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Abstract— Few-shot learning, aiming to learn novel concepts
from one or a few labeled examples, is an interesting and very
challenging problem with many practical advantages. Existing
few-shot methods usually utilize data of the same classes to
train the feature embedding module and in a row, which is
unable to learn adapting to new tasks. Besides, traditional
few-shot models fail to take advantage of the valuable relations
of the support-query pairs, leading to performance degradation.
In this article, we propose a transductive relation-propagation
graph neural network (GNN) with a decoupling training strategy
(TRPN-D) to explicitly model and propagate such relations
across support-query pairs, and empower the few-shot module
the ability of transferring past knowledge to new tasks via
the decoupling training. Our few-shot module, namely TRPN,
treats the relation of each support-query pair as a graph node,
named relational node, and resorts to the known relations
between support samples, including both intraclass common-
ality and interclass uniqueness. Through relation propagation,
the model could generate the discriminative relation embeddings
for support-query pairs. To the best of our knowledge, this is the
first work that decouples the training of the embedding network
and the few-shot graph module with different tasks, which
might offer a new way to solve the few-shot learning problem.
Extensive experiments conducted on several benchmark datasets
demonstrate that our method can significantly outperform a
variety of state-of-the-art few-shot learning methods.

Index Terms— Decoupling training, few-shot learning, knowl-
edge transfer, relation-propagation graph.

I. INTRODUCTION

ECENTLY, deep learning [1]-[4] has greatly promoted
the development of computer vision. However, traditional
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deep learning models [5]-[8] gain knowledge from millions of
data, making it hard to rapidly transfer to novel concepts as
human intelligence. Thus, few-shot learning [9]-[15] has been
designed for this purpose, aiming at learning new concepts
from only one or a few examples. It is a meaningful but
quite challenging problem with many practical advantages,
e.g., developing real-time interactive vision applications for
portable devices and transferring knowledge from existing
models to novel categories without retraining.

There have been a few attempts in few-shot learning area
in the past years, trying to extract the information from
the limited labeled data and make accurate predictions on
the unknown ones. One promising learning paradigm is a
metric-based solution, which exploits the feature similarity
information by embedding both support and query samples
into a shared feature space. For instance, Matching Net [16]
combined attention and memory together to map an unlabeled
query sample to its label relying on few labeled support
samples, and introduced the episodic training mechanism into
few-shot learning. In [17], a Prototypical Network learned
a discriminative metric space where classification was per-
formed by calculating the distance between the query sample
and the prototype representation of each class, which helped
reduce the intraclass variations. In [18], a Covariance Metric
Network constructed an embedded local covariance represen-
tation to extract the second-order statistic information of each
class and defined a new deep covariance metric to measure
the consistency of distributions between query samples and
support samples for the few-shot classification tasks.

Actually, to meet the requirement of learning novel con-
cepts from a few labeled samples, one should focus on
revealing the accurate relations between support-query sam-
ples in a few-shot task, especially in metric-based methods.
Recently, graph-based approaches [19]-[21] have been pro-
posed, promoting the few-shot learning field. Those meth-
ods treat each sample as a graph node and represent the
support-query relations through edges. Although they have
shown promising performance to address the few-shot learn-
ing task, without directly modeling the relations of the
support-query pairs, the underlying information shared across
different support-query pairs suffers from severe underutiliza-
tion, inevitably leading to inferior performance.

Besides, previous methods [22]-[24] usually pretrained the
low-level feature embedding network on the large-scale base
classes as a regular multiclass classifier, following which the
specifically designed few-shot module would be introduced to
further enhance the learning ability from a few samples using
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Ilustration of the few-shot module TRPN. We first initialize the relational nodes by the feature concatenation of each support sample (or query

sample for the pseudo relational node) and the entire query set and construct the relational adjacency matrix according to the known relations of support set,
including both intraclass commonality and interclass uniqueness. The coarse relations between support-query samples are also considered in the adjacency
matrix. Subsequently, the relation propagation is performed to pursue the discriminative relational node features, which are utilized to compute the final

classification scores through a similarity function ¢.

the training data of the same categories. It has been shown
that pretraining on large-scale base classes could accelerate
and stabilize the training process and bring obvious gains
to few-shot classification performance. However, during the
training phase, the tasks accomplished by the few-shot module
are subtasks that have been already seen by the multiclassifier.
That is to say, the traditional training strategy cannot empower
few-shot models with the ability of transferring knowledge to
new tasks.

To address these problems, in this article, we propose a
transductive relation-propagation graph neural network (GNN)
with decoupling training strategy (TRPN-D). The proposed
framework captures the relations in the task through the
few-shot module dubbed TRPN, and meanwhile explicitly
learns to transfer knowledge from seen tasks to novel tasks
with the decoupling training strategy.

Different from the previous graph model where each graph
node represents a sample and support-query relations are com-
puted after propagation, TRPN directly models and propagates
the sample relations across the support-query pairs through
the relational graph, as shown in Fig. 1. Specifically, each
graph node represents the sample relation of the correspond-
ing support-query pair, dubbed relational node, and thus the
few-shot learning is converted into a simple node classification
task. On the premise that similar support samples from the
same class often share similar relations with the same query,
our TRPN resorts to the known relations between support
samples to learn more discriminative relational representations
for support-query pairs. Both intraclass commonality and
interclass uniqueness of the support set are propagated and
aggregated on the relational graph, in order to better measure
the relational adjacency among the different support-query
pairs. With the relational graph, both sample similarities and
the support-query relations are exploited, obviously improving
the learning performance.

Furthermore, to empower the few-shot module the ability
to transfer knowledge to new tasks and simulate the few-shot

setting as much as possible, a decoupling training strategy is
introduced to decouple the training of the embedding network
and the few-shot module with different tasks. The proposed
strategy ensures the TRPN better extracts the relations on new
tasks unseen to the feature embedding network, and in the
meanwhile maintains the discriminative representation ability
of the feature embedding module. Specifically, we divide the
whole training dataset into different groups on which we con-
struct different tasks, respectively, train the feature embedding
modules and the proposed TRPN [25]. The data utilized to
train few-shot metric-learning module contains certain cate-
gories which are unseen to the feature embedding module,
therefore forming new tasks which are previously unseen.
The abovementioned strategy adopts diversified classes to
train the feature embedding module to capture rich semantic
feature representation, while further help TRPN to capture and
propagate unseen relations, bridging the semantic gap between
large-scale base samples and a few novel samples.

To the best of our knowledge, this is the first work that
explicitly decouples the training of the embedding network
and the few-shot module with different tasks, which might
offer a new way to solve the few-shot learning problem. Note
that we extend our prior conference publication [25] which
models and propagates sample relations across support-query
pairs in a transductive way with traditional training strat-
egy (TRPN-T for the shot). In this article, with the newly
proposed decoupling training strategy, our TRPN-D could
learn to transfer knowledge from past experience to new
observations, which is more suitable for a few-shot learning
scenario. Experiments show that TRPN-D could beat the
TRPN-T by a significant margin in most cases, validating our
claim that decoupling training strategy could help bridge the
semantic gap and empower the few-shot module the ability
to transfer knowledge to new tasks. Moreover, we discuss
different implementations for the decoupling training strategy,
ensuring our implementation is theoretically reasonable and
yields competitive performance.
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Extensive experiments were conducted on several as input and learns to reconstruct the target-discriminative
benchmark datasets such as minilmageNet [16] and classification weights. In [37], the proposed method learned
tieredlmageNet [26], and the results demonstrate that to generate optimal classification weights by maximizing

our method can drastically boost the classification accuracy
and achieve the new state-of-the-art on both 5-way-1-shot
and 5-way-5-shot tasks. We confirm the effectiveness and
robustness of the proposed model with different backbone
architectures which witness significant performance gains
compared to the other few-shot approaches.

II. RELATED WORK

To tackle the few-shot learning task, a variety of methods
have been proposed, which can be roughly divided into
three types, i.e., optimization-based, generation-based, and
metric-based methods.

The optimization-based solution, as one of the most popular
few-shot learning paradigms, tries to capture the relation infor-
mation among the tasks, leveraging the previous learning expe-
rience as a prior over tasks. For instance, Santoro ef al. [27]
trained an long-short term memory (LSTM) as a controller to
interact with an external memory module. And the work [28]
adopted an LSTM-based meta-learner as an optimizer which
is trained to converge a learner classifier to a good solution
quickly on each task. Meanwhile, Mishra et al. [29] combined
temporal convolutions with soft attention, which enables the
meta-learner to aggregate contextual information from the
past experience and pinpoint specific pieces of information
within that context. In [30], the authors introduced a first-order
gradient-based meta-learning algorithm named Reptile, whose
training process is similar to joint training. Recently, Flen-
nerhag et al. [31] proposed a meta-learner named Warp-
Grad, which meta-learns to precondition gradients defined
point-wise in parameter space and facilitates gradient descent
during task adaptation. And Elsken er al. [32] integrated
gradient-based meta-learning with neural architecture search,
and proposed a meta-learning algorithm that could quickly
adapt the meta-architecture to a task-dependent architecture
based on few labeled data points with only a few steps of
gradient descent. However, as pointed out by Rusu et al. [24],
while these approaches iterate over samples from all classes
in their updates, they lack the capability of learning effective
embeddings.

Generation-based methods adopt a meta-learner for few-shot
data augmentation or learn to predict classification weights for
novel classes. In [33], the few-shot training set is expanded
via a “hallucinator,” whose output is then provided to the
meta-learner for model optimization. For weights generation,
Gidaris and Komodakis [34] proposed a few-shot object recog-
nition system capable of dynamically learning novel categories
from only a few training data while does not forget the base
categories, leading to feature representations that generalize
better on unseen categories. Qiao et al. [35] proposed to learn
a category-agnostic mapping from activations to parameters so
that the parameters for novel categories can be predicted by
a simple forward pass. Recently, Gidaris and Komodakis [36]
employed a Denoising Autoencoder network which takes a
set of classification weights corrupted with Gaussian noise

the mutual information between generated weights and sup-
port/query data. However, most of these methods do not
consider generating different classification weights by dividing
the training set data into different groups or taking advantage
of the information between different query samples.

A metric-based solution serves as another promising
few-shot learning paradigm, which exploits the feature similar-
ity information by embedding both support and query samples
into a shared feature space. Some earlier studies address the
few-shot learning problem by learning a proper distance or
similarity metric, such as cosine similarity [16], Euclidean dis-
tance [17], and deep nonlinear relation network [38]. In [39],
a Deep Nearest Neighbor Neural Network is proposed to
replace the image-level feature-based measure in the final layer
with a local descriptor-based image-to-class measure. And Li
et al. [18] designed a local covariance representation which is
used to measure the distribution consistency for the few-shot
classification tasks. Recently, Li ef al. [40] proposed an adap-
tive margin principle to enhance the discriminative power of
embedding features, especially for similar classes. And Simon
et al. [41] extended existing dynamic classifiers by using
subspaces and introduced a discriminative formulation to max-
imize the discrimination between subspaces. Moreover, due to
the great potential of graph networks in relation to modeling
and propagation, a few approaches adopted graph networks
to handle the few-shot learning problem. Specifically, Satorras
and Estrach [19] proposed to first construct a graph where each
example of the support set and query set is considered as a
graph node. Liu et al. [20] proposed a transductive propagation
network on the node features obtained from a deep neural
network. Kim et al. [21] proposed an edge-labeling GNN
learning to predict the edge-labels rather than the node-labels
on the graph. Instead of modeling instance-level relations
of examples, Yang ef al. [42] constructed a dual complete
graph network composed of a point graph and a distribution
graph, which combines the distribution-level relations and
instance-level relations. Nevertheless, all these graph-based
methods do not model the relations of the support-query
pairs directly, which inevitably leads to the severe underuti-
lization of the underlying information shared across different
support-query pairs.

III. APPROACH

Before introducing our transductive relation-propagation
GNN with decoupling training (TRPN-D), we briefly review
the preliminary of few-shot setting in III-A. As the transductive
relation-propagation GNN (TRPN) lies at the core of the
proposed method, we next elaborate the details of the relational
graph including both the nontransductive setting and the
transductive setting in Sections III-B and III-C, respectively.
After that, we illustrate the decoupling training strategy in
Section III-D. Fig. 2 is a schematic depiction of the proposed
learning pipeline. At the end of this section, we present the
learning and inference process of the proposed model.
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Fig. 2. Schematic depiction of the proposed TRPN-D. The whole training classes are divided into P disjoint partitions. And the whole training dataset Dipain
is divided into P groups, with the pth group removing samples of C(,). The pth embedding module captures the latent embedding of data distribution D),
after which the samples of the whole dataset, containing samples of C(p), are fed into the proposed model to train the few-shot metric-learning module G,).

A. Preliminary

Mathematically speaking, few-shot learning is to determine
the class label of each unlabeled sample in the query set Q
based on the support set S unseen before, where S contains N
different image classes (Cy,...,Cy) and K (K is small, e.g.,
K =5) labeled samples per class. This setting is also called
N-way K-shot classification.

Previous few-shot methods usually follow the episodic train-
ing which constructs N-way K-shot tasks similar to that of test
phase using a relatively large labeled dataset Dy, = {X,y}
with a set of class labels Cyqin, Where x is the sample and
Y € Cuain is the corresponding label. A low-level feature
embedding network F is first trained as a multiclass classifier
using cross entropy to generate discriminative and informative
feature embeddings. After that, the output of F will be fed into
the few-shot module G for further adaptation to the current
few-shot task.

To construct the N-way K-shot task I', in each episode,
a small subset of N classes are sampled from Cyyin, Where
S = {(xi, y)}/5, and Q = {(x:, y)}/ ;.. The subscript i
denotes the ith sample. Also we define Ts, To, |I'| = Ts+To
as the total number of the samples in the support set S, query
set Q, and task T". The objective is to train a classifier to make
predictions on Q through learning the limited labeled support
set S. Thus, when transferring to an unseen set of novel classes
Ciest, the model can also work well.

B. Relation-Propagation Graph Network

In this section, we illustrate the details of our
relation-propagation module which explicitly models the
relations between support-query pairs. Previous GNN-based
few-shot learning models utilize each node to represent a
data sample, and simply pass messages between samples,
ignoring the valuable information shared among different
support-query pairs. The underutilization of information
inevitably leads to inferior performance. Therefore, in the

proposed TRPN, each node represents the relation of a
support-query pair, and such relations of support-query pairs
are propagated to further refine the relational embeddings.
In this way, the few-shot learning can be cast into a node
classification problem. The adequate exploration of the task
helps the few-shot module make accurate predictions on the
query samples.

Specifically, for each sample x; of the task I', a con-
volutional embedding network is first employed to extract
the feature representation g;. Subsequently, a fully connected
graph G = (V, A; ') is initially constructed to characterize
the relations of the task I', where }V and A denote the set
of relational nodes and relational adjacency matrix of the
graph, respectively. It is worth noting that the model processed
each query of Q = {(x;, y,)}lTS;S +1 independently, without
considering the relationship between the query samples, under
nontransductive setting. Therefore, we took a query sample x,,
as an example to introduce our relational graph model. The
computation will be performed for each query to get the final
result.

1) Relational Node: To explicitly model the sample rela-
tions between support-query pairs, we introduce the relational
nodes indicating the relation embeddings of support-query
pairs. The relational node embedding matrix is termed as V,
where V; indicates the embedding of the ith node. Given a
query sample x, where g € {Ts+1, ..., |T'|}, V; is initialized
by the concatenation of the support feature g; and query
feature g,

(1

where i = {1,...,Ts}, and [, -] denotes the concatenation
operation. Specially, we name the first concatenated support
sample of a relational node as the dominant sample based on
which to determine the relational adjacency.

Though the support sample dominates the learning of rela-
tions of support-query pairs, without considering the charac-
teristic of the query sample, the relational node embeddings

Vi =g, gl
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will discard the raw, yet important relational information
contained between support and query samples, and thus causes
information underutilization. To avoid this issue, we further
introduce pseudo relational nodes so as to actively involve
the query samples in the graph. A pseudo relational node is
defined as

V, = [g4, 2] )

Without loss of generality, the first concatenated sample is
also named as the dominant sample of the pseudo relational
node.

2) Relational Adjacency Matrix: The relational adjacency
matrix reflects the adjacency between two relational nodes
and measures the relation-propagation degree (namely how
much information should be propagated). Since similar support
samples usually share similar relations with the same query
sample, we can naturally estimate node adjacency according
to the known relations (through labels) of the support set.
We denote the relational adjacency A;; as the element of
adjacency matrix A on the graph, representing the coarse
relations between dominant samples i and j of relational
nodes V; and V;. The adjacency matrix should manifest the
known information (label) of the support set, including both
intraclass commonality and interclass uniqueness, and thus
weighted propagate the relations to guide the learning of
discriminative relation embeddings, with the consideration of
query characteristics.

Hence, we define the adjacency between relational nodes
according to the relation of their dominant samples as

1, if i,j<Ts, l;j=1
Ay =1 —¢gi. gD, if i,j<Ts, l;;j=0 (3)
o(lgi,gjD), if i=qorj=gq

where /;; is the associate-label for each node, defined accord-
ing to ground truth labels of consisting samples

L, if y; =y,
l: = 4
Y [O, otherwise @)

and ¢(-) is the adjacency function. There are a number
of candidate implementations for adjacency function, such
as cosine similarity, negative squared Euclidean distance,
or neural network, efc. The adjacency function ¢(-) simply
indicates the adjacency of two inputs and further represents
how much information would be propagated. In contrast,
inverting the adjacency scores between two samples could help
diminish the commonality between two samples and learn the
uniqueness of each sample through propagation.

From Formula 3, we can see three kinds of relations: a) for
two relational nodes whose dominant support samples come
from the same class, we preserve their intraclass commonality
through simply using the corresponding associate-label as the
adjacency score. b) for two nodes whose dominant support
samples come from different classes, we use the adjacency
function to evaluate the adjacency between the two samples
and invert the result. Therefore, the more similar two different
classes are the more commonality of the relation each class
will subtract during the feature aggregation. By diminishing

the commonality according to the negative adjacency score,
it maximizes the uniqueness of the two classes and helps
the network to learn the discriminative representations which
assemble similar samples and disperse the different ones.
¢) for two nodes whose dominant samples are support sample
and query sample since we do not know the exact rela-
tions between the samples as the labeled support samples,
we simply computed the coarse predicted relations between
support-query pairs through the adjacency function, with the
query characteristics involved during relation propagation.

Thus, the known information including both intraclass com-
monality and interclass uniqueness of support set is consid-
ered, and the support-query relations are exploited as well in
the construction of the relational adjacency matrix.

3) Relation Propagation: Once we have the weighted graph,
we can update the node features to pursue the discriminative
relational embeddings for support-query pairs, using the fol-
lowing propagation rule:

V = oD 2AD2VW). 3)

Here, A = A + I is the relational adjacency matrix
of the graph added with self-connections. I is the identity
matrix, D;; = > ; A, ; and W is a trainable weight matrix.
o denotes the activation function. After the relation propa-
gation, the updated relational embedding V becomes more
discriminative and could better reflect the relations between
support-query pair. Our relational graph only contains one
layer. We also tried to add more layers in our experiments, but
it brought an obvious performance drop as the number of lay-
ers increases. It is much likely that adding more layers would
cause an over-smoothing problem [43] where indistinguishable
feature representations are generated during propagation and
further hurts the classification performance.

After relation propagation and feature aggregation, the sim-
ilarity level between support-query pair could be measured
through a similarity function ¢ operating on the V, and
quantized as a similarity score vector. Specifically, for the
qth query sample, the similarity score vector s, = (p(Vq).
We conduct the above operation for each query sample and
construct the similarity matrix S composed of their similarity
vector, where S is a Tg x |I'| matrix, with S;; indicating
the similarity score of the ith support samples and the query
sample x,. Here, the similarity score can be considered as
a probability that the two samples are from the same class.
Therefore, each query sample can be classified by simple
weighted voting.

C. Transductive Learning

For a novel classification task, while the proposed method
could take advantage of the valuable information shared
between different support-query pairs and generate discrim-
inative relation embeddings, there are still some fundamental
difficulties in learning with scarce data. For the sake of making
full use of limited data to further improve the classification
performance, some previous work introduced transduction,
also known as transductive inference [20], [21], which con-
siders the relations between samples in the query set, so as to
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predict them as a whole. Referring to previous graph models,
the relations between query samples can be easily propagated
on the graph through feature aggregation by involving more
relational nodes composed of support-query pairs and pseudo
relational nodes.

However, since the relations between dominant samples are
the same and indistinguishable regardless of the concatenated
query sample, we consider the implementation of transduc-
tive learning mentioned above to be computation exhaustive,
which will result in performance degradation as well. Hence,
in order to simultaneously process the relations between all the
support-query pairs within the relational node and during the
propagation on the graph, for each relational node, we combine
a support sample with the entire query set.

Specifically, under the transductive setting, we initialize the
relational node features as

Vi =g, 8rs+1, 8rs+25 - - -» 8|1 (6)
Analogously, the pseudo node could be initialized as

V, =8¢ 8rs5+1, &Ts+25 - - -» &l (7

where i = {l,...,Ts}, and ¢ = {Ts + 1,...,|I'|}. The

construction of the relational adjacency matrix A is similar
to the one under the nontransductive setting, which indicates
pairwise adjacency

1, ifi,j <Ts,lij=1
_ o, ifi, j <Ts,l;; =0
Aij — ¢([gl’ gj]), 1 L, ] S 'l_] (8)
if Ts + 1 <i <|I]
o(lgi. gD, _
or Ts+1<j<|T.

As a consequence, we can follow the same process of
relation-propagation as under the nontransductive setting.

Similarly, we employ a similarity function ¢ to operate on
the propagated relational nodes V, which outputs a Tg x |I'|
similarity matrix S directly.

D. Decoupling Training Strategy

Traditional training strategy with a pretrained embedding
network lays a strong foundation for capturing informative
features and is proven helpful for further improving the
few-shot classification performance. However, a dilemma is
raised to the training phase of few-shot learning task: on
the one hand, the few-shot learning module seeks to rapidly
capture the similarity relations with limited samples on unseen
tasks; on the other hand, during the training phase, the pre-
trained embedding network F continually provides features
of the seen categories whose similarity relations have been
primely captured already, forming seen subtasks and leading
to little learning space for the few-shot learning module, not
to mention how to handle the new tasks unseen before. Hence,
with the traditional training strategy, the few-shot learning
module deficiently captures the relations and struggles to
transfer knowledge.

To bridge the semantic gap between the seen and unseen
tasks, we propose a novel decoupling training strategy for a
few-shot learning task, maintaining the discriminative repre-
sentation ability of the feature embedding module and ensuring
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the TRPN to better distill unseen relations at the same time.
The training set is divided into different groups, guaranteeing
that certain classes adopted to train the few-shot learning
module are unseen to the low-level feature embedding module
even in the training phase, imitating the test scenario.

We initially divide the training classes Cygin into
P equal-size disjoint partitions, respectively, termed as
C&Zn,.. cfj;n A simple idea is using different data par-
titions to, respectively, train the feature embedding module
and the few-shot learning module. However, as previous
work [44] presented, training feature embedding module on
more (diverse) base classes leads to obvious gains. Hence,
we group different partitions into a large set to preserve
the diversity, in order to generate informative feature repre-
sentations. Specifically, the pth group is defined as D(p) =

.....

After that, P parallel convolutlonal feature embedding
networks are constructed with the same architecture serving
as the foundation of generating diverse comparable feature
patterns for few-shot learning, followed by their corresponding
few-shot module TRPN. We denote the pth feature embedding
network as F(,, on the top of which is multiclassifier. The
network F(,y with the added classifier is trained on D), with
standard entropy loss.

Subsequently, we remove the multiclassifier and feed the
whole training dataset containing samples of C[ram unseen to
F(p) into the feature embedding networks, which forms new
few-shot tasks in the training phase. The output of F(,) is
then used to train the corresponding TRPN, which is denoted
as gE g for ease of description. Thus, the feature embeddings
of C,h). are not as representative as those of the other classes,
and further distillation by the successive TRPNs is required to
capture the relation through other samples.

Through the decoupling training strategy, the TRPNs could
distill representative information through coarse embeddings
from F(,), and sufficiently explore the relations among sam-
ples. What’s more, it helps develop the ability of TRPNs
to effectively transfer mastered knowledge to novel unseen
classes, fulfilling the objective of few-shot learning.

E. Learning and Inference

In this section, we will particularly elaborate on the training
procedure and illustrate how to make the inference on novel
unseen classes.

1) Training Procedure: For the purpose of generating infor-
mative feature embeddings, we first train the feature embed-
ding network with standard cross entropy loss using their
relative group of data. The classification loss function can be
defined as

P-1
P |C!ram‘

> - Z Ye log(§e)

D) (x.Y)€Dp)

“Xm

where § = F(,)(X), |D(p)| is the number of data samples in
the pth group.

Then, we remove the classifier layer of each feature embed-
ding network, and randomly sample a set of class from Cyyin
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to construct N-way K-shot few-shot tasks to further train the
TRPNSs. As a result, the similarity matrix of TRPN G, is
termed as S”). To guide the learning of TRPNs, we first
introduce the relational node classification loss

p I

L=>3> 3 zqilogsf,’i’>+(l—lqi)log(l—sf,'f))-

p=l1 i=1 ¢=Ts+1

The node loss is to promise the node feature could rep-
resent the relationship between samples inside the relational
node, and guide the model to generate discriminative relation
embeddings for further classification.

Besides, if the adjacency function ¢ is implemented by
neural networks, we could further take advantage of the label
information of support and query samples to enhance the
capability of ¢ as follows:

Pl T

by =D lilogp? ([glgm, g§p>])

p=1i=1 j=I
+ = tptog(1 -7 ([ 8"])).

As a result, the final loss function to train the TRPNs is
tg =1+ Aly

where 1 is the hyperparameter to balance the weights between
the two loss functions.

2) Inference on Novel Class: In the test phase, we evaluate
the performance of the proposed method on novel categories
that are not seen in episodic training. We perform the relation
propagation procedure and compute the query-to-class similar-
ity score that a query sample x, belongs to the nth category
of each TRPN through weighted voting, and then compute the
average scores of P parallel TRPNs

_ 1 <
Su=52. 2

p=1{il(x;,y))€SAyi=C,}

()
S e )

The category with the highest score is regarded as the final
prediction.

IV. EXPERIMENTS

In this section, we investigate our TRPN-D on two widely
used datasets. We first introduce the experimental setup, after
which we report the few-shot classification performance to
show the effectiveness of the proposed TRPN-D compared
with a number of state-of-the-art few-shot approaches. Then
we show the effects of different decoupling implementation.
At the end of this section, we assess the impact of each
component of our TRPN-D.

A. Experimental Setup

1) Datasets: We employ the widely used datasets in
prior studies, including minilmageNet dataset [16] and
tieredlmageNet dataset [26]. Both datasets contain various
red green blue (RGB) colorful images of size 84 x 84. The
minilmageNet dataset consists of 100 classes, each of which
contains 600 samples. The fieredlmageNet has a larger data

size compared to the minilmageNet, which contains a total
of 608 classes and 779 165 RGB color images. On average,
each class contains 1281 images. We follow the commonly
used split setting for training, validation, and test sets. The
classes contained in three splits are disjoint, that is, all classes
in the validation and test set are invisible to the model during
training. According to [26], the split in tieredImageNet is more
challenging, due to that the test classes are less similar to
the training ones, which represents a more realistic few-shot
learning scenario.

2) Implementation Details: Standard data augmentation
including random crop, left-right flip, and color jitter is
applied in the training phase. To further reduce the intraclass
variations and obtain more generalized features for novel
classes, we adopt a cosine-similarity-based multiclassifier
[34], [52] instead of a fully connected layer to classify the
base classes during the training procedure of the feature
embedding networks. In addition, we follow [53] and introduce
self-supervision into the training procedure by adding an auxil-
iary self-supervised loss. While training the feature embedding
networks, the number of parallel feature embedding networks
P is set to 4 in our experiments. We further investigate the
effect of different values of P on the accuracy in Section IV-C.
For the training procedure of the TRPNs, we adopt the episodic
training procedure following [16]. The number of training
iterations on minilmageNet and fieredlmageNet are 100 and
200 K, respectively. We use Adam optimizer [54] with an ini-
tial learning rate of 0.001, and reduce the learning rate by half
every 15 and 30 K iterations, respectively, on minilmageNet
and tieredImageNet. The weight decay is set to le™®. The
mini-batch size for all experiments is 10. We use the validation
set to select the training episodes with the best accuracy.
We take three implementations for adjacency function and
similarity function, namely negative squared Euclidean dis-
tance, and neural network, which we will further illustrate
in Section IV-B. Unless otherwise specified, we adopt neural
networks for adjacency function ¢ and similarity function ¢.
Besides, we experimentally set 1 = 1 to guide the learning of
the adjacency function, providing reasonable adjacency scores
for the relational graph.

3) Evaluation Protocols: On both datasets, we conduct
5-way 1-shot and 5-shot experiments which are standard
few-shot learning settings. For evaluation, each episode is
formed by randomly sampling 1 query for each of 5 classes.
We report the mean accuracy (%) of 10 K randomly generated
episodes as well as the 95% intervals on the test set.

B. Comparison With State-of-the-Arts

We first investigate the performance of our model, com-
pared with state-of-the-art few-shot approaches, respectively,
on minilmageNet and fieredImageNet. Since the representative
ability of the embedding network has a significant impact on
few-shot classification performance, we use four widely used
architectures as embedding networks: Conv-4 [21], ResNet-12,
ResNet-18 [58], and wide ResNet (WRN)-28 [59]. Moreover,
we provide the classification performance of our TRPN-D-4
under three adjacency functions: Negative squared Euclidean
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TABLE I
FEW-SHOT IMAGE CLASSIFICATION ACCURACIES OF 5-WAY 1-SHOT
AND 5-WAY 5-SHOT TASKS ON MinilMAGENET

Models | 1-shot 5-shot
Conv-4

MAML [45] 48.70 + 1.84  63.10 £+ 0.92
REPTILE [30] 4997 + 032 6599 £ 0.58
GNN [19] 50.33 £ 0.36  66.41 + 0.63
Matching Net [16] 43.56 + 0.84 5531 £ 0.73
Prototypical Net [17] | 49.42+ 0.78  68.20 £ 0.66
Relation Net [38] 50.40 +£ 0.80  65.30 4+ 0.70
RAPNETS [13] - 70.89 £+ 0.64
MPM [12] 57.59 74.02
EGNN [21] - 76.37 £+ 0.30
TRPN-T [25] 57.84 £ 0.51 78.57 £ 0.44
TRPN-D-4 + NE 58.50 & 0.48  76.52 + 0.44
TRPN-D-4 + Cosine | 62.45 4+ 0.50 80.45 + 0.43
TRPN-D-4 + NN 6298 + 0.50 81.24 + 0.42
ResNet-12

SNAIL [29] 5571 £ 0.99  68.88 + 0.92
MTL [46] 61.20 & 1.80  75.50 &+ 0.80
TADAM [47] 58.50 4+ 0.30  76.70 & 0.30
TapNet [48] 61.65 + 0.15  76.36 + 0.10
LwoF [34] 5545 +£0.89  70.13 + 0.68
TPN [20] 59.46 75.65
FSGC [15] 58.524+0.82 78.00+0.61
TRPN-T [25] 60.45 + 0.53  81.05 + 0.44
TRPN-D-4 + NE 66.30 = 0.47  80.25 & 0.47
TRPN-D-4 + Cosine | 67.91 4= 0.48  84.42 4+ 0.40
TRPN-D-4 + NN 68.65 + 0.48 84.69 + 0.39
ResNet-18

A-encoder [49] 59.9 69.7
CTM [23] 62.05 + 0.55  78.63 &+ 0.06
AFHN [50] 62.38 & 0.72  78.16 &+ 0.56
Su et al. [51] - 76.6 + 0.7
TRPN-T [25] 56.70 + 0.52  76.74 + 0.46
TRPN-D-4 + NE 68.93 + 047 85.45 + 0.38
TRPN-D-4 + Cosine | 68.00 + 0.47  86.05 + 0.39
TRPN-D-4 + NN 68.06 + 0.47  84.50 + 0.39
WRN-28

LEO [24] 61.76 & 0.08  77.59 + 0.12
Param_Predict [35] 59.60 & 0.41  73.74 + 0.19
wDAE [36] 61.07 = 0.15 76.75 £+ 0.11
MPM [12] 61.77 78.03
IPN [11] 6742 + 0.45 83.98 &+ 0.35
TRPN-T [25] 68.25 + 0.50  85.40 &+ 0.39
TRPN-D-4 + NE 69.73 4+ 0.48  84.84 4+ 0.39
TRPN-D-4 + Cosine | 69.97 + 0.48  85.18 £ 0.39
TRPN-D-4 + NN 7044 + 048 85.43 + 0.38

distance (namely NE), Cosine Similarity (namely Cosine), and
Neural Network (namely NN).

Tables I and II list the few-shot classification accuracies of
the 5-way 1-shot and 5-shot tasks along with the specifications
of the embedding models for feature extraction. From both
Tables I and II, we can find that TRPN-D-4 + NN has a
stable and good performance with all embedding networks.
Nonparametric cosine similarity can also achieve better perfor-
mance when the backbone is deep such as WRN-28, due to the
strong representation ability of the backbone. Negative squared
Euclidean distance performs worse than both Neural network
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TABLE 11
FEW-SHOT IMAGE CLASSIFICATION ACCURACIES OF 5-WAY 1-SHOT
AND 5-WAY 5-SHOT TASKS ON TieredIMAGENET

Models | 1-shot 5-shot
Conv-4

MAML [45] 51.67 + 1.81  70.30 4 0.08
REPTILE [30] 5236 £ 0.23  71.03 £ 0.22
GNN [19] 43.56 & 0.84 5531 £+ 0.73
Matching Net [16] 54.02 £ 0.00 70.11 £ 0.00
Prototypical Net [17] 5331 £0.89  72.69 + 0.74
Relation Net [38] 5448 + 093  71.32 +0.70
LwoF [34] 50.90 + 0.46  66.69 £ 0.36
TPN [20] 5753 £ 096  72.85 &£ 0.74
MPM [12] 59.44 76.59
EGNN [21] - 80.15 £ 0.30
TRPN-T [25] 59.26 & 0.50  79.66 & 0.45
TRPN-D-4 + NE 56.60 += 0.48  77.13 + 0.44
TRPN-D-4 + Cosine 62.88 + 0.50 80.57 £ 0.43
TRPN-D-4 + NN 61.01 & 0.49  80.98 + 0.42
ResNet-12

TapNet [48] 63.08 & 0.15  80.26 &+ 0.12
DSN-MR [41] 67.39 + 0.82  82.85 £+ 0.56
ESBM [55] 712 £ 0.4 853+ 03
DeepEMD [56] 71.16 & 0.87  86.03 & 0.58
TRPN-T [25] 67.11 & 0.50  83.07 £ 0.42
TRPN-D-4 + NE 68.80 += 0.47  83.36 &+ 0.39
TRPN-D-4 + Cosine 70.58 & 0.47  86.06 & 0.37
TRPN-D-4 + NN 71.45 + 0.47  87.13 £+ 0.37
ResNet-18

CTM [23] 64.78 + 0.11 81.05 £ 0.13
Su et al. [51] - 78.9 + 0.7
TRPN-T [25] 67.01 & 0.48  83.60 & 0.48
TRPN-D-4 + NE 70.89 4+ 0.47 88.70 £ 0.35
TRPN-D-4 + Cosine 69.56 + 0.48  88.67 £ 0.35
TRPN-D-4 + NN 7247 + 047  87.84 + 0.36
WRN-28

LEO [24] 66.33 + 0.05  81.44 4+ 0.09
wDAE [36] 68.18 &= 0.16  83.09 & 0.12
MPM [12] 67.58 83.93
Centroid alignment [57] | 74.40 £ 0.68 86.61 + 0.59
IPN [11] 73.18 £ 0.43  86.59 £ 0.33
TRPN-T [25] 70.25 & 0.50  85.21 £ 0.37
TRPN-D-4 + NE 71.37 £ 0.47 85.51 + 0.38
TRPN-D-4 + Cosine 7343 + 047 87.48 + 0.36
TRPN-D-4 + NN 7331 £ 047 8742 £ 0.36

and Cosine Similarity. To better compared our TRPN-D with
other methods, TRPN-D below all refers to TRPN-D + NN.

From Table I, we can observe that the proposed TRPN-D
achieves superior performance among the state-of-the-art
few-shot approaches with all backbone architectures, proving
the effectiveness and robustness of our method. Moreover,
the proposed TRPN-D beats TRPN-T by significant margins in
most cases, which validates our claim that decoupling training
strategy could help bridge the semantic gap and empower
the few-shot model the ability of transferring knowledge to
new tasks. It can be shown that, on minilmagenet dataset,
the performance of the proposed TRPN-D with WRN-28 is
nearly close to that of TRPN-T with only 0.03% gains, while
the performance gains of more complex scenes, such as 1-shot
tasks, or tasks on more challenging dataset tiredImagenet,
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are conspicuous. That is to say, our approach is more suit-
able for realistic complicated scenarios. Besides, results of
TRPN-T usually rank the highest except TRPN-D. Meanwhile,
TRPN with “Conv-4" backbone achieves 57.84% and 78.57%,
respectively, on 1-shot and 5-shot settings, even outperforming
most of the state-of-the-art models equipped with deeper
embedding networks. These phenomena confirm the improve-
ment brought by the relation propagation.

A similar trend can also be observed in Table II. The
proposed TRPN-D shows comparable results with the state
of the art, achieving 72.31% and 87.19% accuracy on 5-way
1-shot and 5-shot setting, respectively. It delivers obvious gains
to TRPN-T. As the shots increase, all the methods perform
better, which is adhere to our intuition. Moreover, a deeper
embedding network will lead to a better classification perfor-
mance compared to methods equipped with Conv4. However,
the performance of the model with ResNet-12 is similar to
that with ResNet-18.

From these observations, we can conclude that our TRPN-D
adequately exploits the support-query pair relations and
improves the ability to transfer knowledge to new tasks, finally
achieving decent few-shot classification performance.

C. Effects of Different Decoupling Implementation

There are different implementations for the proposed
decoupling strategy, including the number of partitions and
class-selection mechanism. We evaluate the effect of each
implementation and determine the best combination.

1) Number of Data Partitions: In the proposed decoupling
training, the dataset is grouped into P groups. That is to
say, there should be P parallel embedding networks to be
trained using P data groups. However, the more embedding
networks are involved, the more computation resources are
required. Therefore, we conduct experiments to find out the
appropriate value of P, compromising the efficiency and
accuracy. As shown in Fig. 3(a), the x-coordinate lists the
few-shot classification accuracy of TRPN-D models with P =
1, 2, 4, 8 embedding networks, respectively. It can be observed
that the performance gains as the number of embedding
networks increases. And, the increasing speed of performance
gains becomes slow when P = 4. Specifically, there is only
0.2% gains from TRPN-D-4 to TRPN-D-8. Hence, in our
experiment, we acquiescently set P = 4.

2) Class-Selection Mechanism: We consider three selec-
tion mechanisms to group different classes: 1) random-based
mechanism. Each class is randomly picked for a group, and
the classes are balanced in each group. 2) semantic-based
mechanism. Similar semantic word2vec embeddings of train-
ing class labels are grouped into the same partition via
K-means clustering method. We set the number of clus-
ters to P, and employ a hyperheuristic algorithm based on
random selection to continuously adjust the initial cluster
centers of K-means until the maximum number of iterations is
reached. 3) visual-based mechanism. The visual-based method
is similar to the semantic-based method, except that it used
the average visual embedding extracted by the pretrained
embedding network of each category in the training set of

920 90
85 845 84.79 85{ 845 83.03 84.23
80.39 81.21
80 : 80
E\O, 75 § 75
z 2
70
g e
3 g
o
Q 65 Q 65
< <
60 60
55 55
50 50 - Ny
P=1 pP=2 P=4 pP=8 Random Semantic Visual
() (b)
90 920
85 84.5 85 84.5
8273 82.19
80 80
§ 75 § 75
> >
% 70 % 70
e e
=} 3
8 65 8 65
< <
60 60
55 54.47 55
50 50
1l 1] Max Mean
(©) (d)

Fig. 3. Effects of Different Decoupling Implementation of 5-way 5-shot task
on minilmagenet. (a) Effects of the number of data partitions. (b) Effects of
different class-selection mechanisms. (c) Effects of different task-construction
approaches. (d) Effects of different weighted voting approaches.

minilmageNet instead of the word2vec embedding. As we can
see from Fig. 3(b), the results of the three mechanisms are very
close, from nearly 84% to 84.5%. Intuitively, it seems that a
mechanism based on visual or semantic is more reasonable
for training a few-shot module since dissimilar clusters could
better simulate the few-shot experimental setting where cate-
gories of test dataset are dissimilar from that of train dataset.
However, using similar samples in a cluster with limited
diversity will do harm to the representative ability of the
embedding network. The impact of diverse training data for the
embedding network could also be seen in Task-construction
approach. Therefore, the mechanisms based on visual or
semantic do not achieve superior performance as we expect.
Besides, the result of the random-based mechanism ranks the
highest among the three mechanisms. Therefore, we simply
choose the random-based mechanism in our experiments.

3) Task-Construction Approach: The proposed decoupling
training strategy is using different data to train the embedding
networks and TRPNS to imitate the test scenario, which helps
TRPNs to capture and propagate unseen relations. As we
introduced in Section III-D, the training classes are divided
into P disjoint partitions and each (P-1) partitions form a
group. Different division methods will cause different task
construction approaches. Actually, we have tried three task-
construction methods:

1) Using samples of different partitions Ct(r’,:i)n to train the

embedding networks F,), and using the other partitions
to train G,
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2) Using different data groups D, to train F(,), and the
corresponding samples of different partitions Ct(r';i)n
train G,

3) Using different data groups D, to train F(,), and the
whole dataset Diin to train Gy

to

As Fig. 3(c) illustrates, the first method only adopts a
comparatively few classes to train the embedding networks,
leading to the inferior representative ability of the backbone.
Therefore, feature maps extracted from the rest unseen sam-
ples by the pretrained embedding networks contain a lot of
noise so that the relational propagation graph network can’t
capture valid relation information and thus greatly hurt the
classification accuracy.

The second method ensures the splendid feature distilla-
tion of the embedding networks, and the completely unseen
samples used to train the TRPN module seem to better learn
the transfer ability. However, the completely unseen partitions
result in fewer unseen few-shot tasks and the diversity of seen
samples is invisible to the GNN. As a result, the few-shot
classification performance of the second method is worse than
that of the third method.

The third method, i.e., our choice, ensures the TRPN to
better extract the relations on new tasks unseen to the feature
embedding network, and in the meanwhile maintains the
discriminative representation ability of the feature embedding
module, achieving the best performance compared to the
others.

4) Weighted Voting Approach: Actually, we testify two
kinds of weighted voting approach of the final results in the
test phase, namely average weighted voting and maximum
decisive voting. The formal definitions are listed as follows:

1) average weighted voting

P
5 1
= — (»)
San = P Z Z Sqi
p=1{il(xi,y:)eSAyi=Cy}

2) maximum weighted voting
Syn = )
Sp=max | D8y

{il(xi,y1)€SAYi=Cy}

Fig. 3(d) reports the comparison between the performance
of the two approaches, from which it is obvious that aver-
age weighted voting achieves better performance by a large
margin, nearly 2.5% compared to the counterpart.

According to that analysis, our TRPN-D adopts decoupling
training strategy integrating above choices and yields peak
performance.

D. Component Analysis

As aforementioned, our method mainly gains from the
relational graph framework with decoupling training. Here,
we study the effects of different components in our TRPN-D
model. To clearly demonstrate the effects of each part of the
proposed few-shot module TRPN, we first conduct experi-
ments on TRPN-D-1. The first five bars in Fig. 4 demonstrate
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Fig. 4. Ablation study of 5-way 5-shot task on minilmageNet. It, respectively,
shows the few-shot classification results of TRPN-D-1 without relational
nodes (w/o(R)), under nontransductive setting (w/o(T)), without pseudo rela-
tional nodes (w/o(Vq)), without interclass uniqueness in adjacency matrix
(w/o(U)), the results of the full TRPN-D-1 (TRPN-D-1), and results acquired
by the TRPN-D-4 (TRPN-D-4) from left to right.

the few-shot classification results of TRPN-D-1 without rela-
tional nodes where we construct graph node with a single sam-
ple and its corresponding one-hot label, under nontransductive
setting, without pseudo relational nodes, without interclass
uniqueness in adjacency matrix where we directly use the
adjacency function to evaluate the adjacency between two
samples from different classes, and that obtained by the
full TRPN-D-1 framework. Note that there is no decoupling
training for TRPN-D-1, since the model only contains one
embedding network. In the meanwhile, the last bar in Fig. 4
indicates the result of TRPN-D-4.

From Fig. 4, we can see that both the TRPN-D-1 without
relational nodes and that under nontransductive setting cannot
utilize sufficient information existing in the task and thus
suffers from a significant performance drop. Without rela-
tional nodes, the performance drops more than 10%, which
greatly manifests the importance of the support-query rela-
tions. TRPN-D-1 under the transductive setting achieves better
performance than TRPN-D-1 under the nontransductive setting
(80.3% versus 72.88%). Actually, a similar conclusion can
be also drawn from the experiments with TRPN-D-4 (84.5%
versus 76.56%), which we do not show in the figure to avoid
redundancy. Without pseudo relational nodes, the TRPN-D-1
witnesses a drop from 80.39% to 79.11%, declining by
over 1%. Without considering interclass uniqueness, the results
decrease by 5% around, due to neglecting the commonality of
different categories. Although TRPN-D-1 achieves competitive
performance, it falls far short of TRPN-D-4, demonstrating
that the proposed decoupling training strategy is capable of
transferring information and accomplishing new tasks.

E. Propagation Visualization

To further demonstrate how our relation-propagation graph
network propagates the relations of the support-query pairs,
we, respectively, visualize the relations including the initial
coarse adjacency based on the raw node features, the predicted
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(b)

Fig. 5.  Visualization of the relation propagation. (a) Initial adjacency.
(b) Similarity score after TRPN-D modeling and propagating the relations.
(¢) Ground-truth.
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Fig. 6. Semisupervised few-shot classification accuracies of the 5-way 5-shot
tasks on minilmageNet.

similarities based on the learned relational embeddings and the
ground-truth in Fig. 5. Since we mainly focus on support-query
relations which we marked with red bound boxes in Fig. 5,
the relations between support samples are simply visualized
according to the given labels. From Fig. 5, we can draw the
conclusion that starting from the coarse prediction between
support-query pairs where relations are uncertain with some
randomness, our TRPN module can precisely predict the true
relations using the relation propagation, with the help of the
decoupling training strategy which enhances the ability of
transferring past knowledge to a new task.

FE. Semisupervised Few-Shot Classification

For showing more efficient relation propagation on the
graph, we extend our graph-based architecture to learn from
a mixture of labeled and unlabeled examples. We follow the
same semisupervised settings proposed in [19], [21] for a fair
comparison. Since the two works did not provide the results
around 60% labeled ratio and 40% labeled ratio, we retrained
the two models with their published codes. Specifically, two
settings are considered in this experiment, namely “Semi” and
“LabeledOnly”. “Semi” means a 5-way 5-shot setting with par-
tially labeled samples in the support set where labeled samples
are balanced among classes, while “LabeledOnly” is based
on “Semi” and denotes learning with only labeled support
samples. We compare four models equipped with the “Conv-
4” backbone including GNN, edge enhanced GNN (EGNN),
TRPN-T, and TRPN-D. As shown in Fig. 6, the TRPN-T
shows a better learning ability as a labeled ratio increases
especially on “LabeledOnly” setting, verifying that it could
learn the discriminative relation embeddings from the given

labels. With the decoupling strategy, TRPN-D surpasses other
graph settings which prove that our method is effective even
under semisupervised settings. Models under “Semi” setting
usually perform better than that under “LabeledOnly” setting,
proving the importance of the samples themselves even with-
out semantic labels.

V. CONCLUSION

In this article, we presented a novel TRPN-D, the first work
which explicitly decouples the embedding network and the
few-shot module with different tasks, guaranteeing that the
few-shot module TRPN gains the ability to transfer knowl-
edge in order to adapt to new tasks. Directly modeling and
propagating the relations across support-query pairs further
help capture the accurate relations among the tasks. Exten-
sive experiments conducted on several benchmark datasets
demonstrate the superiority of TRPN compared with state-of-
the-art few-shot learning methods. With a decoupling training
strategy, the proposed TRPN-D consistently brings significant
gains in several experimental settings, compared to TRPN.
We also carry out experiments to determine the appropriate
implementation for the decoupling strategy, ensuring that our
implementation could achieve peak performance. It can be
concluded that our TRPN-D is capable of effectively capturing
the relations and adapting to new tasks quickly.
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