
HESA: The Construction and Evaluation of
Hierarchical Software Feature Repository

Yue Yu, Huaimin Wang, Gang Yin, Xiang Li, Cheng Yang
National Key Laboratory for Parallel and Distributed Processing

School of Computer Science, National University of Defense Technology
Changsha, China

yuyue whu@foxmail.com, whm w@163.com, {jack.nudt, shockleylee}@gmail.com

Abstract—Nowadays, the demand for software resources on
different granularity is becoming prominent in software en-
gineering field. However, a large quantity of heterogeneous
software resources have not been organized in a reasonable and
efficient way. Software features, a kind of important knowledge
for software reuse, are ideal materials to characterize software
resources. Our preliminary study shows that the effectiveness
of feature-related tasks, such as software resource retrieval and
feature location, will be greatly improved, if a multi-grained
feature repository is available. In this paper, we construct a
Hierarchical rEpository of Software feAture (HESA), in which
a novel hierarchical clustering approach is proposed. For a
given domain, we first aggregate a large number of feature
descriptions from multiple online software repositories. Then we
cluster these descriptions into a flexible hierarchy by mining
their hidden semantic structures. Finally, we implement an online
search engine on HESA and conduct a user study to evaluate
our approach quantitatively. The results show that HESA can
organize software features in a more reasonable way compared
to the classic and the state-of-the-art approaches.

Keywords—Software reuse; Mining Software repository;
Feature-ontology; Clustering;

I. INTRODUCTION

Software reuse is widely recognized as an effective way to
increase the quality and productivity of software [1]. With the
development of software industry, the degree of software reuse
is deeper than previous years and the demand for resources on
different granularity becomes more prominent. For example,
when developing a new large software system, we may reuse
some API calls from the third party to accomplish the core
functions and the mature open source software as the basic
framework. Additionally, some code fragments or components
can be reused to meet other additional demands. The reusable
resources are multi-grained, consisting of API calls (the finest
level of granularity), code fragments, components (higher than
API calls) and software systems (much higher than others).

However, considering the large-scale, heterogeneous and
multi-grained software resources, it is a great challenge for
stakeholders to retrieve the suitable one. With the evolution of
open source ecosystems, more than 1.5 million open source
software projects are now hosted in open source communities
[2]. Reusable resources [3] are manifold, including code bases,
execution traces, historical code changes, mailing lists, bug
databases and so on. All of these valuable resources have not
been reorganized in a reasonable and efficient way to assist in

the activities of software development.
As a kind of attributes which capture and identify com-

monalities and differences in a software domain, software
feature [4] [5] is an ideal material to characterize the software
resources. Constructing a feature repository of a flexible
structure can make a great contribution to multi-grained reuse.

However, classic feature analysis techniques, such as Fea-
ture Oriented Domain Analysis (FODA) [6] and Domain
Analysis and Reuse Environment (DARE) [7], are heavily
relied on the experience of domain experts and plenty of
market survey data. Hence, the feature analysis is a labor-
intensive and error-prone process.

In recent years, more and more stakeholders develop, main-
tain and share their software products on the Internet. In order
to promote their products to users, project managers write
some market-oriented summaries, release notes and feature
descriptions on the profile pages via natural language. The
large number of online software profiles can be treated as a
kind of repository containing a wealth of information about
domain-specific features. Although researchers propose several
automatic methods to mine features from the web repository
[8] [9] [10], the problems have not completely be solved,
specifically in organizing features as flexible granularity.

In this paper, we are trying to address the above problems
by proposing a novel approach to construct a Hierarchical
rEpository of Software feAture (HESA). First of all, we extract
a massive number of feature descriptions from online software
profiles and mine their hidden semantic structure by proba-
bilistic topic model. Then, we present an improved Agglom-
erative Hierarchical Clustering (iAHC) algorithm, seamlessly
integrated with the topic model, to build the feature-ontology
of HESA. Finally, we implement an online search engine1

for HESA to help retrieve features in a multi-grained manner,
which can support multiple reuse requirements. By conducting
a user study, we demonstrate the effectiveness of our system
with quantitative evaluations comparing to the classic and the
state-of-the-art approaches.

The rest of this paper is or organized as follows. Section
II introduces the overview of our work. Section III describes
how to construct HESA in detail. Experiments and analysis
can be found in Section IV. Finally, we present some related

1http://influx.trustie.net

Figure 1. Overview of the construction and use of HESA

work in Section V and draw our conclusions in Section VI.

II. APPROACH OVERVIEW

First of all, we give the definitions of some concepts used
in this paper.

Feature element: Feature element is a kind of raw descrip-
tions which can indicate a functional characteristic or concept
of the software product.

Feature: Feature is an identifier of the cluster about feature
elements, where the cluster is an intermediate output of
improved Agglomerative Hierarchical Clustering (iAHC).

Feature-ontology: Feature-ontology is a kind of hierarchical
structure induced from feature elements by iAHC.

HESA: The assembly of all feature-ontologies of the dif-
ferent categories is the Hierarchical rEpository of Software
feAture.

The objective of this paper is to build a hierarchical structure
of feature as a flexible granularity. In the top layers, the
features in coarse granularity may be mapped to the cor-
responding software resources such as mature applications,
design patterns, and superclasses. In the bottom layers, the
features can be mapped to some related code fragments, API
calls and subclasses.

Before describing the specific details of the underlying
algorithms, an architectural overview of approach will be pro-
vided as below. There are actually two processes concerning
the application of our method, i.e., the construction process
and the use process of HESA by stakeholders. In this paper,
we only focus on the construction process owing to space
limitations.

As depicted in Figure 1, the construction process consists
of three primary modules and the input is software profiles
data collected and updated continuously by a web crawler.
The first module is called the Extractor and Synthesizer. We

use the Extractor component to extract feature elements. Then,
after running preprocessing tasks, the Synthesizer component
will automatically located these feature elements, into a unified
category. Especially, the word “domain” will be replaced by
“category” for they are sharing the same meaning in the rest
of this paper.

The second module, the Feature-Topic Modeler, is respon-
sible for mining the semantic structure hidden in feature
elements. We will merge the synonymic feature elements in
terms of their semantic structure in the next step.

The last module, the FAFO (Flexible grAnularity Feature-
Ontology) Constructor, is a critical part of the construction
process. In this module, we present a novel algorithm iAHC to
construct the feature-ontology and more details can be found
in Section III. The major functionalities of this module are
listed as below:

(1) The synonymic feature elements are merged based on
the semantic structure outputted by the Feature-Topic Modeler;

(2) For each cluster, a significant group of feature elements
is selected as the medoid used to generate feature;

(3) A feature-ontology is learned and features can be
retrieved in terms of flexible granularity.

After all the raw data under our category are disposed, the
construction process of HESA is finished.

The HESA can perfectly support the multi-grained resource
reuse. For example, when a company plans to enter a new
domain such as Antivirus, the stakeholders want to know a
few general features about this domain, e.g. “Anti-rootkit”,
“Heuristic scanning”, and “File backup”. Inputting require-
ments and use the search engine of HESA, the matched
features will be returned. Based on the feature in coarse
granularity, they can find some mutual software systems.
Furthermore, to know this field more clearly and locate some
reusable code fragments or packages, some fine granularity

(a) Bullet-point lists of features in Softpedia.com (b) Bullet-point lists of features in Sourceforge.com

(c) Release notes in Freecode.com

Figure 2. Examples of feature elements in the software pages

features can be retrieved from HESA, e.g., “Automatic detec-
tion of downloaded files and Lock Autorun.inf, virus cannot
execute.”

III. CONSTRUCTION OF HESA

A. Feature Elements in Software profiles

The online software profiles contains a wealth of in-
formation about domain-specific features. In this paper, all
the feature elements are extracted from software profiles
in Softpedia.com2, Freecode.com3 and Sourceforge.com4. As
depicted in Figure 2(a), there is a bullet-point list of some
key features about the software resource in Softpedia.com and
Sourceforge.com. Another type of raw descriptions being used
is the Release Notes in Freecode.com. A product has many
release versions about bug fixes, performance optimizations
and feature enhancements. As depicted in Figure 2(b), we
extracted feature elements from the release notes about feature
enhancement, which contain some related tags or key words,
such as “add”, “support for” and “new feature”.

To allocate different feature elements, which extracted from
three different websites, into a unified domain category, the
two categories of Softpedia.com and Sourceforge.com was
combined into a new one. Then, all software and their feature
elements are automatically classified into the unified category
according to softwares tags or descriptions using the method
of paper [2].

B. Feature Element Analysis

Because different people describe the functions in terms of
their personal understanding in an open environment, feature
elements are unstructured and disordered. To illustrate these
problem clearly, the feature elements in Antivirus category are
used as examples in this paper.

2http://www.softpedia.com
3http://freecode.com
4http://sourceforge.net

Hybrid Semantic-level: The problem of hybrid semantic-
level is that different feature elements describe a common
theme in different semantic level, such as the following
descriptions:

(1) “Email Scanner enhanced email protection”;
(2) “Email scanning for Microsoft Outlook, Outlook Ex-

press, Mozilla Thunderbird, Windows Live Mail, Windows
Mail, and other POP3/IMAP mail clients, ensuring your email
is free of viruses and other threats”;

(3) “Blocks spam mails, phishing attack mails, junk mails
and porn mails before they reach your inbox”;

The first sentence describes the theme of email protection in
a general level. However, the last two sentences present more
details including what type of mail clients would be supported
and what kind of message would be filtered.

According to sampling statistics of our datasets, there are
25.7% feature elements in a relative high semantic-level,
33.9% feature elements in a relative specific semantic-level,
and 40.4% in the intermediate-level.

On one hand, the massive number of feature elements in
different semantic-level are good materials for the construction
of flexible granularity ontology. On the other hand, it is a great
challenge for the traditional methods to cluster and reorganize
feature elements.

Synonymic Feature Element: The problem of synonymic
feature element happens when two features are used to de-
scribe some common or very similar functional attributes.
Some feature elements are almost the same with each other,
such as the four feature elements below:

(1) “Kills the core of AdPower and not only symptoms”;
(2) “Kills the core of BANCOS.D and not only symptoms”;
(3) “Kills the core of Dyfuca and not only symptoms”;
(4) “Kills the core of eBot and not only symptoms”;
The difference between these feature elements is the name

of the malicious code, such as “AdPower”, “BANCOS.D” and
“Dyfuca”. However, all of them present a common functional
attribute about the ability of killing various popular viruses.

Another typical problem is that each pair only shares few
core words, such as the following:

(1) “Ability to update that does not require downloading
full package”;

(2) “Incremental database updates and often to include
information about latest threats”;

(3) “Incremental updating system minimizes the size of
regular update files”;

These three feature elements present the common attribute
about incremental updating, but only the word “update” is
shared by the two sentences. According to the statistics,
there are 33.7% of synonymic feature elements in Antivirus
category, 28.9% in File-manger category, and 41.6% in Audio-
Player category. Thus, feature elements should be merged
together by an effective method.

Latent Semantic Structures: According to our observa-
tion, one feature element may relate to several specific topics.
Take five feature elements of Mozilla Firefox5 and three topics
of “Browse with Security”, “Protect your Privacy” and “Easy
to Use” as an example. Figure 3 illustrates the relationship
among these feature elements and topics. Each feature element
connects with one or two topics and this connection can be
exposed by the key words or phrases. For example, the feature
element “Control the level of scrutiny you’d like Firefox to give
a site with a variety of customized settings” is related to the
topics of “Browse with Security” and “Protect your Privacy”.
The phrases “Control the level of ” and “scrutiny” reflects that
it is possible to associate with the topic of security, and “you’d
like” and “customized settings” reflects the relevancy with the
topic about user experience. The relationship between topic
and feature element is a kind of latent semantic structures
which is useful for the clustering of feature element and the
construction of feature-ontology.

C. Feature-Topic Model

Problem Formalization: In a specific category, such as
Antivirus, all the feature elements in the corpus can be repre-
sented as Fm = {f1, f2, . . . , fi, . . . , fm}, where fi denotes
the ith feature elements in the corpus. Assuming that K
latent topics Tk = {t1, t2, . . . , tj , . . . , tk} are implicit in the
feature elements, where tj denotes the jth topic. Although
a feature element can be bound up with several topics, it
may put more emphasis on some topics than the others. The
topic degree within feature element fi can be represented as
a K-dimensional vector υi = (pi,1, pi,2, . . . , pi,j , . . . , pi,k),
where pi,j is a topic weight describing the extent to which
the topic tj appears in feature element fi. When pi,j = 0,
fi is irrelevant to tj . Thus, the υi, i ∈ [1,m], represented by
Vm, can be used to indicate the semantic structure implied
in feature elements. If the Vm can be obtained, the thematic
similarity measure would be induced for each pair of feature
elements and the synonymic feature elements would be merged
together. Because topic models answer what themes or topics
a document relates to and quantify how strong such relations
are, it is a effective way to learn Vm.

5http://www.mozilla.org/en-US/firefox/security

Figure 3. Feature elements mapping to topics

Topic Modeling Technique: A topic model provides
a means to automatically analysis the semantic structures
within unstructured and unlabeled documents. In this paper,
we choose Latent Dirichlet Allocation (LDA) [11] because it
has been shown to be more effective for a variety of software
engineering purposes [12] [13] than other topic models like
LSI. In LDA, each word wi in a document d is generated
by sampling a topic z from document-topic distribution, and
then sampling a word from topic-word distribution. More
formally, a latent topic z = j is modeled as an unlabeled
topic-word distribution φ(j) = P (w|z = j), which was drawn
from a dirichlet prior distribution Dirichlet(β). The number
of topics K is specified beforehand to adjust the granularity.
Each document d is a mixture of topics θ(d) = P (z) with
a dirichlet prior distribution Dirichlet(α). The generative
process of each word in d is an essentially draw from the joint
distribution: P (wi) =

∑K
i=1 P (wi|zi = j)P (zi = j). Given

the observed documents, Gibbs Sampling algorithm [14] is
widely used for posterior inference. Finally, the word-topic φ
and topic-document θ distribution can be approximated.

However, document is a generalized concept which can
be any textual resource. In this paper, a feature element
fi can be viewed as a document which is preprocessed by
removing commonly occurring words and then by stemming
the remaining words to their root form. According to category,
we apply LDA to process the documents using the MALLET
tool [15] which is an implementation of the Gibbs sampling
algorithm. Then, the topic-feature distribution Vm can be
trained, which is the same as θ.

D. iAHC : improved Agglomerative Hierarchical Clustering

To support multi-grained reuse environment, the semantic
similar feature elements should be merged and reorganized
as a flexible hierarchical structure defined as feature-ontology.
In this paper, we present an iAHC algorithm (Algorithm 1)
integrated with the LDA.

Initially, every feature elements is a distinct cluster. Line 4-
7 finds the closest two clusters ci and cj in the current cluster
set M , and merge them into a new cluster c and update M .
The proximity used to measure the distance between every
two clusters, defined as below:

proximity(ci, cj) =

∑
fi∈ci
fj∈cj

similarity(fi, fj)

|ci| × |cj |
(1)

Algorithm 1 improved Agglomerative Hierarchical Clustering
Require:

Fm = {f1, f2, . . . , fi, . . . , fm};
feature-topic distribution Vm;

Ensure:
The construction of feature-ongtology;

1: M ← D
2: featureSet← ∅
3: repeat
4: 〈ci, cj〉 = findTwoClosestClusters(M)
5: merge ci and cj as c
6: delete ci and cj from M
7: add c to M
8: centroid = calculateCentroid(c)
9: for ci ∈ c do

10: values = Similarity(ci, centroid)
11: degreet = calculateTopicDegree(ci)
12: scorem = κ× values + λ× degreet
13: add scorem to MedoidScore
14: end for
15: medoidC = findMaximumScores(MedoidScore)
16: scoreF = Similarity(medoidC)
17: featureC = mergeMedoid(medoidC , scoreF)
18: saveFeaturetoHESA(M,featureC)
19: until |M | = 1

Where ci, cj ⊆ Fm, similarity(fi, fj) used to calculate the
divergence between any two data point. Based on LDA, the
divergence can be understood as the thematic space coordinate
distance between the two feature elements. There are several
ways to calculate the divergence between any two feature-
topic distributions, such as Jenson-Shannon divergence, cosine
similarity and KL divergence. Taking cosine similarity as an
example, the Equation is shown as below:

similarity(fi, fj) =
υi · υj

||υi|| ||υj ||

=

∑k
r=1 pir × pjr√∑k

r=1 p
2
ir ×

√∑k
r=1 p

2
jr

(2)

Where k is the topic number and p is the probability value of
υ.

Line 8-14 pick out a set of feature elements from the new
cluster, defined as medoid, which can be used to represent the
theme of c. Two metrics, similarity value and topic degree,
are used to determine the medoid. Firstly, to get the values,
we calculate the similarity between ci ∈ c and the centroid
of c through Equation 2, where the vector υc̄ of centroid is
calculated by υc̄ =

∑|c|
i=1 υi

|c| . Then, the Equation 3 is used to
calculate the degreet based on the following two important
observations of feature-topic distribution Vm in our datasets.

degreet = xmax +
1

e

√∑k̂
r=1(xmax−pir)2

k̂

(3)

Where xmax is the maximum value of υi, and k̂ is the
frequency when υi not equal to zero, and pir is any value
that not equals to zero in υi.

Observation 1 The most probable topic reflects the most
prominent theme that the document (feature element) is about.

Observation 2 The more widely and evenly distributed its
topics are, the higher-level the document (feature element) is.

In brief, Equation 3 can ensure the feature element in the
coarsest granularity have the highest score degreet ∈ (0, 2],
where xmax ∈ (0, 1] can reflect the emphasis topic and the
formula 1

e

√∑k̂
r=1(xmax−wir)2

∈ (0, 1] can reflect the semantic

generality.
The scorem is used to measure the medoid calculated as

the Equation of line 12, where κ and λ is the empirical
coefficients.

Finally, the medoid with the highest scorem would be
selected. Measuring the similarity for the each pair of elements
in medoidC (line 15), the featureC (line 17) can be formed
by merging distinguished feature elements whose similarity
score below a threshold (set to 0.38). Each iteration in the
repeat clause saves the M and featureC to HESA. On the
termination of the algorithm, a feature-ontology (Figure 4) for
the category is constructed.

E. The Retrieval Method of HESA

Figure 4 depicts an example of the construction process
and result with 6 data nodes using the iAHC algorithm. Each
cluster consists of several nodes and the top node (the red color
one in Figure 4) is the feature of the cluster. The concept layer
is defined as below:

(1) The layer 0 consists of the bottom nodes which are the
original feature elements;

(2) The layer i consists of the feature node of cluster i and
all nodes in layer i− 1 except those being merged in cluster
i.

For example, the layer 3 consists of the features of cluster
3, cluster 2 and cluster 1, because all the nodes in different
clusters.

The most important advantage of the feature-ontology is
that the nodes in a layer are the most representative features
under a given similarity threshold. If the stakeholder needs a
generalized feature of the category, the feature in the top layer
can be selected. Assuming that the category of Figure 4 can be
covered by three features, the feature nodes of cluster 3, cluster
2 and cluster 1 would be retrieved step by step. From top
down, the semantic granularity is finer and finer accompanying
with the increasing number of features, which can satisfy the
requirements of multi-grained reuse environments.

Algorithm 2 is a flexible method to retrieve features in
terms of quantity, which demonstrates the advantages of the
feature-ontology. The input is the quantity of feature you need
for a specific domain. Line 1-6 show the process of finding
the suitable layer. Then, all the nodes in the same layer are
selected out in the repeat clause (line 9-20). An online search
engine has been implemented based on it in this paper.

Figure 4. An example of the feature-ontology

IV. EMPIRICAL EVALUATION

In this section, we present our dataset and experiment
setting, research questions and answers, and describe some
threats to validity.

A. Dataset and Experimental Setting

Dataset: We have collected 187,711, 432,004 and 45,021
projects profiles from Softpedia.com, Sourceforge.com and
Freecode.com respectively. Compared with that of the other
two communities, the quantity of projects from Freecode.com
is relatively small. Thus, we just adopt projects in Softpe-
dia.com and Sourceforge.com. The feature elements have been
classified into 385 categories and we randomly choose the
data of 3 unique categories to evaluate our method including
Antivirus, Audio-Player and File-manger. Furthermore, the
feature elements are preprocessed by removing commonly
occurring words and then by stemming the remaining words
to their root form. To ensure the quality of data, we omit the
preprocessed feature elements with less than 6 words. Table 1
presents the details about our dataset.

Parameter setting: As shown in Table 1, for LDA, the
number of topics K was empirically set as different value, and
the hyper-parameters α and β were set with α = 50/K and
β = 0.01 respectively, and the iteration of Gibbs Sampling was
set as 1000. In addition, the coefficients κ and λ of Algorithm
1 were set with κ = 0.7 and λ = 0.3.

B. Research Questions

To demonstrate the effectiveness of the approach in this
paper, we are interested in the following research questions:

Table I
PREPROCESSED EXPERIMENT DATASETS

Category #Softpedia #Sourceforge #Total #Topic

Antivirus 2919 1105 4024 50
Audio-Player 3714 1283 4997 60
File-Manager 2270 970 3240 40

RQ1 How the resultant feature-ontology looks like?
RQ2 Does the iAHC algorithm achieve better clustering

results than the simple but classical method and the state-of-
the-art approach?

RQ3 How accurate is the feature-ontology? Is the structure
reasonable?

C. Cross-Validation Design of the User Study

The cross-validation limits potential threats to validity such
as fatigue, bias towards tasks, and bias due to unrelated factor.
We randomly divided the 45 students from computer school
of NUDT into three groups to evaluate RQ2 and RQ3. The 2
questions and the 3 categories of dataset can be composed to
6 tasks. Each group randomly picks up 2 of them and finishes
in one day, and then we summarize the result.

RQ1: Feature-ontology: Figure 4 shows an example
feature-ontology of the Antivirus category which is a very
reasonable structure. The features (red color) in different layer
can be mapped to resources on different granularities. In
addition, the feature is relatively representative for each cluster.

RQ2: Clustering Results: We choose the K-Medoids
(tf-idf), a classic and widely used clustering algorithm, and

Algorithm 2 a flexible granularity retrieval method
Require:

kf the quantity of feature you need;
T a hierarchical structure consisting of n nodes;

Ensure:
featureSet a set of features;

1: layer ← n− k
2: if layer = 0 then
3: return the nodes of T [0]
4: end if
5: i← 0
6: featureSet[i]← the node of T [layer]
7: layer ← layer − 1
8: i← i+ 1
9: repeat

10: if T [layer] is a subtype of featureSet[i] then
11: layer ← layer − 1
12: else
13: featureSet[i]← the node of T [layer]
14: i← i+ 1
15: layer ← layer − 1
16: if layer = 0 then
17: return the rest nodes of T
18: end if
19: end if
20: until i = kf
21: return featureSet

the Incremental Diffusive Clustering (IDC), the state-of-the-art
technique proposed in paper [8], as the baseline. Especially,
the IDC use the feature descriptions from Softpedia.com which
is the same as our dataset. We also use the modified version
of Cans metric [8] to compute the ideal number of clusters.
Then, we retrieve the corresponding number of clusters from
HESA for comparison. Precision is a percent of the reasonable
feature elements in a cluster. Figure 5 shows the average value
and standard deviation of the judgments given by different
groups. We can see that our approach achieves the highest
precision in all three categories and relatively low deviations.
The precisions and deviations are comparatively stable across
different categories, which shows the probability that our
approach is more generalizable in different domains. We plan
to conduct more experiments to study this issue in the future.

RQ3: Accuracy of the feature-ontology: According to
the three categories, participants randomly choose 15 clusters
in different layers from HESA using the online search engine
respectively. Each participant is randomly assigned 3 layers
and asked to provide a 3-point Likert score for each cluster
to indicate whether they agree if the feature is the most
representative of all terms. Score 3 means very reasonable,
Score 2 means reasonable but also have better one, Score 1
means unreasonable.

Table 2 shows that 35.03% features are reasonable, 49.57%
partially reasonable and only 15.40% unreasonable. The mean
of Likert score is 2.20, which means that the feature selected

(a) the average value

(b) the standard deviation

Figure 5. The clustering results for each category

Table II
EVALUATION OF FEATURE-ONTOLOGY QUALITY

Category Score-3 Score-2 Score-1 Likert

Antivirus 33.3% 50.0% 16.7% 2.17
Audio-Player 39.1% 46.3% 14.6% 2.25
File-Manager 32.7% 52.4% 14.9% 2.18

Average 35.03% 49.57% 15.4% 2.20

out by our approach is reasonably meaningful.

D. Threats to validity

First, the participants manually judge the clustering re-
sults and their ratings could be influenced by fatigue, prior
knowledge and the other external factors. These threats were
minimized by randomly distributing participants to the various
groups and dividing the tasks into multiple parts. Second, due
to our limited datasets, parameters used in our approach, the
evaluation is not comprehensive enough.

In the feature, with the help of our online search engine,
we plan to adopt the idea of crowdsourcing and upload a lot
of tasks about use study on the Internet with a low price, such
as 5 cent. Therefore, a comprehensive and reliable evaluation
result can be obtained.

V. RELATED WORK

Recently, mining software repository has been brought into
focus and many outstanding studies have emerged that use
this data to support various aspects of software development
[16]. However, fewer previous works have been done for
mining software feature and especially construction of feature-
ontology (defined in this paper), to the best of our knowledge.

In this section, we review some previous works about feature
analysis and ontology learning.

In feature analysis area, most approaches involve either the
manual or automated extraction of feature related descriptions
from software engineering requirements and then use the
clustering algorithm to identify associations and common
domain entities [7] [17] [18]. Niu et al. [19] propose an on-
demand clustering frame-work that provided semi-automatic
support for analyzing functional requirements in a product line.
Mathieu Acher et al. [9] introduced a semi-automated method
for easing the transition from product descriptions expressed
in a tabular format to feature models. A decision support
platform is proposed in paper [20] to build the feature model
by employing natural language processing techniques, external
ontology (such as WordNet), and MediaWiki system. However,
the quantity of the existing documents is so limited that the
brilliance of data mining techniques cannot be fully exploited.
To address this limitation, paper [8] and [10] proposed the
Incremental Diffusive Clustering to discover features from a
large number of software profiles in Softpedia.com. Based
on the features, a recommendations system is build by using
association rule mining and the k-Nearest-Neighbor machine
learning strategy. Compared with these studies, the clustering
algorithm presented in this paper is more effective by mining
the semantic structures from feature elements and especially
focus on the construction of feature-ontology.

Ontology learning (also called ontology extraction) from
text aims at extracting ontological concepts and relation from
plain text or Web pages. Paper [21] developed an ontology
learning framework using hierarchical cluster and associa-
tion rule for ontology extraction, merging, and management.
Several researches have attempted to induce an ontology-
like taxonomy from tags. Jie Tang et al. [22] proposed a
generative probabilistic model to mine the semantic structure
between tags and their annotated documents, and then create
an ontology based on it. Xiang Li et al. [23] enhance an
agglomerative hierarchical clustering framework by integrating
it with a topic model to capture thematic correlations among
tags. Based on tens of thousands of software projects and their
tags, Shaowei Wang et al. [24] propose a similarity metric to
infer semantically related terms, and build a taxonomy that
could further describe the relationships among these terms. In
this paper, to support multi-grained reuse, emphases of the
feature-ontologys construction is on the measure of similarity
and granularity instead of generality.

VI. CONCLUSION AND FUTURE WORK

The continuing growth of open source ecosystems creates
ongoing opportunities for mining reusable knowledge. In this
paper, we have explored the idea of mining large scale reposi-
tories and constructed the HESA to support software reuse. In
the future, we plan to improve the performance of our method
and aggregate richer features from software repositories. In
addition, we will design several representative applications
based on HESA, such as software resource recommendation
system, to support the reuse of multi-grained resources.

VII. ACKNOWLEDGEMENT

This research is supported by the National High Technology
Research and Development Program of China (Grant No.
2012AA011201) and the Postgraduate Innovation Fund of
University of Defense Technology (Grant No.S120602).

REFERENCES

[1] W. B. Frakes and K. Kang, “Software reuse research: Status and
future,” IEEE Trans. Softw. Eng., vol. 31, no. 7, pp. 529–536, Jul.
2005. [Online]. Available: http://dx.doi.org/10.1109/TSE.2005.85

[2] T. Wang, G. Yin, X. Li, and H. Wang, “Labeled topic detection of open
source software from mining mass textual project profiles.” in Software
Mining, 2012, pp. 17–24.

[3] A. E. Hassan and T. Xie, “Mining software engineering data.” in ICSE
(2), 2010, pp. 503–504.

[4] S. Apel and C. Kastner, “An overview of feature-oriented software
development.” 2009, pp. 49–84.

[5] K. Lee, K. C. Kang, and J. Lee, “Concepts and guidelines of feature
modeling for product line software engineering.” in ICSR, 2002, pp.
62–77.

[6] K.C.Kang, S.G.Cohen, J.A.Hess, W.E.Novak, and A.S.Peterson,
“Feature-oriented domain analysis (foda) feasibility study. technical
report.” 1990.

[7] W. B. Frakes, R. P. Dłaz, and C. J. Fox, “Dare: Domain analysis and
reuse environment.” 1998, pp. 125–141.

[8] H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang, B. Mobasher,
C. Castro-Herrera, and M. Mirakhorli, “On-demand feature recommen-
dations derived from mining public product descriptions.” in ICSE, 2011,
pp. 181–190.

[9] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden, P. Collet,
and P. Lahire, “On extracting feature models from product descriptions.”
in VaMoS, 2012, pp. 45–54.

[10] C. McMillan, N. Hariri, D. Poshyvanyk, J. Cleland-Huang, and
B. Mobasher, “Recommending source code for use in rapid software
prototypes.” in ICSE, 2012, pp. 848–858.

[11] D. Blei, A. Ng, and M. Jordan, “Latent Dirichlet Allocation,” Journal
of Machine Learning Research, vol. 3, pp. 993–1022, 2003. [Online].
Available: http://www.cs.princeton.edu/ blei/lda-c/

[12] K. Tian, M. Revelle, and D. Poshyvanyk, “Using latent dirichlet al-
location for automatic categorization of software.” in MSR, 2009, pp.
163–166.

[13] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software traceabil-
ity with topic modeling.” in ICSE (1), 2010, pp. 95–104.

[14] T. Griffiths, “Gibbs sampling in the generative model of Latent
Dirichlet Allocation,” Stanford University, Tech. Rep., 2002. [Online].
Available: www-psych.stanford.edu/ gruffydd/cogsci02/lda.ps

[15] A. K. McCallum, “Mallet: A machine learning for language toolkit,”
2002, http://mallet.cs.umass.edu.

[16] A. E. Hassan, “The road ahead for mining software repositories.” 2008.
[17] S. Park, M. Kim, and V. Sugumaran, “A scenario, goal and feature-

oriented domain analysis approach for developing software product
lines.” 2004, pp. 296–308.

[18] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid, P. Sawyer, P. Rayson,
C. Pohl, and A. Rummler, “An exploratory study of information retrieval
techniques in domain analysis.” in SPLC, 2008, pp. 67–76.

[19] N. Niu and S. M. Easterbrook, “On-demand cluster analysis for product
line functional requirements.” in SPLC, 2008, pp. 87–96.

[20] E. Bagheri, F. Ensan, and D. Gasevic, “Decision support for the software
product line domain engineering lifecycle.” 2012, pp. 335–377.

[21] A. Maedche and S. Staab, “Learning ontologies for the semantic web.”
in SemWeb, 2001.

[22] J. Tang, H. fung Leung, Q. Luo, D. Chen, and J. Gong, “Towards
ontology learning from folksonomies.” in IJCAI, 2009, pp. 2089–2094.

[23] X. Li, H. Wang, G. Yin, T. Wang, C. Yang, Y. Yu, and D. Tang,
“Inducing taxonomy from tags: An agglomerative hierarchical clustering
framework,” in Advanced Data Mining and Applications. Springer
Berlin Heidelberg, 2012, vol. 7713, pp. 64–77.

[24] S. Wang, D. Lo, and L. Jiang, “Inferring semantically related software
terms and their taxonomy by leveraging collaborative tagging.” in ICSM,
2012, pp. 604–607.

