
Who Should Review This Pull-Request: Reviewer
Recommendation to Expedite Crowd Collaboration

Yue Yu∗, Huaimin Wang∗, Gang Yin∗, Tao Wang∗, Charles X. Ling‡
∗National Laboratory for Parallel and Distributed Processing,

College of Computer, National University of Defense Technology, Changsha, 410073, China
‡Department of Computer Science, The University of Western Ontario, London, Ontario, Canada N6A 5B7

{yuyue,hmwang,yingang,taowang2005}@nudt.edu.cn, cling@csd.uwo.ca

Abstract—Github facilitates the pull-request mechanism as an
outstanding social coding paradigm by integrating with social me-
dia. The review process of pull-requests is a typical crowdsourcing
job which needs to solicit opinions of the community. Recom-
mending appropriate reviewers can reduce the time between the
submission of a pull-request and the actual review of it. In this
paper, we firstly extend the traditional Machine Learning (ML)
based approach of bug triaging to reviewer recommendation.
Furthermore, we analyze social relations between contributors
and reviewers, and propose a novel approach to recommend
highly relevant reviewers by mining comment networks (CN) of
given projects. Finally, we demonstrate the effectiveness of these
two approaches with quantitative evaluations. The results show
that CN-based approach achieves a significant improvement over
the ML-based approach, and on average it reaches a precision of
78% and 67% for top-1 and top-2 recommendation respectively,
and a recall of 77% for top-10 recommendation.

Keywords—Pull-request, Reviewer Recommendation, Com-
ment Network, Social Coding

I. INTRODUCTION

The pull-based software development model [1], compared
to traditional methods such as email-based patching [2] [3],
makes developers contribute to software projects more flexibly
and efficiently. In GitHub, the pull-request mechanism is
upgraded to a unique social coding paradigm [4] by integrating
multiple social media involving follow, watch, fork and issue
tracker. The socialized pull-request model is pushing software
evolution and maintenance into crowd-based development [5].

A typical contribution process [6] in GitHub involves fol-
lowing steps. First of all, a contributor could find an attractive
project by following some well-known developers and watch-
ing their projects. Secondly, by forking an interesting one,
the contributor implements a new feature or fixes some bugs
based on his cloned repository. When his work is finished,
the contributor sends the patches from the forked repository
to its source by a pull-request. Then, all developers in the
community have the chance to review that pull-request in the
issue tracker. They can freely discuss whether the project needs
that feature, whether the code style meets the standard or
how to further improve the code quality. Next, in the light
of reviewers’ suggestions, the contributor would update his
pull-request by attaching new commits, and then reviewers
discuss that pull-request again. Finally, a responsible manager
of the core team takes all the opinions of reviewers into
consideration, and then merges or rejects that pull-request.

As a mushrooming number of developers use the pull-
request mechanism to contribute their ideas and suggestions in
GitHub, the efficiency of software evolution and maintenance
is highly related to the crowd-based review process. However,
the discussion among reviewers is time-consuming. Some
relevant reviewers may not notice the new pull-request in
time. Recommending reviewer will make the review process
more effective, because it can reduce the time between the
submission of a pull-request and the actual review of it.

A pull-request contains a title and description summarized
its contributions of bug fixes or feature enhancements, so it
is similar to a bug report in bug tracking systems. To the
best of our knowledge, there is very few studies of reviewer
recommendation for pull-requests. The most similar researches
[7]–[12] are the approaches for recommending developers with
the right implementation expertise to fix incoming bugs. For
a newly received bug report, these approaches firstly find
out some similar historical reports or source code files by
measuring text similarity. Then, the expertise of a developer
can be learned based on the bug-fixing history, source revision
commits or code authorship. If we only focus on the text
of pull-requests, these approaches can be extended to assign
pull-requests to appropriate developers. However, the social
relations between pull-request contributors and reviewers are
neglected. Compared to bug fixing, the review process of pull-
request is a social activity depending on the discussions among
reviewers in GitHub. Thus, social relation is one of key factors
of reviewer recommendation.

In this paper, we firstly implement the Machine Learning
(ML) based approach of Anvik et al. [7], which is one of
the most representative work of bug triaging. Furthermore,
we analyze social relations among reviewers and contributors,
and propose a novel approach of reviewer recommendation.
Central to our approach is the use of a novel type of social
network called Comment Network (CN), which can directly
reflect common interests among developers. Finally, we con-
duct an empirical study on 10 projects which have received
over 1000 pull-requests in GitHub. As there is no previous
work of reviewer recommendation for pull-requests, we design
a simple and effective method as a comparison baseline in
experiments. The quantitative evaluations show that our CN-
based approach achieves significant improvements over the
baseline and ML-based method.

Figure 1. An example of discussion among reviewers in a pull-request

The remainder of this paper is structured as follows. Section
II conducts an empirical study of pull-request and depicts a
motivating example for recommending reviewers to incoming
pull-requests. Section III present how to assign a pull-request
to reviewers using ML technique, and Section IV propose
our CN-based recommendation approach. Experiments and
analysis can be found in Section V. Finally, we present related
work in Section VI and draw our conclusions in Section VII.

II. EMPIRICAL STUDY OF PULL-REQUEST

In this section, we firstly investigate the popularity of pull-
request model in GitHub. Then, a typical process of discussion
among reviewers is introduced with an example.

A. Popularity of Pull-request

Gousios et al. [1] has illustrated the popularity of pull-
based development model based on the comparison of usage
between pull-request and shared repository in GitHub. They
draw a conclusion that pull-request is a significant mechanism
for distribute software development, even though only 14% of
repositories are using it in GitHub until February 2013.

In the current, many competitive projects are growing fast
supported by pull-request such as Ruby on Rails1 which has
received more than 10000 pull-requests. Therefore, we further
investigate the usage of pull-request model among projects
which receive at least 100 pull-requests. There are 3587
projects (exclude forked repositories) are extracted from the
latest database of GHTorrent [13]. These projects cover 53
different program languages, but the distribution of the number
of projects is highly skewed. Top-5 program languages contain
67% of projects (JavaScript 678, Ruby 475, Python 460, Java
424 and PHP 362). From June 2011 to March 2014, the
absolute number of new pull-requests increased dramatically
reaching the peak of 76673 per month (Figure 2). Thus, we

1https://github.com/rails/rails

can see that a growing number of developers contribute to
open source using the pull-request mechanism.

2011-02

2011-05

2011-08

2011-11

2012-02

2012-05

2012-08

2012-11

2013-02

2013-05

2013-08

2013-11

2014-02

time (month)

0

10000

20000

30000

40000

50000

60000

70000

80000
n
u
m

b
e
r

o
f

p
u
ll-

re
q
u
e
st

s

Figure 2. The growth of Pull-request quantity

B. Discussion among Reviewers

When a new pull-request arrives, the decision-making is
a crowdsourcing process which depends on the discussion
among reviewers. Taking a real pull-request of Ruby on Rails
as an example, as shown in Figure 1, a core developer called
rafaelfranca is the first reviewer to discuss this pull-request.
As he thought that javan’s work would be relevant to this pull-
request, he mentioned (@) javan to join the discussion. At the
second post, we see that javan indeed presented his opinion.
Meanwhile, other users participated in the discussion and
made some important suggestions as well. Later, the author
updated the pull-request by appending a new commit taking
into account the above suggestions, and then he mentioned
the two key reviewers for acknowledgement. Finally, the pull-
request was merged into the Ruby on Rails’ master branch.

As the example depicted above, apart from javan who
is informed by rafaelfranca, other three reviewers join the
discussion spontaneously. Because all the comments affect

the decision-making of that pull-request, if they do not catch
that pull-request timely, the time of review process would be
longer. Beside, except for @mentioning, project managers can
use a label to assign a pull-request to someone. However, only
0.89% of pull-requests have been set that label in our dataset.

Thus, if appropriate reviewers are automatically recom-
mended when a new pull-request is submitted, its review
process would be greatly accelerated. It is worth mentioning
that this novel application can be seamlessly integrated with
the @mention tool to take its full advantage by @mentioning
the potential reviewers automatically.

III. MACHINE LEARNING BASED RECOMMENDATION

We aim to recommend highly relevant reviewers for pull-
requests to improve the efficiency of social coding. The
representative existing work of automated bug triaging are
the approaches of mining bug repositories based on Machine
Learning (ML) [7]–[9]. All these approaches start from the
bug-text, such as title, description and source code. In the
context of ML, the bug triaging problem can be represented as
text categorization (i.e., classification of text documents into a
set of categories). The text documents are the bug-text and the
categories into which bug reports are classified are the names
of developers suitable to resolve the report. In this paper, we
treat pull-requests as text documents, and then utilize the ML-
based approach to predict top-k relevant reviewers.

A. Vector Space Model of Pull-Request

Each pull-request is characterized by its title and descrip-
tion, and labeled with a set of names about developers who
had submitted at least one comment to it. Then, all stop words
and non-alphabetic tokens are removed, and remaining words
are stemmed. We use vector space model to represent each
pull-request as a weighted vector. Each element in the vector
is a term, and the value stands for its importance for the
pull-request. For a given word, the more times it appear in
a pull-request, the more important it is for that pull-request.
On the contrary, the more pull-requests it appears in, the less
important it is for distinguishing these pull-requests. Term
frequency-inverse document frequency (tf-idf) is utilized to
indicate the value of a term, which can be calculated as
Equation 1.

tfidf(t, pr, PR) = log(
nt
Npr

+1)×log NPR

|pr ∈ PR : t ∈ pr|
(1)

where t is a term, pr is a pull-request, PR is the corpus
of all pull-requests in a given project, nt is the count of
appearance for term t in pull-request pr, and Npr and NPR

are the total number of terms in pr and pull-requests in the
corpus respectively.

B. Training ML Classifiers

In general, a pull-request would be reviewed by several
developers, so ML classifiers should provide more than one
label for a pull-request testing instance. It means that they
should be able to deal with the multi-label classification
problem [14]. A ranked list of recommended candidates is

generated from top-1 to top-k according to the probability
distribution that the ML classifiers predicted on the labels
using the one-against-all strategy. When the probability values
are equal, we rank the developers in terms of the number
of pull-requests’ comments that they had submitted to the
given project. In this paper, we choose SVM as our basis
classifier because it has been proved to be a superior classifier
in developers recommendation [7], [12].

IV. SOCIAL NETWORK BASED RECOMMENDATION

ML-based recommendation focuses on the text of pull-
requests. However, the preprocessed text of a pull-request
mainly consists of the names or identifiers of code files,
functions and variables, so the corpus of a project is not very
large. When a reviewer has commented plenty of pull-requests,
his label covers most of terms in the corpus. The ML classifiers
would biasedly assign almost all incoming pull-requests to
him. Thus, the workload of this reviewer continues to increase.

By contrast, the basic intuition of social network based
recommendation is that the developers who share common
interests with a contributor are the appropriate reviewers of
his incoming pull-requests. For reviewer recommendation, the
common interests among developers can be directly reflected
by comment relations between contributors and reviewers
in historical pull-requests. We propose a novel approach to
construct comment networks by mining historical comment
traces. Then, we predict highly relevant reviewers to incoming
pull-requests based on comment network analysis.

A. Comment Network Construction

For each project, the corresponding comment network is
constructed individually. In a given project, the structure of
comment relations between contributors and reviewers is a
many-to-many model. As shown in Figure 3, there are many
contributors have submitted pull-requests to Project P. A
developer can be a contributor submitting several pull-requests,
and he could also be a reviewer in other contributors’ pull-
requests. A pull-request would be commented by several
reviewers more than once. For example, reviewer R1 had
presented 5 comments in the pull-request PR2. In addition,
a reviewer would inspect multiple pull-requests, such as re-
viewer R1 has commented PR1 and PR2.

Contributor C1

Project P

Pull-request PR2

Pull-request PR1

Pull-request PRk

…

…

Reviewer R2

Reviewer R1

Reviewer Rt

…

5

1

m

2

Contributor C2

Contributor C3

Contributor Cn

Pull-request PRk+1

m+1

Figure 3. Comment relations between contributors & reviewers

The comment network is defined as a weighted directed
graph Gcn = 〈V,E,W 〉, where the set of developers is
indicated as vertices V and the set of relations between nodes
as edges E. If node vj has reviewed at least one of vi’s pull-
requests, there is a edge eij from vi to vj . The set of weights

W reflects the importance degree of edges, and the weight wij

of eij can be evaluated by Equation 2.

wij =

k∑
r=1

w(ij,r) = Pc ×
k∑

r=1

m∑
n=1

λn−1 × t(ij,r,n) (2)

where k is the total number of pull-request submitted by vi,
and w(ij,r) is a component weight related to an individual pull-
request r. Pc is an empirical default value2 (set to 1.0), which
is reserved to estimate the influence of each comment on the
pull-request, and m is the sum of comments submitted by vj in
the same pull-request r. When reviewer vj published multiple
comments (m 6= 1) in the same pull-request, his influence
is controlled by a decay factor λ (set to 0.8). The element
t(ij,r,n) is a time-sensitive factor of corresponding comment
which can be calculated as below:

t(ij,r,n) =
timestamp(ij,r,n) − baseline

deadline− baseline
∈ (0, 1] (3)

where timestamp(ij,r,n) is the date that reviewer vj presented
the comment n in pull-request r which is reported by contrib-
utor vi. The baseline and deadline are highly related to the
selection of training set. If we use the data of the last one and a
half years from 2012-01-01 to 2013-05-31 to learn the weights
of comment network, the parameters baseline and deadline
are set to 2011-12-31 and 2013-05-31 respectively.

v2 commented v1's PR_1 on 2012-12-03

v2 commented v1's PR_1 on 2013-01-12

v2 commented v1's PR_2 on 2013-05-07

v3 commented v1's PR_2 on 2013-05-06

v1 commented v4's PR……

v2 commented v4's PR……

v4 commented v1's PR……

Project:
Ruby on Rails

w 13
=

0.9
5

v3 v4

v2v1

w12=2.19

w42=?w41=
?

Figure 4. An example of the comment network

Figure 4 shows an example of a part of comment network
about Ruby on Rails. Two different pull-requests (PR_1 and
PR_2) reported by v1 have been commented by v2 and v3, so
there are two edges from v1 to v2 and v1 to v3. Evaluating
the relation between v1 and v2, k of Equation 2 equals 2,
because v2 reviewed both two pull-requests. For PR_1, v2
commented it twice, so we set m = 2. The first time-sensitive
factor of the date 2013-12-03 can be computed by Equation 3
that t(12,1,1) ≈ 0.654. In addition, at the date of 2013-01-12
(t12,1,2 ≈ 0.731), another review published by v2 in PR_1
should be controlled by λ (set to 0.8) due to the diminishing

2User comments can be found in pull-requests, issue posts and commit
files. Here, we just use the comments of pull-request.

impact of one user in the same pull-request, so w(12,1) can
be calculated as: Pc × (t(12,1,1) + λ2−1 × t(12,1,2)) ≈ 1.24.
Similarly, the weight w12 = w(12,1) + w(12,2) = 2.19, and
w13 = 0.95. Thus, we can predict that reviewer v2 share more
common interests with contributor v1 compared to v3, which
has been quantified by the corresponding weights of edges.

The comment network has several desirable qualities.

• Firstly, the global collaboration structure is revealed
between contributors and reviewers in a given project,
which can be used for mining reviewer candidates of
incoming pull-requests.

• Secondly, the time-sensitive factor t is introduced to
guarantee that the recent comments are more valuable
for the weights of edges than the old comments.

• Thirdly, the decay factor λ is introduced to guarantee
the difference values between the comments submitted to
multiple pull-requests or single pull-request. For example,
if reviewer vj commented 5 different pull-requests of vi
and meanwhile vq commented one of vi’s pull-requests
5 times, the weight of wij is larger than wiq .

B. Reviewers Recommendation

Based on the comment networks, new pull-requests are
divided into two parts according to their submitters. The first
part are the Pull-requests from Acquaintance Contributors
denoted as PAC. For a PAC, starting from the node of its
submitter, we can find at least one neighbor in the directed
graph. For example, in Figure 4, when v1 submits a new
pull-request, this pull-request is a PAC because we find two
neighbors starting from v1. The other part are Pull-Requests
from New Contributors denoted as PNC. For a PNC, the
submitter used to be a reviewer but has not submitted any pull-
request, or it is a newcomer excluded from the training set,
so there is no neighbor starting from it in the corresponding
comment network. Hence, we can further divide reviewer
recommendation into two different tasks.

Algorithm 1 Top-k recommendation for PAC
Require: Gcn is the comment network of a given project; vs

is the contributor of a new pull-request; topk is the number
of reviewers of requirement;

Ensure: recSet is a set of sorted reviewers;
1: Q.enqueue(vs) and recSet← ∅
2: repeat
3: v ← Q.dequeue and Gcn.RankEdges(v)
4: repeat
5: if topk = 0 then
6: return recSet
7: end if
8: vnb ← Gcn.BestNeighbor(v)
9: Q.enqueue(vnb) and Gcn.mark(vnb)

10: recSet ∪ {vnb} and topk = topk − 1
11: until Gcn.Neighors(v) all marked
12: until Q is empty
13: return recSet

Recommendation for PAC: For a PAC, it is natural to
recommend the user who has previously interacted with the
contributor directly, i.e., the node that is a connected neighbor
starting from the contributor node in the comment network. If
there are more than one neighbor, the node with the highest
weights get selected first. Hence, reviewer recommendation
can be treated as a kind of directed graph traversal problem.
In this paper, we improve the classical method of Breadth-First
Search to recommend top-k reviewers for new pull-requests as
shown in Algorithm 1. First of all, we initialize a queue and
put the source node vs onto this queue. Then, starting from
the unvisited edge with the highest weight (RankNeighors)
every time, we loop to select (BestNeighbor) and marked the
nearest neighbor as a candidate. If the number of contributor’s
neighbors is less than top-k, we further visit the child nodes
until top-k nodes are selected out.

Recommendation for PNC: For a PNC, since there is
no prior knowledge of which developers used to review the
submitter’s pull-request, we want to predict the candidates who
share common interests with this contributor by analyzing the
overall structure of comment network.

Firstly, for a contributor who is a node but without any
connected neighbor in the comment network, we mine the
reviewers based on patterns of co-occurrence across pull-
requests. For example, if v2 and v3 have reviewed plenty of
pull-requests together, we can assume that they would share
more common interests than others. Thus, when v3 submitted
a new pull-request (PNC), we recommend v2 to review his
pull-request, and vice versa. We use Apriori algorithm of as-
sociation rule mining [15] to generate top-k frequent itemsets,
and then rank the candidates according to their supports.

BB

CC

DD

AA

C1
C2

C3

Figure 5. Community structure of comment network

In addition, for a newcomer who is a node excluded
from the comment network, the most active reviewers in
different kinds of communities become the most probable
candidates. We assume that developers with common interests
will spontaneously form a community in the comment network.
However, the structure of the comment network shows that
developers are not always uniformly dispersed, as shown in
figure 5. It is probable that these most active reviewers could
belong to the biggest community, such as the top-2 most
active nodes A and B belong to the same community C1.
Therefore, we would like our recommendation list to cover

multiple communities, instead of always recommending from
the biggest communities. In our implementation, we extract the
community structure from the comment network using Gephi
[16] which integrates and optimizes a famous algorithm of
community detection purposed by Blondel et al. [17]. The size
of the communities is depicted by the number of developers
it has, and the activeness of a reviewer is measured by the
number of pull-requests he has reviewed in history, in other
words, the in-degree of a node in the comment network. The
recommendation set is generated by following steps:

1) Rank the communities by their size (number of nodes);
2) calculate the in-degree of nodes in top-k community;
3) Select the top-k nodes based on their in-degree from top-

k communities one by one.

V. EXPERIMENTS EVALUATION

A. Experiment Questions

RQ1: How effective is the SVM-based approach applied to
pull-request assignment?

RQ2: Does the CN-based approach have significant im-
provement compared to the SVM-based approach?

RQ3: Do SVM-based approach and CN-based approach
have consistent performance on projects of different charac-
teristics?

For experiment question RQ1, we explore whether highly
relevant reviewers can be identified using the machine learn-
ing approach described in section III. For experiment RQ2,
we illustrate whether social relations are more effective for
reviewer recommendation. For RQ3, we aim to know are there
any distinct results of applying these approaches on different
projects and why.

Table I
PREPROCESSED EXPERIMENT DATASET

Project Language #Pull-requests #Comments #CandidatesTraining Test Training Test
akka Scala 1112 34 10640 467 16
scala Scala 2028 64 13475 944 32

bitcoin TypeScript 1067 63 5446 688 21
node JavaScript 1196 14 3497 220 73

jquery JavaScript 512 14 2967 196 27
symfony PHP 2029 29 9601 419 79

phantomjs C++ 677 53 2866 728 20
xbmc C 1629 81 8493 1094 73
rails Ruby 3158 59 13060 583 168

homebrew Ruby 4307 51 12255 842 22
Sum 17715 462 82300 6181 479

B. Experiment Design

Data Selection: Gousios et al. [18] [13] provide a compre-
hensive dataset to study the pull-request development model
of GitHub. Our approach is evaluated on 10 projects which
have received over 1000 pull-requests. We use the data of last
one and a half years from 2012-01-01 to 2013-05-31 as our
training set and the data from 2013-06-01 to 2013-10-01 as
our test set. The descriptions and titles are used to learn SVM
classifiers and comment relations are used to build comment
networks. In order to learn the valid classifiers, we first do stop
words removal and stemming over the descriptions and titles.
Then, we retain those pull-request with more than 10 words.
The test set includes some simple pull-requests which need not

be reviewed, so this kind of pull-requests which received less
than 4 comments are omitted. After that, there are 17715 pull-
requests in the training set and 462 in the test set, as shown
in Table I. For each project, we recommend top-1 to top-10
reviewers to a new pull-request from Candidates in Table I.

Evaluation Metrics: We evaluate the performances of our
approaches over each project by precision and recall which
are widely used as standard metrics in previous work. The
formulae for our metrics are listed below:

Precision =
| Rec Reviewers ∩Actual Reviewers |

| Rec Reviewers |

Recall =
| Rec Reviewers ∩Actual Reviewers |

| Actual Reviewers |
(4)

C. Experiment Results and Analysis

Baseline: Most Active Recommendation
It is common for some projects that most of pull-requests are

reviewed by a few core developers. Thus, to demonstrate the
effectiveness of our approaches based on machine learning and
social network analyzing, we design a baseline method that
every new pull-request is assigned to the top-k most active
developers ranked according to the number of pull-requests
they have reviewed in the past.

RQ1 & RQ2: Recommendation Performances
We use a chart of precision vs. recall to show the perfor-

mances of different approaches in detail. In Figure 6, each
curve has a point for each recommendation from top-1 to
top-10. There is a trade-off between precision and recall for
classification. Hence, the precisions are gradual decreasing
with the increase of recalls.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Avg. Recall

0.3

0.4

0.5

0.6

0.7

0.8

A
v
g
.
P
re

ci
si

o
n

CN-based approach

SVM-based approach
Baseline

Figure 6. Precision vs. Recall of different approaches

Both SVM-based approach and CN-based approach are su-
perior to the baseline. Our novel approach based on Comment
Network (CN-based approach) achieves obvious improvement
in precision from top-1 to top-4, especially at the point of
top-1 (78%) and top-2 (67%). However, the curve of SVM-
based approach is in the middle from top-1 to top 4, and
takes the leading position at the points of top-5 and top-8 in
precision. When we recommend top-10 reviewers, the recall
of each method can reach the level of 77%.

Furthermore, we present the following null hypotheses to
evaluate the improvement of our CN-based approach compared
with the baseline and the SVM-based approach:

H0 1: There is no statistically significant difference between
the precisions of the baseline and CN-based approach.

H0 2: There is no statistically significant difference between
the precisions of the SVM-based and CN-based approach.

H0 3: There is no statistically significant difference between
the recalls of the baseline and CN-based approach.

H0 4: There is no statistically significant difference between
the recalls of the SVM-based and CN-based approach.

The results of Student’s t-test are listed in Table II. For H0 1

and H0 2 of precision, one-sided p-value p < 0.05 and t-test
value t < tcrit. Thus, we reject these hypotheses. It means
that CN-based approach achieve a significant improvement
in precision compared to the baseline and the SVM-based
approach. Similarly, we reject H0 3 and H0 4 of recall, but
the t-test result of H0 4 is remarkably close to the critical
values. It means CN-based approach achieves nearly the same
performance in recall but greatly exceeds the baseline method.

Especially, high precision of top-k recommendation is sig-
nificant for pull-request assignment. As the example of Figure
1, if our approach assigns that pull-request to rafaelfranca, he
would remind javan to join the discussion by the @mention
tool, even if javan is left out by the algorithm.

Table II
RESULTS OF T-TEST FOR OUR HYPOTHESES

H Var Approach µ σ2 p t tcrit Decision

H0 1 Precision CN -based
baseline

0.53
0.50

0.031
0.029 0.0002 3.67 1.66 Reject

H0 2 Precision CN -based
SVM-based

0.53
0.51

0.031
0.030 0.016 2.18 1.66 Reject

H0 3 Recall CN -based
baseline

0.56
0.54

0.057
0.063 0.0003 3.60 1.66 Reject

H0 4 Recall CN -based
SVM-based

0.56
0.55

0.057
0.063 0.040 1.77 1.66 Reject

Means µ, Variance σ2, statistical significance p-value p, t-test results t and critical value
tcrit, significance level α = 0.05. In this paper, we do not list alternative hypotheses,
because they are easy to derive from these null hypotheses respectively.

RQ3: Discussion of different approaches
We run our approaches on each project to evaluate their

detailed performances and discuss the results. As most of pull-
request in GitHub received less than 4 comments [1], we only
depict part of our results from top-1 recommendation to top-5.

Firstly, running on bitcoin, akka and rails, our novel CN-
based approach can achieve a significant improvement over the
baseline and SVM-based method. As shown in Table III, the
improvement of CN-based approach running on each project is
on average over 10% in precision and 6% in recall. In addition,
CN-based approach can get remarkable performance for top-
1 recommendation. For example, the precision of CN-based
approach can reach 92% running on bitcoin. Compared to the
baseline and SVM-based method, our approach achieves great
improvement of 51% and 31% respectively.

In these three projects, the social activities and contributions
between core and external developers are balanced and well-
distributed. For example, for bitcoin, the number of core
developers and external developers are equal in the history of
top-10 active reviewers list. In addition, 64% of pull-requests

Table III
PRECISIONS/RECALLS OF BASELINE (BL), CN-BASED AND SVM-BASED RECOMMENDATION FROM TOP-1 TO TOP-5

Number of bitcoin akka rails
Reviewer BL CN SVM BL CN SVM BL CN SVM

top-1 0.41/0.08 0.92/0.19 0.61/0.12 0.61/0.14 0.84/0.20 0.87/0.20 0.61/0.13 0.75/0.18 0.62/0.13
top-2 0.69/0.28 0.77/0.31 0.69/0.28 0.69/0.32 0.84/0.39 0.69/0.32 0.46/0.20 0.65/0.32 0.45/0.20
top-3 0.69/0.42 0.73/0.44 0.69/0.42 0.61/0.43 0.70/0.50 0.69/0.49 0.47/0.31 0.57/0.42 0.46/0.30
top-4 0.61/0.48 0.67/0.54 0.65/0.51 0.67/0.63 0.73/0.69 0.75/0.70 0.40/0.35 0.46/0.45 0.41/0.36
top-5 0.60/0.58 0.63/0.62 0.61/0.59 0.72/0.84 0.78/0.92 0.80/0.93 0.35/0.38 0.38/0.47 0.36/0.39
Avg. 0.60/0.36 0.74/0.42 0.65/0.38 0.66/0.47 0.78/0.54 0.76/0.53 0.46/0.27 0.56/0.36 0.46/0.28

Number of jquery phantomjs homebrew
Reviewer BL CN SVM BL CN SVM BL CN SVM

top-1 0.82/0.17 0.82/0.17 0.82/0.17 0.92/0.20 0.92/0.19 0.94/0.20 0.91/0.21 0.88/0.20 0.88/0.21
top-2 0.66/0.27 0.70/0.29 0.68/0.28 0.86/0.37 0.74/0.31 0.88/0.37 0.76/0.35 0.77/0.35 0.77/0.35
top-3 0.53/0.33 0.56/0.35 0.55/0.34 0.73/0.46 0.75/0.48 0.75/0.48 0.81/0.56 0.80/0.55 0.80/0.56
top-4 0.45/0.37 0.55/0.46 0.48/0.39 0.75/0.64 0.74/0.62 0.75/0.64 0.79/0.72 0.75/0.68 0.79/0.73
top-5 0.46/0.48 0.50/0.53 0.48/0.51 0.65/0.68 0.65/0.68 0.66/0.69 0.74/0.84 0.62/0.71 0.73/0.84
Avg. 0.59/0.32 0.63/0.36 0.60/0.34 0.78/0.47 0.7/0.46 0.80/0.48 0.80/0.54 0.76/0.50 0.80/0.54

submitted by external contributors and 60% of them have been
merged. By contrast, 36% of pull-requests are originating from
core developers but 84% of them have been merged.

The second group includes jquery, phantomjs and home-
brew, where both our approaches and the baseline method
can achieve high precision and recall. The the second part
of Table III lists the results. For phantomjs and homebrew,
the precisions and recalls of all methods on average reach
approximately 80% and 50% respectively.

In these projects, a few developers seems to dominate the
pull-request review activity. As they have submitted comments
too frequently, it is easy to assign pull-requests of test set to
them. Thus, the improvement of CN-based approach is not
obvious. Taking phantomjs as an example, the most active user
(ID 136322) has reviewed 77% of pull-requests and interacted
with 83% of contributors in training set. All algorithms tend
to assign the new pull-requests to him first.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Avg. Recall

0.30

0.35

0.40

0.45

0.50

0.55

A
v
g
.

P
re

ci
si

o
n

CN-based approach

SVM-based approach
Baseline
PAC recommendation

Figure 7. Precision vs. Recall of different methods for xbmc

However, all approaches do not perform well for xbmc.
Except that SVM-based approach gets 43% precision for top-
1 recommendation, the precisions of all methods ranged from
39% to 32%. In the test set of xbmc, 65% of pull-requests
are originating from newcomers, so CN-based approach do
much work of PNC recommendation (PAC and PNC have been
defined in section IV-B). As shown in Figure 7, if we only
consider to recommend reviewer for PAC, the performance of
CN-based recommendation is greatly superior to others.

D. Conclusions of Experiments

Based on the experiment’s results and analysis above, we
can draw our conclusions as follows:

• For RQ1, the SVM-based recommendation is an effective
approach for pull-request assignment which achieves 73%
precision of top-1 recommendation and 77% recall of top-
10 recommendation.

• For RQ2, the CN-based approach achieve significant
improvement compared to other methods. Analyzing the
social network is a novel and effective way for reviewer
recommendation.

• For RQ3, the CN-based recommendation show much
more improvement for the projects where the social
activities are balanced between core developers and exter-
nal developers. If developers have reviewed pull-requests
actively, the performance of our approach is remarkable.

E. Threats to Validity

In this section, we discuss some threats to validity which
may affect the experiment results of our approaches. Firstly,
there is a small part of the core developers who are in charge of
the final decision of pull-requests. They joined so many pull-
requests’ discussions in training set that all the approaches
tend to assign the new pull-request to these active developers
first. Hence, the workload of these active reviewers may not
be reduced. However, with more and more external contributor
presenting their suggestions to pull-requests, the social net-
work based approach can refresh the weights of corresponding
edges, so new pull-requests would be assigned more balanced
than before. Besides, because some pull-requests have not been
closed when we dumped the test set, so a part of following
reviewers have not been taken into consider which may affect
our recommendation results.

VI. RELATED WORK

Gousios et al. [1] show that the pull-request model offers
fast turnaround, increased opportunities for community en-
gagement and decreased time to incorporate contributions. To
the best of our knowledge, this paper is the first one to study
pull-request assignment. We review previous work about bug
triaging and collaboration network analysis of social coding.

There are a number of researches based on Machine Learn-
ing (ML) [7]–[9] and Information Retrieval (IR) [10]–[12]
techniques to triage incoming bug reports or change requests.
Anvik et al. [7] apply a machine learning algorithm to learn
the kinds of reports each developer resolves and recommend
developers for a new bug report. Jeong et al. [8] find that

many bugs have been reassigned to other developers, so they
combined classifiers with tossing graphs to mine potential
fixers. Based on that, Bhattacharya et al. [9] introduce an
approach adding fine-grained incremental learning and multi-
feature tossing graphs to reduce tossing path lengths and
improve prediction accuracy. Other researchers use IR for
automatic bug triaging. Canfora and Cerulo [10] use the textual
descriptions to index developers and source files as documents
in an information retrieval system. Kagdi [11] and Linares-
Vasquez [12] extract the comments and identifiers from the
source code and index these data by Latent Semantic Indexing.
For a new bug report, such indexes can be useful to identify
the most appropriate developers to resolve it.

In this paper, we not only expand the ML-based methods
to recommend reviewers for incoming pull-request, but also
propose a novel social network based approach focusing on
mining social relations betweens reviewer and contributors
which achieves a significant improvement.

The social coding paradigm is reshaping the distributed
software development in recent years with a surprising speed
and wide range. Dabbish et al. [4] explore the value of social
mechanisms of GitHub. They find that the transparency in
collaboration is improved by social mechanisms which is
significant for innovation, knowledge sharing and community
building. Zhou et al. [19] measure the behavior of a contributor
using workflow network. Zanetti et al. [20] categorize bugs
based on nine measures to quantify the social embeddedness
of bug reporters in the collaboration network. Thung et al.
[21] investigate the developer-developer and project-project
networks of GitHub. They use PageRank to identify the most
influential developers and projects in Github.

These previous researches inspire us to mining the comment
networks for pull-request automatic assignment.

VII. CONCLUSION AND FUTURE WORK

The review process of pull-request is important for social
coding. In this paper, we firstly extend the machine learning
based approach for bug triaging to assign reviewers to new
pull-requests. Furthermore, introducing social relations, we
propose a novel social network based approach for reviewer
recommendation by mining a new type of social network
called comment network. Finally, we demonstrate the effective-
ness of these two approaches with quantitative evaluations. In
the future, we plan to use the information retrieval approaches
to pull-request assignment, and then combine these traditional
methods with the social network based approach. Besides, we
will explore how to add other types of social relations into our
framework.

VIII. ACKNOWLEDGEMENT

This research is supported by the National High Technol-
ogy Research and Development Program of China (Grant
No.2012AA011201), the National Science Foundation of
China (Grant No.61432020 and No.61472430) and the Post-
graduate Innovation Fund of University of Defense Technol-
ogy (Grant No.B130607).

REFERENCES

[1] G. Gousios, M. Pinzger, and A. van Deursen, “An exploration of the
pull-based software development model,” in Proceedings of the 36th
International Conference on Software Engineering, Jun. 2014, to appear.

[2] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Min-
ing email social networks,” in Proceedings of the 2006 International
Workshop on Mining Software Repositories, 2006, pp. 137–143.

[3] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of
open source software development: Apache and mozilla,” ACM Trans.
Softw. Eng. Methodol., vol. 11, no. 3, pp. 309–346, Jul. 2002.

[4] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
github: transparency and collaboration in an open software repository,”
in Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work. New York, NY, USA: ACM, 2012, pp. 1277–1286.

[5] T. LaToza, W. Ben Towne, A. van der Hoek, and J. Herbsleb, “Crowd
development,” in Cooperative and Human Aspects of Software Engi-
neering, 2013 6th International Workshop on, May 2013, pp. 85–88.

[6] A. Begel, J. Bosch, and M.-A. Storey, “Social networking meets software
development: Perspectives from github, msdn, stack exchange, and
topcoder,” IEEE Software, vol. 30, no. 1, pp. 52–66, 2013.

[7] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in Pro-
ceedings of the 28th International Conference on Software Engineering,
ser. ICSE ’06. New York, NY, USA: ACM, 2006, pp. 361–370.

[8] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
bug tossing graphs,” in Proceedings of the the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ser. ESEC/FSE
’09. New York, NY, USA: ACM, 2009, pp. 111–120.

[9] P. Bhattacharya, I. Neamtiu, and C. R. Shelton, “Automated, highly-
accurate, bug assignment using machine learning and tossing graphs,”
Journal of Systems and Software, vol. 85, no. 10, pp. 2275–2292, 2012.

[10] G. Canfora and L. Cerulo, “Supporting change request assignment in
open source development,” in Proceedings of the 2006 ACM Symposium
on Applied Computing, ser. SAC ’06. New York, NY, USA: ACM,
2006, pp. 1767–1772.

[11] H. Kagdi and D. Poshyvanyk, “Who can help me with this change
request?” in Program Comprehension, 2009. ICPC ’09. IEEE 17th
International Conference on, May 2009, pp. 273–277.

[12] M. Linares-Vasquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and
D. Poshyvanyk, “Triaging incoming change requests: Bug or commit
history, or code authorship?” in Software Maintenance, 28th IEEE
International Conference on, Sept 2012, pp. 451–460.

[13] G. Gousios, “The ghtorrent dataset and tool suite,” in Proceedings of the
10th Working Conference on Mining Software Repositories, ser. MSR
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 233–236.

[14] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview.”
IJDWM, vol. 3, no. 3, pp. 1–13, 2007.

[15] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in Proceedings of the 20th International Conference
on Very Large Data Bases, ser. VLDB ’94. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1994, pp. 487–499.

[16] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: an open source
software for exploring and manipulating networks.” in ICWSM, 2009.

[17] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[18] G. Gousios and A. Zaidman, “A dataset for pull request research,”
in MSR ’14: Proceedings of the 11th Working Conference on Mining
Software Repositories, may 2014, to appear.

[19] M. Zhou and A. Mockus, “What make long term contributors: Will-
ingness and opportunity in oss community,” in Proceedings of the
34th International Conference on Software Engineering, ser. ICSE ’12.
Piscataway, NJ, USA: IEEE Press, 2012, pp. 518–528.

[20] M. S. Zanetti, I. Scholtes, C. J. Tessone, and F. Schweitzer, “Cat-
egorizing bugs with social networks: A case study on four open
source software communities,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 1032–1041.

[21] F. Thung, T. F. Bissyande, D. Lo, and L. Jiang, “Network structure of
social coding in github,” in Proceedings of the 2013 17th European
Conference on Software Maintenance and Reengineering, ser. CSMR
’13. Washington, DC, USA: IEEE Press, 2013, pp. 323–326.

