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Abstract—Beyond classical domain-specific adversarial train-
ing, a recently proposed task-specific framework has achieved
a great success in single source domain adaptation by utilizing
task-specific decision boundaries. However, compared to single-
source-single-target setting, multi-source domain adaptation (M-
DA) shows more powerful capability to handle with most real-
life cases. To align target domain with diverse multi-source
domains using task-specific decision boundaries, we provide a
deep insight of task-specific framework on MDA for the first
time. Accordingly, we propose a novel task-specific multi-source
domain adaptation method (TMDA) with a clustering embedded
adversarial training process. Specifically, the proposed TMDA
detects and refines less discriminative target representations
through a max-min optimization over two adversarial task-
specific classifiers. Moreover, our analysis implies that scattered
multi-source representations disturb the adversarial training
under the task-specific framework. To tight up the dispersed
source representations, we embeds a relationship-based domain
clustering into TMDA. Empirical results demonstrate that our
TMDA outperforms state-of-the-art methods on toy dataset,
sentiment analysis and digit classification.

Index Terms—Multi-source domain adaptation, Adversarial
Training, Task-specific, Domain Clustering

Despite the rapid developments in domain adaptation, most
existing methods transfer knowledge from single source do-
main to single target domain [1]–[3]. However, the realistic
source data commonly possesses an underlying multi-mode
structure, which tends towards being sampled from different
resources [4], [5]. Therefore adaptation from single source
domain cannot fit most real-life cases. Consequently, unsuper-
vised multi-source domain adaptation (MDA) methods have
been actively researched due to their flexibility and practicality
in realistic applications [6], [7]. Since the adversarial training
has achieved a great success in single source domain adapta-
tion, a number of recent studies have extended the adversarial
framework to MDA [8]. More specifically, most existing MDA
methods train multiple domain discriminators to distinguish
which domain the features belong to [6], together with training
a feature extractor to mimic the discriminators. When the
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training process converges, the model can well generate and
distinguish feature representations from different domains (We
call this kind of framework as domain-specific throughout this
paper.)

However, simply aligning the features via the domain
boundaries leads to the mismatch of source and target domains
in the class level [9]. In cases of single-source domain adap-
tation, a classifier-based adversarial training method has been
proposed to address this issue (We call this kind of framework
as task-specific throughout this paper), while the multi-source
domain adaptation situation becomes much more complicated
under these circumstances. As shown in Fig 1(b), the scatter
of multi-source representations degrades the effectiveness of
task-specific adversarial training.

In order to align the multi-source domains with target
domain by utilizing task-specific decision boundaries rather
than domain boundaries, we provide a deep insight of task-
specific framework on MDA for the first time. Accordingly,
we propose a novel task-specific multi-source domain adapta-
tion (TMDA) method with a clustering embedded adversarial
training process in this paper. More specifically, the proposed
TMDA trains the feature extractor for feature embedding and
trains two task-specific classifiers for class prediction. We then
present the adversarial training between the two classifiers and
the feature extractor: (a) Maximizing the classifier discrepancy
via the optimization over two classifiers to estimate less
discriminative target representations that are away from the
support of multi-source domains (b) Minimizing the discrep-
ancy via the optimization over the feature extractor to push
target representations close to source manifolds. To provide a
flexible and accurate measurement of the divergence between
two classifiers, we combined the sliced Wasserstein distance
to compute the classifier discrepancy [10]. Nevertheless, our
analysis implies that the scatter of multi-source representations
degrades the accuracy of the max-min optimization on classi-
fier discrepancy. To tight up the multi-source representations,
we embeds a relationship-based domain clustering into the
adversarial training process by utilizing a domain adaptor [8]
in TMDA. With the clustering embedding, we decrease the gap
across multi-source representations in the embedding space,



which guarantees the performance of task-specific adversarial
training. Moreover, we evaluate the proposed TMDA on sen-
timent analysis task and digits classification task, respectively.
Empirical results demonstrate that TMDA achieves the state-
of-the-art performance on benchmarks.

To summarize, we present our contributions as follows:
• To our best knowledge, we firstly incorporate multi-

source domain adaptation into the task-specific frame-
work and achieve a better feature alignment between
multi-source and target domains.

• We propose a novel task-specific multi-source domain
adaptation method with the clustering embedded adver-
sarial training.

• Experiments on text analysis and image classification
tasks verify the proposed method with the state-of-the-
art performance.

I. RELATED WORK

Drawbacks of Domain Adversarial Training Although
domain-specific adversarial training framework aims to
achieve a low target risk [11], researchers have pointed out one
of its drawback that domain-specific adversarial training [12]
focuses on distinguishing features by domain labels rather than
class labels [9]. Accordingly, based on the above observations,
Maximum Classifier Discrepancy (MCD) was proposed to
build the task-specific framework by two classifiers instead of
single domain discriminator [9]. However, this framework is
incapable of MDA in some cases, as scattered representations
from multi-source domains disturb the classifier discrepancy
computation (Fig. 1). To tackle this issue, the proposed TM-
DA embeds the domain clustering mechanism via a domain
adaptor to tight up the dispersed source features.

Unsupervised Multi-source Domain Adaptation Instead of
domain specific framework adopted by most MDA methods,
the proposed TMDA bridges the multiple source domains and
the target domain by utilizing a novel task-specific frame-
work. In addition, it is worth noting that a multi-domain
matching framework was proposed with a embedded relation
module [8], which provides the theoretical support for domain
clustering in our proposed TMDA.

II. TASK-SPECIFIC ADVERSARIAL TRAINING MODEL

In this section, we propose a novel task-specific multi-
source domain adaptation model. First we make analysis
via comparing the domain-specific framework with the task-
specific framework for MDA in Section A. Then we formulate
the loss functions and propose our model architecture in
Section B.

A. Domain-Specific or Task-Specific: From Single Source Do-
main to Multi-source Domain

Assume we have access to labeled samples {(xs, ys)}
from K source domains S1, S2, . . . , SK and unlabeled sam-
ples {xt} from single target domain T . Meanwhile, sam-
ples in each domain is classified into C classes. Moreover,
the unsupervised multi-source domain adaptation aims to

achieve desirable performance on T with a model trained on
S1, S2, . . . , SK , T .

Most existing single-source domain adaptation methods
tend to perform domain-specific framework, which contains a
feature extractor F , a domain discriminator G and a classifier
C [12]. Since the adversarial training process is conducted
between F and G, domain-specific framework focuses on
generating and distinguishing features in domain level. In
contrary, task-specific framework shifted the training focus
to features with class labels rather than domain labels [9].
More specifically, two task-specific classifiers C1 and C2 are
proposed, together with a feature extractor F . On the one side,
the discrepancy of C1 and C2 are maximized to detect the
target samples away from the source support. On the other
side, F is optimized to minimizing the discrepancy by pushing
target representations close to source manifolds.

Existing studies have revealed that task-specific framework
achieves better performance than domain-specific framework
for single source domain adaptation [9], [12]. However, the
situation becomes much more complicated when multi-source
domains exist. Is task-specific framework necessary for MDA?
Moreover, if it is necessary, how should we incorporate task-
specific framework into MDA? To solve these two questions,
we compare and analyze domain-specific framework and task-
specific framework in cases where multi-source domains exist.

In combination with the annotations before, we build an
intuitive example in Fig. 1 using the case K = 2 for analysis.
Primarily, we answer the first question by analyzing the
drawbacks of domain-specific training in our case. As domain-
specific framework for MDA builds multiple domain discrim-
inators for the pairs of each source and target domain [6], we
use G1, G2 to discriminate (S1, T ) and (S2, T ) in Fig. 1(a),
together with a classifier C trained on S1 and S2 (left side
in Fig. 1(a)). When adaptation completes under the domain-
specific framework (right side in Fig. 1(a)), S1, S2 and T
are overlapped as the domain discrepancy is reduced and C
appropriately classifies S1 and S2 with a low source error.
However, for MDA, C is not a desirable classifier with a high
target error [9]. During training process, F domain-specific
framework tends to generate ambiguous features that are
incorrectly classified by the task-decision boundaries because
domain-specific framework only aims to align the marginal
distributions by domain boundaries G1 and G2 in MDA.
In contrary, task-specific adversarial training concentrates on
aligning multi-source and target domains via task-specific
decision boundaries C1 and C2 (1(c)). According to the above
analysis, we answer the first question that building a task-
specific adversarial training will achieve a more desirable
target performance than domain-specific training for MDA.

However, the existence of multiple source domains in MDA
increases the complexity to perform task-specific training. To
answer the second question, we conduct further analysis to
indicate that the scattering of multi-source representations
degrades the effect of task-specific training for MDA. As
shown in Fig. 1(b), the first step of task-specific adver-
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Fig. 1. Analysis of domain-specific and task-specific adversarial training
for the situation of binary classification with two source domains and single
target domain. (a) Domain-specific training for MDA. (b) Conventional task-
specific training for MDA. (c) Task-specific training with domain clustering
for MDA (our TMDA).

sarial training maximizes the classifier discrepancy between
C1, C2 to detect the less discriminative target features outside
the support of multi-source domains. Nevertheless, feature
representations from multi-source domains might scatter in
embedding space (left side in Fig. 1(b)). Consequently, the
scattered representations disturb the estimation of the less
discriminative target features (right side in Fig. 1(b)). More
specifically, the support of multi-source domains becomes
fuzzy and the max-min optimization of classifiers C1 and
C2 is easily misleaded in this case. To tight up multi-source
representations, we embed the domain clustering into the task-
specific adversarial training for MDA. As shown in Fig. 1(c),
the domain clustering decreases the gap across multi-source
representations in the embedding space. The max-min opti-
mization of the classifier discrepancy can then be conducted
accurately.

Through the above series of analysis, we have answered the
two questions raised before. In the next section, we detail the
architecture of our framework, along with the formulation of
loss function.

B. Formulations and Architectures

1) Source Classification Loss: We first define the classi-
fication error of C1 and C2 on multi-source domains with
cross-entropy loss. As multiple source domains exist, we adopt
the max-loss among S1, S2, . . . , SK for each classifier [6].
Analogously, we use ps1(y|X) and ps2(y|X) to denote the
source outputs from C1 and C2. Then we sum the max source
error on C1, C2 and obtain the total source classification loss:

LS =
2∑

i=1

max
k

(
−E(x,y)∼Pk

C∑
c=1

I[c=y] log p
s
i (y|x)

)
.

(1)
2) Sliced Wasserstein Discrepancy Loss: To simplify the

annotations, we use pt1(y|x) and pt2(y|x) to denote the C-
dimensional probabilistic outputs for target samples from
C1 and C2, respectively. As pt1 and pt2 are probabilistic
distributions, we combine the Wasserstein distance in order
to provide more flexible and accurate measurement of their
divergence [13]. Assume Ω is a probability space with two
probability measures pt1 and pt2. Based on Monge’s map [14]
and Kantorovitch-dual theory [15], the commonly applied 1-
Wasserstein distance is formulated as follows:

W (µ, ν) = inf
γ∈Π(pt

1,p
t
2)

∫
Ω×Ω

c (d1,d2)
q
dγ (d1,d2) , (2)

where c : Ω × Ω → R+ is a measurement on the manifold,
# denotes to the push-forward distribution and Π(pt1, p

t
2) =

{γ ∈ P(Ω× Ω)|π1#γ = pt1, π2#γ = pt1} with π1 and π2 as
two marginal distributions in Ω. In order to further reduce
the computational cost, we perform the sliced Wasserstein
discrepancy [16]:

SW
(
pt1, p

t
2

)
=

∫
θ∈SK−1

W p
p

(
Rθp

t
1,Rθp

t
2

)
dθ

≈ 1

M

M∑
i=1

W
(
Rθip

t
1,Rθip

t
2

)
,

(3)

where SK−1 represents the K-dimensional unit ball, Rθ

denotes to the projection to hyperplane θ on SK−1. Note
that we sample M hyperplanes from SK−1 to approximate
the integral and the setting of this hyper-parameter will be
discussed later. Based on the N observations on each training
batch, we formulate the sliced Wasserstein discrepancy loss
for outputs from C1 and C2 as follows:

Lsd =
1

MN

M∑
i=1

N∑
j=1

c
(
T1(Rθip

t
1)j , T2(Rθip

t
2)j
)
, (4)

where N is the batch size, T1 and T2 are repermutation-
s over the batch such that T1(Rθip

t
1)j ≤ T1(Rθip

t
1)j+1,

T2(Rθip
t
2)j ≤ T2(Rθip

t
2)j+1 [10]. Moreover, we sets the

manifold measurement c to a common quadratic loss in this
paper.

3) Domain Clustering Loss: According to our analysis,
clustering on multi-source domains is necessary to perform
task-specific adversarial training for MDA. Inspired from a



recently proposed approach [8], we define the domain gap
across the multi-source domains S1, S2, . . . , SK with their
distributions P1,P2, . . . ,PK . Let P̂k = 1

K−1

∑K
l=1 wklPl

be the distribution of the complement for Pk, where the
wkl represents the relationship between the source domain
Sk and Sl [8]. Note that wkk = 0 for k = 1, 2, . . . ,K.
Meanwhile, let µk represent the proportions of samples from
domain Sk in a training batch. On a batch with N observations
{(xj , sj)} (sj is the domain label), we formulate the gap
across S1, S2, . . . , SK to describe the scatter of the multi-
source domains in H as follows:

Lcl =
K∑

k=1

1

K
d
(
Pk, P̂k

)
=

1

K

K∑
k=1

sup
∥D∥L≤1

(
Ex∼Pk

[D(E(x))]− Ex∼P̂k
[D(E(x))]

)
≈ 1

KN

N∑
j=1

µ−1
sj WT

sjD (F (xj)) ,

(5)
where sup∥D∥L≤1 means that the domain adaptor D is a 1-
Lipschitz function, Wk is written as Wkl = − 1

Kwkl and the
output of domain adaptor D(F (x)) is a K-dimensional vector.
The second equation in (5) is facilitated by the Kantorovitch-
dual theory of the 1-Wasserstein distance [15]. Moreover, to
satisfy the dual condition, the Lipschitz constraint sup∥D∥L≤1

on D is achieved by adding a penalty on gradients when
training D [17]. Furthermore, the relationship weight wkl is
also obtained from the output from domain adaptor D as
well [8]:

w′
kl = Ex∼Pk

[D(F (x))]− Ex∼P̂l
[D(F (x))] . (6)

Furthermore, to constrain the weights wk for domain Sk, a
softmax operation is applied: wk = softmax(w′

k).
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Fig. 2. Architecture of TMDA model.

4) Model Architecture: Combined with the aforementioned
analysis and loss functions, we propose an overall framework
named “Task-specific Multi-Source Domain Adaptation” (T-
MDA) in this paper. Fig. 2 details the architecture of the
proposed TMDA. With reference to the earlier annotations,
we build the architecture of TMDA as follows:

• A feature extractor F generates the features in the embed-
ding space with the input samples from S1, S2, . . . , SK

and T .
• On the one side, two task-specific classifiers C1, C2

calculate classification error LS on source features. On
the other side, the sliced Wasserstein discrepancy Lsd be-
tween C1 and C2 is estimated to estimate the divergence
between target and source manifold.

• A domain adaptor D computes the clustering loss across
multi-source domains Lcl, which aims to tight up the
scattered source representations in embedding space.

Now that the architecture of TMDA is built, we present the
details of its optimization in next section.

III. OPTIMIZATION

In this section, we propose a clustering embedded adver-
sarial training algorithm to optimize TMDA model. More
specifically, we divide the whole optimization process into four
steps:

Optimizing Source Risk: First, we optimize C1 and C2

on samples from multi-source domains. Similar to [9], we
combine the classification loss with the clustering loss as the
objective function and train F,C1 and C2:

min
F,C1,C2

LS + ρ1 ∗ Lcl, (7)

where ρ1 is the regularization parameter to balance the clas-
sification and clustering.

Clustering Multi-source Domains: In this step, we train
the domain adaptor D to maximize the clustering loss accord-
ing to the derivation in (5):

max
D

Lcl + Lpal. (8)

The Lpal in (8) denotes to the gradient penalty term, which
smooths the domain adaptor D in order to satisfy the 1-
Lipschitz constraint in the dual condition [15].

Maximizing Classifier Discrepancy: We then train the two
task-specific classifiers C1, C2 to maximize their disagreemen-
t. In this step, the target samples away from the overlapped
manifolds of multi-source domains are detected. Combined
with the previous empirical results [9], we optimize C1, C2

with the source risk as follows:

min
C1,C2

LS − ρ2 ∗ Lsd, (9)

where ρ2 is the regularization parameter to control the dis-
crepancy maximization.

Refining Target Representations: Since the less discrimi-
native target representations in embedding space are detected,
we finally train the feature extractor F to pushing the these
target representations close to source manifolds [10]:

min
F

Lsd. (10)

IV. EXPERIMENTS

In this section, we evaluate TMDA and compare it with
several state-of-the-art methods on two real-life tasks: natural



language sentiment analysis and digit image classification.

A. Natural language sentiment analysis

Here we validate TMDA on the Amazon Review [18]
dataset. As the commonly adopted benchmark for MDA [8],
[19], this dataset contains four kinds of product (Books,
DVDs, Electronics and Kitchen appliances), each of which is
considered as a domain. Since most reviews are labeled either
positive or negative, the sentiment analysis can be considered
as a binary classification problem. In our experimental settings,
the text feature for each review is cropped into a 5,000-
dimensional vector. Then we set each product as the target
domain and the other three products are combined as the
source domains. Each source domain contains 2,000 samples
and the target domain contains 3,000-6000 samples [6]. In
order to evaluate TMDA, we compare its performance with
five baselines (TCA [20], SA [21], ITL [22], MSDA [18],
DANN [23]) and two state-of-the-art methods (MDAN [6],
MDMN [8])

Meanwhile, we detail the parameters setting of TMDA on
Amazon Review dataset. The whole deep learning architec-
ture of TMDA is built with fully connected layers. More
specifically, the feature extractor F contains three hidden
layers with the units {1000, 500, 100}, while the two classifiers
C1, C2 and the domain adaptor D consist of two layers with
units {100, 100}. The relu is applied after each layer as the
activation function and the Adadelta optimizer is applied to
train the whole model. The number of hyperplanes for dis-
crepancy computation M is set to 128, while the regularization
parameters ρ1 and ρ2 are set to 0.01 and 0.1, respectively.

TABLE I
PERFORMANCE OF NATURAL LANGUAGE SENTIMENT ANALYSIS ON
AMAZON REVIEW DATASET (%). IN THE TABLE, B MEANS BOOK, D

MEANS DVD, E MEANS ELECTRONICS AND K MEANS KITCHEN.

Method D+E+K-B B+E+K-D B+D+K-E B+D+E-K
Source 79.52 81.54 83.49 85.78

Baselines
TCA 79.64 79.75 82.49 84.81
SA 79.04 81.96 83.37 85.55
ITL 79.60 81.90 82.75 85.25

Domain Adaptation
MSDA 76.98 78.61 77.32 78.86
DANN 79.60 80.51 84.12 85.84

Multi-Source Domain Adaptation
MDAN 80.76 82.74 84.54 86.16
MDMN 81.21 82.37 84.63 86.56
TMDA 82.85 81.90 86.01 87.21

Results and Analysis The classification results of different
methods are presented in Table I. It is clear that the proposed
TMDA achieves better performance than other methods. When
DVD is set as the target domain, MDAN performs slight-
ly better than TMDA and all the methods deliver roughly
the same performance. For three other adaptations, TMDA
outperforms the state-of-the-art methods with a significant

improvement. This is mainly attributed to the fact that TMDA
aligns the multi-source and target domains by task-specific
decision boundaries. More specifically, TMDA pushes the
less discriminative target representations close to the task-
specific decision boundaries such that these features are more
easily to be classified. Other deep MDA methods such as
MDAN and MDMN, only optimize the target features in
embedding space by domain-specific discriminators, which
leads to a suboptimal. In summary, based on the observations
and analysis on Amazon Review dataset, we successf verify
the effectiveness of our TMDA for unsupervised multi-source
domain adaptation.

B. Digit image classification

We then further verify the proposed TMDA on the dig-
it image classification task. This task contains four public
benchmarks: MNIST 1, MNIST-M [23], SVHN 2 and USPS 3.
Analogously, we choose each benchmark as the target domain
and the combination of the other three benchmarks as the
source domains.

Similar to sentiment analysis, we choose TCA, SA and
DANN as the three baselines to evaluate their performance on
four digit benchmarks. For fair comparison, we first extract the
features from the same Lenet-5 model trained on the source
domains and then feed the representations to TCA and SA as
inputs. Meanwhile, when considering the computational cost
of TCA and SA, the data resources from each source domain
are limited. Moreover, we compare TMDA with six recently
proposed methods: ADDA [24], MDAC [7], MTAE [25],
MCD [9], MDAN and MDMN. ADDA is a recently proposed
domain adaptation method based on discriminative model and
GAN-based loss. MDAC is a novel MDA approach that builds
causal models to extract the relationship between features
and class labels. MTAE is an improved autoencoder for
object recognition across multi-domains. Note that we perform
DANN, ADDA, MCD and MTAE on each of the three source-
target domain pairs and record the best accuracies.

The mode setup of TMDA on digit image classification
is different from sentiment analysis. Since network input
comprises grayscale or colored images, we use the commonly
applied Lenet-5 network 4 to extract the image features. More
specifically, F is built with two convolutional layers, two
pooling layers and one fully connected layer. Moreover, for
the classifiers C1, C2 and domain adaptor D, we build two
layer fully connected networks with {100, 100} hidden units.
Here, we adopt the Adam optimizer to train TMDA and set the
hyperplane number M to 256. Meanwhile, the regularization
parameters ρ1 and ρ2 are set to 0.1 and 0.1, respectively.

Results and Analysis As shown in Table II, we report
the performance of different methods on MNIST, MNIST-
M, USPS and SVHN. We observe that most MDA methods
achieve better performance than the Source-only baseline.

1http://yann.lecun.com/exdb/mnist/
2http://ufldl.stanford.edu/housenumbers/
3https://www.kaggle.com/bistaumanga/usps-dataset
4http://yann.lecun.com/exdb/lenet/a35.html



TABLE II
PERFORMANCE OF DIGIT IMAGES CLASSIFICATION ON MNIST,

MNIST-M, USPS, SVHN (%). THE SOURCE-ONLY APPROACH MEANS
TRAINING DIRECTLY ON SOURCE DOMAINS WITHOUT ADAPTATION.

Method MNIST MNIST-M USPS SVHN
Source 94.6 60.8 89.4 43.7

Baselines
TCA 88.4 55.2 85.4 39.7
SA 90.8 59.9 86.3 40.2

Domain Adaptation
MTAE 86.7 62.1 71.0 38.2
DANN 97.1 67.0 90.4 51.9
MCD 96.4 72.3 94.2 44.1

ADDA 89.0 80.3 85.2 43.5
Multi-Source Domain Adaptation

MDAC 85.5 55.3 72.4 41.8
MDAN 97.2 68.5 90.1 50.5
MDMN 98.0 83.8 84.5 53.1
TMDA 98.5 86.1 96.6 52.2

This proves that it is necessary for a trained model to per-
form adaptation when facing an unfamiliar target domain.
Meanwhile, the performances of TCA and SA show that the
negative transfer occurs in classical subspace learning methods
when facing large-scale and complex data distributions. Deep
single domain adaptation methods including ADDA, DANN
and MTAE obtain undesirable adaptation on MNIST-M and
SVHN, where MDAN, MDMN and TMDA achieve better
accuracies. This implies that the combination of multi-source
domains improves the target performance. Compared to other
methods, the proposed TMDA achieves significant improve-
ment on MNIST, MNIST-M and USPS. This can mainly be
attributed to the task-specific framework, which provides a
better feature multiple domain alignment by utilizing task-
specific decision boundaries. Meanwhile, the embedding of
domain clustering decreases the scatter representations and
ensures the performance of task-specific adversarial training.

V. CONCLUSIONS

In this paper, we propose a novel unsupervised multi-source
domain adaptation method, named TMDA, to align multi-
source and target domains via task-specific decision bound-
aries. Meanwhile, the clustering of multi-source domains in the
embedding space ensures the accuracy of adversarial training
process. Although the experimental results verify the effec-
tiveness of TMDA, our method is still lack of an theoretical
explanation of task-specific framework under MDA. Moreover,
the clustering of embedded multi-source features requires
further improvement. These issues will be considered in our
future work.
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