.18
Stage 1 42.62 42.62 32.25 42.62 39.58
Stage2  36.72 36.72 36.72 36.72 36.72
Stage 3 30.92 30.92 30.92 30.92 30.92

utilize the preceding bubble because it must wait for the back-
ward pass in stage 2 to finish. Furthermore, when a selective
recomputation strategy is employed, the recomputation time
per micro-batch becomes shorter than the bubble time, leading
to underutilized backward bubbles. Using the MLP recompu-
tation strategy, which discards only MLP activations, Figure
5(c) demonstrates that, compared to Strawman-0 in Figure
5(b), a significant portion of the previously fully utilized back-
ward bubbles is now left unused.

Challenge 2: How to Reduce Extra Memory Usage.
Compared to the 1F1B pipeline, the adjusted stages in the
strawman pipeline store activations for more forward passes
during the warmup phase. As a result, the strawman pipeline
exhibits higher memory usage, which can lead OOM errors.
Table | presents the memory usage across stages under the
MLP recomputation strategy. The results clearly show that the
memory usage of the adjusted stages in the strawman pipeline
is significantly higher than that of the 1F1B pipeline.

Challenge 3: How to Address the Computation Imbal-
ance. On-demand recomputation introduces workload im-
balances between adjusted and non-adjusted stages. While
forward and backward bubbles can partially conceal recom-
putation, their limited availability and the growing overhead
with larger micro-batches leave some recomputation uncon-
cealed. This leads to the formation of additional backward
bubbles in the non-adjusted stages, as clearly demonstrated
in Figure 6(b). Specifically, as illustrated in Figures 5(b) and
5(c), backward bubbles caused by computation imbalance are
evident in the non-adjusted stages.

4 Overview of Obscura

To address above challenges, we propose Obscura, a training
system with an architecture illustrated in Figure 7. Obscura
is composed of two primary modules: the Obscura Planner
and the Obscura Runtime. The Obscura Planner transforms
the original 1F1B pipeline into the Obscura pipeline and gen-
erates a deployment configuration for use by the Obscura
Runtime. The Obscura Runtime manages distributed deploy-
ment and model training during execution.

The Obscura Planner comprises four submodules: Pipeline
Transformation, which converts forward bubbles into back-
ward bubbles to better conceal recomputation overhead; De-
pendency Relaxation, which relaxes tight data dependencies
between stages to fully utilize backward bubbles; Swapping-
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Figure 7: System Architecture of Obscura.

Aware Recomputation, which combines swapping and recom-
putation to efficiently adhere memory constraints; and Par-
tition Adjustment, which refines the stage partition strategy
to eliminate bubbles in non-adjusted stages. The Obscura
Runtime consists of the Distributed System, which enables
distributed training, and the Obscura Pipeline Engine, which
implements the core runtime of the Obscura pipeline.

Notably, the Obscura Planner operates offline to generate
the Obscura configuration using only a few training iterations.
Specifically, the pipeline transformation submodule runs for
several iterations to determine the adjusted stages and col-
lect runtime profiling data, including the computation and
memory costs of operators. The remaining submodules use
this profiling data to solve small-scale optimization problems
and execute lightweight algorithms, introducing negligible
overhead. In addition, the Obscura Runtime operates online
and manages system behavior during training.

5 Dependency Relaxation

To fully utilize backward bubbles, we first perform an in-depth
analysis of computation and bubbles in adjusted stages. Based
on this analysis, we propose dependency relaxation, which
re-purposes unused backward bubbles for other computations.
Additionally, we refine the migration of forward passes to
minimize the additional activations footprints caused by un-
necessary forward pass migrations.

5.1 Analysis of Computation and Bubbles

We illustrate the simplified steady phase of adjacent adjusted
and non-adjusted stages in Figure 8. In Figure 8(a), the left

Data Forward __, Backward
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H | —mwy W
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:

Stage s+1
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Figure 8: The simplified steady-phase schedule for adjacent
adjusted and non-adjusted stages.

side shows the underutilization of backward bubbles after
migration, while the right side depicts the remaining forward
passes. Due to tight data dependencies between the two stages,
backward passes cannot shift leftward to utilize left-side bub-
bles. Specifically, the backward pass of micro-batch x in stage
s must wait for the completion of the backward pass of the
same micro-batch in stage s+ 1, preventing the use of pre-
ceding bubbles for recomputation. Forward passes encounter
a similar trouble: they cannot shift rightward to utilize right-
side bubbles (if any), as this would delay the forward passes of
the same micro-batch in later stages, extending the pipeline.

However, the opposite movements to exploit bubbles are
allowed. As illustrated in Figure 8(b), the forward pass of
micro-batch y in stage s can shift leftward to utilize the left-
side bubbles without violating its data dependency. Similarly,
the backward pass of micro-batch x can shift rightward. This
observation provides a key insight: instead of relying solely
on adjacent recomputation tasks to utilize unused backward
bubbles, we can shift the remaining forward passes leftward
to exploit these bubbles. Subsequently, the backward passes
can be shifted rightward to take advantage of the bubbles
created by the adjusted forward passes.

Figure 8(c) illustrates the outcome of this adjustment. The
bubbles preceding the backward pass of micro-batch x in stage
s are utilized, resulting in a reduction in execution time. This
demonstrates that the previously unused backward bubbles
are effectively utilized to conceal recomputation overhead.

5.2 Dependency Relaxing among Stages

Based on the analysis, we propose dependency relaxation to
improve backward bubble utilization, as shown in Figure 9.
The key adjustment involves shifting the remaining forward
passes leftward and the backward passes rightward during the
steady phase. To prevent excessive activation accumulation,
the left-shifted forward passes are interleaved with the back-
ward passes, similar to the 1F1B approach. For example, the
forward passes of micro-batches 4—7 are shifted leftward and
orchestrated in an interleaved manner with the corresponding
backward passes, which are shifted rightward accordingly.

This adjustment relaxes the tight data dependencies be-
tween stages, ensuring that the execution of one stage no
longer directly impacts another. As a result, underutilized
backward bubbles are effectively leveraged, reducing overall
iteration time, as shown in the middle of Figure 9.
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Figure 9: Two-step optimization process applied to the straw-
man pipeline to achieve Obscura pipeline.

5.3 Migration Refinement

We refine the pipeline by reducing the forward passes mi-
grated into forward bubbles, resulting in the Obscura pipeline
depicted at the bottom of Figure 9. This refinement decreases
the activations footprints during the warmup phase without
affecting the concealment of recomputation overhead. It is
motivated by the persistence of backward bubbles in stage 0,
as illustrated in the middle of Figure 9.

In a p-way pipeline, stage s can have up to min(m —
1,3(p —s— 1)) backward bubbles, where m denotes the total
number of micro-batches. This suggests that earlier adjusted
stages can theoretically conceal more recomputation overhead.
However, due to data dependencies in the final backward pass
of adjusted stages, the total time extension across all adjusted
stages cannot recede that of the last adjusted stage, k. From
this analysis, we conclude that the ability to conceal recom-
putation overhead is determined by the number of bubbles in
stage k. This also accounts for the unused bubbles observed in
earlier adjusted stages after dependency relaxation. Therefore,
for adjusted stages where s < k, it is sufficient to align the
number of backward bubbles with those in stage .

6 Swapping-Aware Recomputation

To reduce the extra memory usage caused by the migration of
forward passes, we introduce an activation swapping scheme
for the Obscura pipeline, which reduces activation storage dur-
ing the warmup phase. Furthermore, we analyze the trade-off
between recomputation and communication overhead, for-
mulating an optimization problem to determine the optimal
recomputation strategy under a given swapping configuration.

6.1 Activation Swapping

Relying solely on increased recomputation relative to the
1F1B pipeline to eliminate extra memory consumption intro-
duces more recomputation overhead, which conflicts with our

Mem.  \Warmup Phase Ending Phase

Steady Phase

J b JTime

(Activation Swapping Scheme Evict [ Load

Eviction Phase ! Eviction-Loading Phase iLoading Phase
T 0
L it = - OogEBE--a
Mem. ~>
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i S
' :

Time

Figure 10: The activation swapping scheme.

objective of utilizing bubbles to conceal recomputation over-
head. To resolve this, we incorporate swapping techniques
into Obscura pipeline to alleviate recomputation pressure.

Activation Swapping Scheme. We propose an activation
swapping scheme, transferring activations to external mem-
ory at the granularity of individual micro-batches, termed
"activation blocks," as shown in Figure 10. The scheme com-
prises three swapping phases: eviction, eviction-loading, and
loading. The eviction phase occurs during the warmup phase,
where memory usage rises linearly, requiring continuous evic-
tion of activation blocks to maintain target memory levels.
The eviction-loading phase operates throughout the steady
phase, during which evicted activations are reloaded for back-
ward passes. To avoid exceeding memory limits, one acti-
vation block must be evicted before reloading. Leveraging
full-duplex communication, eviction and loading can be per-
formed in parallel. The loading phase occurs in the ending
phase, where activations are loaded without eviction as back-
ward passes consume them, ensuring stable memory usage.

The various swapping implementations [10,27] are specific
instances of this scheme. By abstracting their details and
focusing on the core aspects, we integrate the scheme into the
Obscura pipeline’s optimization, ensuring compatibility with
diverse designs.

Memory Analysis. In the activation swapping scheme,
memory usage is determined by two critical parameters: 1)
A, the number of activation blocks transferred in the eviction
phase, and 2) B, the fraction of data transmitted per activation
block. Let y“%/ denote the number of forward passes in the
warmup phase of the adjusted stage, and a®‘/ represent the
size of activations stored per micro-batch of the adjusted stage.
The memory consumption of activations in adjusted stage s
after swapping can be expressed as follows.

A = (g = Ds)a™ 4 (1= B (D)

6.2 Swapping-Aware Recomputation

Recomputation and activation swapping in Obscura create a
trade-off between recomputation and communication costs. 1)
Increasing recomputation, as shown in Figure 1 1(a), reduces
the number of activation blocks evicted during warmup to
meet memory limits, and allows shorter transfer times to over-
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Figure 11: Trade-off Between Recomputation and Swapping.

lap with computation but incurring higher recomputation over-
head. 2) Decreasing recomputation, as in Figure 11(b), lowers
recomputation overhead, which bubbles can mostly hide, but
requires more swapping to satisfy memory constraints. This
includes evicting more activation blocks during warmup and
longer transfer times for each activation block that cannot
overlap with computation, resulting in significant communica-
tion overhead. To balance recomputation and communication
overhead, we model the execution time and memory usage of
Obscura pipeline and construct our optimization problem.

Execution Time. We consider the p-way 1F1B pipeline
with m micro-batches under even stage partition for LLMs,
where the forward time f and backward time 2 f is identical
across stages. The recomputation time is denoted as r, and
the last adjusted stage is denoted as stage k.

For swapping, as shown in Figure 11(b), eviction or loading
operations have maximum transmission times of f, 3f +r,
and 2f + r in the three swapping phases, respectively. Ex-
ceeding these thresholds introduces communication overhead,
with the eviction-loading phase’s cost scaling with the num-
ber of micro-batches. To mitigate significant overhead, we
enforce the constraint a®/f < (3f +r) x B, where B is the
CPU-GPU communication bandwidth. Thus, the communica-
tion cost is

T =max(As(a“B/B— f) — (k—s)(2f +7),0)+

2
As(a®B/B—2f —r) +¢ @

Eq.2 applies when stage k has no remaining bubbles, as their
presence implies that the overhead of Full recomputation can
be fully hidden, making swapping unnecessary. The first and
second terms represent the communication cost incurred in
the warmup and ending phases, respectively, with the former
having bubbles to mitigate the cost. € represents the over-
head not covered by the first two terms due to variations in
swapping design [10,27], with a range of [0,3f +r].
The execution time, comprising computation time and bub-
ble time, is expressed as follows:
T 3mf+3(p—s—1)f, s>k 3)
U\ max(Tipr + v, ym+ (k—s)y+IS), s<k

where Y= 3 f 4 r. Ty denotes the pipeline execution time from
stage s to the final stage, primarily determined by computation,

bubble delays, and communication overhead. The first term
in the max function captures inter-stage data dependencies.

Memory Usage. We define a as the activation size per
micro-batch without recomputation. The memory usage of
stage s is My = W + Ay, where W; is the size of model parame-
ters, including optimizer states, and Ay is the memory usage of
activations. For adjusted stages, A; = A§ 4, ; for non-adjusted
stages, A; = (p— ) X a.

The Optimization Objective. Based on the analysis and
modeling above, we formulate the optimization problem as

min Ty
st.My<G,s€[0,p—1] 4)
aB < (3f+r)xB

The optimization variables include Ay, B, a“¥/, and r. A, fol-
lows a fixed relationship across stages: stage s — 1 evicts one
more activation block than stage s. Thus, A; can be repre-
sented as A, with a range of [2, p — k —2]. B is a percentage
in [0, 1]. @*/ and r correspond the recomputation strategy, the
set of operators selected for recomputation.

We quantify the recomputation strategy as follows: We de-
fine the operators of pipeline stage as U,, = {opo, ...,0pp—1},
where n represent the total number of operators. Then we
have f ~ ZO[),'GUUP Jop; and a =~ ZO]),’GUUP aop;» Where f;,,. and
a,p; denote the computation time and the activation size of
op;. The recomputation strategy is represented as Ry, ' =
[x0,X1,...,X,—1], @ binary array where x; = 1 indicates that
op; is recomputed, and x; = 0 indicates it is not. Then, we have
r=Y1"0 RO X fop, and @ = a— Y7 RO V[i] X agp,.

By replacmg a“¥ and r in Eq.4 with the quantified def-
inition, the optimization problem becomes an integer pro-
gramming (IP) problem. We solve it by enumerating possible
values of the swapping-related variables to derive the corre-
sponding recomputation strategy, then selecting the combina-
tion of the swapping configuration and recomputation strategy
that achieves the best performance. For instance, if we adopt
BPipe’s [10] swapping design for our activation swapping
scheme, we only need to iterate over A, as P is fixed at 1.

7 Partition Adjustment

To balance computation between adjusted and non-adjusted
stages, we first refine the execution time and memory usage
model of the Obscura pipeline, accounting for uneven stage
partitioning. Based on this model, we propose a stage partition
adjustment algorithm to optimize pipeline performance by
identifying the optimal partitioning strategy.

7.1 Modeling in Uneven Stage Partition

Considering a pipeline with uneven stage partition, we de-
fine f;, rs, and a as the forward time, recomputation time,
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and activation size per micro-batch for stage s, respectively.
In pipeline parallelism, execution time is dominated by the
slowest stage. We let Cpyj = max,<(3f; +r5) and Gy =
max~x(3fy) represent the total computation time per micro-
batch for the slowest adjusted and non-adjusted stages, respec-
tively. Thus, the execution time for stage s in Obscura pipeline
with uneven stage partition can be expressed as follows.

®)

5§~

& T?(Cnon)v s>k

T,(Caaj), s<k
Eq.5 is an approximation, where C,,, and C,q; replace the
terms 3f and 3f + r in T, respectively. For memory usage,
we replace a and a®/ in M, with a;, as expressed below.

~

M, = M;(as) (6)

7.2 Partition Adjustment Algorithm

To balance computation between adjusted and non-adjusted
stages, we propose a partition adjustment algorithm that trans-
fers layers from adjusted to non-adjusted stages. For finer-
grained adjustments, each transformer layer is split into an
attention layer and an MLP layer, resulting in 2L + 2 layers,
where L is the number of transformer layers, and the constant
2 accounts for the embedding and decoder head layers. In the
even stage partition, the first and last stages contain 2L/p + 1
layers, while intermediate stages contain 2L/ p layers.

Significant computation imbalance in the Obscura pipeline
occurs only with a large number of micro-batches, where
slight partition adjustments can eliminate the imbalance. For
simplicity, the impact of adjustments on overhead conceal-
ment and swapping-aware recomputation is ignored.

The partition adjustment algorithm, in Algorithm 1, takes
dictionaries Dyq; and Dy, representing adjusted and non-
adjusted stages and their layer counts. The goal is to make
Tk+l as close as possible to T —Cuy j» balancing computation
between stages. Lines 5-8 transfer one layer from the slow-
est adjusted stage a to the fastest non-adjusted stage b. The
algorithm outputs the updated dictionaries Dyq; and Do,

8 Design Reinforcement: Enhancing Conceal-
ability in Identifying Adjusted Stages

Problem. As discussed in §5, on one hand, the number of
backward bubbles in a stage is inversely proportional to the
stage ID, and the maximum concealable overhead is deter-
mined by the last adjusted stage. As a result, selecting more
stages as adjusted stages reduces the Obscura pipeline’s abil-
ity to conceal recomputation overhead, eventually degrading
its performance to that of the 1F1B pipeline. On the other
hand, identifying adjusted stages during pipeline transfor-
mation is guided by memory usage and hardware memory
capacity. Under conditions of high memory usage or limited

Algorithm 1: Partition Adjustment

Input: Dy, and Dy

Output: Updated Do, and Dyq;.
1 Initialize old_Dyon < Dyon, 0ld_Dygj < Dyaj
Compute T, Tk+1, Cuaj based on Dy, Dy
while 7 — Cqj > Ty do
Old_Dnon,()ld_Dadj — DnonaDadj
a < argmax,<(3fs +75)
b+ argminDk/\MSSG(:%fS)
Dadj[a] — Dadj[a] —1
Dm)n [b] (j DAnan [b] + 1
Update 1y, Tj41, Caaj based on Dy, and Dyg

10 Dyon, Dygj < old_Dyon,0ld_Dygj

e e N A R W

memory capacity, a larger number of stages are designated as
adjusted, decreasing the performance of the Obscura pipeline.

Opportunity. Recent studies [27] reveal that cost-effective
operators in transformer models, such as RMSNorm, SiLU,
and Mul in the Llama-2 model, exhibit high space complexity
but low computation complexity. Including these operators in
the recomputation set (referred to as the CMB recomputation
strategy) can reduce footprints by approximately 40%, with
only a modest 2—-3% increase in overhead.

Optimization. To enhance the original identification
step, we introduce an alternative approach called CMB-
Identifying. When encountering OOM issues, instead of
immediately designating a stage as adjusted, the CMB re-
computation strategy is applied first. This method reduces the
number of adjusted stages, thereby improving the Obscura
pipeline’s ability to conceal recomputation overhead.

9 Evaluation

We evaluated Obscura on a single training node. Notably,
since Obscura introduces no communication overhead be-
tween stages, it can seamlessly scale to multiple nodes.

9.1 Implementation and Experimental Setup

Implementation. We implement Obscura on DeepSpeed
by designing a custom scheduler to replace the native sched-
uler. To enable inter-stage communication within the Obscura
pipeline, we convert synchronous NCCL communication to
asynchronous and introduce synchronization mechanisms
to ensure seamless execution. Swapping operations are in-
tegrated into the computation schedule as execution steps,
utilizing separate CUDA streams and manual memory man-
agement to enable concurrent swapping and memory reuse.

Platform. We evaluate Obscura on a data center training
node equipped with 2.0 TB of DRAM, two Intel Xeon Plat-
inum 8352S CPUs (128 threads in total), and eight NVIDIA
A100-SXM-80GB GPUs. The GPUs are fully interconnected
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Figure 12: End-to-end performance for training various sizes of Llama-2 and GPT-3 models under different global batch sizes.

via NVLink, providing a bidirectional P2P bandwidth of 600
GB/s, and are connected to the CPUs through PCle 4.0 x16.
Model, Datasets and Workloads. We evaluate Obscura
using various model sizes based on the popular Llama-2 [23]
and GPT-3 [3] models, including 13B, 18B, 23B, and 28B
parameters for both base models. The GPT-3 models used in
our evaluation are based on the open-source implementation
from the Megatron-LM repository [11, 16,20]. To simplify
testing, we generate a random sequence before the training
loop and feed it into the models. The sequence length is
standardized to 4096, and the micro-batch size is set to 1,
which are common configurations for multi-node training.
Baselines. We utilize the following pipeline parallelism
configurations implemented on DeepSpeed with the 1F1B

the model by adding layers and extend the pipeline length by
increasing the global batch size. The performance speedups
of Obscura and the baselines relative to DAPPLE (for the 13B
model) and DAPPLE™ (for models of other sizes) is presented
in each column of Figure 12. Notably, Strawman and Obscura
are NOT applied to the 1F1B pipeline in the 13B model.

Llama-2. Figure 12 illustrates that for the 13B model,
DAPPLE operates effectively and significantly outperforms
DAPPLE™", which incorporates recomputation. However, as
the parameter size increases, DAPPLE fails to train due to
excessive memory usage resulting from retaining all activa-
tions. In contrast, DAPPLE™ continues training successfully
by discarding most activations to reduce memory usage.

OHP-CMB leverages recomputation for cost-effective op-

erators, achieving a computation complexity of O(bsh) for the
operators’ recomputation and a space complexity of O(bs*h)
or O(bsh?) for reducing the operators’ footprints. This strat-
egy allows OHP-CMB to efficiently train 13B and 18B mod-
els with minimal recomputation overhead. However, it cannot
support larger models due to limited activation savings.

BPipe utilizes spare memory in later stages to mitigate the
memory bottleneck in earlier stages, enabling the training
of 13B and 18B models. Furthermore, the high-bandwidth
NVLink ensures minimal communication overhead, allowing
BPipe to sustain high performance. However, as all activations
are retained in GPU memory, the memory usage exceeds GPU
capacity for 23B and 28B models. To address this, the MLP
recomputation strategy is applied, and BPipe achieving just
17% improvements over DAPPLE™ for these larger models
because of these recomputation overhead.

Strawman outperforms DAPPLE™ by effectively conceal-
ing recomputation overhead. However, its performance dete-
riorates with increasing model sizes and global batch sizes.
Larger models reduce Strawman’s ability to conceal recompu-
tation overhead due to the need for more stages to be adjusted
stages, while larger global batch sizes increase recomputation
demands, further intensifying the overhead.

pipeline as baselines for comparison experiments:
* DAPPLE [5]: The state-of-the-art 1F1B pipeline schedule
with even stage partition.

* DAPPLET: We evaluate DAPPLE using the Full recom-
putation strategy applied to all stages, which reduces
memory usage and enables the training of larger models.

e OHP-CMB: We apply the recomputation strategy proposed
in the work [27] that drops activations of specific opera-
tors, including Norm, SiLU/GELU, and Mul.

BPipe [10]: It eliminates the memory bottleneck by
transferring activations from earlier stages to later ones
using an activation balancing method. As it encounters
OOM issues with 23B and 28B models, we apply the
MLP recomputation strategy for these larger models.

In addition, we measure St rawman with the Full recompu-
tation strategy applied for the adjusted stages.

9.2 Training Performance

We evaluate the throughput of Obscura and baselines using
Llama-2 13B and GPT-3 13B as base models. To analyze
Obscura’s performance across different scenarios, we scale
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Figure 13: Memory usage in the Llama-2 28B model.

Obscura requires fewer adjusted stages than Strawman by
using the CMB-Identifying and reduces the recomputation
of non cost-effective operators through activations swapping.
Therefore, Obscura more effectively conceal recomputation
overhead using forward and backward bubbles, even with
larger models and global batch sizes. Specifically, Obscura
achieves speedups of 29-31% for the 18B and 23B models,
22-27% for the 28B model, and a 22% speedup in the extreme
case of a global batch size of 64 for the 28B model.

GPT-3. Obscura and the baselines achieve comparable end-
to-end performance to Llama-2. But notably, since GPT-3 uses
the GELU activation function, which is more cost-effective
than the SiLU function used in Llama-2 in recomputation,
Obscura attains speedups of 32-33% for the 18B and 23B
models, 30-32% for the 28B model, and 30% in the extreme
case of a global batch size of 64 for the 28B model.

9.3 Memory Analysis

We measure peak memory usage across stages for the Llama-
2 28B model with a global batch size of 32. For baselines
experiencing OOM, we estimate their memory usage to ensure
a fair comparison. The results are presented in Figure 13.

For DAPPLE, only stages 6 and 7 operate within the mem-
ory constraints. Memory usage across stages shows an imbal-
anced linear decline, with stage O consuming approximately
2.0x the memory of stage 7. In contrast, DAPPLE™ achieves
consistently low and balanced memory usage by discarding
nearly all activations across all stages, leaving approximately
20 GB of unused memory in each stage. OHP-CMB reduces
activation size by 40% compared to DAPPLE by recomputing
only the Norm, SiLU, and Mul operators; however, this opti-
mization is insufficient for training the 28B model. BPipe bal-
ances memory by retaining at most [ (p+2) /2] micro-batches
of activations across p stages. Without the MLP recomputa-
tion strategy, its peak memory usage reaches 106 GB during
28B model training, exceeding memory limits. With the strat-
egy applied, memory usage stabilizes at approximately 76
GB. Since only stages 6 and 7 in DAPPLE remain within
the memory constraints, Strawman selects stages 0-5 as ad-
justed stages, resulting in memory usage similar to DAPPLE™,
where available memory is not fully utilized.
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Figure 14: Computation, bubble and total execution time
across all stages in the Llama-2 23B model.

In contrast, Obscura selects stages 0—4 as adjusted stages
and applies the CMB recomputation strategy to stage 5. As
a result, stage 5 shows memory usage comparable to OHP-
CMB, while stages 6 and 7 align with DAPPLE. For the
remaining stages, the identical recomputation strategy and
objectives for activation swapping ensure memory usage that
close to the constraints, achieving high memory utilization.

9.4 Computation and Bubble Analysis

To assess the effectiveness of recomputation overhead con-
cealment in Obscura, we measure the computation and bubble
times across stages for a single iteration of the Llama-2 23B
model with a global batch size of 32. Computation time is
defined as the cumulative forward and backward pass times
for all micro-batches, while bubble time refers to the total
duration of all forward and backward bubbles. The total ex-
ecution time is calculated as the sum of computation and
bubble times. For comparison, we estimate the performance
of DAPPLE, despite its inability to run the model at this scale.
The results are presented in Figure 14.

Due to the discarding and recomputation of nearly all ac-
tivations, DAPPLE™ incurs an 1/3 increase in computation,
bubble, and execution time compared to DAPPLE. To enable
training of the 23B model, Strawman designates stages 0-3
as adjusted stages, resulting in computation time for these
stages matching those of DAPPLE™, while stages 4-7 align
with DAPPLE. By utilizing bubbles to conceal recomputation
overhead, Strawman can reduces bubble time for stages 0-3
compared to DAPPLE, achieving better performance than
DAPPLE™. However, Strawman still exhibits longer execu-
tion time than DAPPLE, as the available bubble time is insuf-
ficient to fully conceal the recomputation overhead, evidenced
by the bubble time for stage 3 dropping to zero.

Unlike Strawman, Obscura designates stages 0-2 as the
adjusted stages. By utilizing swapping techniques to mini-
mize activation footprints, Obscura employs a recomputation
strategy focused solely on cost-effective operators for the
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Figure 15: End-to-End performance in 4 stages pipeline.

adjusted stages, leading to only a 13% increase in computa-
tion time compared to DAPPLE. In terms of bubble time, the
adjusted stages show a reduction of approximately 1.7 sec-
onds compared to DAPPLE. Notably, stage 2 retains bubbles,
demonstrating that recomputation overhead is almost entirely
concealed. As a result, Obscura achieves performance closely
aligned with that of DAPPLE.

9.5 Additional Performance Validation

To demonstrate that Obscura delivers robust performance
across diverse training configurations and platforms, we se-
lected another representative 4-stage pipeline configuration
for validation. We re-conduct performance evaluations using
various sizes of Llama-2 and GPT-3 models with a global
batch size of 32. The experiments are performed on a sys-
tem equipped with four NVIDIA A800 GPUs connected to
CPUs via PCle 4.0 x16, without NVLink. Due to limited
P2P bandwidth between GPUs, BPipe achieves 11% and 17%
lower throughput than DAPPLE on 10.4B models, mainly
due to costly inter-stage activation transfers. For larger mod-
els, combining MLP recomputation reduces activation size
and enables full overlap of communication and computation,
but introduces recomputation overhead. In low-bandwidth
settings, recomputation outperforms swapping.

In contrast, Obscura introduces no additional inter-stage
communication and maintains original P2P communication
between stages. As a result, it consistently achieves strong
performance gains of 27-31%.

9.6 Sensitivity Analysis

To evaluate the advantages of Obscura over baseline methods,
we perform a sensitivity analysis to examine the impact of
dependency relaxation (DR), swapping-aware recomputation
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Figure 16: Sensitivity Analysis in the Llama-2 23B model.

(SAR), and computation balancing (CB). Figure 16 presents
the performance of DAPPLE™ and Obscura across different
combinations of these core techniques, tested under global
batch sizes ranging from 16 to 128 for training the Llama-2
23B model. All configurations designate stages 0-2 as ad-
justed stages, and the results are normalized to DAPPLE™.

At a batch size of 16, bubbles can conceal most recomputa-
tion overhead, yielding significant speedups for all Obscura
configurations. DR shows a slight performance drop due to
recomputation overhead in the final backward pass, which
cannot be concealed, and larger per-micro-batch recomputa-
tion overhead. At batch sizes of 32 and 64, DR’s performance
degrades significantly as recomputation overhead exceeds
bubbles’ capacity. In contrast, DR+SAR and DR+SAR+CB
maintain higher performance by prioritizing cost-effective op-
erators, reducing overall recomputation overhead. At a batch
size of 128, DR+SAR and DR+SAR+CB experience a perfor-
mance drop as bubbles cannot fully conceal recomputation
overhead. However, DR+SAR+CB mitigates this by redis-
tributing layers between adjusted and non-adjusted stages,
balancing the computation load.

10 Conclusions

In this paper, we present Obscura, a computationally efficient
pipeline training system, which introduces a novel pipeline
transformation that utilizes existing pipeline bubbles to effec-
tively hide recomputation costs, as well as integrates advanced
techniques such as dependency relaxation, swapping-aware
recomputation, and computation balancing, significantly en-
hancing overall performance and resource utilization.
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