
111

Cut to the Chase: An Error-Oriented Approach to Detect
Error-Handling Bugs

HAORAN LIU, National University of Defense Technology, China

ZHOUYANG JIA, National University of Defense Technology, China

*SHANSHAN LI, National University of Defense Technology, China

YAN LEI, Chongqing University, China
YUE YU, National University of Defense Technology, China

YU JIANG, Tsinghua university, China
XIAOGUANG MAO, National University of Defense Technology, China

XIANGKE LIAO, National University of Defense Technology, China

Error-handling bugs are prevalent in software systems and can result in severe consequences. Existing works

on error-handling bug detection can be categorized into template-based and learning-based approaches. The

former requires much human effort and is difficult to accommodate the software evolution. The latter usually

focuses on errors of API and assumes that error handling should be right after the handled error. Such an

assumption, however, may affect both learning and detecting phases.

The existing learning-based approaches can be regarded as API-oriented, which starts from an API and

learns if the API requires error handling. In this paper, we propose EH-Digger, an ERROR-oriented approach,

which starts from an error handling. Our approach can learn why the error occurs and when the error has

to be handled. We conduct a comprehensive study on 2,322 error-handling code snippets from 22 widely

used software systems across 8 software domains to reveal the limitation of existing approaches and guide

the design of EH-Digger. We evaluated EH-Digger on the Linux Kernel and 11 open-source applications. It

detected 53 new bugs confirmed by the developers and 71 historical bugs fixed in the latest versions. We also

compared EH-Digger with three state-of-the-art approaches, 30.1% of bugs detected by EH-Digger cannot be

detected by the existing approaches.

Additional Key Words and Phrases: Bug Detection, Error Handling, Error Oriented

ACM Reference Format:
Haoran Liu, Zhouyang Jia, *Shanshan Li, Yan Lei, Yue Yu, Yu Jiang, Xiaoguang Mao, and Xiangke Liao. 2024.

Cut to the Chase: An Error-Oriented Approach to Detect Error-Handling Bugs. J. ACM 37, 4, Article 111

(August 2024), 23 pages. https://doi.org/10.1145/3660787

Authors’ addresses: Haoran Liu, National University of Defense Technology, Deya road 109, Changsha, China, liuhaoran@

nudt.edu.cn; Zhouyang Jia, National University of Defense Technology, Deya road 109, Changsha, China, jiazhouyang@nudt.

edu.cn; *Shanshan Li, National University of Defense Technology, Deya road 109, Changsha, China, shanshanli@nudt.edu.cn;

Yan Lei, Chongqing University, Shazheng street 156, Chongqing, China, yanlei@cqu.edu.cn; Yue Yu, National University of

Defense Technology, Deya road 109, Changsha, China, yuyue@nudt.edu.cn; Yu Jiang, Tsinghua university, Shuangqing

Road 30, Beijing, China, jy1989@mail.tsinghua.edu.cn; Xiaoguang Mao, National University of Defense Technology, Deya

road 109, Changsha, China, xgmao@nudt.edu.cn; Xiangke Liao, National University of Defense Technology, Deya road 109,

Changsha, China, xkliao@nudt.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Association for Computing Machinery.

0004-5411/2024/8-ART111 $15.00

https://doi.org/10.1145/3660787

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.

https://doi.org/10.1145/3660787
https://doi.org/10.1145/3660787


111:2 Haoran Liu, Zhouyang Jia, *Shanshan Li, Yan Lei, Yue Yu, Yu Jiang, Xiaoguang Mao, and Xiangke Liao

4 sc_adb_device_move(&out_device, device);

2 struct sc_adb_device *device = &vec.data[sel_idx];

3 sc_adb_device_check_state(device);

1 sc_adb_list_devices(intr, flags, &vec);

4 sc_adb_device_move(&out_device, device);

2 struct sc_adb_device *device = &vec.data[sel_idx];

3 sc_adb_device_check_state(device);

1 sc_adb_list_devices(intr, flags, &vec);

9     sc_adb_devices_log(SC_LOG_LEVEL_ERROR, ...);

5 bool sc_adb_device_check_state(sc_adb_device *device){

7   if (!strcmp("unauthorized", state)) {
8     LOGE("Device is unauthorized:");     

10   }
11 }

6   char *state = device->state;

9     sc_adb_devices_log(SC_LOG_LEVEL_ERROR, ...);

5 bool sc_adb_device_check_state(sc_adb_device *device){

7   if (!strcmp("unauthorized", state)) {
8     LOGE("Device is unauthorized:");     

10   }
11 }

6   char *state = device->state;

Fault Statement

Failure Statement
Error Handling 
Code Snippet

Error Handling 
Code SnippetError Propagation Path

4 sc_adb_device_move(&out_device, device);

2 struct sc_adb_device *device = &vec.data[sel_idx];

3 sc_adb_device_check_state(device);

1 sc_adb_list_devices(intr, flags, &vec);

9     sc_adb_devices_log(SC_LOG_LEVEL_ERROR, ...);

5 bool sc_adb_device_check_state(sc_adb_device *device){

7   if (!strcmp("unauthorized", state)) {
8     LOGE("Device is unauthorized:");     

10   }
11 }

6   char *state = device->state;

Fault Statement

Failure Statement
Error Handling 
Code SnippetError Propagation Path

Fig. 1. Real-world error-handling example that is hard to be understood by existing approaches.

1 INTRODUCTION
Most software systems frequently encounter errors, and it is essential that reliable software is

designed to behave gracefully in the face of such errors [7]. This requires the software to accurately

detect failure conditions and handle them appropriately. Incorrect handling of errors can lead

to severe problems such as system crashes, data loss, security vulnerabilities [39], and so on. C

does not provide exception-handling mechanisms, while C++ contains far fewer try blocks than

languages like Java [15]. The error handling in C/C++ needs to be implemented by the developers

themselves, so it is more flexible and error-prone [37, 38]. Therefore, in this paper, we focus on

error-handling bugs in C/C++ programs.

Existing works on error-handling bug detection can be categorized into two classes: template-

based approaches [10, 13, 41, 42] and learning-based approaches [17, 18, 20]. On the one hand,

template-based approaches usually depend on manually summarized patterns. For example, Er-

rHunter [49] summarized error-handling patterns for error code and null pointer in Linux Kernel,

ErrDoc [42] and EPEx [16] require error specifications from user input. These approaches require

sufficient domain knowledge and are hard to keep up with the changes caused by software evolu-

tion [18, 23]. On the other hand, the learning-based approaches usually contain two phases, i.e.,

learning and detecting. [19, 20]. In the learning phase, they focus on API calls and learn association

rules between API calls and their nearby error-handling code snippets (if any). The rules are

like “𝑚𝑎𝑙𝑙𝑜𝑐 requires error handling when returning 𝑁𝑈𝐿𝐿”. In the detecting phase, they detect

violations of the rules as error-handling bugs. These approaches assume that error handling should

be right after the handled error. Such an assumption, however, may affect both phases.

We use an example to demonstrate the limitations of existing approaches in the learning and

detection phases. Fig. 1 illustrates a representative error-handling in C from a real-world project,

Scrcpy [36]. An unauthorized 𝑑𝑒𝑣𝑖𝑐𝑒 may cause failure in 𝑠𝑐_𝑎𝑑𝑏_𝑑𝑒𝑣𝑖𝑐𝑒_𝑚𝑜𝑣𝑒 (line 4). Line 7-10

is an error-handling code snippet, and the error being handled is that the 𝑑𝑒𝑣𝑖𝑐𝑒 generated by

𝑠𝑐_𝑎𝑑𝑏_𝑙𝑖𝑠𝑡_𝑑𝑒𝑣𝑖𝑐𝑒𝑠 (line 1) should not be unauthorized (line 7). This error propagates along with
variables 𝑣𝑒𝑐 and 𝑑𝑒𝑣𝑖𝑐𝑒 (line 1-3, 6, 4), and is handled (line 7-10) before the 𝑑𝑒𝑣𝑖𝑐𝑒 is used by

𝑠𝑐_𝑎𝑑𝑏_𝑑𝑒𝑣𝑖𝑐𝑒_𝑚𝑜𝑣𝑒 (line 4). In the learning phase, existing approaches [19, 20] establish associa-

tions between 𝑠𝑡𝑟𝑐𝑚𝑝 and its nearby error-handling code snippet (line 7-10). They may learn wrong

rules such as “the return value of 𝑠𝑡𝑟𝑐𝑚𝑝 requires handling”, and miss correct rules like “the error of

𝑠𝑐_𝑎𝑑𝑏_𝑙𝑖𝑠𝑡_𝑑𝑒𝑣𝑖𝑐𝑒𝑠 (line 1) should be handled before 𝑠𝑐_𝑎𝑑𝑏_𝑑𝑒𝑣𝑖𝑐𝑒_𝑚𝑜𝑣𝑒” (line 4). Even assuming

that existing approaches could, somehow, learn the above correct rule, they may still report false

positives in the detecting phase — they cannot find error handling near 𝑠𝑐_𝑎𝑑𝑏_𝑙𝑖𝑠𝑡_𝑑𝑒𝑣𝑖𝑐𝑒𝑠 (line

1), which is actually handled through an inter-procedural check (line 3, 7-10).

The limitations of existing approaches are mainly caused by their API-oriented design, which

starts from an API and learns if the API requires error handling. In this paper, we propose an

ERROR-oriented approach, which starts from an error handling. Our approach can learn why the

error occurs and when the error has to be handled. This can be explained by using the Fault-Error-
Failure model [22]. Fault is a flaw in code. Failure is an observed behavior. Error is abnormal

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



Cut to the Chase: An Error-Oriented Approach to Detect Error-Handling Bugs 111:3

states (value discrepancies) propagating from fault to failure. For example, in Fig. 1, line 1 may

generate a 𝑓 𝑎𝑢𝑙𝑡 , while line 4 may cause a 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 . The 𝑒𝑟𝑟𝑜𝑟 propagating from line 1 to line 4 is

handled in line 3 through an inter-procedural check, and the 𝑐ℎ𝑒𝑐𝑘 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 in line 7 determines

whether the error-handling code snippet (line 7-10) can be executed. From the error-handling

code snippet, we can trace backward to the statement that may generate fault (or 𝑓 𝑎𝑢𝑙𝑡 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡

for short), and trace forwards to the statement that may cause failure (or 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 for

short). The error caused by the fault statement has to be handled before the failure statement. As a

proof of conception, we propose EH-Digger, an error-oriented tool to detect error-handling bugs.

EH-Digger first collects error-handling code snippets from the code repository, then extracts a code

sequence for each error from its fault statement to its failure statement by using inter-procedural

analysis. We refer to the code sequence as an error-handling context. Taking Fig. 1 as an example,

EH-Digger traces the variable 𝑠𝑡𝑎𝑡𝑒 in line 7 both backwards and forwards, and extracts line 1, 2,

3, 6, and 4 as the error-handling context. Finally, EH-Digger can learn error-handling rules from

frequent contexts.

To better understand the limitations of existing approaches and guide the design of EH-Digger,

we conducted studies on 2,322 error-handling code snippets from 22 software systems. We first

study the limitations of existing works and find that 43.3% of errors are not handled right after the

fault statements. Such cases may affect both learning and detecting phases as discussed above. To

address this problem, we propose an error-oriented approach, EH-Digger, which learns frequent

contexts of code snippets handling the same error, and then detects error-handling bugs when the

contexts occur without proper error handling. There are three main challenges during the design

of EH-Digger:

• First, it is non-trivial to determine if two code snippets are handling the same error. To

address this, we study the characteristics of errors, and find that 93.1% error-handling code

snippets handling the same error can be identified by tracing root causes of the error-prone

variables in check conditions. The root causes can be in the form of either error-prone data

type (27.4%) or error-prone variable values (72.6%).

• Second, it is hard to represent frequent contexts that may have various forms for the same

error. Therefore, we study the characteristics of contexts and find they can be represented

with 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 performing on a series of error-prone variables. The actions include declaration

(17.2%), definition (34.5%), and usage (48.3%). One context contains 7.8 actions on average,

and 58.4% of contexts can retain the same semantics when changing the action orders.

• Third, tracing error contexts during both learning and detecting phases requires inter-

procedural analysis, which may lead to the exponential explosion problem in search space.

To avoid this, we propose a summary-based method to perform the inter-procedural anal-

ysis. EH-Digger first generates error-handling context for each individual function, then

concatenates whole contexts along the call graphs.

We evaluated the performance of EH-Digger in detecting real-world bugs in the Linux Kernel

and 11 applications having high stars in GitHub. In the Linux kernel, EH-Digger detected 214 bugs

with a precision of 90.3%, and 40 of them are historical bugs that have been fixed in the latest

version. We also selected 20 detected bugs that we were capable of fixing and submitted patches to

the Linux Kernel. Currently, all of them have been confirmed by the developers, and the rest are

awaiting feedback. In the 11 applications, EH-Digger correctly detected 163 bugs with a precision

of 89.6% (163/182), of which 33 have been confirmed or fixed by developers, and 31 are historical

bugs that have been fixed in the latest versions. The rest are still under discussion. We compared

EH-Digger with three state-of-the-art approaches. 30.1% (49/163) of the bugs detected by EH-Digger

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



111:4 Haoran Liu, Zhouyang Jia, *Shanshan Li, Yan Lei, Yue Yu, Yu Jiang, Xiaoguang Mao, and Xiangke Liao

cannot be detected by the state-of-the-art approaches. The result indicates that EH-Digger can

serve as a complementary approach to existing approaches in detecting error-handling bugs.

The key contributions of this paper include:

• We conducted a study on error-handling context using 2,322 code snippets from 22 software

systems. The findings help understand the limitations of existing works, and guide the design

of our approach.

• We proposed an error-oriented learning method EH-Digger to detect error-handling bugs,

which learns error-handling code from the perspective of its context, enabling us to detect

error-handling bugs more accurately.

• We applied EH-Digger to the Linux Kernel and 11 open-source software. EH-Digger detected

37 new bugs and 71 historical bugs with a precision of around 91%. 30.1% of bugs detected by

EH-Digger cannot be found by comparative approaches.

2 UNDERSTANDING THE ERROR-HANDLING CONTEXT
In this section, we take an in-depth look into the error-handling context through an empirical study.

Our study is driven by two research questions:

• What are the limitations of existing approaches?

• How can we overcome them in the new design?

We will first outline the methodology used in this study, then present our findings, including one

finding revealing limitations of existing approaches, and two findings guiding the design of our

approach.

2.1 Study Methodology
We introduce the criteria for collecting error-handling code snippets, as well as the method to find

their error-handling context.

2.1.1 Studied Subjects. As shown in Table 1, we select 22 software systems from 8 domains.

We select these projects from GitHub because: a) they span a range of different domains and

programming languages; b) they are open-source and well-maintained by the community. These

criteria ensure the accuracy and generality of our findings.

2.1.2 Error-Handling Code Snippet Collection. Error-handling code snippets can usually be identi-

fied based on return values or special clean functions [14, 19, 20, 25, 31]. For example, a branch

statement that returns an error code or calls a cleanup function (e.g., “ENOMEM” in the Linux

Kernel, or calls an “exit” function). Existing works consider these special return values and cleanup

functions as features of error-handling code snippets. The authors manually specify features to

identify and collect such snippets. These features, however, may be program-specific and require

extensive human efforts.

In this regard, we propose an automated approach to collect those program-specific features

based on error logs (Such as the log function “LOGE(“Device is unauthorized”)” in Fig. 1, not log

files). The assumption is that the inclusion of an error log in an error-handling code snippet is

relatively random. It means that error-handling code snippets with error logs can serve as random

samples of all error-handling code snippets. As such, features of the sampled code snippets should

be similar to those of all code snippets. Hence, we merely need to manually specify keywords of

error logs and collect a sub-set of error-handling code snippets. Then, our tool learns features of

error-handling code snippets from the sub-set, and collects other error-handling code snippets

even without error logs. Missing some less common keywords (beyond err, log, etc.) in logging

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



Cut to the Chase: An Error-Oriented Approach to Detect Error-Handling Bugs 111:5

Table 1. Studied Subjects.

Domain Name Line Number Studied Code Snippets Different Function

Web server

lighttpd 132,521 81 35 (43.2%)

Nginx 230,147 158 69 (43.7%)

Hiawatha 61,941 85 32 (37.6%)

Database

MonetDB 452,349 205 107 (52.2%)

Sqlmap 104,574 97 32 (33.0%)

Mysql (twitter fork) 18,396 183 77 (42.1%)

FTP

FileZilla 152,117 106 46 (43.4%)

Pure-FTPd 32,924 152 74 (48.7%)

ProFTPD 845,882 186 77 (41.4%)

Image Editor

Darktable 664,703 134 75 (56.0%)

gThumb 207,107 107 32 (29.9%)

KolourPaint 73,004 56 14 (25.0%)

Player

Audacious 49,795 52 18 (34.6%)

MPV 203,794 105 34 (32.4%)

Network Monitor

Netsniff 65,182 97 52 (53.6%)

Wireshark 5,949,177 210 130 (61.9%)

Distributed Storage

Minio 10,270 34 7 (20.6%)

Rclone 3,822 34 3 (8.8%)

Rpm-ostree 49,388 46 19 (41.3%)

Rook 4,463 37 9 (24.3%)

Development Tool

NetBeans 9,201 64 30 (46.9%)

gnome-shell 242,440 93 33 (35.5%)

functions does not affect the collection process since we only need a sub-set. This manual effort is

limited compared with providing all features.

We consider code snippets that contain special return values or cleanup functions to be error-

handling code snippets. We collect error-handling code snippets in three steps. First, we manually

search error logs based on keywords such as “err”, “log”, then EH-Digger automatically collects

code snippets containing these error logs. Second, for each function call and return value in the

above code snippets, EH-Digger calculates the proportion of its occurrences in error-handling

code snippets among its occurrences in the entire software. Third, EH-Digger collects other error-

handling code snippets without error logs. Specifically, EH-Digger scores branches based on the

above proportion of their return values and function calls within, and collects code snippets with

scores above a threshold 𝑇𝐻𝑠𝑐𝑜𝑟𝑒 as error-handling code snippets. For example, if the function

appears 𝑛 times in the collected code and𝑚 times throughout the software, its score is 𝑛/𝑚. The

score for a branch is obtained by adding the scores of all functions and return values in the branch.

We will evaluate how to set the threshold 𝑇𝐻𝑠𝑐𝑜𝑟𝑒 in Sec 4.3. In this study, the threshold 𝑇𝐻𝑠𝑐𝑜𝑟𝑒 is

empirically set to 0.4.

2.1.3 Error-Handling Code Analysis. We conducted a manual analysis of error-handling code

snippets. To establish a fundamental understanding, three participants first examined 294 error-

handling code snippets in three software systems and described their error-handling contexts.

After comparing their descriptions and discussing divergences, the participants analyzed 2,028

error-handling code snippets in the remaining 19 software systems. Each case was discussed by two

participants. When they diverged, a third participant was consulted for additional discussions until

a consensus was reached. It spent two months analyzing these 2,322 (294+2,028) error-handling

code snippets. All three participants had at least three years of programming experience.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



111:6 Haoran Liu, Zhouyang Jia, *Shanshan Li, Yan Lei, Yue Yu, Yu Jiang, Xiaoguang Mao, and Xiangke Liao

2.2 What are the limitations of existing approaches
We first study the limitation of existing approaches. Existing work can be categorized into two

classes, one based on manually specified error specification, and one based on learning. The limita-

tion of the first class are clear — they highly depend on the quality of provided error specifications.

Existing learning-based approaches usually assume that errors should be handled right after they

occur, and learn association rules between API calls and their nearby error-handling code snippets.

The capabilities of these approaches are still unknown. Therefore, we study the relative positions

between error-handling code snippets and their corresponding fault statements, and find:

Finding 1: 43.3% (1,005/2,322) of error-handling code snippets are located in different

functions with regard to their corresponding fault statements.

Taking Fig. 1 as an example, the error occurs in line 1, and its handling (lines 7-10) is in a different

function 𝑠𝑐_𝑎𝑑𝑏_𝑑𝑒𝑣𝑖𝑐𝑒_𝑐ℎ𝑒𝑐𝑘_𝑠𝑡𝑎𝑡𝑒 (line 3 and 5). Percentage of each project are shown in the

“Different Function” of Table 1. This finding implies that, in the learning phase, existing approaches

can learn just over half of all error-handling code snippets at most, since 43.3% of error-handling

code snippets are far from their fault statements (which may or may not be API calls). In the

detection phase, existing works usually perform intra-procedural analysis during the bug detection,

since an API call and its error handling (if any) are typically in the same function. This finding

implies that the intra-procedural approach may result in false positives when dealing with the

remaining 43.3% inter-procedural cases.

2.3 How can we overcome them in the new design
We design EH-Digger to address the limitations of existing approaches. EH-Digger learns frequent

contexts of code snippets handling the same error, then detects error-handling bugs when the

contexts occur without proper error handling. This process is challenging since: a) it is non-trivial

to determine if two code snippets are handling the same error; and b) given the same error, it is still

hard to mine its frequent contexts which may have various forms. To address these, we conducted

two studies to understand the characteristics of errors and contexts accordingly.

2.3.1 Characteristics of Errors. An error-handling code snippet is always guided by a check condi-

tion, which determines if the handled error happens. The error is usually stored in a variable (e.g.,

𝑠𝑡𝑎𝑡𝑒 in line 7 of Fig. 1) of the condition, and we refer to it as error-prone variable. This variable may

propagate from or to other error-prone variables (e.g., 𝑣𝑒𝑐 in line 1, and 𝑑𝑒𝑣𝑖𝑐𝑒 in line 2, 3, 4). We

find that a variable is error-prone either due to its data type or its value. For example, on one side,

all variables with data type 𝐹𝐼𝐿𝐸 are error-prone, since they may lack certain access permissions

or contain null pointers. On the other side, a variable with the basic data type 𝑖𝑛𝑡 only could be

error prone when its value contains certain error semantics (e.g., 𝑐ℎ𝑟𝑜𝑜𝑡 returns -1 on error, thus

the return value of 𝑐ℎ𝑟𝑜𝑜𝑡 is error prone). We study the error-prone variables and find:

Finding 2: 27.4% (636/2,322) and 72.6% (1,686/2,322) of variables are error-prone due to

error-prone data types or error-prone values, respectively. Tracing root causes of the error-

prone variables in check conditions can determine 93.1% (2,162/2,322) error-handling code

snippets handling the same error.

This finding can guide how to determine if two error-handling code snippets are handling

the same error. For example, in “𝐹𝐼𝐿𝐸 𝑓 𝑖𝑙𝑒”, the variable 𝑓 𝑖𝑙𝑒 can be replaced using its data type

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



Cut to the Chase: An Error-Oriented Approach to Detect Error-Handling Bugs 111:7

Fig. 2. Overview of EH-Digger.

𝐹𝐼𝐿𝐸, while in “𝑖𝑛𝑡 𝑟𝑒𝑡 = 𝑝𝑡ℎ𝑟𝑒𝑎𝑑_𝑐𝑟𝑒𝑎𝑡𝑒 ()”, 𝑟𝑒𝑡 can be replaced by its value: the return value of

𝑝𝑡ℎ𝑟𝑒𝑎𝑑_𝑐𝑟𝑒𝑎𝑡𝑒 . Such structured replacement removed useless information such as variable names.

After such replacement, 93.1% of code snippets handling the same errors will have identical check

conditions. Therefore, for the ease of error-handling rule mining, we use the datatype to represent

variables. However, 6.9% of errors do not have equivalent checking conditions because they can be

checked in multiple ways. For instance, in the Linux Kernel, the function 𝑜 𝑓 _𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝑟𝑒𝑎𝑑_𝑠𝑡𝑟𝑖𝑛𝑔

assigns a value to its input parameter, and when encountering an error, it returns an error code. This

error can be checked by examining its return value or verifying its input’s successful assignment,

resulting in non-equivalent check conditions.

2.3.2 Characteristics of Contexts. The context of an error-handling code snippet is a statement

sequence from a fault statement generating the error to a failure statement triggered by the error.

This sequence can be regarded as a set of 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 performing on a series of error-prone variables.

We find the actions include 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛, 𝑑𝑒 𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛, and 𝑢𝑠𝑎𝑔𝑒 of the variables. The declaration

action helps to identify the type of a variable from a code snippet that can not be compiled. It

enables EH-Digger to determine whether a variable has a basic data type or an error-prone data

type from a large-scale code repository that is hard to compile automatically. Besides, the definition

and usage actions help to trace the data flow among the serial of error-prone variables based on

the Definition-Use Chain. In this regard, we study the actions of error-prone variables and find:

Finding 3: The contexts of error-handling code snippets contain 7.8 actions on average,

including 17.2% (3,115/18,111) for declaration, 34.5% (6,248/18,111) for definition, and 48.3%

(8,748/18,111) for usage. Besides, 58.4% (1,356/2,322) of the studied contexts can retain the

same semantics even when changing the action orders.

This finding implies that EH-Digger could use three actions to represent the error contexts, and

should eliminate the impact of order differences when mining frequent contexts and detecting bugs.

Actions can be regarded as structured representations of the source code. For example, consider the

following code snippets: 𝑐1 = “𝑖𝑛𝑡 𝑢𝑠𝑒𝑟𝑖𝑑 ′′ and 𝑐2 = “𝑢𝑠𝑒𝑟𝑖𝑑 = 𝑔𝑒𝑡𝑖𝑑 ()′′. 𝑐1 can be represented

as < 𝐷𝑒𝑐𝑙𝑎𝑟𝑒, 𝑖𝑛𝑡 >, and 𝑐2 can be represented as < 𝐶𝑎𝑙𝑙, 𝑔𝑒𝑡𝑖𝑑 > and < 𝐷𝑒𝑓 𝑖𝑛𝑒, 𝑖𝑛𝑡, 𝑔𝑒𝑡𝑖𝑑 >. In

comparison to the source code, such structured representation removed useless information such as

variable names, semantic structure, and is more conducive to subsequent rule mining. For example,

if we rewrite 𝑐1 and 𝑐2 as 𝑐3 = “𝑖𝑛𝑡 𝑢𝑠𝑒𝑟𝑖𝑑 = 𝑔𝑒𝑡𝑖𝑑 ()′′, although the source code is changed, its

action list retain the same. As for the order difference, for example, in Fig 3, if we switch line 1 and

line 2, the semantics of this code do not change, but it produces a completely different sequence of

actions. This makes it possible for codes with the same semantics to have different representations,

which is not conducive to rule mining. We will discuss this in detail in Sec. 3.1.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



111:8 Haoran Liu, Zhouyang Jia, *Shanshan Li, Yan Lei, Yue Yu, Yu Jiang, Xiaoguang Mao, and Xiangke Liao

3 fp = fopen (fileName, "w+");  

5   fprintf(stderr, "Failed");   
6   return;                             

4 if(!fp){                              

7 }

8 fprintf(fp)                           

1 FILE* fp;  
2 char fileName[] = "file.txt";  

3 <Call, fopen> <Define, FILE, fopen>

4 <Check, FILE>

8 <Use, FILE>, <Call, fprintf>

2 <Declare char> <Define, char, Constant>
1 <Declare, FILE>

3 fp = fopen (fileName, "w+");  

5   fprintf(stderr, "Failed");   
6   return;                             

4 if(!fp){                              

7 }

8 fprintf(fp)                           

1 FILE* fp;  
2 char fileName[] = "file.txt";  

3 <Call, fopen> <Define, FILE, fopen>

4 <Check, FILE>

8 <Use, FILE>, <Call, fprintf>

2 <Declare char> <Define, char, Constant>
1 <Declare, FILE>

Fig. 3. Example of code representation.

3 EH-DIGGER DESIGN
In this section, we describe the design of EH-Digger, an error-oriented error-handling bug detection

tool guided by error-handling contexts of existing error-handling code snippets.

As illustrated in Fig. 2, EH-Digger takes the source code of software under test as the input,

and reports the detected error-handling bugs. It consists of two main phases: the learning phase

and the detection phase. During the learning phase, EH-Digger first transforms the source code

into structured representations for the convenience of mining rules. After that, EH-Digger obtains

contexts of existing error-handling code snippets based on inter-procedural analysis, and extracts

frequent contexts from error-handling code snippets that handle the same error as error-handling

rules. During the detection phase, EH-Digger reviews the source code using these learned patterns.

It reports code snippets containing sequences present in the patterns but lacking corresponding

error handling as error-handling bugs.

EH-Digger can analyze target software without the need for compilation. This feature enables

EH-Digger to automatically analyze a larger number of software systems from a software repository.

3.1 Code Representation
EH-Digger learns error-handling rules by extracting frequent code sequences, and detects bugs

by matching the learned code sequences. However, code snippets with the same semantics may

have different syntactic structures. This may affect the error-handling rule extraction as well as the

bug detection. Therefore, we first normalize source code into structured representations based on

Finding 2 and 3 to reduce extraneous information such as variable names. Subsequently, we order

the representations according to their data/control dependencies so that code snippets with the

same semantics will have the same representation sequence.

The normalization process of source code contains two phases. In the first phase, EH-Digger

scans the source code and converts each statement into actions, including 𝐷𝑒𝑐𝑙𝑎𝑟𝑒 , 𝐷𝑒𝑓 𝑖𝑛𝑒 ,𝑈𝑠𝑒 ,

𝐶𝑎𝑙𝑙 , and 𝐶ℎ𝑒𝑐𝑘 . The first three actions have been discussed in Sec. 2.3.2, while the 𝐶𝑎𝑙𝑙 action is

used to record call relations required by the inter-procedural analysis in later steps, and the 𝐶ℎ𝑒𝑐𝑘

action records where the error handling happens. Each action is associated with action-specific

information, which can be represented as tuples. Following are the tuples and examples:

• <Declare, Variable>: “int a” is represented as <Declare, a>;

• <Define, Variable, Other>: “int a = b” is represented as <Declare, a>, <Define, a, b>;

• <Use, Variable, Other>: “a = b->c” is represented as <Define, a, b>, <Use, b, c>, <Use, c, ->;

• <Call, Name>: “a = foo()” is represented as <Define, a, foo>, <Call, foo>;

• <Check, Variable1, Variable2, ...>: “if(a + c > b)” is represented as <Check, a, b, c>.

The first four tuples are straightforward, while the design of the last one is guided by Finding 2.

EH-Digger only traces variables in a check condition, and sorts them in alphabetical order. In the

second phase, all variables will be normalized according to their data types. On the one hand, for

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



Cut to the Chase: An Error-Oriented Approach to Detect Error-Handling Bugs 111:9

variables with basic data types (e.g., 𝑖𝑛𝑡 ), they could only be error prone due to their value, so

EH-Digger traces these variables back to their last assignment and replace them with their assignee.

On the other hand, for variables with complex data types (e.g., 𝐹𝐼𝐿𝐸), EH-Digger replaces these

variables with their data types. Fig 3 shows an example of code representations.

According to Finding 3, changing the order of some code snippets in the code sequence may

not affect the code semantics. As shown in Fig. 3, swapping line 1 with line 2 does not change its

semantics. However, it produces a different code sequence for frequent sequence extraction and

bug detection. We find that the reason why lines 1 and 2 can be re-positioned without affecting

their semantics is that they have no data/control dependencies. Therefore, we sort the obtained

representation sequences according to their data/control dependency. We first construct a directed

graph based on the data/control dependency. Since topological sorting algorithm [8] can convert a

directed graph into a sequence, and ensure that for any directed edge (line 1->3), the source node

(line 1) is sorted in front of the target node (line 3), we use it to convert the dependency graph

into a code sequence. The topological sorting algorithm iterates the graph and finds nodes with an

in-degree of zero. The algorithm puts these found nodes into the sequence, removes them from

the graph, and repeats this process until all nodes in the graph have been put into the sequence.

However, it only guarantees the order between nodes with dependencies. Taking line 1-3 in Fig 3 as

an example, since there is no dependency between line 1 and 2, the topological sorting may result

in two different sequences: <1, 2, 3> and <2, 1, 3>. Therefore, we improve the algorithm by adding

an additional sorting. In each iteration, we put the nodes obtained into the sequence in dictionary

order. It ensures that nodes without dependencies also have a fixed order. After the above sorting,

code sequences with the same semantics are transformed into the same representation sequence.

3.2 Frequent Context Mining
EH-Digger learns patterns from contexts of existing error-handling code snippets, and uses the

learned patterns for bug detection. EH-Digger first conducts program analysis on the AST to

construct data/control dependencies, and extracts contexts of existing error-handling code snippets

accordingly. After that, EH-Digger represents obtained contexts using the method described in

Sec. 3.1, and mining frequent contexts handling the same error.

The main challenge is that an error-handling context may spread across multiple functions. Thus,

EH-Digger has to perform an inter-procedural analysis and avoid the exponential explosion problem

in search space. For example, in Fig. 4, given four functions 𝑓1, 𝑓2, 𝑓3, and 𝑓4, each contains a series

of actions 𝑎𝑖 and calls of other functions. The check in 𝑓2 is a check condition of an error-handling

code snippet, whose context may involve its callers 𝑓1, 𝑓2 and the callees 𝑓3, 𝑓4. In this case, the

context could be “< 𝑎1, 𝑓3, check, 𝑓4, 𝑎2 >”. Among the actions, 𝑎1 and 𝑎2 originate from the caller of

𝑓2, which we refer to as the caller extension, while 𝑎3, 𝑎4 are referred to as the callee extension.
In the caller extension, < 𝑎1 > is in the front of 𝑓2. Thus, we refer to it as caller prefix, while < 𝑎2 >

is referred to as caller suffix.
Notice that we did not extend the callee extension (𝑎3 and 𝑎4) during inter-procedural analysis,

this is because through our experiments, collecting caller extension can retrieve complete contexts

for more than 83.2% of error-handling code snippets. In contrast, collecting callee extensions can

handle the remaining cases, but the efficiency of EH-Digger may drop significantly. In this regard,

collecting callee extensions is optional in EH-Digger and disabled by default.

It is non-trivial to collect caller extensions since a function may have multiple and nested

callers. EH-Digger uses Algorithm 1 to collect caller prefixes. The algorithm contains a recursive

function, CallerPrefix, which returns an empty list if the given function 𝑓 has no caller (line

2-3). Otherwise, for each caller of 𝑓 , EH-Digger first recursively collects the caller prefixes of caller
itself (prefix_of_caller in line 7), then concatenates the action list inside caller before calling 𝑓

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



111:10 Haoran Liu, Zhouyang Jia, *Shanshan Li, Yan Lei, Yue Yu, Yu Jiang, Xiaoguang Mao, and Xiangke Liao

Fig. 4. Example of inter-procedural analysis. Fig. 5. Example of prefix collection.
(prefix_in_caller in line 8-9). Finally, EH-Digger calculates and returns frequent subsequences of

the concatenated action lists for all callers (line 11) by using the PrefixSpan algorithm [35].

We give an example in Fig. 5. Three functions are depicted: 𝑓1, 𝑓2, and 𝑓3. The 𝑝𝑟𝑒 𝑓 𝑖𝑥_𝑣𝑒𝑐𝑡𝑜𝑟 for

functions 𝑓1 and 𝑓2 are empty due to their lack of invocation, resulting in 𝐶𝑎𝑙𝑙𝑒𝑟𝑃𝑟𝑒 𝑓 𝑖𝑥 (𝑓1) and
𝐶𝑎𝑙𝑙𝑒𝑟𝑃𝑟𝑒 𝑓 𝑖𝑥 (𝑓2) being empty as well. For function 𝑓3, its interactions with callers 𝑓1 and 𝑓2 are

analyzed independently (line 6). Specifically, for 𝑓1, we determine 𝑝𝑟𝑒 𝑓 𝑖𝑥_𝑜 𝑓 _𝑓1 =𝐶𝑎𝑙𝑙𝑒𝑟𝑃𝑟𝑒 𝑓 𝑖𝑥 (𝑓1)
(line 7), and identify the 𝑝𝑟𝑒 𝑓 𝑖𝑥_𝑖𝑛_𝑓1 =< 𝑎1, 𝑎2 > (line 8). Therefore, from 𝑓1, we can obtain

𝑝𝑟𝑒 𝑓 𝑖𝑥_𝑣𝑒𝑐 = 𝐶𝑎𝑙𝑙𝑒𝑟𝑃𝑟𝑒 𝑓 𝑖𝑥 (𝑓1) + 𝑝𝑟𝑒 𝑓 𝑖𝑥_𝑖𝑛_𝑓1 =< 𝑎1, 𝑎2 > (line 9). Similarly, for 𝑓2, the anal-

ysis yields a 𝑝𝑟𝑒 𝑓 𝑖𝑥_𝑣𝑒𝑐 =< 𝑎1 >. Upon conducting frequent subsequence mining (line 11),

𝐶𝑎𝑙𝑙𝑒𝑟𝑃𝑟𝑒 𝑓 𝑖𝑥 (𝑓3) is determined to be < 𝑎1 >.

The process of collecting caller suffixes is similar. In this algorithm, caller prefixes and suffixes

of all functions will only be calculated once, thus the explosion problem could be avoided.

Algorithm 1 Collect the Action List of Caller Prefix for a Given Function

Require: Provide a function 𝑓 that contains an error-handling code snippet

Ensure: Return the caller-prefix action list of 𝑓

1: function CallerPrefix(𝑓 )

2: if 𝑓 has no caller then
3: Return an empty list

4: else
5: Declare an empty vector of action list prefix_vec
6: for Each caller in all callers of 𝑓 do
7: Let prefix_of_caller = CallerPrefix(caller)
8: Let prefix_in_caller = action list in caller before calling 𝑓

9: prefix_vec.push(prefix_of_caller.extend(prefix_in_caller))
10: end for
11: Return frequent_subsequence(prefix_vec)
12: end if
13: end function

Finally, EH-Digger employs the PrefixSpan algorithm [35] again to extract frequent subsequences

from error-handling contexts, which are then used as code patterns. Initially, EH-Digger gathers

contexts of code snippets that handle the same error based on normalized check conditions. These

contexts are then provided as input to PrefixSpan. This algorithm produces all subsequences along

with their occurrence frequency. For example, if two action sequences <𝑎1,𝑎2> and <𝑎1> are fed

into the algorithm, the algorithm will return: <𝑎1>, 1; <𝑎2>, 0.5; and <𝑎1, 𝑎2>, 0.5. We chose the

longest sequence that exceeds an occurrence frequency of𝑇𝐻𝑓 as the code pattern. We will evaluate

how to set the threshold 𝑇𝐻𝑓 in Sec 4.3. In this study, the threshold 𝑇𝐻𝑓 is empirically set to 0.7.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



Cut to the Chase: An Error-Oriented Approach to Detect Error-Handling Bugs 111:11

3.3 Error-Handling Bug Detection
Given the previously collected code patterns, EH-Digger can match the patterns in the source code

to check if there is proper error handling. For instance, in Fig. 3, our tool will learn the pattern

“<𝐶𝑎𝑙𝑙, 𝑓 𝑜𝑝𝑒𝑛>...<𝐶ℎ𝑒𝑐𝑘, 𝐹 𝐼𝐿𝐸><𝑈𝑠𝑒, 𝐹 𝐼𝐿𝐸>′′
, the presence of “Call”(line 3) and “Use”(line 8)

without“Check”(line 4) indicates a bug. EH-Digger performs inter-procedural checks while ensuring

path sensitivity. This step also faces the search space explosion problem. To alleviate this challenge,

we adopt a similar method as discussed in Sec. 3.2. Specifically, we perform intra-procedural analysis

in each function and store the found consecutive common subsequences of each code pattern.

When encountering a function call, we use the stored subsequences to replace the function call

instead of performing inter-procedural analysis.

Algorithm 2 Detect Error-Handling Bugs for a Given Code Pattern.

Require: PATTERN: the code pattern (e.g., 𝑎1, 𝑎2, . . . , 𝑎𝑖 , check, 𝑎𝑖+1, ..., 𝑎𝑛)
Ensure: EHB: the set of detected error-handling bugs using PATTERN
1: Let SEQ = the action sequence in PATTERN (e.g., 𝑎1, 𝑎2, . . . , 𝑎𝑖 , 𝑎𝑖+1, ..., 𝑎𝑛)
2: Let CC = the check condition of PATTERN (e.g., check)
3: get_inter_subseq(root_function)
4: // Get inter-procedural subsequences of SEQ and detect bugs when matching SEQ
5: function get_inter_subseq(𝑓 ) -> (subseq_vec, cc_flag)

6: Let subseq_vec = 𝑓 .get_intra_subseq()

7: Let subseq_vec = 𝑓 .filter_checked_subseq(subseq_vec)

8: Let cc_flag = 𝑓 .has_cc() ? true : false

9: for Each callee in 𝑓 .get_callees() do
10: Let (callee_subseq_vec, callee_cc_flag) = get_inter_subseq(callee)
11: if callee_cc_flag then
12: subseq_vec =𝑓 .replace_cc(callee).filter_checked_subseq(subseq_vec)
13: cc_flag |= callee_cc_flag

14: end if
15: subseq_vec = subseq_vec.extend_subseq(callee_subseq_vec)

16: end for
17: subseq_vec.detect_bug()

18: Return (subseq_vec, cc_flag)

19: end function

We demonstrate the detailed algorithm of our detection method in Algorithm 2. For a given

frequent context (e.g., 𝑎1, 𝑎2, . . . , 𝑎𝑖 , check, 𝑎𝑖+1, ..., 𝑎𝑛), the algorithm can find code snippets

that contain the action list but lack of the check as error-handling bugs. EH-Digger first obtains

the action sequence SEQ (line 1) and the check condition CC (line 2) of the context, then calls

the recursive function GET_INTER_SUBSEQ with the root function along the call graph (line 3).

GET_INTER_SUBSEQ can: 1) return subseq_vec containing a vector of inter-procedural subsequences
that continuously match SEQ in the given function; 2) return cc_flag indicating if the given function

or its callees (an error could be handled in a callee function) contains CC; 3) report an error-handling

bug if one element of subseq_vec matches the whole SEQ but lacks of CC at the same time.

In the GET_INTER_SUBSEQ function, EH-Digger first collects a vector of intra-procedural sub-

sequences that continuously match SEQ in 𝑓 (the get_intra_subseq function in line 6). When 𝑓

contains CC, it means 𝑓 has already performed some error handling. Thus, EH-Digger filters out

the subsequences that contain “𝑎𝑖 , check” or “check, 𝑎𝑖+1”, since these subsequences have already

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



111:12 Haoran Liu, Zhouyang Jia, *Shanshan Li, Yan Lei, Yue Yu, Yu Jiang, Xiaoguang Mao, and Xiangke Liao

Fig. 6. Example of error-handling bug detection.

been checked (the filter_checked_subseq function in line 7). Next, EH-Digger gets cc_flag, which
will be returned to the caller of 𝑓 when detecting bugs in the caller (line 8). After that, EH-Digger

recursively collects subseq_vec and cc_flag in all callees of 𝑓 (line 10). If a callee contains CC (line
11), EH-Digger can replace the callee with CC in 𝑓 , and perform the filter process similar to line 7

(line 12). This operation is used to handle the case that an error is handled in a callee function. Then,

EH-Digger updates cc_flag if one of the callees has CC (line 13). In line 15, the extend_subseq function
extends each subsequence in subseq_vec by inserting each subsequence in callee_subseq_vec in the

place where the callee is called, and the extended subsequences that do not continuously match SEQ
will be filtered out. After recursively extending all callees, EH-Digger can detect bugs in subseq_vec
if a subsequence matches SEQ but lacks CC, and save the results in EHB (line 17). Finally, EH-Digger

returns subseq_vec and cc_flag to the caller of 𝑓 .

We provide two examples in Fig. 6 for clarity. We analyze three functions: 𝑓1, 𝑓2, and 𝑓3, where

𝑓1 invokes 𝑓2, and 𝑓2 subsequently calls 𝑓3. Our analysis identifies error handling bugs using two

patterns: 𝑃𝐴𝑇𝑇𝐸𝑅𝑁1 :< 𝑎1, 𝑎2, 𝑐ℎ𝑒𝑐𝑘𝑚, 𝑎3 > and 𝑃𝐴𝑇𝑇𝐸𝑅𝑁2 :< 𝑐ℎ𝑒𝑐𝑘𝑛, 𝑎4 >. For the first pattern,

the sequence of actions 𝑆𝐸𝑄1 =< 𝑎1, 𝑎2, 𝑎3 > (line 1) and the check condition 𝐶𝐶1 = 𝑐ℎ𝑒𝑐𝑘𝑚 (line

2). Within 𝑓1, the algorithm identifies a subsequence 𝑠𝑢𝑏𝑠𝑒𝑞_𝑣𝑒𝑐_𝑓1 =< 𝑎1 > (line 6), and proceeds

to analyze the function it calls, 𝑓2 (line 9). Similarly, the subsequences 𝑠𝑢𝑏𝑠𝑒𝑞_𝑣𝑒𝑐_𝑓2 =< 𝑎3 >,

𝑠𝑢𝑏𝑠𝑒𝑞_𝑣𝑒𝑐_𝑓3 =< 𝑎2 > can be obtained from 𝑓2 and 𝑓3, respectively. Following the extension

process in line 15, we achieve an updated subsequence for 𝑓1: 𝑠𝑢𝑏𝑠𝑒𝑞_𝑣𝑒𝑐_𝑓1 =< 𝑎1, 𝑎2, 𝑎3 >.

Given that 𝑠𝑢𝑏𝑠𝑒𝑞_𝑣𝑒𝑐_𝑓1 encompasses 𝑆𝐸𝑄𝑎 but lacks 𝐶𝐶1, we identify this scenario as an error

handling bug (line 17). In the second pattern analysis, 𝑓3 is found to include 𝑐ℎ𝑒𝑐𝑘𝑛 , leading to

the 𝑓3_𝑐𝑐_𝑓 𝑙𝑎𝑔2 = 𝑇𝑟𝑢𝑒 (line 8). Thus, 𝑐ℎ𝑒𝑐𝑘𝑛 is added to 𝑠𝑢𝑏𝑠𝑒𝑞_𝑣𝑒𝑐_𝑓2 (line 12), and similarly,

to 𝑠𝑢𝑏𝑠𝑒𝑞_𝑣𝑒𝑐_𝑓1. Since 𝑠𝑢𝑏𝑠𝑒𝑞_𝑣𝑒𝑐_𝑓1 contains 𝐶𝐶2, we conclude that it does not lead to an error

handling bug and remove it via the 𝑓 𝑖𝑙𝑡𝑒𝑟_𝑐ℎ𝑒𝑐𝑘𝑒𝑑_𝑠𝑢𝑏𝑠𝑒𝑞 process (line 12).

4 EXPERIMENTS
We conduct experiments to evaluate our approach by answering the following research questions:

• RQ1: Can EH-Digger find real-world bugs?

• RQ2: Does EH-Digger outperform state-of-the-art approaches?

• RQ3: How parameters affect the performance of EH-Digger?

The experiments were conducted on a machine running Linux-18.04 with 64GB of RAM and an

Intel i9-10900K CPU.

4.1 Answer to RQ1: Performance of Real-World Bug Detection
In this part, we evaluate the effectiveness of EH-Digger in detecting real-world bugs through

experiments conducted on the Linux Kernel and open-source applications.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



Cut to the Chase: An Error-Oriented Approach to Detect Error-Handling Bugs 111:13

Table 2. Projects chosen for real-world bug detection.

Domain Name Line Number Sponsor

Operating System

Linux Kernel 6.5 36,780,452 Linux Kernel Organization

Linux Kernel 4.14 25,041,284 Linux Kernel Organization

Development Tool

Bitkeeper 1,236,529 BitMover

HandBrake 254,797 Community

Obs-studio 581,997 NVIDIA, Logitech

Data Transfer Tool Curl 294,521 Haxx

Monitor Netdata 698,838 Cloud Native Computing Foundation (CNCF)

Database Redis 299,660 Redis

Media Player

IJKPlayer 51,495 Bilibili

Vlc 969,331 VideoLAN

Window Manager Mutter 520,673 GNOME Foundation

FTP Bftpd 11,123 Community

Messaging Client Ayttm 108,894 Free Software Foundation (FSF)

4.1.1 Experiment Setup. As shown in Table 2, we evaluate EH-Digger on the Linux Kernel, and 11

open-source applications from 8 domains. These applications have more than 100 stars on GitHub

and are distinct from those in our study. Our evaluation consists of two main parts: detecting new

bugs on the latest version and detecting historically fixed bugs in the historical version. Both newly

confirmed and historical bugs are equivalent, since the tool is not provided with the bug locations.

Our evaluation consists of two main parts. On the one hand, we detect errors in the latest releases

and determine whether we have discovered new bugs by confirming with developers. On the other

hand, we test on historical releases and compare them with the latest ones to determine if we have

identified historical bugs that have been fixed. For the Linux Kernel, we selected its latest release

6.5 and its earliest long-term support release 4.14. For other applications, we chose their latest

releases as well as their earliest ones.

4.1.2 Experiment Result. As shown in Table 3, EH-Digger detected 132 bugs in the Linux Kernel

6.5 with a precision of 91.7% (121/132). Out of these, we chose 20 bugs that we were capable of

fixing and submitted patches to the Linux Kernel. Currently, all of them have been confirmed by

developers. Moreover, in the Linux Kernel 4.14, EH-Digger identified 237 bugs with a precision

of 90.3% (214/237), of which 40 bugs have already been fixed in the latest release. We also applied

EH-Digger on 11 applications, and the results are summarized in Table 3. EH-Digger detected 182

violations with an average precision of 89.6% (163/182). 31 of the violations were historical bugs.

We reported the remaining violations to their respective developers. Up to this point, 33 of these

violations have been confirmed, and the others are still under discussion.

The false positives in EH-Digger can mainly be attributed to four factors. Firstly, 18 cases were

misjudged by EH-Digger due to the lack of certain contexts. In the learning phase, we ignore the

callee extensions. This made a trade-off between context coverage and run-time efficiency to ensure

the feasibility of our method. However, such a balance may lead to the omission of certain contexts,

resulting in erroneous patterns and subsequent false positives. Secondly, 16 cases misjudged by

EH-Digger are caused by incorrect program analysis. Our approach utilizes the AST of the program

to analyze its data/control flow. Since the program does not need to be compiled, we are able to

analyze a broader range of open-source code automatically. However, compared to compiler-based

analysis methods, such as LLVM, the accuracy of our approach during program analysis is lower.

Thirdly, some functions are implemented using indirect calls [21, 28], which makes it difficult to

determine the corresponding functions by static methods. Since EH-Digger does not consider this

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



111:14 Haoran Liu, Zhouyang Jia, *Shanshan Li, Yan Lei, Yue Yu, Yu Jiang, Xiaoguang Mao, and Xiangke Liao

Table 3. Performance in 11 applications.

Precision 𝐵𝑢𝑔𝑁 𝐵𝑢𝑔𝐻 Precision 𝐵𝑢𝑔𝑁 𝐵𝑢𝑔𝐻

Linux Kernel 6.5 91.7% 121 0 Linux Kernel 4.14 90.3% 174 40

Bitkeeper 84.0% 14 7 Redis 92.0% 17 4

Curl 80.8% 19 2 Vlc 91.3% 11 8

Obs-studio 94.4% 16 0 Mutter 100.0% 11 3

IJKPlayer 100% 11 2 Bftpd 83.3% 5 5

Netdata 100% 11 0 Ayttm 85.7% 6 0

HandBrake 100% 11 0

type of call, some contexts are neglected, resulting in 12 false positives. Finally, developers believed

8 bugs did not require handling. We will discuss this in detail in Sec. 5.4.

Result 1: In the Linux Kernel, EH-Digger detected 20 new bugs and 40 historical bugs with

a precision rate of around 91%. On 11 applications, EH-Digger identified 33 new bugs and

31 historical bugs, achieving an average precision of 89.6%. These results demonstrate that

EH-Digger is effective in detecting real-world bugs.

4.2 Answer to RQ2: Comparison with the State-of-the-art
This section presents a comparison of EH-Digger with state-of-the-art approaches. The evaluation

primarily focuses on determining if EH-Digger exhibits higher precision and recall, and if it is able

to identify bugs that cannot be detected by existing state-of-the-art approaches. We assessed these

three approaches in comparison to EH-Digger on two fronts: precision and recall on customized

test sets, and their capacity to identify real-world bugs. Evaluating the precision and recall of

error-handling bug detection can be challenging due to the lack of ground truth. Similar to the

approach taken in previous studies [49], we manually created the test set by injecting error-handling

bugs. It has been proven that general-purpose bug detection techniques cannot be used to detect

error-handling bugs [19, 49], so we compare our approach with the latest error-handling bug

detection techniques. Furthermore, since large language models have been shown to perform

effectively in program repair, we also include them for comparison in our study.

4.2.1 Experiment Setup. For the evaluation on customized test sets, we selected the Linux Kernel

to form the test set as it contains a sufficient amount of error-handling code snippets. We randomly

removed 30 error-handling code snippets to form a test set. To ensure the accuracy of the results,

we constructed 5 different test sets, and took the average precision and recall as the final result. As

for testing on real-world projects, we chose the Linux Kernel and 11 applications used in RQ1 4.1.

We compare EH-Digger with two state-of-the-art error-handling bug detection approaches

EH-Miner [19], ErrHunter [49], and one large language model GLM [11]. EH-Miner is a state-of-

the-art learning-based approach. It identifies functions that are frequently checked by equivalent

check conditions, and mines error-handling rules for these functions to detect error-handling bugs.

ErrHunter is a state-of-the-art template-based approach designed specifically for the Linux Kernel.

It utilizes taint analysis techniques to trace null pointers or general error codes defined within the

Linux Kernel, such as “ENOMEM”. The primary objective of ErrHunter is to detect error-handling

bugs by ensuring the proper handling of these identified features. However, these two approaches

have a limitation in that their analysis is restricted to a certain amount of code because they require

the code to be compiled. Furthermore, ErrHunter does not make its source code publicly available.

Consequently, we evaluated their performance based on their optimal theoretical results. Since

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



Cut to the Chase: An Error-Oriented Approach to Detect Error-Handling Bugs 111:15

Table 4. Comparison in test sets.

Precision Recall F1-score

EH-Miner 72.3% 70.2% 0.71

ErrHunter 92.4% 70.1% 0.80

GLM 62.4% 90.4% 0.74

EH-Digger 91.7% 72.6% 0.81

EH-Miner is a learning-based method, it needs to be trained on a training set first. To ensure

fairness, we deployed EH-Digger on the same training set [19] used by EH-Miner and saved the

learned patterns. This training set does not intersect with the test data used in this paper. GLM is

one of the latest large language models available for complimentary academic use. We conducted

our evaluation using its latest variant, glm-130b. Due to the input limitations of large language

models, we cannot feed the entire code of the tested projects to the model. We input the code of a

single function at a time, accompanied by the following prompt: “This function is from the Linux

Kernel. Are there any error-handling bugs? If so, point out the problem”.

4.2.2 Experiment Result. We first compared the precision and recall of the method on test sets, and

results are shown in Table 4. The average precision and recall achieved by EH-Digger are 91.7%

and 72.6%, respectively. In comparison, EH-Miner reports an average precision of 72.3% and a recall

of 70.2%. The recall of EH-Miner is similar to EH-Digger, but its precision is significantly lower. We

identified two primary reasons for this outcome. Firstly, during the learning process, EH-Digger

traced the error-handling context inter-procedurally. This enabled it to capture the complete context

of errors that are not handled where they occur. This reduced the occurrence of learned incorrect

patterns and resulted in higher precision and recall. Secondly, during the bug detection process,

EH-Miner erroneously identified backward-propagated errors as error-handling bugs. In contrast,

EH-Digger traced the error propagation inter-procedurally to find its failure statement, which

helped to reduce the incidence of false positives and resulted in a higher precision value. ErrHunter

achieved average precision and recall of 92.4% and 70.1%, respectively. In comparison, EH-Digger

had a lower precision value than ErrHunter, but a higher recall. This is because ErrHunter employs

taint analysis to track whether errors are handled inter-procedurally. Even though it requires the

software being analyzed to be compiled, it is more accurate than the AST-based program analysis

method used by EH-Digger. Moreover, ErrHunter is designed specifically for the Linux Kernel,

where it manually specifies features (null pointers and general error codes defined in the Linux

Kernel) are prevalent in the kernel. Thus, although some functions using special error codes cannot

be solved by ErrHunter [49], it still achieved a high recall on test sets. However, similar to other

template-based approaches, such manually summarized patterns are not easily transferable to other

software systems, as we will analyze further in the following experiments. We only provide the

function containing bugs to the GLM. The average precision and recall of GLM are 62.4% and 90.4%,

respectively. While GLM has a high recall in comparison to EH-Digger, its precision is significantly

lower. This difference can be attributed to its predominant intra-procedural analysis. It adds error

handling for nearly all functions that might return exceptional values and parameters, resulting in

a considerable number of false positives.

Subsequently, we compared the ability of state-of-the-art approaches and EH-Digger in detecting

real-world bugs by analyzing the bugs detected on the Linux Kernel and applications.

1) On the Linux Kernel, EH-Digger identified 40 historical bugs and 20 new bugs. Experimental

results are presented in Fig. 7. 20 bugs could not be found by EH-Miner. There are two main reasons

for this outcome. Firstly, EH-Miner focuses on API calls. Since the Linux Kernel does not use

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



111:16 Haoran Liu, Zhouyang Jia, *Shanshan Li, Yan Lei, Yue Yu, Yu Jiang, Xiaoguang Mao, and Xiangke Liao

Fig. 7. Comparison in Linux Kernel. Fig. 8. Comparison in applications.

Fig. 9. Examples of false negatives in learning based
approaches.

Fig. 10. Examples of false positives in learning based
approaches.

any libraries, EH-Miner treats each subsystem (e.g., fs/ext4) as an independent project, considers

functions called across multiple projects as API calls, and learns their error handling. This causes

functions exclusive to one subsystem to be overlooked and results in 9 false negatives. Secondly,

EH-Miner focuses on the handling of a single call and employs an intra-procedural method, which

makes it difficult to learn complex error-handling contexts or inter-procedural cases and thus leads

to 3 false negatives. Furthermore, we analyzed the bugs detected by EH-Miner, and found that EH-

Digger could not identify 2 out of 42 bugs. These 2 false negatives are caused by incorrect program

analysis, as EH-Digger traces the data/control flow without compiling the program, making it more

susceptible to producing erroneous results than the compile-based approach used by EH-Miner.

ErrHunter could identify 48 out of the 60 bugs. The remaining 12 bugs were missed since they were

not associated with null pointers or general error codes defined in the Linux Kernel. Since ErrHunter

did not open source their code, we can only compare it with the 25 reported bugs mentioned in

their paper. 20 of these 25 bugs are resource leak bugs. Such bugs are not the error-handling bugs

discussed in this paper, so we only check the remaining 5 bugs. EH-Digger is able to detect 2 of these

bugs, as the remaining 3 bugs have never been handled before and therefore cannot be addressed

by learning-based approaches. We provided functions with error-handling bugs to GLM. It detected

51 out of the 60 bugs and 4 bugs that EH-Digger failed to detect. These 4 bugs are overlooked

by EH-Digger because they are not been handled before. However, because GLM often identifies

unchecked parameters or return values as error-handling bugs, it generated 27 false positives while

analyzing these 60 functions.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



Cut to the Chase: An Error-Oriented Approach to Detect Error-Handling Bugs 111:17

2) On the 11 applications, EH-Digger correctly identified 163 bugs, 30.1% (49/163) of these bugs

were not detected by comparative approaches. Results are shown in Fig. 8. EH-Miner only covered

58.3% (95/163) of the bugs detected by EH-Digger, which is caused by the same two reasons we

discussed above. Notably, In Bftpd, EH-Miner found 2 more violations than EH-Digger. These

2 violations are missed by EH-Digger due to incorrect program analysis. As for ErrHunter, its

performance on these applications significantly declined, covering only 32.5% (53/163) of the bugs

detected by EH-Digger. This is because, in most applications, developers often return values such

as “False”, “-1”, instead of specific error codes. Determining which values represent errors is not

easy, as the same return value may represent different states. Methods based on manually specified

features are difficult to solve such cases, thus the performance of ErrHunter shows a significant

degradation. We provided functions with error-handling bugs to GLM. GLM identified 63.2% (103

out of 163) of the bugs detected by EH-Digger and 17 bugs that EH-Digger fail to detect. However,

on this provided 163 functions, GLM produced 44 false positives. These false positives could be

attributed to its tendency to consider any unchecked return values or parameters as a potential

error-handling bug. Such a low accuracy rate also proves that GLM cannot be directly applied to

bug detection for the entire software system. If excluding GLM, there are 37.4% (61/163) of bugs

found by EH-Digger cannot be found by existing approaches.

To help understand the contribution of EH-Digger, we conducted case studies on the false pos-

itives and false negatives of existing approaches, respectively. On the one hand, Fig. 9 shows

a historical bug successfully identified by EH-Digger. This bug is missed by all comparative

approaches. The return value of 𝑝𝑙𝑎𝑡 𝑓 𝑜𝑟𝑚_𝑔𝑒𝑡_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 is usually examined and handled in

𝑑𝑒𝑣𝑚_𝑖𝑜𝑟𝑒𝑚𝑎𝑝_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 . Existing approaches are failed to learn this pattern, and thus miss the

bug. On the other hand, the differences between EH-Digger and existing tools are not just inter-

procedural and intra-procedural. Existing approaches may learn that there should be an error

handling after someplace, but it is hard to know the deadline of the handling (i.e., the handling

should be performed before someplace). Fig. 10 illustrates a false positive reported by all compara-

tive approaches. The return value of 𝑑𝑒𝑏𝑢𝑔𝑓 𝑠_𝑐𝑟𝑒𝑎𝑡𝑒_𝑑𝑖𝑟 propagates through 4 functions (line 3, 6,

9, 12). It does not need to be handled until 𝑑_𝑖𝑛𝑜𝑑𝑒 is called. In such a complex situation, existing

approaches cannot determine the deadline of error handling, so they usually assume that the error

needs to be handled as soon as it occurs, thus often producing false positives.

Result 2: 30.1% (49/163) of the bugs detected by EH-Digger in these applications cannot

be detected by any comparative approaches. In the Linux Kernel, EH-Digger outperforms

EH-Miner and GLM, and achieves similar performance compared with ErrHunter, which is

specifically designed for the Linux Kernel based on template. In other applications, 67.5%

(110/163) of the bugs identified by EH-Digger cannot be detected by ErrHunter. EH-Digger

can serve as a complementary approach in detecting error-handling bugs.

4.3 Answer to RQ3: Impact of Parameters
EH-Miner requires two parameters to be pre-defined, namely 𝑇𝐻𝑠𝑐𝑜𝑟𝑒 (in Sec. 2.1.2) and 𝑇𝐻𝑓 (in

Sec. 3.2). 𝑇𝐻𝑠𝑐𝑜𝑟𝑒 influences the collection of error-handling code snippets during the learning

process, while 𝑇𝐻𝑓 affects the extraction of code patterns. Both parameters may impact the per-

formance of EH-Miner. In this section, we evaluate the effect of varying 𝑇𝐻𝑠𝑐𝑜𝑟𝑒 and 𝑇𝐻𝑓 on the

performance of EH-Digger.

4.3.1 Experiment Setup. We applied EH-Digger to the test set discussed in Sec. 4.1 and evaluated its

precision and recall under different parameter values for𝑇𝐻𝑠𝑐𝑜𝑟𝑒 and𝑇𝐻𝑓 . We iterate the parameter

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



111:18 Haoran Liu, Zhouyang Jia, *Shanshan Li, Yan Lei, Yue Yu, Yu Jiang, Xiaoguang Mao, and Xiangke Liao

(a) Precision (b) Recall

Fig. 11. Precision and recall of EH-Digger under different parameters.

𝑇𝐻𝑠𝑐𝑜𝑟𝑒 and 𝑇𝐻𝑓 from 0.1 to 1 with a step length of 0.1. To facilitate comparison, we prefer an

overall metric that considers both precision and recall for ease of comparison. The most common

practice is to use the 𝐹1𝑠𝑐𝑜𝑟𝑒 , which is the harmonic mean of precision and recall.

4.3.2 Experiment Result. The results are shown in Fig 11. The average precision ranges from 0.07

to 0.82, while the average recall ranges from 0.05 to 0.94. A low value of 𝑇𝐻𝑠𝑐𝑜𝑟𝑒 may result in

selecting non-error-handling code segments for learning, leading to a lower precision and recall

for the method. Conversely, a high value of 𝑇𝐻𝑠𝑐𝑜𝑟𝑒 may cause some error-handling code snippets

to be ignored, resulting in their error-handling contexts not being learned and a decreased recall.

𝑇𝐻𝑓 represents the number of cases that support the learned pattern. If𝑇𝐻𝑓 is too low, the learned

pattern may be inaccurate, while a value that is too high may cause correct patterns to be filtered

out. When 𝑇𝐻𝑠𝑐𝑜𝑟𝑒 is set to 0.4 and 𝑇𝐻𝑓 to 0.7, EH-Miner achieves its highest 𝐹𝑠𝑐𝑜𝑟𝑒 0.81, with the

average precision and recall being 91.7% and 72.6%, respectively.

Result 3: With 𝑇𝐻𝑠𝑐𝑜𝑟𝑒 and 𝑇𝐻𝑓 set to 0.4 and 0.7, respectively, EH-Digger achieved

an average precision of 91.7% and an average recall of 72.6% on test sets. These results

demonstrate the effectiveness of EH-Digger in detecting error-handling bugs.

5 DISCUSSION
5.1 Obtaining Error-Handling Code Snippets
EH-Digger considers code snippets that contain error logs as the sampling of all error-handling

code. The precision of error log detection may impact the performance of EH-Digger. To this end,

EH-Digger supports users to describe the error log using the log function name and the keyword

of the log content. Since error logs in software usually follow a fixed format, the use of such a

description method can yield accurate results. Furthermore, we sampled 20 functions as the test set,

and repeated the test in 3 different applications. By using no more than 6 keywords provided by

the user, EH-Digger successfully identified an average of 66.4% of all error-handling code snippets.

After learning their distinctive features (Sec. 2.1.2), EH-Digger achieved an average detection rate of

83.9% for all error-handling code snippets. While more advanced NLP techniques could potentially

enhance the number of identified error-handling code snippets, we adopted this simpler approach

to reduce method complexity and improve runtime efficiency.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



Cut to the Chase: An Error-Oriented Approach to Detect Error-Handling Bugs 111:19

5.2 Constructing Data-Flow and Control-Flow Dependencies
To trace error-handling context and detect error-handling bugs, EH-Digger conducts program

analysis on the AST to construct data/control-flow dependencies. This design allows EH-Digger

to analyze code without the need to compile the target project, and thereby can be applied to

more projects automatically. This approach may generate more erroneous results compared to

tools requiring compilation, such as LLVM. This is a trade-off between precision and scalability.

According to the results of our experiments in Sec. 4.1 and Sec. 4.2, the number of mistakes caused

by program analysis is comparatively low (16 false positives and 2 false negatives) since our

learning-based method can tolerate a limited number of erroneous results. At present, EH-Digger

is implemented exclusively for C/C++.EH-Digger employs tree-sitter [5] to obtain the AST of the

code. Since tree-sitter supports more than 20 programming languages, EH-Digger can be easily

adapted to other programming languages with minimal code modifications.

5.3 Tracing Error-Handling Context
As inter-procedural methods are prone to space explosion, we only collect caller extensions when

tracing the error-handling context. This may lead to the omission of certain contexts. To assess the

impact of this omission, we conducted an investigation into error-handling contexts. Our results

show that EH-Digger can retrieve complete contexts for more than 83.2% of the error-handling

code snippets. In contrast, to obtain the complete context of the remaining 16.8%, the execution

efficiency of EH-Digger will drop significantly, sometimes by hundreds of times or even unfeasible.

The results in Sec. 4.1 also demonstrate that omitting these contexts has a negligible impact on

EH-Digger performance (causing 18 false positives as discussed in Sec. 4.1.2). Therefore, to prioritize

execution efficiency and maintain feasibility, we decided to discard these contexts.

5.4 Oracle of Detecting Error-Handling Bug
We label code snippets as buggy if they contain action sequences from learned patterns but lack

handling (Sec. 3.3). There are 2 possible error scenarios for such an oracle. First, the learned pattern

may be incorrect. This situation is usually due to the trade-off we made during the learning phase

(as discussed in Sec. 5.3) or an error in static analysis. In our experiments, this case is considered as

a false positive. Specifically, these accounted for 3 out of 16 false positives attributable to static

analysis errors (Sec. 4.1.2) and 18 false positives attributable to the trade-off. This low incidence

rate is a testament to our method’s robustness in pattern mining, which leverages the mining of

frequent subsequences to ensure that even when irrelevant actions are included, their influence on

the pattern remains minimal. Second, developers may think that some error handling is unnecessary.

For example, in situations deemed critical—such as a program running out of memory—developers

might opt to restart the system rather than writing error-handling code, believing it to be the most

effective solution. Conversely, in cases involving simple code snippets with limited input, such as

examples or pre-processing scripts, developers may also view error handing as superfluous. During

the process of submitting issues to developers, we identified 8 instances that fell into this category.

6 RELATEDWORK
6.1 Error-Handling Bug Detection
Existing approaches of error-handling bug detection can be classified into two classes: approaches

based on manually constructed templates/error specifications, and learning-based approaches. For

the first class, these approaches usually begin with a study from a particular perspective, summarize

their common categories, and then design patterns for each category. Tian and Ray. [42] and

Jana et al. [16] classified error-handling bugs into several types and design templates accordingly.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



111:20 Haoran Liu, Zhouyang Jia, *Shanshan Li, Yan Lei, Yue Yu, Yu Jiang, Xiaoguang Mao, and Xiangke Liao

Pakki et al. [34] studied bugs where the error is handled at an over-severe level, Wu et al. [46]

studied disordered error handling, while Li et al. [26] summarized the frequent error handling of

SSL library. Some existing approaches [40, 47–49] focused on more specific features, such as null

pointers, special error codes, and user inputs. The above approaches require significant domain

knowledge from the constructors, and are hard to accommodate the software evolution. Conversely,

learning-based approaches usually use the existing error-handling code snippets to derive templates

or error specifications. Some existing approaches [1, 26, 45, 50] examined differences between

normal paths and error paths using features such as the length and return expressions. Similarly,

Zhong et al. [51], DeFreez et al. [9], Liu et al [27], and Lu et al. [29] also predict the error branch.

Jia et al. [19] focused on the equivalence of check conditions, and Shen et al. [39] concentrated on

particular functions and pointers. Although these approaches have achieved decent results, they

mainly learn API calls near error-handling code snippets. As discussed in Sec. 2.2, errors may not

be handled where they occur, making it hard for existing learning-based approaches to accurately

establish the correlation between the error and its handling code snippets.

6.2 Exception-Handling Bug Detection
There is a long line of research that focuses on exception-handling mechanisms [3], which are

built-in features in many programming languages, such as Java and Python. Existing approaches

focus on this problem from two perspectives: whether a correct exception is thrown, and whether

the thrown exceptions are properly handled. For the former, Jia et al. [18] studied problems caused

by ungraceful exits. ExAssist [32] recommends repairing actions based on machine learning model.

Bouzenia et al. [4], Zhong [50], and Chen [6] studied the inconsistency of the error with the thrown

exception. Weimer et al. [43, 44] presented a data-flow analysis for finding whether a certain type

of exception is properly handled. For the second class, Oliveira et al. [33] conducted an empirical

study on the relationship between the usage of Android abstractions and uncaught exceptions.

Gu et al. [12] expanded the intrinsic capability of runtime error resilience in software systems.

Barbosa et al. [2] presented a tool to recommend repairs with awareness of the global context. Yan

et al. [24, 30] improved fault localization effectiveness based on a slice-based approach. These works

focus on exception-handling mechanisms like try-catch statements, while EH-Digger detects bugs

for error handling of variable constrain violation, which is widely used in languages like C/C++.

7 CONCLUSION
Existing learning-based approaches on error-handling bug detection only learn API calls near

error-handling code snippets, which makes them hard to learn the real reasons for the error-

handling code in many cases. To address such problems, we propose EH-Digger, an error-oriented

approach that learns from the error-handling context of existing error-handling code snippets and

detects error-handling bugs accordingly. We applied EH-Digger to the Linux Kernel and 11 mature

applications. EH-Digger detects error-handling bugs with a precision of 91.7%. It detected 20 new

bugs and 40 historical bugs in the Linux Kernel, 33 new bugs and 31 historical bugs. 30.1% bugs

detected by EH-Digger cannot be detected by state-of-the-art approaches. It can serve as a valuable

complementary approach in detecting error-handling bugs.

8 DATA AVAILABILITY
The source code and dataset can be found in the repository: https://github.com/EH-Digger/EH-Digger.

ACKNOWLEDGMENTS
This research was funded by NSFC No. 62272473, the Science and Technology Innovation Program

of Hunan Province (No.2023RC1001) and NSFC No.62202474.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



Cut to the Chase: An Error-Oriented Approach to Detect Error-Handling Bugs 111:21

REFERENCES
[1] Mithun Acharya and Tao Xie. 2009. Mining API error-handling specifications from source code. In International

Conference on Fundamental Approaches to Software Engineering. Springer, 370–384.
[2] Eiji Adachi Barbosa and Alessandro Garcia. 2018. Global-aware recommendations for repairing violations in exception

handling. In Proceedings of the 40th International Conference on Software Engineering. 858–858.
[3] Pan Bian, Bin Liang, Yan Zhang, Chaoqun Yang, Wenchang Shi, and Yan Cai. 2018. Detecting bugs by discovering

expectations and their violations. IEEE Transactions on Software Engineering 45, 10 (2018), 984–1001.

[4] Islem Bouzenia. 2022. Detecting Inconsistencies in If-Condition-Raise Statements. In 37th IEEE/ACM International
Conference on Automated Software Engineering. 1–3.

[5] M. Brunsfeld. 2023. Tree-sitter. https://tree-sitter.github.io/tree-sitter/ Accessed 1. October 2021.

[6] Haicheng Chen. 2021. Combating Fault Tolerance Bugs in Cloud Systems. The Ohio State University.

[7] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and M Frans Kaashoek. 2011. Linux kernel

vulnerabilities: State-of-the-art defenses and open problems. In Proceedings of the Second Asia-Pacific Workshop on
Systems. 1–5.

[8] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2022. Introduction to algorithms. MIT

press.

[9] Daniel DeFreez, Haaken Martinson Baldwin, Cindy Rubio-González, and Aditya V Thakur. 2019. Effective error-

specification inference via domain-knowledge expansion. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering. 466–476.

[10] Daniel DeFreez, Antara Bhowmick, Ignacio Laguna, and Cindy Rubio-González. 2020. Detecting and reproducing

error-code propagation bugs in MPI implementations. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. 187–201.

[11] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. GLM: General Language

Model Pretraining with Autoregressive Blank Infilling. (2022), 320–335.

[12] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Jian Lü, and Zhendong Su. 2016. Automatic runtime recovery via error

handler synthesis. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering.
684–695.

[13] Haryadi S Gunawi, Cindy Rubio-González, Andrea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau, and Ben Liblit. 2008.

EIO: Error Handling is Occasionally Correct.. In FAST, Vol. 8. 1–16.
[14] Foyzul Hassan, Chetan Bansal, Nachiappan Nagappan, Thomas Zimmermann, and Ahmed Hassan Awadallah. 2020. An

empirical study of software exceptions in the field using search logs. In Proceedings of the 14th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). 1–12.

[15] Benjamin Jakobus, Eiji Adachi Barbosa, Alessandro Garcia, and Carlos José Pereira De Lucena. 2015. Contrasting

exception handling code across languages: An experience report involving 50 open source projects. In 2015 IEEE 26th
International Symposium on Software Reliability Engineering (ISSRE). IEEE, 183–193.

[16] Suman Jana, Yuan Jochen Kang, Samuel Roth, and Baishakhi Ray. 2016. Automatically Detecting Error Handling Bugs

Using Error Specifications.. In USENIX Security Symposium. 345–362.

[17] Zhouyang Jia, Shanshan Li, Xiaodong Liu, Xiangke Liao, and Yunhuai Liu. 2018. SMARTLOG: Place error log statement

by deep understanding of log intention. In 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 61–71.

[18] Zhouyang Jia, Shanshan Li, Tingting Yu, Xiangke Liao, and Ji Wang. 2019. Automatically detecting missing cleanup

for ungraceful exits. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 751–762.

[19] Zhouyang Jia, Shanshan Li, Tingting Yu, Xiangke Liao, Ji Wang, Xiaodong Liu, and Yunhuai Liu. 2019. Detecting

error-handling bugs without error specification input. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 213–225.

[20] Yuan Kang, Baishakhi Ray, and Suman Jana. 2016. Apex: Automated inference of error specifications for c apis. In

Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering. 472–482.
[21] Sun Hyoung Kim, Cong Sun, Dongrui Zeng, and Gang Tan. 2021. Refining Indirect Call Targets at the Binary Level.. In

NDSS.
[22] Jean-Claude Laprie. 1995. Dependable computing: Concepts, limits, challenges. In Special issue of the 25th international

symposium on fault-tolerant computing. Citeseer, 42–54.
[23] Julia Lawall, Ben Laurie, René Rydhof Hansen, Nicolas Palix, and Gilles Muller. 2010. Finding error handling bugs in

openssl using coccinelle. In 2010 European Dependable Computing Conference. IEEE, 191–196.
[24] Yan Lei, Chengnian Sun, Xiaoguang Mao, and Zhendong Su. 2018. How test suites impact fault localisation starting

from the size. IET software 12, 3 (2018), 190–205.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.

https://tree-sitter.github.io/tree-sitter/


111:22 Haoran Liu, Zhouyang Jia, *Shanshan Li, Yan Lei, Yue Yu, Yu Jiang, Xiaoguang Mao, and Xiangke Liao

[25] Chi Li, Min Zhou, Zuxing Gu, Ming Gu, and Hongyu Zhang. 2019. Ares: Inferring error specifications through static

analysis. In 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 1174–1177.
[26] Chi Li, Min Zhou, Xinrong Han, and Ming Gu. 2021. Sensing Error Handling Bugs in SSL Library Usages. In 2021

IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). IEEE,
686–692.

[27] Huqiu Liu, Yuping Wang, Lingbo Jiang, and Shimin Hu. 2014. PF-Miner: A new paired functions mining method for

Android kernel in error paths. In 2014 IEEE 38th Annual Computer Software and Applications Conference. IEEE, 33–42.
[28] Kangjie Lu and Hong Hu. 2019. Where does it go? refining indirect-call targets with multi-layer type analysis. In

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. 1867–1881.
[29] Kangjie Lu Lu, Aditya Pakki, and Qiushi Wu. 2019. Detecting missing-check bugs via semantic-and context-aware

criticalness and constraints inferences. In Proceedings of the 28th USENIX Conference on Security Symposium.

[30] Xiaoguang Mao, Yan Lei, Ziying Dai, Yuhua Qi, and Chengsong Wang. 2014. Slice-based statistical fault localization.

Journal of Systems and Software 89 (2014), 51–62.
[31] Paul D Marinescu and George Candea. 2009. LFI: A practical and general library-level fault injector. In 2009 IEEE/IFIP

International Conference on Dependable Systems & Networks. IEEE, 379–388.
[32] Tam Nguyen, Phong Vu, and Tung Nguyen. 2019. Recommending exception handling code. In 2019 IEEE International

Conference on Software Maintenance and Evolution (ICSME). IEEE, 390–393.
[33] Juliana Oliveira, Deise Borges, Thaisa Silva, Nelio Cacho, and Fernando Castor. 2018. Do android developers neglect

error handling? amaintenance-Centric study on the relationship between android abstractions and uncaught exceptions.

Journal of Systems and Software 136 (2018), 1–18.
[34] Aditya Pakki and Kangjie Lu. 2020. Exaggerated error handling hurts! an in-depth study and context-aware detection.

In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. 1203–1218.
[35] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto, Qiming Chen, Umeshwar Dayal, and Mei-

Chun Hsu. 2004. Mining sequential patterns by pattern-growth: The prefixspan approach. IEEE Transactions on
knowledge and data engineering 16, 11 (2004), 1424–1440.

[36] Genymobile R. Vimont. 2023. Scrcpy utility. https://github.com/Genymobile/scrcpy Accessed 1. March 2023.

[37] Martin P Robillard and Gail C Murphy. 2000. Designing robust Java programs with exceptions. In Proceedings of the 8th
ACM SIGSOFT international symposium on Foundations of software engineering: twenty-first century applications. 2–10.

[38] Cindy Rubio-González, Haryadi S Gunawi, Ben Liblit, Remzi H Arpaci-Dusseau, and Andrea C Arpaci-Dusseau. 2009.

Error propagation analysis for file systems. In Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 270–280.

[39] Qintao Shen, Hongyu Sun, Guozhu Meng, Kai Chen, and Yuqing Zhang. 2023. Detecting API Missing-Check Bugs

Through Complete Cross Checking of Erroneous Returns. In International Conference on Information Security and
Cryptology. Springer, 391–407.

[40] Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov. 2011. Rolecast: finding missing security checks when you do

not know what checks are. In Proceedings of the 2011 ACM international conference on Object oriented programming
systems languages and applications. 1069–1084.

[41] Wensheng Tang. 2019. Identifying error code misuses in complex system. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 428–432.

[42] Yuchi Tian and Baishakhi Ray. 2017. Automatically diagnosing and repairing error handling bugs in c. In Proceedings
of the 2017 11th joint meeting on foundations of software engineering. 752–762.

[43] Westley Weimer. 2004. Finding and preventing run-time error handling mistakes. In Proceedings of the 19th annual
ACM SIGPLAN Conference on Object-oriented programming, systems, languages, and applications. 419–431.

[44] Westley Weimer and George C Necula. 2008. Exceptional situations and program reliability. ACM Transactions on
Programming Languages and Systems (TOPLAS) 30, 2 (2008), 1–51.

[45] Baijun Wu, John Peter Campora III, Yi He, Alexander Schlecht, and Sheng Chen. 2019. Generating precise error

specifications for c: A zero shot learning approach. Proceedings of the ACM on Programming Languages 3, OOPSLA
(2019), 1–30.

[46] Qiushi Wu, Aditya Pakki, Navid Emamdoost, Stephen McCamant, and Kangjie Lu. 2021. Understanding and detecting

disordered error handling with precise function pairing. In the 30th USENIX Security Symposium (Security’21).
[47] Xuezheng Xu, Yulei Sui, Hua Yan, and Jingling Xue. 2019. VFix: value-flow-guided precise program repair for null

pointer dereferences. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 512–523.
[48] Fabian Yamaguchi, Christian Wressnegger, Hugo Gascon, and Konrad Rieck. 2013. Chucky: Exposing missing

checks in source code for vulnerability discovery. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. 499–510.

[49] Dongyang Zhan, Xiangzhan Yu, Hongli Zhang, and Lin Ye. 2022. ErrHunter: Detecting Error-Handling Bugs in the

Linux Kernel Through Systematic Static Analysis. IEEE Transactions on Software Engineering 49, 2 (2022), 684–698.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.

https://github.com/Genymobile/scrcpy


Cut to the Chase: An Error-Oriented Approach to Detect Error-Handling Bugs 111:23

[50] Hao Zhong. 2022. Which Exception Shall We Throw?. In Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering. 1–12.

[51] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. 2009. Inferring resource specifications from natural language API

documentation. In 2009 IEEE/ACM International Conference on Automated Software Engineering. IEEE, 307–318.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.


	Abstract
	1 Introduction
	2 Understanding the Error-Handling Context
	2.1 Study Methodology
	2.2 What are the limitations of existing approaches
	2.3 How can we overcome them in the new design

	3 EH-Digger Design
	3.1 Code Representation
	3.2 Frequent Context Mining
	3.3 Error-Handling Bug Detection

	4 EXPERIMENTS
	4.1 Answer to RQ1: Performance of Real-World Bug Detection
	4.2 Answer to RQ2: Comparison with the State-of-the-art
	4.3 Answer to RQ3: Impact of Parameters

	5 Discussion
	5.1 Obtaining Error-Handling Code Snippets
	5.2 Constructing Data-Flow and Control-Flow Dependencies
	5.3 Tracing Error-Handling Context
	5.4 Oracle of Detecting Error-Handling Bug

	6 Related Work
	6.1 Error-Handling Bug Detection
	6.2 Exception-Handling Bug Detection

	7 Conclusion
	8 Data Availability
	References

