Cut to the Chase: An Error-Oriented Approach to Detect
Error-Handling Bugs

HAORAN LIU, National University of Defense Technology, China
ZHOUYANG JIA, National University of Defense Technology, China
*SHANSHAN LI, National University of Defense Technology, China
YAN LEI, Chongqing University, China

YUE YU, National University of Defense Technology, China

YU JIANG, Tsinghua university, China

XIAOGUANG MAQO, National University of Defense Technology, China
XIANGKE LIAQ, National University of Defense Technology, China

Error-handling bugs are prevalent in software systems and can result in severe consequences. Existing works
on error-handling bug detection can be categorized into template-based and learning-based approaches. The
former requires much human effort and is difficult to accommodate the software evolution. The latter usually
focuses on errors of API and assumes that error handling should be right after the handled error. Such an
assumption, however, may affect both learning and detecting phases.

The existing learning-based approaches can be regarded as API-oriented, which starts from an API and
learns if the API requires error handling. In this paper, we propose EH-Digger, an ERROR-oriented approach,
which starts from an error handling. Our approach can learn why the error occurs and when the error has
to be handled. We conduct a comprehensive study on 2,322 error-handling code snippets from 22 widely
used software systems across 8 software domains to reveal the limitation of existing approaches and guide
the design of EH-Digger. We evaluated EH-Digger on the Linux Kernel and 11 open-source applications. It
detected 53 new bugs confirmed by the developers and 71 historical bugs fixed in the latest versions. We also
compared EH-Digger with three state-of-the-art approaches, 30.1% of bugs detected by EH-Digger cannot be
detected by the existing approaches.
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Fault Staltement bool sc_adb_device_check_state (sc_adb_device *device)
char *state = device—>state;

5
6
7 | if (!stremp(“unauthorized”, state)) {
8
9

1[sc_adb_list devices(intr, flags, &vec) ;I—,
2 struct sc_adb_device *device = &vec. data[sel idx];
3 sc_adb_device_check_state (device) ; 0

LOGE (“Device is unauthorized:”);
sc_adb devices log(SC LOG LEVEL ERROR, ...);

4[sc_adb_device move (&out device, device) ;]—l {0 )
- T 11} Error Handling
Error Propagation Path  Failure Statement Code_Snippet

Fig. 1. Real-world error-handling example that is hard to be understood by existing approaches.

1 INTRODUCTION

Most software systems frequently encounter errors, and it is essential that reliable software is
designed to behave gracefully in the face of such errors [7]. This requires the software to accurately
detect failure conditions and handle them appropriately. Incorrect handling of errors can lead
to severe problems such as system crashes, data loss, security vulnerabilities [39], and so on. C
does not provide exception-handling mechanisms, while C++ contains far fewer try blocks than
languages like Java [15]. The error handling in C/C++ needs to be implemented by the developers
themselves, so it is more flexible and error-prone [37, 38]. Therefore, in this paper, we focus on
error-handling bugs in C/C++ programs.

Existing works on error-handling bug detection can be categorized into two classes: template-
based approaches [10, 13, 41, 42] and learning-based approaches [17, 18, 20]. On the one hand,
template-based approaches usually depend on manually summarized patterns. For example, Er-
rHunter [49] summarized error-handling patterns for error code and null pointer in Linux Kernel,
ErrDoc [42] and EPEx [16] require error specifications from user input. These approaches require
sufficient domain knowledge and are hard to keep up with the changes caused by software evolu-
tion [18, 23]. On the other hand, the learning-based approaches usually contain two phases, i.e.,
learning and detecting. [19, 20]. In the learning phase, they focus on API calls and learn association
rules between API calls and their nearby error-handling code snippets (if any). The rules are
like “malloc requires error handling when returning NULL”. In the detecting phase, they detect
violations of the rules as error-handling bugs. These approaches assume that error handling should
be right after the handled error. Such an assumption, however, may affect both phases.

We use an example to demonstrate the limitations of existing approaches in the learning and
detection phases. Fig. 1 illustrates a representative error-handling in C from a real-world project,
Scrcpy [36]. An unauthorized device may cause failure in sc_adb_device_move (line 4). Line 7-10
is an error-handling code snippet, and the error being handled is that the device generated by
sc_adb_list_devices (line 1) should not be unauthorized (line 7). This error propagates along with
variables vec and device (line 1-3, 6, 4), and is handled (line 7-10) before the device is used by
sc_adb_device_move (line 4). In the learning phase, existing approaches [19, 20] establish associa-
tions between stremp and its nearby error-handling code snippet (line 7-10). They may learn wrong
rules such as “the return value of stremp requires handling”, and miss correct rules like “the error of
sc_adb_list_devices (line 1) should be handled before sc_adb_device_move” (line 4). Even assuming
that existing approaches could, somehow, learn the above correct rule, they may still report false
positives in the detecting phase — they cannot find error handling near sc_adb_list_devices (line
1), which is actually handled through an inter-procedural check (line 3, 7-10).

The limitations of existing approaches are mainly caused by their API-oriented design, which
starts from an API and learns if the API requires error handling. In this paper, we propose an
ERROR-oriented approach, which starts from an error handling. Our approach can learn why the
error occurs and when the error has to be handled. This can be explained by using the Fault-Error-
Failure model [22]. Fault is a flaw in code. Failure is an observed behavior. Error is abnormal
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states (value discrepancies) propagating from fault to failure. For example, in Fig. 1, line 1 may
generate a fault, while line 4 may cause a failure. The error propagating from line 1 to line 4 is
handled in line 3 through an inter-procedural check, and the check condition in line 7 determines
whether the error-handling code snippet (line 7-10) can be executed. From the error-handling
code snippet, we can trace backward to the statement that may generate fault (or fault statement
for short), and trace forwards to the statement that may cause failure (or failure statement for
short). The error caused by the fault statement has to be handled before the failure statement. As a
proof of conception, we propose EH-Digger, an error-oriented tool to detect error-handling bugs.
EH-Digger first collects error-handling code snippets from the code repository, then extracts a code
sequence for each error from its fault statement to its failure statement by using inter-procedural
analysis. We refer to the code sequence as an error-handling context. Taking Fig. 1 as an example,
EH-Digger traces the variable state in line 7 both backwards and forwards, and extracts line 1, 2,
3, 6, and 4 as the error-handling context. Finally, EH-Digger can learn error-handling rules from
frequent contexts.

To better understand the limitations of existing approaches and guide the design of EH-Digger,
we conducted studies on 2,322 error-handling code snippets from 22 software systems. We first
study the limitations of existing works and find that 43.3% of errors are not handled right after the
fault statements. Such cases may affect both learning and detecting phases as discussed above. To
address this problem, we propose an error-oriented approach, EH-Digger, which learns frequent
contexts of code snippets handling the same error, and then detects error-handling bugs when the
contexts occur without proper error handling. There are three main challenges during the design
of EH-Digger:

e First, it is non-trivial to determine if two code snippets are handling the same error. To
address this, we study the characteristics of errors, and find that 93.1% error-handling code
snippets handling the same error can be identified by tracing root causes of the error-prone
variables in check conditions. The root causes can be in the form of either error-prone data
type (27.4%) or error-prone variable values (72.6%).

e Second, it is hard to represent frequent contexts that may have various forms for the same
error. Therefore, we study the characteristics of contexts and find they can be represented
with actions performing on a series of error-prone variables. The actions include declaration
(17.2%), definition (34.5%), and usage (48.3%). One context contains 7.8 actions on average,
and 58.4% of contexts can retain the same semantics when changing the action orders.

e Third, tracing error contexts during both learning and detecting phases requires inter-
procedural analysis, which may lead to the exponential explosion problem in search space.
To avoid this, we propose a summary-based method to perform the inter-procedural anal-
ysis. EH-Digger first generates error-handling context for each individual function, then
concatenates whole contexts along the call graphs.

We evaluated the performance of EH-Digger in detecting real-world bugs in the Linux Kernel
and 11 applications having high stars in GitHub. In the Linux kernel, EH-Digger detected 214 bugs
with a precision of 90.3%, and 40 of them are historical bugs that have been fixed in the latest
version. We also selected 20 detected bugs that we were capable of fixing and submitted patches to
the Linux Kernel. Currently, all of them have been confirmed by the developers, and the rest are
awaiting feedback. In the 11 applications, EH-Digger correctly detected 163 bugs with a precision
of 89.6% (163/182), of which 33 have been confirmed or fixed by developers, and 31 are historical
bugs that have been fixed in the latest versions. The rest are still under discussion. We compared
EH-Digger with three state-of-the-art approaches. 30.1% (49/163) of the bugs detected by EH-Digger
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cannot be detected by the state-of-the-art approaches. The result indicates that EH-Digger can
serve as a complementary approach to existing approaches in detecting error-handling bugs.
The key contributions of this paper include:

e We conducted a study on error-handling context using 2,322 code snippets from 22 software
systems. The findings help understand the limitations of existing works, and guide the design
of our approach.

e We proposed an error-oriented learning method EH-Digger to detect error-handling bugs,
which learns error-handling code from the perspective of its context, enabling us to detect
error-handling bugs more accurately.

e We applied EH-Digger to the Linux Kernel and 11 open-source software. EH-Digger detected
37 new bugs and 71 historical bugs with a precision of around 91%. 30.1% of bugs detected by
EH-Digger cannot be found by comparative approaches.

2 UNDERSTANDING THE ERROR-HANDLING CONTEXT

In this section, we take an in-depth look into the error-handling context through an empirical study.
Our study is driven by two research questions:

e What are the limitations of existing approaches?
e How can we overcome them in the new design?

We will first outline the methodology used in this study, then present our findings, including one
finding revealing limitations of existing approaches, and two findings guiding the design of our
approach.

2.1 Study Methodology

We introduce the criteria for collecting error-handling code snippets, as well as the method to find
their error-handling context.

2.1.1 Studied Subjects. As shown in Table 1, we select 22 software systems from 8 domains.
We select these projects from GitHub because: a) they span a range of different domains and
programming languages; b) they are open-source and well-maintained by the community. These
criteria ensure the accuracy and generality of our findings.

2.1.2  Error-Handling Code Snippet Collection. Error-handling code snippets can usually be identi-
fied based on return values or special clean functions [14, 19, 20, 25, 31]. For example, a branch
statement that returns an error code or calls a cleanup function (e.g., “‘ENOMEM” in the Linux
Kernel, or calls an “exit” function). Existing works consider these special return values and cleanup
functions as features of error-handling code snippets. The authors manually specify features to
identify and collect such snippets. These features, however, may be program-specific and require
extensive human efforts.

In this regard, we propose an automated approach to collect those program-specific features
based on error logs (Such as the log function “LOGE(“Device is unauthorized”)” in Fig. 1, not log
files). The assumption is that the inclusion of an error log in an error-handling code snippet is
relatively random. It means that error-handling code snippets with error logs can serve as random
samples of all error-handling code snippets. As such, features of the sampled code snippets should
be similar to those of all code snippets. Hence, we merely need to manually specify keywords of
error logs and collect a sub-set of error-handling code snippets. Then, our tool learns features of
error-handling code snippets from the sub-set, and collects other error-handling code snippets
even without error logs. Missing some less common keywords (beyond err, log, etc.) in logging
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Domain Name Line Number | Studied Code Snippets | Different Function
lighttpd 132,521 81 35 (43.2%)
Web server Nginx 230,147 158 69 (43.7%)
Hiawatha 61,941 85 32 (37.6%)
MonetDB 452,349 205 107 (52.2%)
Database Sqlmap 104,574 97 32 (33.0%)
Mysql (twitter fork) 18,396 183 77 (42.1%)
FileZilla 152,117 106 46 (43.4%)
FTP Pure-FTPd 32,924 152 74 (48.7%)
ProFTPD 845,382 186 77 (41.4%)
Darktable 664,703 134 75 (56.0%)
Image Editor gThumb 207,107 107 32 (29.9%)
KolourPaint 73,004 56 14 (25.0%)
Player Audacious 49,795 52 18 (34.6%)
MPV 203,794 105 34 (32.4%)
. Netsniff 65,182 97 52 (53.6%)
Network Monitor Wireshark 5,949,177 210 130 (61.9%)
Minio 10,270 34 7 (20.6%)
- Rclone 3,822 34 3 (8.8%)
Distributed Storage Rpm-ostree 49,388 46 19 (41.3%)
Rook 4,463 37 9 (24.3%)
NetBeans 9,201 64 30 (46.9%
Development Tool gnome-shell 242,440 93 33 235.5%;

functions does not affect the collection process since we only need a sub-set. This manual effort is
limited compared with providing all features.

We consider code snippets that contain special return values or cleanup functions to be error-
handling code snippets. We collect error-handling code snippets in three steps. First, we manually
search error logs based on keywords such as “err”, “log”, then EH-Digger automatically collects
code snippets containing these error logs. Second, for each function call and return value in the
above code snippets, EH-Digger calculates the proportion of its occurrences in error-handling
code snippets among its occurrences in the entire software. Third, EH-Digger collects other error-
handling code snippets without error logs. Specifically, EH-Digger scores branches based on the
above proportion of their return values and function calls within, and collects code snippets with
scores above a threshold TH;core as error-handling code snippets. For example, if the function
appears n times in the collected code and m times throughout the software, its score is n/m. The
score for a branch is obtained by adding the scores of all functions and return values in the branch.
We will evaluate how to set the threshold TH;core in Sec 4.3. In this study, the threshold THco e is
empirically set to 0.4.

2.1.3  Error-Handling Code Analysis. We conducted a manual analysis of error-handling code
snippets. To establish a fundamental understanding, three participants first examined 294 error-
handling code snippets in three software systems and described their error-handling contexts.
After comparing their descriptions and discussing divergences, the participants analyzed 2,028
error-handling code snippets in the remaining 19 software systems. Each case was discussed by two
participants. When they diverged, a third participant was consulted for additional discussions until
a consensus was reached. It spent two months analyzing these 2,322 (294+2,028) error-handling
code snippets. All three participants had at least three years of programming experience.
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2.2 What are the limitations of existing approaches

We first study the limitation of existing approaches. Existing work can be categorized into two
classes, one based on manually specified error specification, and one based on learning. The limita-
tion of the first class are clear — they highly depend on the quality of provided error specifications.
Existing learning-based approaches usually assume that errors should be handled right after they
occur, and learn association rules between API calls and their nearby error-handling code snippets.
The capabilities of these approaches are still unknown. Therefore, we study the relative positions
between error-handling code snippets and their corresponding fault statements, and find:

Finding 1: 43.3% (1,005/2,322) of error-handling code snippets are located in different
functions with regard to their corresponding fault statements.

Taking Fig. 1 as an example, the error occurs in line 1, and its handling (lines 7-10) is in a different
function sc_adb_device_check_state (line 3 and 5). Percentage of each project are shown in the
“Different Function” of Table 1. This finding implies that, in the learning phase, existing approaches
can learn just over half of all error-handling code snippets at most, since 43.3% of error-handling
code snippets are far from their fault statements (which may or may not be API calls). In the
detection phase, existing works usually perform intra-procedural analysis during the bug detection,
since an API call and its error handling (if any) are typically in the same function. This finding
implies that the intra-procedural approach may result in false positives when dealing with the
remaining 43.3% inter-procedural cases.

2.3 How can we overcome them in the new design

We design EH-Digger to address the limitations of existing approaches. EH-Digger learns frequent
contexts of code snippets handling the same error, then detects error-handling bugs when the
contexts occur without proper error handling. This process is challenging since: a) it is non-trivial
to determine if two code snippets are handling the same error; and b) given the same error, it is still
hard to mine its frequent contexts which may have various forms. To address these, we conducted
two studies to understand the characteristics of errors and contexts accordingly.

2.3.1 Characteristics of Errors. An error-handling code snippet is always guided by a check condi-
tion, which determines if the handled error happens. The error is usually stored in a variable (e.g.,
state in line 7 of Fig. 1) of the condition, and we refer to it as error-prone variable. This variable may
propagate from or to other error-prone variables (e.g., vec in line 1, and device in line 2, 3, 4). We
find that a variable is error-prone either due to its data type or its value. For example, on one side,
all variables with data type FILE are error-prone, since they may lack certain access permissions
or contain null pointers. On the other side, a variable with the basic data type int only could be
error prone when its value contains certain error semantics (e.g., chroot returns -1 on error, thus
the return value of chroot is error prone). We study the error-prone variables and find:

Finding 2: 27.4% (636/2,322) and 72.6% (1,686/2,322) of variables are error-prone due to
error-prone data types or error-prone values, respectively. Tracing root causes of the error-
prone variables in check conditions can determine 93.1% (2,162/2,322) error-handling code
snippets handling the same error.

This finding can guide how to determine if two error-handling code snippets are handling
the same error. For example, in “FILE file”, the variable file can be replaced using its data type
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1. Learning Phase 2. Detection Phase
DataType v; a,: <Decalre, DataType>
v = funcl(); a,: <Call, funcl>
if (v) check: <Check, DataType>

funcZ(v),—|—’ _[ ay <Usage, Datatype>
ay: <Call, func2> 5 E Handli Y
2. Frequent o— - brror-Handling
—> 1. Code —> - 1w — == Bug Detection >
Representation Context Mining g

Code Pattern of Error- Error-Handling
Source Code Structured Data Handling Context

f

K 1 b

. I
Fig. 2. Overview of EH-Digger.

FILE, while in “int ret = pthread_create()”, ret can be replaced by its value: the return value of
pthread_create. Such structured replacement removed useless information such as variable names.
After such replacement, 93.1% of code snippets handling the same errors will have identical check
conditions. Therefore, for the ease of error-handling rule mining, we use the datatype to represent
variables. However, 6.9% of errors do not have equivalent checking conditions because they can be
checked in multiple ways. For instance, in the Linux Kernel, the function of_property_read_string
assigns a value to its input parameter, and when encountering an error, it returns an error code. This
error can be checked by examining its return value or verifying its input’s successful assignment,
resulting in non-equivalent check conditions.

2.3.2 Characteristics of Contexts. The context of an error-handling code snippet is a statement
sequence from a fault statement generating the error to a failure statement triggered by the error.
This sequence can be regarded as a set of actions performing on a series of error-prone variables.
We find the actions include declaration, de finition, and usage of the variables. The declaration
action helps to identify the type of a variable from a code snippet that can not be compiled. It
enables EH-Digger to determine whether a variable has a basic data type or an error-prone data
type from a large-scale code repository that is hard to compile automatically. Besides, the definition
and usage actions help to trace the data flow among the serial of error-prone variables based on
the Definition-Use Chain. In this regard, we study the actions of error-prone variables and find:

Finding 3: The contexts of error-handling code snippets contain 7.8 actions on average,
including 17.2% (3,115/18,111) for declaration, 34.5% (6,248/18,111) for definition, and 48.3%
(8,748/18,111) for usage. Besides, 58.4% (1,356/2,322) of the studied contexts can retain the
same semantics even when changing the action orders.

This finding implies that EH-Digger could use three actions to represent the error contexts, and
should eliminate the impact of order differences when mining frequent contexts and detecting bugs.
Actions can be regarded as structured representations of the source code. For example, consider the
following code snippets: ¢; = “int userid”” and ¢, = “userid = getid()”. ¢; can be represented
as < Declare, int >, and ¢, can be represented as < Call, getid > and < Define, int, getid >.In
comparison to the source code, such structured representation removed useless information such as
variable names, semantic structure, and is more conducive to subsequent rule mining. For example,
if we rewrite ¢; and ¢ as ¢c3 = “int userid = getid()”’, although the source code is changed, its
action list retain the same. As for the order difference, for example, in Fig 3, if we switch line 1 and
line 2, the semantics of this code do not change, but it produces a completely different sequence of
actions. This makes it possible for codes with the same semantics to have different representations,
which is not conducive to rule mining. We will discuss this in detail in Sec. 3.1.
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1 FILE* fp; 1 <{Declare, FILE>

2 char fileName[] = “file. txt”; 2 <Declare char> <Define, char, Constant>
3 fp_:_fopen (fileName, “w+”); 3 <Call, fopen> <Define, FILE, fopen>
1A )] 4 KCheck, FILE> ]

5 fprintf(stderr, “Failed”);

6 return;

71

8 fprintf (fp) 8 <Use, FILE>, <Call, fprintf>

Fig. 3. Example of code representation.
3 EH-DIGGER DESIGN

In this section, we describe the design of EH-Digger, an error-oriented error-handling bug detection
tool guided by error-handling contexts of existing error-handling code snippets.

As illustrated in Fig. 2, EH-Digger takes the source code of software under test as the input,
and reports the detected error-handling bugs. It consists of two main phases: the learning phase
and the detection phase. During the learning phase, EH-Digger first transforms the source code
into structured representations for the convenience of mining rules. After that, EH-Digger obtains
contexts of existing error-handling code snippets based on inter-procedural analysis, and extracts
frequent contexts from error-handling code snippets that handle the same error as error-handling
rules. During the detection phase, EH-Digger reviews the source code using these learned patterns.
It reports code snippets containing sequences present in the patterns but lacking corresponding
error handling as error-handling bugs.

EH-Digger can analyze target software without the need for compilation. This feature enables
EH-Digger to automatically analyze a larger number of software systems from a software repository.

3.1 Code Representation

EH-Digger learns error-handling rules by extracting frequent code sequences, and detects bugs
by matching the learned code sequences. However, code snippets with the same semantics may
have different syntactic structures. This may affect the error-handling rule extraction as well as the
bug detection. Therefore, we first normalize source code into structured representations based on
Finding 2 and 3 to reduce extraneous information such as variable names. Subsequently, we order
the representations according to their data/control dependencies so that code snippets with the
same semantics will have the same representation sequence.

The normalization process of source code contains two phases. In the first phase, EH-Digger
scans the source code and converts each statement into actions, including Declare, Define, Use,
Call, and Check. The first three actions have been discussed in Sec. 2.3.2, while the Call action is
used to record call relations required by the inter-procedural analysis in later steps, and the Check
action records where the error handling happens. Each action is associated with action-specific
information, which can be represented as tuples. Following are the tuples and examples:

<Declare, Variable>: “int a” is represented as <Declare, a>;

<Define, Variable, Other>: “int a = b” is represented as <Declare, a>, <Define, a, b>;

<Use, Variable, Other>: “a = b->¢” is represented as <Define, a, b>, <Use, b, ¢>, <Use, ¢, ->;
<Call, Name>: “a = foo()” is represented as <Define, a, foo>, <Call, foo>;

<Check, Variablel, Variable2, ...>: “if{a + ¢ > b)” is represented as <Check, a, b, ¢>.

The first four tuples are straightforward, while the design of the last one is guided by Finding 2.
EH-Digger only traces variables in a check condition, and sorts them in alphabetical order. In the
second phase, all variables will be normalized according to their data types. On the one hand, for
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variables with basic data types (e.g., int), they could only be error prone due to their value, so
EH-Digger traces these variables back to their last assignment and replace them with their assignee.
On the other hand, for variables with complex data types (e.g., FILE), EH-Digger replaces these
variables with their data types. Fig 3 shows an example of code representations.

According to Finding 3, changing the order of some code snippets in the code sequence may
not affect the code semantics. As shown in Fig. 3, swapping line 1 with line 2 does not change its
semantics. However, it produces a different code sequence for frequent sequence extraction and
bug detection. We find that the reason why lines 1 and 2 can be re-positioned without affecting
their semantics is that they have no data/control dependencies. Therefore, we sort the obtained
representation sequences according to their data/control dependency. We first construct a directed
graph based on the data/control dependency. Since topological sorting algorithm [8] can convert a
directed graph into a sequence, and ensure that for any directed edge (line 1->3), the source node
(line 1) is sorted in front of the target node (line 3), we use it to convert the dependency graph
into a code sequence. The topological sorting algorithm iterates the graph and finds nodes with an
in-degree of zero. The algorithm puts these found nodes into the sequence, removes them from
the graph, and repeats this process until all nodes in the graph have been put into the sequence.
However, it only guarantees the order between nodes with dependencies. Taking line 1-3 in Fig 3 as
an example, since there is no dependency between line 1 and 2, the topological sorting may result
in two different sequences: <1, 2, 3> and <2, 1, 3>. Therefore, we improve the algorithm by adding
an additional sorting. In each iteration, we put the nodes obtained into the sequence in dictionary
order. It ensures that nodes without dependencies also have a fixed order. After the above sorting,
code sequences with the same semantics are transformed into the same representation sequence.

3.2 Frequent Context Mining

EH-Digger learns patterns from contexts of existing error-handling code snippets, and uses the
learned patterns for bug detection. EH-Digger first conducts program analysis on the AST to
construct data/control dependencies, and extracts contexts of existing error-handling code snippets
accordingly. After that, EH-Digger represents obtained contexts using the method described in
Sec. 3.1, and mining frequent contexts handling the same error.

The main challenge is that an error-handling context may spread across multiple functions. Thus,
EH-Digger has to perform an inter-procedural analysis and avoid the exponential explosion problem
in search space. For example, in Fig. 4, given four functions fi, f;, f5, and fi, each contains a series
of actions a; and calls of other functions. The check in f; is a check condition of an error-handling
code snippet, whose context may involve its callers fi, f> and the callees f;, fi. In this case, the
context could be “< ay, f3, check, fi, a; >”. Among the actions, a; and a; originate from the caller of
f2, which we refer to as the caller extension, while as, a4 are referred to as the callee extension.
In the caller extension, < a; > is in the front of f,. Thus, we refer to it as caller prefix, while < a, >
is referred to as caller suffix.

Notice that we did not extend the callee extension (a3 and a4) during inter-procedural analysis,
this is because through our experiments, collecting caller extension can retrieve complete contexts
for more than 83.2% of error-handling code snippets. In contrast, collecting callee extensions can
handle the remaining cases, but the efficiency of EH-Digger may drop significantly. In this regard,
collecting callee extensions is optional in EH-Digger and disabled by default.

It is non-trivial to collect caller extensions since a function may have multiple and nested
callers. EH-Digger uses Algorithm 1 to collect caller prefixes. The algorithm contains a recursive
function, CallerPrefix, which returns an empty list if the given function f has no caller (line
2-3). Otherwise, for each caller of f, EH-Digger first recursively collects the caller prefixes of caller
itself (prefix_of caller in line 7), then concatenates the action list inside caller before calling f
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Fig. 4. Example of inter-procedural analysis. Fig. 5. Example of prefix collection.
(prefix_in_caller in line 8-9). Finally, EH-Digger calculates and returns frequent subsequences of
the concatenated action lists for all callers (line 11) by using the PrefixSpan algorithm [35].

We give an example in Fig. 5. Three functions are depicted: fi, f2, and f. The prefix_vector for
functions f; and f, are empty due to their lack of invocation, resulting in CallerPrefix(f;) and
CallerPrefix(fz) being empty as well. For function f;, its interactions with callers f; and f; are
analyzed independently (line 6). Specifically, for f, we determine prefix_of_fi = CallerPrefix(fi)
(line 7), and identify the prefix_in_fi =< aj,a; > (line 8). Therefore, from f;, we can obtain
prefix_vec = CallerPrefix(fi) + prefix_in_fi =< aj,az > (line 9). Similarly, for f,, the anal-
ysis yields a prefix_vec =< a; >. Upon conducting frequent subsequence mining (line 11),
CallerPrefix(f;) is determined to be < a; >.

The process of collecting caller suffixes is similar. In this algorithm, caller prefixes and suffixes
of all functions will only be calculated once, thus the explosion problem could be avoided.

Algorithm 1 Collect the Action List of Caller Prefix for a Given Function

Require: Provide a function f that contains an error-handling code snippet
Ensure: Return the caller-prefix action list of f

1: function CALLERPREFIX(f)

2 if f has no caller then

3 Return an empty list

4 else

5 Declare an empty vector of action list prefix_vec

6: for Each caller in all callers of f do

7 Let prefix_of caller = CALLERPREFIX(caller)

8 Let prefix_in_caller = action list in caller before calling f
9 prefix_vec.push(prefix_of caller.extend(prefix_in_caller))
10: end for

11: Return frequent_subsequence(prefix_vec)

12: end if

13: end function

Finally, EH-Digger employs the PrefixSpan algorithm [35] again to extract frequent subsequences
from error-handling contexts, which are then used as code patterns. Initially, EH-Digger gathers
contexts of code snippets that handle the same error based on normalized check conditions. These
contexts are then provided as input to PrefixSpan. This algorithm produces all subsequences along
with their occurrence frequency. For example, if two action sequences <a;,a;> and <a;> are fed
into the algorithm, the algorithm will return: <a;>, 1; <az>, 0.5; and <ay, az>, 0.5. We chose the
longest sequence that exceeds an occurrence frequency of THy as the code pattern. We will evaluate
how to set the threshold TH in Sec 4.3. In this study, the threshold THy is empirically set to 0.7.
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3.3 Error-Handling Bug Detection

Given the previously collected code patterns, EH-Digger can match the patterns in the source code
to check if there is proper error handling. For instance, in Fig. 3, our tool will learn the pattern
“<Call, fopen>...<Check, FILE><Use, FILE>", the presence of “Call’(line 3) and “Use”(line 8)
without“Check”(line 4) indicates a bug. EH-Digger performs inter-procedural checks while ensuring
path sensitivity. This step also faces the search space explosion problem. To alleviate this challenge,
we adopt a similar method as discussed in Sec. 3.2. Specifically, we perform intra-procedural analysis
in each function and store the found consecutive common subsequences of each code pattern.
When encountering a function call, we use the stored subsequences to replace the function call
instead of performing inter-procedural analysis.

Algorithm 2 Detect Error-Handling Bugs for a Given Code Pattern.

Require: PATTERN: the code pattern (e.g., a1, az, ..., a;, check, i1, ..., an)
Ensure: EHB: the set of detected error-handling bugs using PATTERN
1: Let SEQ = the action sequence in PATTERN (e.g., a1, ay, ..., Gj, Gjt1, - n)

2: Let CC = the check condition of PATTERN (e.g., check)

3: GET_INTER_SUBSEQ(root_function)

4: // Get inter-procedural subsequences of SEQ and detect bugs when matching SEQ
5: function GET_INTER_SUBSEQ(f) -> (subseq_vec, cc_flag)

6: Let subseq_vec = f.get_intra_subseq()

7 Let subseq_vec = f filter_checked_subseq(subseq_vec)

8 Let cc_flag = f.has_cc() ? true : false

9: for Each callee in f.get_callees() do

10: Let (callee_subseq_vec, callee_cc_flag) = GET_INTER_SUBSEQ(callee)

11: if callee_cc_{flag then

12: subseq_vec =f.replace_cc(callee).filter_checked_subseq(subseq_vec)
13: cc_flag |= callee_cc_flag

14: end if

15: subseq_vec = subseq_vec.extend_subseq(callee_subseq_vec)

16: end for

17: subseq_vec.detect_bug()

18: Return (subseq_vec, cc_flag)

19: end function

We demonstrate the detailed algorithm of our detection method in Algorithm 2. For a given
frequent context (e.g., a1, az, ..., a;, check, dj1, ..., an), the algorithm can find code snippets
that contain the action list but lack of the check as error-handling bugs. EH-Digger first obtains
the action sequence SEQ (line 1) and the check condition CC (line 2) of the context, then calls
the recursive function GET_INTER_SUBSEQ with the root function along the call graph (line 3).
GET_INTER_SUBSEQ can: 1) return subseq_vec containing a vector of inter-procedural subsequences
that continuously match SEQ in the given function; 2) return cc_flag indicating if the given function
or its callees (an error could be handled in a callee function) contains CC; 3) report an error-handling
bug if one element of subseq_vec matches the whole SEQ but lacks of CC at the same time.

In the GET_INTER_SUBSEQ function, EH-Digger first collects a vector of intra-procedural sub-
sequences that continuously match SEQ in f (the get_intra_subseq function in line 6). When f
contains CC, it means f has already performed some error handling. Thus, EH-Digger filters out
the subsequences that contain “a;, check” or “check, a;;”, since these subsequences have already
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Fig. 6. Example of error-handling bug detection.

been checked (the filter_checked_subseq function in line 7). Next, EH-Digger gets cc_flag, which
will be returned to the caller of f when detecting bugs in the caller (line 8). After that, EH-Digger
recursively collects subseq_vec and cc_flag in all callees of f (line 10). If a callee contains CC (line
11), EH-Digger can replace the callee with CC in f, and perform the filter process similar to line 7
(line 12). This operation is used to handle the case that an error is handled in a callee function. Then,
EH-Digger updates cc_flag if one of the callees has CC (line 13). In line 15, the extend_subseq function
extends each subsequence in subseq_vec by inserting each subsequence in callee_subseq_vec in the
place where the callee is called, and the extended subsequences that do not continuously match SEQ
will be filtered out. After recursively extending all callees, EH-Digger can detect bugs in subseq_vec
if a subsequence matches SEQ but lacks CC, and save the results in EHB (line 17). Finally, EH-Digger
returns subseq_vec and cc_flag to the caller of f.

We provide two examples in Fig. 6 for clarity. We analyze three functions: fi, f>, and f;, where
fi invokes f;, and f, subsequently calls f5. Our analysis identifies error handling bugs using two
patterns: PATTERN] :< ay, az, checky,, as > and PATTERN; :< check,, a5 >. For the first pattern,
the sequence of actions SEQ; =< ay, az, as > (line 1) and the check condition CC; = check,, (line
2). Within fj, the algorithm identifies a subsequence subseq_vec_f; =< a; > (line 6), and proceeds
to analyze the function it calls, f; (line 9). Similarly, the subsequences subseq_vec_fo =< as >,
subseq_vec_f; =< ap; > can be obtained from f; and f;, respectively. Following the extension
process in line 15, we achieve an updated subsequence for fi: subseq vec_fi =< ay, az as >.
Given that subseq_vec_f; encompasses SEQ, but lacks CC;, we identify this scenario as an error
handling bug (line 17). In the second pattern analysis, f; is found to include check,, leading to
the f5_cc_flag, = True (line 8). Thus, check, is added to subseq_vec_f, (line 12), and similarly,
to subseq_vec_fi. Since subseq_vec_f; contains CC,, we conclude that it does not lead to an error
handling bug and remove it via the filter_checked_subseq process (line 12).

4 EXPERIMENTS
We conduct experiments to evaluate our approach by answering the following research questions:

e RQ1: Can EH-Digger find real-world bugs?
e RQ2: Does EH-Digger outperform state-of-the-art approaches?
¢ RQ3: How parameters affect the performance of EH-Digger?

The experiments were conducted on a machine running Linux-18.04 with 64GB of RAM and an
Intel i9-10900K CPU.

4.1 Answer to RQ1: Performance of Real-World Bug Detection

In this part, we evaluate the effectiveness of EH-Digger in detecting real-world bugs through
experiments conducted on the Linux Kernel and open-source applications.
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Table 2. Projects chosen for real-world bug detection.

Domain Name Line Number Sponsor
Operating System L.inux Kernel 6.5 36,780,452 L%nux Kernel Organ?zat%on
Linux Kernel 4.14 25,041,284 Linux Kernel Organization
Bitkeeper 1,236,529 BitMover
Development Tool HandBrake 254,797 Community
Obs-studio 581,997 NVIDIA, Logitech
Data Transfer Tool Curl 294,521 Haxx
Monitor Netdata 698,338 Cloud Native Computing Foundation (CNCF)
Database Redis 299,660 Redis
. DKPlayer 51,495 Bilibili
Media Player Vi 969,331 VideoLAN
Window Manager Mutter 520,673 GNOME Foundation
FTP Bftpd 11,123 Community
Messaging Client Ayttm 108,894 Free Software Foundation (FSF)

4.1.1 Experiment Setup. As shown in Table 2, we evaluate EH-Digger on the Linux Kernel, and 11
open-source applications from 8 domains. These applications have more than 100 stars on GitHub
and are distinct from those in our study. Our evaluation consists of two main parts: detecting new
bugs on the latest version and detecting historically fixed bugs in the historical version. Both newly
confirmed and historical bugs are equivalent, since the tool is not provided with the bug locations.
Our evaluation consists of two main parts. On the one hand, we detect errors in the latest releases
and determine whether we have discovered new bugs by confirming with developers. On the other
hand, we test on historical releases and compare them with the latest ones to determine if we have
identified historical bugs that have been fixed. For the Linux Kernel, we selected its latest release
6.5 and its earliest long-term support release 4.14. For other applications, we chose their latest
releases as well as their earliest ones.

4.1.2  Experiment Result. As shown in Table 3, EH-Digger detected 132 bugs in the Linux Kernel
6.5 with a precision of 91.7% (121/132). Out of these, we chose 20 bugs that we were capable of
fixing and submitted patches to the Linux Kernel. Currently, all of them have been confirmed by
developers. Moreover, in the Linux Kernel 4.14, EH-Digger identified 237 bugs with a precision
of 90.3% (214/237), of which 40 bugs have already been fixed in the latest release. We also applied
EH-Digger on 11 applications, and the results are summarized in Table 3. EH-Digger detected 182
violations with an average precision of 89.6% (163/182). 31 of the violations were historical bugs.
We reported the remaining violations to their respective developers. Up to this point, 33 of these
violations have been confirmed, and the others are still under discussion.

The false positives in EH-Digger can mainly be attributed to four factors. Firstly, 18 cases were
misjudged by EH-Digger due to the lack of certain contexts. In the learning phase, we ignore the
callee extensions. This made a trade-off between context coverage and run-time efficiency to ensure
the feasibility of our method. However, such a balance may lead to the omission of certain contexts,
resulting in erroneous patterns and subsequent false positives. Secondly, 16 cases misjudged by
EH-Digger are caused by incorrect program analysis. Our approach utilizes the AST of the program
to analyze its data/control flow. Since the program does not need to be compiled, we are able to
analyze a broader range of open-source code automatically. However, compared to compiler-based
analysis methods, such as LLVM, the accuracy of our approach during program analysis is lower.
Thirdly, some functions are implemented using indirect calls [21, 28], which makes it difficult to
determine the corresponding functions by static methods. Since EH-Digger does not consider this
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Table 3. Performance in 11 applications.

Precision Bugy Buggy ‘ Precision Bugny Buggy

Linux Kernel 6.5 91.7% 121 0 Linux Kernel 4.14 90.3% 174 40

Bitkeeper 84.0% 14 7 Redis 92.0% 17 4

Curl 80.8% 19 2 Vie 91.3% 11 8

Obs-studio 94.4% 16 0 Mutter 100.0% 11 3

IJKPlayer 100% 11 2 Bftpd 83.3% 5 5

Netdata 100% 11 0 Ayttm 85.7% 6 0
HandBrake 100% 11 0

type of call, some contexts are neglected, resulting in 12 false positives. Finally, developers believed
8 bugs did not require handling. We will discuss this in detail in Sec. 5.4.

Result 1: In the Linux Kernel, EH-Digger detected 20 new bugs and 40 historical bugs with
a precision rate of around 91%. On 11 applications, EH-Digger identified 33 new bugs and
31 historical bugs, achieving an average precision of 89.6%. These results demonstrate that
EH-Digger is effective in detecting real-world bugs.

4.2 Answer to RQ2: Comparison with the State-of-the-art

This section presents a comparison of EH-Digger with state-of-the-art approaches. The evaluation
primarily focuses on determining if EH-Digger exhibits higher precision and recall, and if it is able
to identify bugs that cannot be detected by existing state-of-the-art approaches. We assessed these
three approaches in comparison to EH-Digger on two fronts: precision and recall on customized
test sets, and their capacity to identify real-world bugs. Evaluating the precision and recall of
error-handling bug detection can be challenging due to the lack of ground truth. Similar to the
approach taken in previous studies [49], we manually created the test set by injecting error-handling
bugs. It has been proven that general-purpose bug detection techniques cannot be used to detect
error-handling bugs [19, 49], so we compare our approach with the latest error-handling bug
detection techniques. Furthermore, since large language models have been shown to perform
effectively in program repair, we also include them for comparison in our study.

4.2.1 Experiment Setup. For the evaluation on customized test sets, we selected the Linux Kernel
to form the test set as it contains a sufficient amount of error-handling code snippets. We randomly
removed 30 error-handling code snippets to form a test set. To ensure the accuracy of the results,
we constructed 5 different test sets, and took the average precision and recall as the final result. As
for testing on real-world projects, we chose the Linux Kernel and 11 applications used in RQ1 4.1.

We compare EH-Digger with two state-of-the-art error-handling bug detection approaches
EH-Miner [19], ErrHunter [49], and one large language model GLM [11]. EH-Miner is a state-of-
the-art learning-based approach. It identifies functions that are frequently checked by equivalent
check conditions, and mines error-handling rules for these functions to detect error-handling bugs.
ErrHunter is a state-of-the-art template-based approach designed specifically for the Linux Kernel.
It utilizes taint analysis techniques to trace null pointers or general error codes defined within the
Linux Kernel, such as “ENOMEM”. The primary objective of ErrHunter is to detect error-handling
bugs by ensuring the proper handling of these identified features. However, these two approaches
have a limitation in that their analysis is restricted to a certain amount of code because they require
the code to be compiled. Furthermore, ErrHunter does not make its source code publicly available.
Consequently, we evaluated their performance based on their optimal theoretical results. Since
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Table 4. Comparison in test sets.

Precision Recall Fi-score

EH-Miner 72.3% 70.2% 0.71
ErrHunter 92.4% 70.1% 0.80

GLM 62.4% 90.4% 0.74
EH-Digger 91.7% 72.6% 0.81

EH-Miner is a learning-based method, it needs to be trained on a training set first. To ensure
fairness, we deployed EH-Digger on the same training set [19] used by EH-Miner and saved the
learned patterns. This training set does not intersect with the test data used in this paper. GLM is
one of the latest large language models available for complimentary academic use. We conducted
our evaluation using its latest variant, glm-130b. Due to the input limitations of large language
models, we cannot feed the entire code of the tested projects to the model. We input the code of a
single function at a time, accompanied by the following prompt: “This function is from the Linux
Kernel. Are there any error-handling bugs? If so, point out the problem”.

4.2.2  Experiment Result. We first compared the precision and recall of the method on test sets, and
results are shown in Table 4. The average precision and recall achieved by EH-Digger are 91.7%
and 72.6%, respectively. In comparison, EH-Miner reports an average precision of 72.3% and a recall
of 70.2%. The recall of EH-Miner is similar to EH-Digger, but its precision is significantly lower. We
identified two primary reasons for this outcome. Firstly, during the learning process, EH-Digger
traced the error-handling context inter-procedurally. This enabled it to capture the complete context
of errors that are not handled where they occur. This reduced the occurrence of learned incorrect
patterns and resulted in higher precision and recall. Secondly, during the bug detection process,
EH-Miner erroneously identified backward-propagated errors as error-handling bugs. In contrast,
EH-Digger traced the error propagation inter-procedurally to find its failure statement, which
helped to reduce the incidence of false positives and resulted in a higher precision value. ErrHunter
achieved average precision and recall of 92.4% and 70.1%, respectively. In comparison, EH-Digger
had a lower precision value than ErrHunter, but a higher recall. This is because ErrHunter employs
taint analysis to track whether errors are handled inter-procedurally. Even though it requires the
software being analyzed to be compiled, it is more accurate than the AST-based program analysis
method used by EH-Digger. Moreover, ErrHunter is designed specifically for the Linux Kernel,
where it manually specifies features (null pointers and general error codes defined in the Linux
Kernel) are prevalent in the kernel. Thus, although some functions using special error codes cannot
be solved by ErrHunter [49], it still achieved a high recall on test sets. However, similar to other
template-based approaches, such manually summarized patterns are not easily transferable to other
software systems, as we will analyze further in the following experiments. We only provide the
function containing bugs to the GLM. The average precision and recall of GLM are 62.4% and 90.4%,
respectively. While GLM has a high recall in comparison to EH-Digger, its precision is significantly
lower. This difference can be attributed to its predominant intra-procedural analysis. It adds error
handling for nearly all functions that might return exceptional values and parameters, resulting in
a considerable number of false positives.

Subsequently, we compared the ability of state-of-the-art approaches and EH-Digger in detecting
real-world bugs by analyzing the bugs detected on the Linux Kernel and applications.

1) On the Linux Kernel, EH-Digger identified 40 historical bugs and 20 new bugs. Experimental
results are presented in Fig. 7. 20 bugs could not be found by EH-Miner. There are two main reasons
for this outcome. Firstly, EH-Miner focuses on API calls. Since the Linux Kernel does not use
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Fig. 7. Comparison in Linux Kernel. Fig. 8. Comparison in applications.
1 static int unimac_mdio_probe(...) {
1 static int opal lpc init debugfs(void) {
2 struct resource *r; 2 root~= debugfs create dir(...):
3 r = platform get_resource(...); 3 rc = [opal_lpc_debugfs_create_type|(root, ...):
4 + if (!r) .
5+ return -EINVAL; g
5 |opal_lpc_debugfs create type|..l, struct dentry *folder, ...) {

6 debugls_create file (% ., foldery«e);

''''''''''''''''''''''''''''''''''''''''''''''''''' 7}

7 static int pata_imx_probe(...) { 8 struct dentry *debugfs create file|(/.., struct dent¥y ~*parent,...){
9 __debugfs_create file(y.., parent, ...);

8 io_res = platform get_resource(); Wy

9 priv->host_regs = [dSVm_Ioremap_resource|(io_res). 11 struct dentry ¥_debugfs create filel(..., struct dentry ¥parent, ...) {
. 12 start_creating(..., garent)s

10 1}

11 wvoid __ iomem *(struct resource *res) { 13}

L 14 struct dentry *Btart creating|(..., struct dentry *parent) {
12 if (!lres)«{ 15 if (!parenty — E
13 dev_err(dev, "invalid resource\n"); e , parent = debugfs mount->mnt_root;
— 17 d_inode (parent) ;
14 return IOMEM ERR_PTR(-EINVAL); .
15 } 18 )

16}

Fig. 10. Examples of false positives in learning based

Fig. 9. Examples of false negatives in learning based approaches.

approaches.

any libraries, EH-Miner treats each subsystem (e.g., fs/ext4) as an independent project, considers
functions called across multiple projects as API calls, and learns their error handling. This causes
functions exclusive to one subsystem to be overlooked and results in 9 false negatives. Secondly,
EH-Miner focuses on the handling of a single call and employs an intra-procedural method, which
makes it difficult to learn complex error-handling contexts or inter-procedural cases and thus leads
to 3 false negatives. Furthermore, we analyzed the bugs detected by EH-Miner, and found that EH-
Digger could not identify 2 out of 42 bugs. These 2 false negatives are caused by incorrect program
analysis, as EH-Digger traces the data/control flow without compiling the program, making it more
susceptible to producing erroneous results than the compile-based approach used by EH-Miner.
ErrHunter could identify 48 out of the 60 bugs. The remaining 12 bugs were missed since they were
not associated with null pointers or general error codes defined in the Linux Kernel. Since ErrHunter
did not open source their code, we can only compare it with the 25 reported bugs mentioned in
their paper. 20 of these 25 bugs are resource leak bugs. Such bugs are not the error-handling bugs
discussed in this paper, so we only check the remaining 5 bugs. EH-Digger is able to detect 2 of these
bugs, as the remaining 3 bugs have never been handled before and therefore cannot be addressed
by learning-based approaches. We provided functions with error-handling bugs to GLM. It detected
51 out of the 60 bugs and 4 bugs that EH-Digger failed to detect. These 4 bugs are overlooked
by EH-Digger because they are not been handled before. However, because GLM often identifies
unchecked parameters or return values as error-handling bugs, it generated 27 false positives while
analyzing these 60 functions.
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2) On the 11 applications, EH-Digger correctly identified 163 bugs, 30.1% (49/163) of these bugs
were not detected by comparative approaches. Results are shown in Fig. 8. EH-Miner only covered
58.3% (95/163) of the bugs detected by EH-Digger, which is caused by the same two reasons we
discussed above. Notably, In Bftpd, EH-Miner found 2 more violations than EH-Digger. These
2 violations are missed by EH-Digger due to incorrect program analysis. As for ErrHunter, its
performance on these applications significantly declined, covering only 32.5% (53/163) of the bugs
detected by EH-Digger. This is because, in most applications, developers often return values such
as “False”, “-1”, instead of specific error codes. Determining which values represent errors is not
easy, as the same return value may represent different states. Methods based on manually specified
features are difficult to solve such cases, thus the performance of ErrHunter shows a significant
degradation. We provided functions with error-handling bugs to GLM. GLM identified 63.2% (103
out of 163) of the bugs detected by EH-Digger and 17 bugs that EH-Digger fail to detect. However,
on this provided 163 functions, GLM produced 44 false positives. These false positives could be
attributed to its tendency to consider any unchecked return values or parameters as a potential
error-handling bug. Such a low accuracy rate also proves that GLM cannot be directly applied to
bug detection for the entire software system. If excluding GLM, there are 37.4% (61/163) of bugs
found by EH-Digger cannot be found by existing approaches.

To help understand the contribution of EH-Digger, we conducted case studies on the false pos-
itives and false negatives of existing approaches, respectively. On the one hand, Fig. 9 shows
a historical bug successfully identified by EH-Digger. This bug is missed by all comparative
approaches. The return value of platform_get_resource is usually examined and handled in
devm_ioremap_resource. Existing approaches are failed to learn this pattern, and thus miss the
bug. On the other hand, the differences between EH-Digger and existing tools are not just inter-
procedural and intra-procedural. Existing approaches may learn that there should be an error
handling after someplace, but it is hard to know the deadline of the handling (i.e., the handling
should be performed before someplace). Fig. 10 illustrates a false positive reported by all compara-
tive approaches. The return value of debugfs_create_dir propagates through 4 functions (line 3, 6,
9, 12). It does not need to be handled until d_inode is called. In such a complex situation, existing
approaches cannot determine the deadline of error handling, so they usually assume that the error
needs to be handled as soon as it occurs, thus often producing false positives.

Result 2: 30.1% (49/163) of the bugs detected by EH-Digger in these applications cannot
be detected by any comparative approaches. In the Linux Kernel, EH-Digger outperforms
EH-Miner and GLM, and achieves similar performance compared with ErrHunter, which is
specifically designed for the Linux Kernel based on template. In other applications, 67.5%
(110/163) of the bugs identified by EH-Digger cannot be detected by ErrHunter. EH-Digger
can serve as a complementary approach in detecting error-handling bugs.

4.3 Answer to RQ3: Impact of Parameters

EH-Miner requires two parameters to be pre-defined, namely THgcor, (in Sec. 2.1.2) and THy (in
Sec. 3.2). THycore influences the collection of error-handling code snippets during the learning
process, while THy affects the extraction of code patterns. Both parameters may impact the per-
formance of EH-Miner. In this section, we evaluate the effect of varying TH,core and THy on the
performance of EH-Digger.

4.3.1 Experiment Setup. We applied EH-Digger to the test set discussed in Sec. 4.1 and evaluated its
precision and recall under different parameter values for THscore and THy. We iterate the parameter
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Fig. 11. Precision and recall of EH-Digger under different parameters.

THgcore and THy from 0.1 to 1 with a step length of 0.1. To facilitate comparison, we prefer an
overall metric that considers both precision and recall for ease of comparison. The most common
practice is to use the Fl.re, which is the harmonic mean of precision and recall.

4.3.2 Experiment Result. The results are shown in Fig 11. The average precision ranges from 0.07
to 0.82, while the average recall ranges from 0.05 to 0.94. A low value of THscore may result in
selecting non-error-handling code segments for learning, leading to a lower precision and recall
for the method. Conversely, a high value of THj.or may cause some error-handling code snippets
to be ignored, resulting in their error-handling contexts not being learned and a decreased recall.
THy represents the number of cases that support the learned pattern. If THy is too low, the learned
pattern may be inaccurate, while a value that is too high may cause correct patterns to be filtered
out. When THjcore is set to 0.4 and THy to 0.7, EH-Miner achieves its highest Fyore 0.81, with the
average precision and recall being 91.7% and 72.6%, respectively.

Result 3: With THcore and THy set to 0.4 and 0.7, respectively, EH-Digger achieved
an average precision of 91.7% and an average recall of 72.6% on test sets. These results
demonstrate the effectiveness of EH-Digger in detecting error-handling bugs.

5 DISCUSSION
5.1 Obtaining Error-Handling Code Snippets

EH-Digger considers code snippets that contain error logs as the sampling of all error-handling
code. The precision of error log detection may impact the performance of EH-Digger. To this end,
EH-Digger supports users to describe the error log using the log function name and the keyword
of the log content. Since error logs in software usually follow a fixed format, the use of such a
description method can yield accurate results. Furthermore, we sampled 20 functions as the test set,
and repeated the test in 3 different applications. By using no more than 6 keywords provided by
the user, EH-Digger successfully identified an average of 66.4% of all error-handling code snippets.
After learning their distinctive features (Sec. 2.1.2), EH-Digger achieved an average detection rate of
83.9% for all error-handling code snippets. While more advanced NLP techniques could potentially
enhance the number of identified error-handling code snippets, we adopted this simpler approach
to reduce method complexity and improve runtime efficiency.
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5.2 Constructing Data-Flow and Control-Flow Dependencies

To trace error-handling context and detect error-handling bugs, EH-Digger conducts program
analysis on the AST to construct data/control-flow dependencies. This design allows EH-Digger
to analyze code without the need to compile the target project, and thereby can be applied to
more projects automatically. This approach may generate more erroneous results compared to
tools requiring compilation, such as LLVM. This is a trade-off between precision and scalability.
According to the results of our experiments in Sec. 4.1 and Sec. 4.2, the number of mistakes caused
by program analysis is comparatively low (16 false positives and 2 false negatives) since our
learning-based method can tolerate a limited number of erroneous results. At present, EH-Digger
is implemented exclusively for C/C++.EH-Digger employs tree-sitter [5] to obtain the AST of the
code. Since tree-sitter supports more than 20 programming languages, EH-Digger can be easily
adapted to other programming languages with minimal code modifications.

5.3 Tracing Error-Handling Context

As inter-procedural methods are prone to space explosion, we only collect caller extensions when
tracing the error-handling context. This may lead to the omission of certain contexts. To assess the
impact of this omission, we conducted an investigation into error-handling contexts. Our results
show that EH-Digger can retrieve complete contexts for more than 83.2% of the error-handling
code snippets. In contrast, to obtain the complete context of the remaining 16.8%, the execution
efficiency of EH-Digger will drop significantly, sometimes by hundreds of times or even unfeasible.
The results in Sec. 4.1 also demonstrate that omitting these contexts has a negligible impact on
EH-Digger performance (causing 18 false positives as discussed in Sec. 4.1.2). Therefore, to prioritize
execution efficiency and maintain feasibility, we decided to discard these contexts.

5.4 Oracle of Detecting Error-Handling Bug

We label code snippets as buggy if they contain action sequences from learned patterns but lack
handling (Sec. 3.3). There are 2 possible error scenarios for such an oracle. First, the learned pattern
may be incorrect. This situation is usually due to the trade-off we made during the learning phase
(as discussed in Sec. 5.3) or an error in static analysis. In our experiments, this case is considered as
a false positive. Specifically, these accounted for 3 out of 16 false positives attributable to static
analysis errors (Sec. 4.1.2) and 18 false positives attributable to the trade-off. This low incidence
rate is a testament to our method’s robustness in pattern mining, which leverages the mining of
frequent subsequences to ensure that even when irrelevant actions are included, their influence on
the pattern remains minimal. Second, developers may think that some error handling is unnecessary.
For example, in situations deemed critical—such as a program running out of memory—developers
might opt to restart the system rather than writing error-handling code, believing it to be the most
effective solution. Conversely, in cases involving simple code snippets with limited input, such as
examples or pre-processing scripts, developers may also view error handing as superfluous. During
the process of submitting issues to developers, we identified 8 instances that fell into this category.

6 RELATED WORK
6.1 Error-Handling Bug Detection

Existing approaches of error-handling bug detection can be classified into two classes: approaches
based on manually constructed templates/error specifications, and learning-based approaches. For
the first class, these approaches usually begin with a study from a particular perspective, summarize
their common categories, and then design patterns for each category. Tian and Ray. [42] and
Jana et al. [16] classified error-handling bugs into several types and design templates accordingly.
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Pakki et al. [34] studied bugs where the error is handled at an over-severe level, Wu et al. [46]
studied disordered error handling, while Li et al. [26] summarized the frequent error handling of
SSL library. Some existing approaches [40, 47-49] focused on more specific features, such as null
pointers, special error codes, and user inputs. The above approaches require significant domain
knowledge from the constructors, and are hard to accommodate the software evolution. Conversely,
learning-based approaches usually use the existing error-handling code snippets to derive templates
or error specifications. Some existing approaches [1, 26, 45, 50] examined differences between
normal paths and error paths using features such as the length and return expressions. Similarly,
Zhong et al. [51], DeFreez et al. [9], Liu et al [27], and Lu et al. [29] also predict the error branch.
Jia et al. [19] focused on the equivalence of check conditions, and Shen et al. [39] concentrated on
particular functions and pointers. Although these approaches have achieved decent results, they
mainly learn API calls near error-handling code snippets. As discussed in Sec. 2.2, errors may not
be handled where they occur, making it hard for existing learning-based approaches to accurately
establish the correlation between the error and its handling code snippets.

6.2 Exception-Handling Bug Detection

There is a long line of research that focuses on exception-handling mechanisms [3], which are
built-in features in many programming languages, such as Java and Python. Existing approaches
focus on this problem from two perspectives: whether a correct exception is thrown, and whether
the thrown exceptions are properly handled. For the former, Jia et al. [18] studied problems caused
by ungraceful exits. ExAssist [32] recommends repairing actions based on machine learning model.
Bouzenia et al. [4], Zhong [50], and Chen [6] studied the inconsistency of the error with the thrown
exception. Weimer et al. [43, 44] presented a data-flow analysis for finding whether a certain type
of exception is properly handled. For the second class, Oliveira et al. [33] conducted an empirical
study on the relationship between the usage of Android abstractions and uncaught exceptions.
Gu et al. [12] expanded the intrinsic capability of runtime error resilience in software systems.
Barbosa et al. [2] presented a tool to recommend repairs with awareness of the global context. Yan
et al. [24, 30] improved fault localization effectiveness based on a slice-based approach. These works
focus on exception-handling mechanisms like try-catch statements, while EH-Digger detects bugs
for error handling of variable constrain violation, which is widely used in languages like C/C++.

7 CONCLUSION

Existing learning-based approaches on error-handling bug detection only learn API calls near
error-handling code snippets, which makes them hard to learn the real reasons for the error-
handling code in many cases. To address such problems, we propose EH-Digger, an error-oriented
approach that learns from the error-handling context of existing error-handling code snippets and
detects error-handling bugs accordingly. We applied EH-Digger to the Linux Kernel and 11 mature
applications. EH-Digger detects error-handling bugs with a precision of 91.7%. It detected 20 new
bugs and 40 historical bugs in the Linux Kernel, 33 new bugs and 31 historical bugs. 30.1% bugs
detected by EH-Digger cannot be detected by state-of-the-art approaches. It can serve as a valuable
complementary approach in detecting error-handling bugs.

8 DATA AVAILABILITY
The source code and dataset can be found in the repository: https://github.com/EH-Digger/EH-Digger.

ACKNOWLEDGMENTS

This research was funded by NSFC No. 62272473, the Science and Technology Innovation Program
of Hunan Province (No0.2023RC1001) and NSFC No.62202474.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



Cut to the Chase: An Error-Oriented Approach to Detect Error-Handling Bugs 111:21

REFERENCES

(1]

— —_ ——
o) ~N o G
= —

—
O
—

[10]

[11]
[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]
[21]
[22]
[23]

[24]

Mithun Acharya and Tao Xie. 2009. Mining API error-handling specifications from source code. In International
Conference on Fundamental Approaches to Software Engineering. Springer, 370-384.

Eiji Adachi Barbosa and Alessandro Garcia. 2018. Global-aware recommendations for repairing violations in exception
handling. In Proceedings of the 40th International Conference on Software Engineering. 858—858.

Pan Bian, Bin Liang, Yan Zhang, Chaoqun Yang, Wenchang Shi, and Yan Cai. 2018. Detecting bugs by discovering
expectations and their violations. IEEE Transactions on Software Engineering 45, 10 (2018), 984-1001.

Islem Bouzenia. 2022. Detecting Inconsistencies in If-Condition-Raise Statements. In 37th IEEE/ACM International
Conference on Automated Software Engineering. 1-3.

M. Brunsfeld. 2023. Tree-sitter. https://tree-sitter.github.io/tree-sitter/ Accessed 1. October 2021.

Haicheng Chen. 2021. Combating Fault Tolerance Bugs in Cloud Systems. The Ohio State University.

Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and M Frans Kaashoek. 2011. Linux kernel
vulnerabilities: State-of-the-art defenses and open problems. In Proceedings of the Second Asia-Pacific Workshop on
Systems. 1-5.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2022. Introduction to algorithms. MIT
press.

Daniel DeFreez, Haaken Martinson Baldwin, Cindy Rubio-Gonzalez, and Aditya V Thakur. 2019. Effective error-
specification inference via domain-knowledge expansion. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering. 466—476.

Daniel DeFreez, Antara Bhowmick, Ignacio Laguna, and Cindy Rubio-Gonzalez. 2020. Detecting and reproducing
error-code propagation bugs in MPI implementations. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. 187-201.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. GLM: General Language
Model Pretraining with Autoregressive Blank Infilling. (2022), 320-335.

Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Jian Lii, and Zhendong Su. 2016. Automatic runtime recovery via error
handler synthesis. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering.
684-695.

Haryadi S Gunawi, Cindy Rubio-Gonzélez, Andrea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau, and Ben Liblit. 2008.
EIO: Error Handling is Occasionally Correct.. In FAST, Vol. 8. 1-16.

Foyzul Hassan, Chetan Bansal, Nachiappan Nagappan, Thomas Zimmermann, and Ahmed Hassan Awadallah. 2020. An
empirical study of software exceptions in the field using search logs. In Proceedings of the 14th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). 1-12.

Benjamin Jakobus, Eiji Adachi Barbosa, Alessandro Garcia, and Carlos José Pereira De Lucena. 2015. Contrasting
exception handling code across languages: An experience report involving 50 open source projects. In 2015 IEEE 26th
International Symposium on Software Reliability Engineering (ISSRE). IEEE, 183-193.

Suman Jana, Yuan Jochen Kang, Samuel Roth, and Baishakhi Ray. 2016. Automatically Detecting Error Handling Bugs
Using Error Specifications.. In USENIX Security Symposium. 345-362.

Zhouyang Jia, Shanshan Li, Xiaodong Liu, Xiangke Liao, and Yunhuai Liu. 2018. SMARTLOG: Place error log statement
by deep understanding of log intention. In 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 61-71.

Zhouyang Jia, Shanshan Li, Tingting Yu, Xiangke Liao, and Ji Wang. 2019. Automatically detecting missing cleanup
for ungraceful exits. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 751-762.

Zhouyang Jia, Shanshan Li, Tingting Yu, Xiangke Liao, Ji Wang, Xiaodong Liu, and Yunhuai Liu. 2019. Detecting
error-handling bugs without error specification input. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 213-225.

Yuan Kang, Baishakhi Ray, and Suman Jana. 2016. Apex: Automated inference of error specifications for ¢ apis. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering. 472-482.

Sun Hyoung Kim, Cong Sun, Dongrui Zeng, and Gang Tan. 2021. Refining Indirect Call Targets at the Binary Level.. In
NDSS.

Jean-Claude Laprie. 1995. Dependable computing: Concepts, limits, challenges. In Special issue of the 25th international
symposium on fault-tolerant computing. Citeseer, 42—54.

Julia Lawall, Ben Laurie, René Rydhof Hansen, Nicolas Palix, and Gilles Muller. 2010. Finding error handling bugs in
openssl using coccinelle. In 2010 European Dependable Computing Conference. IEEE, 191-196.

Yan Lei, Chengnian Sun, Xiaoguang Mao, and Zhendong Su. 2018. How test suites impact fault localisation starting
from the size. IET software 12, 3 (2018), 190-205.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.


https://tree-sitter.github.io/tree-sitter/

111:22 Haoran Liu, Zhouyang Jia, *Shanshan Li, Yan Lei, Yue Yu, Yu Jiang, Xiaoguang Mao, and Xiangke Liao

[25] Chi Li, Min Zhou, Zuxing Gu, Ming Gu, and Hongyu Zhang. 2019. Ares: Inferring error specifications through static
analysis. In 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 1174-1177.

[26] Chi Li, Min Zhou, Xinrong Han, and Ming Gu. 2021. Sensing Error Handling Bugs in SSL Library Usages. In 2021
IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). IEEE,
686-692.

[27] Hugqiu Liu, Yuping Wang, Lingbo Jiang, and Shimin Hu. 2014. PF-Miner: A new paired functions mining method for
Android kernel in error paths. In 2014 IEEE 38th Annual Computer Software and Applications Conference. IEEE, 33-42.

[28] Kangjie Lu and Hong Hu. 2019. Where does it go? refining indirect-call targets with multi-layer type analysis. In

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. 1867-1881.

Kangjie Lu Lu, Aditya Pakki, and Qiushi Wu. 2019. Detecting missing-check bugs via semantic-and context-aware

criticalness and constraints inferences. In Proceedings of the 28th USENIX Conference on Security Symposium.

Xiaoguang Mao, Yan Lei, Ziying Dai, Yuhua Qi, and Chengsong Wang. 2014. Slice-based statistical fault localization.

Journal of Systems and Software 89 (2014), 51-62.

[31] Paul D Marinescu and George Candea. 2009. LFI: A practical and general library-level fault injector. In 2009 IEEE/IFIP
International Conference on Dependable Systems & Networks. IEEE, 379-388.

[32] Tam Nguyen, Phong Vu, and Tung Nguyen. 2019. Recommending exception handling code. In 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 390-393.

[33] Juliana Oliveira, Deise Borges, Thaisa Silva, Nelio Cacho, and Fernando Castor. 2018. Do android developers neglect

error handling? a maintenance-Centric study on the relationship between android abstractions and uncaught exceptions.

Journal of Systems and Software 136 (2018), 1-18.

Aditya Pakki and Kangjie Lu. 2020. Exaggerated error handling hurts! an in-depth study and context-aware detection.

In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. 1203-1218.

[35] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto, Qiming Chen, Umeshwar Dayal, and Mei-

Chun Hsu. 2004. Mining sequential patterns by pattern-growth: The prefixspan approach. IEEE Transactions on

knowledge and data engineering 16, 11 (2004), 1424-1440.

Genymobile R. Vimont. 2023. Scrcpy utility. https://github.com/Genymobile/scrcpy Accessed 1. March 2023.

Martin P Robillard and Gail C Murphy. 2000. Designing robust Java programs with exceptions. In Proceedings of the 8th

ACM SIGSOFT international symposium on Foundations of software engineering: twenty-first century applications. 2—10.

[38] Cindy Rubio-Gonzélez, Haryadi S Gunawi, Ben Liblit, Remzi H Arpaci-Dusseau, and Andrea C Arpaci-Dusseau. 2009.
Error propagation analysis for file systems. In Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 270-280.

[39] Qintao Shen, Hongyu Sun, Guozhu Meng, Kai Chen, and Yuqing Zhang. 2023. Detecting API Missing-Check Bugs
Through Complete Cross Checking of Erroneous Returns. In International Conference on Information Security and
Cryptology. Springer, 391-407.

[40] Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov. 2011. Rolecast: finding missing security checks when you do
not know what checks are. In Proceedings of the 2011 ACM international conference on Object oriented programming
systems languages and applications. 1069-1084.

[41] Wensheng Tang. 2019. Identifying error code misuses in complex system. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 428—432.

[42] Yuchi Tian and Baishakhi Ray. 2017. Automatically diagnosing and repairing error handling bugs in c. In Proceedings

of the 2017 11th joint meeting on foundations of software engineering. 752-762.

Westley Weimer. 2004. Finding and preventing run-time error handling mistakes. In Proceedings of the 19th annual

ACM SIGPLAN Conference on Object-oriented programming, systems, languages, and applications. 419-431.

[44] Westley Weimer and George C Necula. 2008. Exceptional situations and program reliability. ACM Transactions on
Programming Languages and Systems (TOPLAS) 30, 2 (2008), 1-51.

[45] Baijun Wu, John Peter Campora III, Yi He, Alexander Schlecht, and Sheng Chen. 2019. Generating precise error

specifications for c: A zero shot learning approach. Proceedings of the ACM on Programming Languages 3, OOPSLA

(2019), 1-30.

Qiushi Wu, Aditya Pakki, Navid Emamdoost, Stephen McCamant, and Kangjie Lu. 2021. Understanding and detecting

disordered error handling with precise function pairing. In the 30th USENIX Security Symposium (Security’21).

[47] Xuezheng Xu, Yulei Sui, Hua Yan, and Jingling Xue. 2019. VFix: value-flow-guided precise program repair for null
pointer dereferences. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 512-523.

[48] Fabian Yamaguchi, Christian Wressnegger, Hugo Gascon, and Konrad Rieck. 2013. Chucky: Exposing missing

checks in source code for vulnerability discovery. In Proceedings of the 2013 ACM SIGSAC conference on Computer &

communications security. 499-510.

Dongyang Zhan, Xiangzhan Yu, Hongli Zhang, and Lin Ye. 2022. ErrHunter: Detecting Error-Handling Bugs in the

Linux Kernel Through Systematic Static Analysis. IEEE Transactions on Software Engineering 49, 2 (2022), 684-698.

[29

—

[30

[t}

[34

=

[36
[37

—

[43

—

[46

—

[49

—

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.


https://github.com/Genymobile/scrcpy

Cut to the Chase: An Error-Oriented Approach to Detect Error-Handling Bugs 111:23

[50] Hao Zhong. 2022. Which Exception Shall We Throw?. In Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering. 1-12.

[51] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. 2009. Inferring resource specifications from natural language API
documentation. In 2009 IEEE/ACM International Conference on Automated Software Engineering. IEEE, 307-318.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



	Abstract
	1 Introduction
	2 Understanding the Error-Handling Context
	2.1 Study Methodology
	2.2 What are the limitations of existing approaches
	2.3 How can we overcome them in the new design

	3 EH-Digger Design
	3.1 Code Representation
	3.2 Frequent Context Mining
	3.3 Error-Handling Bug Detection

	4 EXPERIMENTS
	4.1 Answer to RQ1: Performance of Real-World Bug Detection
	4.2 Answer to RQ2: Comparison with the State-of-the-art
	4.3 Answer to RQ3: Impact of Parameters

	5 Discussion
	5.1 Obtaining Error-Handling Code Snippets
	5.2 Constructing Data-Flow and Control-Flow Dependencies
	5.3 Tracing Error-Handling Context
	5.4 Oracle of Detecting Error-Handling Bug

	6 Related Work
	6.1 Error-Handling Bug Detection
	6.2 Exception-Handling Bug Detection

	7 Conclusion
	8 Data Availability
	References

