
Bridging Pre-trained Models and Downstream Tasks for Source
Code Understanding

Deze Wang
National University of Defense

Technology
Changsha, Hunan, China
wangdeze14@nudt.edu.cn

Zhouyang Jia∗
National University of Defense

Technology
Changsha, Hunan, China
jiazhouyang@nudt.edu.cn

Shanshan Li∗
National University of Defense

Technology
Changsha, Hunan, China
shanshanli@nudt.edu.cn

Yue Yu
National University of Defense

Technology
Changsha, Hunan, China

yuyue@nudt.edu.cn

Yun Xiong
Fudan University
Shanghai, China

yunx@fudan.edu.cn

Wei Dong
National University of Defense

Technology
Changsha, Hunan, China
wdong@nudt.edu.cn

Xiangke Liao
National University of Defense

Technology
Changsha, Hunan, China

xkliao@nudt.edu.cn

ABSTRACT
With the great success of pre-trained models, the pretrain-then-
finetune paradigm has been widely adopted on downstream tasks
for source code understanding. However, compared to costly train-
ing a large-scale model from scratch, how to effectively adapt pre-
trained models to a new task has not been fully explored. In this
paper, we propose an approach to bridge pre-trained models and
code-related tasks. We exploit semantic-preserving transformation
to enrich downstream data diversity, and help pre-trained models
learn semantic features invariant to these semantically equivalent
transformations. Further, we introduce curriculum learning to or-
ganize the transformed data in an easy-to-hard manner to fine-tune
existing pre-trained models.

We apply our approach to a range of pre-trained models, and
they significantly outperform the state-of-the-art models on tasks
for source code understanding, such as algorithm classification,
code clone detection, and code search. Our experiments even show
that without heavy pre-training on code data, natural language pre-
trained model RoBERTa fine-tuned with our lightweight approach
could outperform or rival existing code pre-trained models fine-
tuned on the above tasks, such as CodeBERT and GraphCodeBERT.
This finding suggests that there is still much room for improvement
in code pre-trained models.

∗Zhouyang Jia and Shanshan Li are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510062

CCS CONCEPTS
• Computing methodologies→ Supervised learning; Artificial
intelligence.

KEYWORDS
fine-tuning, data augmentation, curriculum learning, test-time aug-
mentation

ACM Reference Format:
Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun Xiong, Wei Dong,
and Xiangke Liao. 2022. Bridging Pre-trained Models and Downstream
Tasks for Source Code Understanding. In 44th International Conference on
Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3510003.3510062

1 INTRODUCTION
Large-scale models, such as BERT [9], RoBERTa [26], GPT-3 [5],
T5 [37], and BART [23], have greatly contributed to the develop-
ment of the field of natural language processing (NLP), and gradu-
ally form the pretrain-then-finetune paradigm. The basic idea of
this paradigm is to first pre-train a model on large general-purpose
datasets by self-supervised tasks, e.g., masking tokens in training
data and asking the model to guess the masked tokens. The trained
model is then fine-tuned on smaller and more specialized datasets,
each designed to support a specific task. The success of pre-trained
models in the natural language domain has also spawned a series
of pre-trained models for programming language understanding
and generation, including CodeBERT [11], GraphCodeBERT [13],
PLBART [2], and the usage of T5 to support code-related tasks [28],
improving the performance of a variety of source code understand-
ing and generation tasks.

However, pre-training a large-scale model from scratch is costly.
Additionally, along with an increasing number of pre-trained mod-
els, how to effectively adapt these models for a new task is not fully

https://doi.org/10.1145/3510003.3510062
https://doi.org/10.1145/3510003.3510062

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun Xiong, Wei Dong, and Xiangke Liao

exploited. In this paper, we try to take the first step to bridge large
pre-trained models and code-related downstream tasks. Moreover,
despite the success of existing pre-trained models for code-related
tasks, these models have two potential issues. First, these models
graft NLP pre-training techniques to understand the semantics of
source code, however, the semantics of programming language and
natural language are essentially different, and semantically equiv-
alent source code may be in various syntactic forms. The second
issue is that pre-trained models typically have at least millions of
parameters, so when a pre-trained model is applied to downstream
tasks with specialized datasets, there is a risk of overfitting because
the model is over-parameterized for the target dataset. McCoy et
al. [30] find that many models, including BERT, overuse syntactic
heuristic information in natural language inference task, e.g. asso-
ciating irrelevant sentences due to the lexical overlap, resulting in
good performance for the wrong reasons. Many studies have also
found that when the test set is different from the actual scene or
the test set is slightly perturbed, various models for source code
would make mistakes [35, 38, 54].

To address the above issues, we design a lightweight approach
on top of the existing pre-trained language model fine-tuning para-
digm, that satisfies (1) extracting code semantic knowledge embed-
ded in diverse syntactic forms and complementing it to pre-trained
models, (2) reducing overfitting to the target dataset and being more
robust in testing. In order to incorporate semantic knowledge of the
programming languages into models, we employ data augmenta-
tion, which is mainly used to enrich the training dataset and make
it as diverse as possible. There are many successful applications of
data augmentation in the field of image processing, such as random
cropping [21], flipping [43] and dropout [45]. For code data, this
paper considers semantic-preserving transformation. An example
of code transformation is shown in Fig. 1, where the same program
is transformed three times successively, keeping the semantics un-
changed. Since the semantics of the original program are preserved,
it is logical that the model should have the same behavior as the
original program for the program generated by the transformation
techniques. Moreover, it is cheap to leverage a source-to-source
compiler [3] to perform semantic-preserving transformations on
source code. Thus, without additional labelled data, diverse data are
created through semantic-preserving transformations. The transfor-
mations also introduce semantic knowledge into the model learning
process, allowing the model to learn semantically invariant code
features rather than relying on syntax and implementation details.

In this paper, we build our approach on a series of large-scale
pre-trained models, including natural language pre-trained model
RoBERTa and code pre-trained models CodeBERT and GraphCode-
BERT, to bridge pre-trained models with downstream tasks for
source code. We first construct semantic-preserving transforma-
tion sequences and apply them to original training samples, as in
Fig. 1, to generate new training data and introduce code seman-
tic knowledge into models. The transformation sequences make
code transformations more complicated and could guide models to
better learn the underlying semantics of the code. These training
data are then fed to pre-trained models to fine-tune the models.
Finally, in order to make full use of the features learned from se-
mantically equivalent transformations during the training process,
we augment the test sets with the same augmentation techniques

as the training sets to obtain multiple transformed test sets. In this
way, the transformations that appear during testing would act like
prompts and help the model make accurate predictions more easily.
To further reduce overfitting from the training process, we aver-
age the model performance on these test sets. Since our method
averages the predictions from various transformation versions for
any code snippet in test sets, the final predictions are robust to any
transformation copy.

The transformed data significantly increase the data diversity,
however, they can also be considered as adversarial examples com-
pared to the original data [36, 38]. Fig. 1 shows the original program
and programs after multiple code transformations. As the number
of transformations increases, new tokens and syntactic forms are
introduced, and the distribution of transformed data becomes more
distinct from that of original data, making it more difficult to learn.
To solve this issue, we introduce Curriculum Learning (CL) [29]
and present training examples in an easy-to-hard manner, instead
of a completely random order during training. Many studies have
shown that it benefits the learning process not only for humans but
also for machines [10, 22]. There are many successful applications
of CL in natural language processing, including machine trans-
lation [34, 58], natural language understanding [53], and answer
generation [24]. The key challenge of CL is how to define easy and
hard samples, and in this paper we propose two hypotheses and
experimentally verify them to determine the learning order.

In our experiments, based on pre-trained models CodeBERT and
GraphCodeBERT, our method significantly surpasses the state-of-
the-art performance on algorithm classification, code clone detec-
tion and code search tasks. In the algorithm classification task, our
approach improves 10.24% Mean Average Percision (MAP) com-
pared to the state-of-the-art performance, and in the code clone de-
tection task, using only 10% of the randomly sampled training data,
code pre-trained model CodeBERT fine-tuned with our approach
outperforms the state-of-the-art model GraphCodeBERT normally
fine-tunedwith all training data. In the code search task, ourmethod
improves the state-of-the-art performance to 0.720 Mean Reciprocal
Rank (MRR). More impressively, to test whether our approach intro-
duces additional semantic knowledge of source code for the model,
we apply our approach to natural language pre-trained model
RoBERTa and find that it even outperforms CodeBERT with 3.88%
MAP on algorithm classification task and RoBERTa pre-trained
with code on code search task, and has the same performance as
CodeBERT on code clone detection task. The data, pre-trained mod-
els and implementation of our approach are publicly available at the
anonymous link: https://anonymous.4open.science/r/DACL-F660/.

The main contributions of our paper are as follows:

• We design a lightweight approach on top of the existing
pre-trained language model fine-tuning paradigm, to bridge
pre-trained models and downstream tasks for source code.
To the best of our knowledge, it is the first work in this
direction.
• We apply our method to pre-trained models CodeBERT and
GraphCodeBERT, and the augmented models dramatically
outperform the state-of-the-art performance on algorithm
classification, code clone detection and code search tasks.

https://anonymous.4open.science/r/DACL-F660/

Bridging Pre-trained Models and Downstream Tasks for Source Code Understanding ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

 int maxn = 0, secMaxn = 0;

 for (int count = 1; count < SIZE; count++){

 if (numbers[count] > maxn){

 secMaxn = maxn;

 maxn = numbers[count];

 }

 else if (numbers[count] > secMaxn){

 if (numbers[count] != maxn)

 secMaxn = numbers[count];

 }

 }

 cout<<maxn<<" "<<secMaxn<<endl;

- int maxn = 0, secMaxn = 0;

+ int count = 1, maxn = 0, secMaxn = 0;

- for (int count = 1; count < SIZE; count++){

+ while (count < SIZE) {

 if (numbers[count] > maxn){

 secMaxn = maxn;

 maxn = numbers[count];

 }

- else if (numbers[count] > secMaxn){

+ else if (numbers[count] > secMaxn

- if (numbers[count] != maxn)

+ && numbers[count] != maxn)

 secMaxn = numbers[count];

+ count++;

 }

 cout<<maxn<<" "<<secMaxn<<endl;

 int count = 1, maxn = 0, secMaxn = 0;

 int nonSense, temp;

 while (count < SIZE) {

 if (numbers[count] > maxn){

 secMaxn = maxn;

 maxn = numbers[count];

 }

 else if (numbers[count] > secMaxn

 && numbers[count] != maxn){

 secMaxn = numbers[count];

 }

- count++;

+ count += 1;

 }

- cout<<maxn<<" "<<secMaxn<<endl;

+ printf("%d %d\n", maxn, secMaxn);

 int count = 1, maxn = 0, secMaxn = 0;

+ int nonSense, temp;

 while (count < SIZE) {

 if (numbers[count] > maxn){

 secMaxn = maxn;

 maxn = numbers[count];

 }

 else if (numbers[count] > secMaxn

- && numbers[count] != maxn)

+ && numbers[count] != maxn){

 secMaxn = numbers[count];

+ }

 count++;

 }

 cout<<maxn<<" "<<secMaxn<<endl;

Original program 1-Transformation program 2-Transformation program 3-Transformation program

Figure 1: An example of code transformation. 𝑘 −𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 program represents the result of the original program after 𝑘
transformations. All four programs implement the function to find the maximum and second largest values in the array.

• Our study reveals that for code-related tasks, without the
need for heavy pre-training on code data, natural language
models (e.g. RoBERTa) easily outperform the same models
pre-trained with code, as well as the state-of-the-art code
pre-trained models (e.g. CodeBERT) with the help of our
approach.

The rest of the paper is organized as follows: preliminaries and
hypotheses are described in Section 2. The technical details of our
approach are presented in Section 3. The evaluation and analysis of
our approach are shown in Section 4 and Section 5. Related work
and threats to validity are in Section 6 and Section 7. Section 8
concludes the paper.

2 PRELIMINARIES AND HYPOTHESES
2.1 Data Augmentation
Data Augmentation (DA) is a technique to create new training data
from existing training data artificially. It is done by applying random
transformations to increase the diversity of the training set. Data
augmentation is often performed with image data, where copies
of images in the training set are created with some image trans-
formation techniques performed, such as zooms, flips, shifts, and
more. In fact, data augmentation can also be applied to natural lan-
guage and code data. In this paper, our purpose of introducing data
augmentation is to learn code semantics from semantic-preserving
transformation, more specifically, to assist models in extracting
and learning features in a way that are invariant to semantically
equivalent declarations, APIs, control structures and so on.

In this paper, we exploit data augmentation not only for the train-
ing set but also for the test set. The application of data augmenta-
tion to the test set is called Test-Time Augmentation (TTA) [31, 43].
Specifically, it creates multiple augmented copies of each sample
in the test set, has the model make a prediction for each, and then
returns an ensemble of those predictions. The number of copies of
the given data for which a model must make a prediction is often
small. In our experiment, we randomly sample three samples for

each piece of data from their augmented copies, take the average re-
sults as the result of the augmented perspective and add the results
on the original dataset as the final results.

2.2 Curriculum Learning
The learning process of humans and animals generally follows the
order of easy to difficult, and CL draws on this idea. Bengio et
al. [4] propose CL for the first time imitating the process of human
learning, and advocate that the model should start learning from
easy samples and gradually expand to complex samples. In recent
years, CL strategies have been widely used in various scenarios
such as computer vision and natural language processing. It has
shown powerful benefits in improving the generalization ability and
accelerating convergence of various models [14, 18, 34, 47]. At the
same time, it is also easy-to-use, since it is a flexible plug-and-play
submodule independent of original training algorithms.

There are two key points of CL, one is the scoring function and
the other is the pacing function. The scoring function makes it
possible to sort the training examples by difficulty, and present to
the network the easier samples first. The pacing function deter-
mines the pace by which data is presented to the model. The main
challenge is how to obtain an effective scoring function without
additional labelling of the data.

2.3 Hypotheses
We formulate two hypotheses about the scoring functions to de-
termine the order of learning and conduct experiments to verify
them.

Many studies have shown that deep models for source code are
vulnerable to adversarial examples [35, 38, 54]. Slight perturbations
to the input programs could cause the model to make false predic-
tions. Therefore, it is natural for us to formulate the first hypothesis
that the augmented data are more challenging to learn than
the original data for general models. We design an experiment
to verify this hypothesis directly, as shown in Algorithm 1. It shows
the pseudocode to verify the impact of code transformation by
comparing the performance of the model on a range of training
set variants. The training set variants are generated by iterating

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun Xiong, Wei Dong, and Xiangke Liao

the transformation functions on the original training set. (line 4-7)
After the model is trained on the original training set, we evaluate
the model on these training set variants.

We apply Algorithm 1 to the state-of-the-art model CodeBERT
with benchmark dataset POJ104 [32] (will be explained in 4.1). Fig. 2
shows the performance of CodeBERT for these training set vari-
ants. Since the model is trained and tested on the same dataset, it
performs best on the original training set. The performance gets
progressively worse as the number of transformations on the origi-
nal dataset increases, which verifies that data augmentation would
increase the difficulty of the training set and experimentally sup-
ports our hypothesis.

Algorithm 1 Validation Algorithm for Hypothesis 1
Input: Training set 𝐷 , transformation functions 𝑇1, ...,𝑇𝑘 , model

𝑀

1: Γ ← {𝐷}, a set of training set variants
2: Ω ← {}, a set of experimental results
3: 𝐷 ′ = 𝐷

4: for transformation 𝑡 ← 1 ... 𝑘 do
5: 𝐷 ′ = 𝑇𝑡 (𝐷 ′)
6: Γ ← Γ ∪ {𝐷 ′}
7: end for
8: Train model𝑀 with training set 𝐷
9: for dataset 𝑥 in Γ do
10: Calculate results on the model𝑀 ,𝑀 (𝑥)
11: Ω ← Ω ∪ {𝑀 (𝑥)}
12: end for
13: return Ω

97.79

94.48
93.70

92.90
92.23

90

92

94

96

98

Original 1-Trans 2-Trans 3-Trans 4-Trans

P
re

ci
si

o
n
@

R
(%

)

Figure 2: The performance of CodeBERT on both original
and augmented training sets for POJ104 dataset.

As the augmented data are more difficult to learn, it is natural to
let the model learn the original data first and then the augmented
data from easy to hard. We detail our curriculum learning strategy
based on this hypothesis in the next section.

The second hypothesis we propose is to solve the multiclass
classification task. Image classification, text classification like news,
and algorithm classification are all classical multiclass classification
tasks. The task is quite difficult, and a common simplification is
to split the multiclass classification task into easily solvable sub-
tasks with fewer classes. Hence, we formulate the hypothesis that
for the multiclass classification task, it is more effective to
determine the learning order of the model from a class per-
spective. Based on this hypothesis, the optimization goal of the

model gradually transitions from a classification problem with few
classes to a classification of multiple classes during the entire train-
ing process. Intuitively, the task is much easier to solve under this
setting compared to a straightforward solution. We next conduct
an experiment to verify the hypothesis.

The difficulty of code data may be reflected in the length of the
code, the use of rare tokens, the complexity of logic, etc. Although
these heuristics are reasonable for people, they are not necessarily
the case for models. Therefore, unlike the previous validation exper-
iment that uses code augmentation techniques to distinguish the
difficulty of the samples artificially, we let the model itself give an
evaluation of the data as the difficulty scores, as shown in Algorithm
2.

Algorithm 2 Validation Algorithm for Hypothesis 2
Input: Training set 𝐷 , the entire dataset 𝑆 , model𝑀
1: 𝐶 ← {}, a set of difficulty scores
2: Θ← {}, a set of average difficulty scores on classes
3: Split training set 𝐷 uniformly as {𝐷𝑖 : 𝑖 = 1 ... 𝑁 }
4: for 𝑖 ← 1 ... 𝑁 do
5: Calculate the difference set of 𝐷𝑖 over 𝑆 , 𝑆 − 𝐷𝑖

6: Train model𝑀 with 𝑆 − 𝐷𝑖 and get model𝑀𝑖

7: Evaluate 𝐷𝑖 with𝑀𝑖 and obtain the experimental results of
each sample as the difficulty score set 𝐶𝑖

8: 𝐶 ← 𝐶 ∪𝐶𝑖
9: end for
10: Train model𝑀 with training set 𝐷
11: for class 𝑥 in 𝐷 do
12: Calculate average difficulty scores on class 𝑥 , 𝜇 (𝐶, 𝑥)
13: Θ← Θ ∪ {𝜇 (𝐶, 𝑥)}
14: end for
15: return Θ

The purpose of Algorithm 2 is to get the average difficulty score
of each class on the training set. To get the difficulty score of each
sample on the training set, we apply the leave-one-out strategy, i.e.,
when we compute the difficulty scores for a part of the samples, we
train the model with all the other data. (line 4-9) Then we compute
the average difficulty scores on each class. (line 11-14)

To have a comparison with the learning order under the first
hypothesis, we also apply Algorithm 2 to the state-of-the-art model
CodeBERT with POJ104 dataset. POJ104 dataset contains many
classes, and the task of POJ104 dataset is to predict the class for a
given program. We apply Algorithm 2 to both the original training
set and the augmented training set. We sort their average difficulty
scores of each class according to the scores on the original training
set, as shown in Fig. 3.

From Fig. 3 it can be found that the performance of the model
on various classes varies greatly. The experimental performance
reflects the difficulty of classes; the better the experimental perfor-
mance, the lower the difficulty, and vice versa. Also, we find that
the performance on the augmented dataset is almost always lower
than that on the original dataset, further validating our previous
hypothesis. At the same time, Fig. 3 shows that the performance of
the model on the augmented dataset, although decreasing, is always

Bridging Pre-trained Models and Downstream Tasks for Source Code Understanding ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 10 20 30 40 50 60

P
re

ci
si

o
n
@

R

Class

Results on Original Dataset Results on Augmented Dataset

Figure 3: Visualization of average performance across train-
ing classes for POJ104 dataset by CodeBERT.

Training

set

Augmented

dataset

Ordered

dataset
Model Results

Declaration

API

Control

Original
Augmentation technique

Test-time augmentation

N

Ti

Figure 4: Overview of our proposed method.

distributed around the performance of the same class on the origi-
nal dataset. Therefore, we conclude that for multiclass classification
tasks organizing the data by class can yield data with more stable
gradients than artificially differentiating the data by augmentation
techniques. It motivates us to expose models to the easier classes
first and then gradually transition to the harder classes.

3 PROPOSED APPROACH
In this section, we describe the details of our approach. Our method
is built on the fine-tuning paradigm and adapts pre-trained models
to downstream tasks. Given pre-trained models and datasets of
downstream tasks, we exploit the potential of pre-trained models
on these tasks by acting on the data only.

3.1 Approach Overview
Fig. 4 presents an overview of our approach. Our approach mainly
consists of three components.
• Augmentation for training data that transforms given
programs into semantically equivalent programs and build
augmented dataset to make training data more diverse.
• Curriculum strategy that organizes augmented dataset
into the ordered dataset in an easy-to-hard order. The order
is determined by scoring functions.
• Test-time augmentation that yields transformed versions
of programs for prediction. The results are the fusion of
results of original programs and transformed programs of
different transformation types.

Table 1: Code Transformation Techniques

Transformation
Family C/C++ Java

Control for/while/if
transformer

for/while/if_else
transformer

API
input/output
c/cpp_style
transformer

equal_loc/equal_func/
add_assign transformer

Declaration
and other

unused_decl/brace/
return transformer

stmt_sort/merge/divide
transformer

3.2 Augmentation for Training Data
In order to help models learn code features in a way that are invari-
ant to semantically equivalent programs, we construct semantic-
preserving transformations for code data. The lexical appearances
and syntactical structures are different before and after transforma-
tions, but the semantics of programs are identical.

Various languages apply different transformation techniques
due to specific language characteristics. In this paper, we use the
same transformation techniques for data in the same language
which do not rely on prior knowledge from tasks or datasets. There
are two programming languages in our experiments. For C/C++,
we modify the work from Quiring et al. [35]. For Java, we apply
the SPAT tool [40]. We apply ten transformations for C/C++ and
nine transformations for Java. The specific transformations are
shown in Table 1. These techniques are grouped by the granu-
larity of their changes. They change the control structure, API
and declaration, respectively, to help models extract and learn the
corresponding features, while ensuring that the semantics remain
unchanged. Taking the transformations in Fig. 1 as an example,
the 𝑓 𝑜𝑟 transformer is applied to transform the original program
to the 1 − 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 program and converts the 𝑓 𝑜𝑟 struc-
ture to 𝑤ℎ𝑖𝑙𝑒 . This type of transformation enables the model to
understand various control structures. From 1 −𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

program to 2 −𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 program, 𝑢𝑛𝑢𝑠𝑒𝑑_𝑑𝑒𝑐𝑙 and 𝑏𝑟𝑎𝑐𝑒
transformer are applied. This type of transformations could also
generate diverse and equivalent declaration statements by merging,
splitting and swapping declaration statements, helping the model
to ignore the interference of syntactic formals and focus on seman-
tics. In the last transformation to 3 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 program, the
output API 𝑐𝑜𝑢𝑡 and operator "++" are converted to 𝑝𝑟𝑖𝑛𝑡 𝑓 and
"+=", respectively. The API transformation exploits the fact that the
same function can be implemented by different APIs and operators.
These transformation techniques would also work in combination
to make the dataset more diverse.

3.3 Curriculum Strategy
The key challenge of curriculum learning is how to define easy/difficult
examples. In this paper, we propose two difficulty scoring functions
based on the hypotheses presented in Section 2.3.

Augmentation-based Curriculum Strategy. The previous section
has introduced data augmentation techniques for code data, and it is
cheap to generate diverse data through transformations. However,
compared with original data, the augmented data can be regarded

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun Xiong, Wei Dong, and Xiangke Liao

as perturbations or adversarial examples of original data [38, 54],
and they should be more difficult to learn as verified in Section 2.3.

Therefore, we design an augmentation-based curriculum strat-
egy. We first train on only the original data, and then gradually
increase the proportion of the augmented data, ensuring that the
model is exposed to more data and the difficulty gradually increases
during the training process.

In particular, it should be noted that in the process of learn-
ing the augmented data we do not strictly follow the order of
1−𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 programs to𝑚𝑢𝑙𝑡𝑖−𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 programs,
since we find that some programs have far more transformed pro-
gram variants than others and multiple transformations could cause
the data to be unbalanced. Therefore, we sample an equal number
of augmented samples from the transformed program variants of
each sample in the original training set for learning, and the data
statistics are shown in Table 2. This method is easy to implement
on general models, and we illustrate its effects in the following
experiments.

Class-based Curriculum Strategy. Especially for multiclass classi-
fication tasks, based on the hypothesis verified in Section 2.3, we
propose a class-based curriculum strategy.

Specifically, the leave-one-out strategy is employed to obtain the
difficulty scores on the entire training set, and then the average
difficulty score on each class is calculated. The samples in the same
class take the average class difficulty score as their difficulty scores.
In the training process, this setting allows the model to learn easier
classes first, and then to more difficult classes. Obviously, the model
needs to extract and learn more features to deal with increasingly
difficult tasks.

Once the scoring function is determined, we still need to de-
fine the pace at which we transition from easy samples to harder
samples. With reference to the work [33], when selecting and ap-
plying different pacing functions, we ensure that the model has a
number of samples to learn when the training iteration begins, and
gradually gets in touch with difficult samples until all samples are
available. We implement a range of pacing functions according to
Penha et al. [33] and illustrate its effects in Section 5.3.

3.4 Test-Time Augmentation
To align transformation techniques applied on the training set, we
also apply augmentations on the test set. These are the same as
the augmentation techniques applied on the training set. In this
way, the features learned from semantically equivalent transfor-
mations during the training process would be fully utilized during
evaluation.

To further eliminate overconfident incorrect predictions due to
overfitting [49], for each sample in the test set we sample three
augmented copies from its transformed candidates. Sampling more
samples for prediction maymake the results more robust, but would
increase the prediction time proportionally. As shown in the right
part of Fig. 4, the final experimental performance is the sum of
results on the original test set and results in the augmented per-
spective, which are the average of the results on augmented copies.
As a result, incorrect prediction on a single test case by the model
is corrected by combining multiple perspectives to make a final
prediction.

4 EXPERIMENTS
In this section, we conduct experiments to verify whether our
method is effective in different tasks, including algorithm classifi-
cation, code clone detection and code search tasks.

Table 2: Data Statistics

Dataset Original training set Augmented training set
POJ104 30815 123058
CodeCloneBench 901028 3362570
CodeSearchNet 164923 331533

4.1 Data preparation
In this subsection, we present benchmark datasets for three tasks
from CodeXGLUE [27]: POJ104, BigCloneBench [46] and Code-
SearchNet [16] and describe how to simply adapt data of various
tasks to our approach.

POJ104 dataset is collected from an online judge platform, which
consists of 104 program classes and includes 500 student-written
C/C++ programs for each class. The task of POJ-104 dataset is to
retrieve other programs that solve the same problem as a given
program. We split the dataset according to labels. We use 64 classes
of programs for training, 24 classes of programs for testing, and 16
classes of programs for validation. For data augmentation, to suc-
cessfully compile the programs, “#include” statements are prepended
before the programs. This process does not introduce differences
since added statements are the same for all programs. As some
programs cannot be compiled, we further use regular expressions
to correct programs with simple grammatical errors, and remove
the rest with serious grammatical and semantic problems. A total of
1710 programs were removed, accounting for about 3% (1710/52000).
To guarantee the fairness of the experiments, we also evaluate the
baseline models on both the original dataset and the normalized
dataset. For test-time augmentation, the results of the original and
augmented versions of the same program are merged to make a
prediction.

BigCloneBench dataset contains 25,000 Java projects, cover 10
functionalities and including 6,000,000 true clone pairs and 260,000
false clone pairs. The dataset provided by Wang et al. [50] is filtered
by discarding code fragments without any tagged true or false
clone pairs, leaving it with 9,134 Java code fragments. The dataset
includes 901,028/415,416/415,416 pairs for training, validation and
testing, respectively. This dataset has been widely used for the
code clone detection task. For code augmentation, since the data
is in the form of code pairs, we replace any original program in
clone pairs with augmented programs to form new pairs. For test-
time augmentation, all versions of a code pair are considered to
determine whether it is a clone pair.

CodeSearchNet contains about 6 million functions from open-
source code spanning six programming languages. In this paper,
we use the dataset in Java. Given a natural language query as the
input, the task is to find the most semantically related code from a
collection of candidate programs. According to the state-of-the-art
model GraphCodeBERT [13], we expand 1000 query candidates
to the whole code corpus, which is closer to the real-life scenario.

Bridging Pre-trained Models and Downstream Tasks for Source Code Understanding ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

The answer of each query is retrieved from the whole validation
and testing code corpus instead of 1,000 candidate programs. For
code augmentation in the training set, since the data are pairs of
natural language queries and programming language fragments, we
replace original programs with augmented programs and form new
pairs with their natural language queries. When doing test-time
augmentation, it is different from the previous two tasks. Since
the test set is the set of natural language queries, we apply code
augmentation techniques to the codebase corresponding to these
queries, and build augmented codebases of the same size. The final
results is to sum and average results on the original codebase and
augmented codebases.

The original and augmented data statistics of the above tasks are
shown in Table 2 and the augmented datasets contain the original
data. We release all data for verification and future development.
Theoretically, more augmented data can be obtained, however, more
data to train would bring larger time overhead. To trade off the
experimental performance and time overhead, we use a limited
amount of augmented data, and we apply curriculum learning
strategy where the model is trained from a smaller data size and
the overhead is further reduced.

4.2 Experimental Setups
To illustrate the effectiveness of our method on code-related tasks,
we build our approach on code pre-trained models CodeBERT and
GraphCodeBERT. To illustrate the applicability of our method, we
also evaluate our method on natural language pre-trained model
RoBERTa [26] that has not been exposed to code at all. In replica-
tion experiments, we follow the description in their original papers
and released code. For parameter settings, to ensure fairness, we
keep all parameters consistent with their released code including
random seeds except for the warmup step and epoch. The warmup
step parameter adapts to the increase of the dataset, and its value
is adjusted from the original dataset size to the augmented dataset
size. Also due to the increase in data size and the progressive cur-
riculum learning, we increase the epoch and set it to 20, 10, and 15
on POJ104, BigCloneBench, and CodeSearchNet, respectively. We
replicate CodeBERT and GraphCodeBERT with the same parameter
settings. The results reported in the original papers and our repli-
cated results are not much different, and we present all the results.
For data augmentation, we implement augmentaion techniques on
the top of Clang [1] for C/C++. With respect to pacing function,
the hyperparameters are set according to Penha et al. [33].

4.3 Algorithm Classification
Metrics and Baselines. We use precision and MAP as the evalua-

tion metrics of the algorithm classification task. Precision is defined
as the average precision score and MAP is the rank-based mean of
average precision score, each of which is evaluated for retrieving
most similar samples given a query. We apply RoBERTa and the
state-of-the-art model CodeBERT as baseline methods. RoBERTa is
a pre-trained model on natural language. CodeBERT is a pre-trained
model on code data. It combines masked language modeling [9]
with replaced token detection objective [8] to pre-train a Trans-
former [48] encoder.

Table 3: Algorithm Classification Comparison

Model Precision MAP
RoBERTa 82.82 80.31(76.67)
RoBERTa + DA + CL 88.15 86.55
CodeBERT 85.28 82.76(82.67)
CodeBERT + DA + CL 93.63 92.91

Results. We compare with and without our method (DA + CL)
for these pre-trained models. Table 3 summarizes these results. For
baseline methods, all experimental results are evaluated on our
normalized dataset, except for results of MAP in parentheses. These
results are reported in the original paper of baseline methods and
MAP is their only metric for algorithm classification task. Natural
language pre-trained model RoBERTa fine-tuned with our method,
achieves 88.15% on precision, 86.55% onMAP. Ourmethod improves
its performance noticeably by 5.33% on precision, 6.31% onMAP and
9.88% compared to the results reported in the original paper. Code
pre-trained model CodeBERT fine-tuned with our method, achieves
93.63% precision and 92.91% on MAP. Our method substantially
improves 8.35% on precision, 10.15% on MAP, and 10.24% compared
to the original result. Notably, with our method, RoBERTa model
without being pre-trained on code data outperforms the existing
state-of-the-art model CodeBERT fine-tuned on this task by 3.79%
MAP.

4.4 Code Clone Detection
Metrics and Baselines. We use precision, recall and F1 score as

the evaluation metrics of the code clone detection task. In our
experiments, we compare a range of models including the state-of-
the-art model GraphCodeBERT. GraphCodeBERT is a pre-trained
model for code which improves CodeBERT by modeling the data
flow edges between code tokens. CDLH [51] learns representations
of code fragments through AST-based LSTM. ASTNN [57] encodes
AST subtrees for statements and feeds the encodings of all statement
trees into an RNN to learn representation for a program. FA-AST-
GMN [50] leverages explicit control and data flow information and
uses GNNs over a flow-augmented AST to learn representation for
programs. TBCCD [55] proposes a tree convolution-based method
to detect semantic clone, that is, using AST to capture structural
information and obtain lexical information from the position-aware
character embedding.

Table 4: Code Clone Detection Comparison

Model Precision Recall F1
CDLH 0.92 0.74 0.82
ASTNN 0.92 0.94 0.93
FA-AST-AMN 0.96 0.94 0.95
TBBCD 0.94 0.96 0.95
RoBERTa(10% data) 0.966 0.962 0.964(0.949)
RoBERTa(10% data) + DA + CL 0.973 0.957 0.965
CodeBERT(10% data) 0.960 0.969 0.965
CodeBERT(10% data) + DA + CL 0.972 0.972 0.972
GraphCodeBERT 0.973 0.968 0.971

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun Xiong, Wei Dong, and Xiangke Liao

Results. Table 4 shows results for code clone detection. Our re-
produced results are mostly consistent with results reported in
original papers, except for the F1 score of 0.964 for RoBERTa, which
is higher than the original result of 0.949.We implement our method
on RoBERTa and CodeBERT. Experiments show that models with
our method consistently perform better than the original mod-
els. Notably, with our method, RoBERTa performs comparably to
CodeBERT, and CodeBERT outperforms the state-of-the-art model
GraphCodeBERT. More importantly, following the original settings
of CodeBERT, CodeBERT only randomly samples 10% of the data
for training compared to GraphCodeBERT. Even though we expand
the data using data augmentation in the experiment for CodeBERT,
the data used by CodeBERT are still much less than data for Graph-
CodeBERT.

4.5 Code Search
Metrics and Baselines. For code search task, we use MRR as the

evaluation metric. MRR is the average of the reciprocal rank of
results of a set of queries. The reciprocal rank of a query is the
inverse of the rank of the first hit result.

Table 5 shows the results of different approaches on the Code-
SearchNet corpus. The first four rows are reported by Husain et
al. [16]. NBOW, CNN, BIRNN and SELFATT represent neural bag-
of-words [41], 1D convolutional neural network [19], bidirectional
GRU-based recurrent neural network [7], and multi-head atten-
tion [48], respectively.

Table 5: Code Search Comparison

Model MRR
NBow 0.171
CNN 0.263
BiRNN 0.304
SelfAtt 0.404
RoBERTa 0.599
RoBERTa(code) 0.620
RoBERTa + DA + CL 0.635
CodeBERT 0.676
CodeBERT + DA + CL 0.697
GraphCodeBERT 0.696(0.691)
GraphCodeBERT + DA + CL 0.720

Results. Table 5 shows results of different approaches for code
search. RoBERTa (code) is pre-trained on programs from Code-
SearchNet with masked language modeling while maintaining the
RoBERTa architecture. Our reproduced result 0.696 of GraphCode-
BERT is slightly differently from the originally reported result 0.691.
We implement our method on RoBERTa, CodeBERT and the state-
of-the-art model GraphCodeBERT for code search. The results show
that natural language pre-trained model RoBERTa with our method
outperforms RoBERTa (code), which is the same model architecture
pre-trained on code data. CodeBERT with our method outperforms
the original state-of-the-art model GraphCodeBERT. The perfor-
mance of GraphCodeBERT with our method reaches 0.720 MRR,
surpassing the original result 0.691 MRR.

4.6 Summary
On above tasks and their benchmark datasets, our method substan-
tially improves the performance of a range of pre-trained models,
achieving the state-of-the-art performance on all tasks. For the natu-
ral language pre-trained model with no exposure to code at all, with
the help of our approach, it is able to match or even surpass exist-
ing code pre-trained models normally fine-tuned to corresponding
tasks. In the code search task, RoBERTa pre-trained with natu-
ral language and fine-tuned with our method, surpasses the same
architecture pre-trained with code data and fine-tuned with the
general method. These all illustrate the strong bridging role of our
method between pre-trained models and code-related downstream
tasks by introducing semantic knowledge for downstream tasks
into pre-trained models.

For code-related tasks, applying our approach to a pre-trained
model at the finetune stage with a relatively small cost is preferable
to pre-training a more complicated model from scratch with huge
resources. It illustrates the superiority of our method, but this is
not to negate the work of code pre-trained models either. In fact,
our approach achieves better results when applied to a superior
pre-trained model. Probably, the research of pre-trained models for
source code has much work to do in terms of data diversity and
conjunction with downstream tasks.

5 ANALYSIS
This section analyzes the effects of different parameters on the
performance of tasks in our experiment.

5.1 Ablation Study
This section investigates how data augmentation and curriculum
learning affect the performance of models, respectively. The fol-
lowing subsections show these results for algorithm classification,
code clone detection and code search task.

Table 6: Ablation Study on Algorithm Classification

Model Precision MAP
CodeBERT 85.28 82.76
CodeBERT + DA + CL 93.63 92.91
w/o DA-Training 91.90 90.79
w/o TTA 88.76 87.21
w/o CL 92.55 91.52

Algorithm Classification. For algorithm classification task, we
conduct experiments without augmention on training set (DA-
Training), test-time augmentation or curriculum learning. The re-
sults are shown in Table 6. The first row shows the results of the
baseline model. The second row presents the results of the baseline
model with our full method. The third row removes augmentation
on the training set. The fourth row presents the results of remov-
ing test-time augmentation. The results of removing curriculum
learning strategy are shown in the last row. As seen from the re-
sults, removing any of the components leads to a drop of the model
performance, and the removal of test-time augmentation leads to
a significant performance degradation, indicating that all three

Bridging Pre-trained Models and Downstream Tasks for Source Code Understanding ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

components are necessary to improve performance, and test-time
augmentaion contributes the most to the improvements. We be-
lieve that for clustering tasks similar to algorithm classification,
integrating multiple perspectives in a data augmentation manner
during testing could be a huge boost to model performance.

Table 7: Ablation Study on Code Clone Detection

Model Precision Recall F1
CodeBERT 0.963 0.965 0.964
CodeBERT + DA + CL 0.972 0.972 0.972
w/o TTA 0.971 0.972 0.971
w/o CL 0.976 0.965 0.970
w/o DA-Training + CL 0.964 0.965 0.964

Code Clone Detection. For code clone detection task, we also con-
duct experiments without augmention on training set, test-time
augmentation or curriculum learning. Unlike algorithm classifica-
tion, we apply augmentation-based curriculum learning for code
clone detection task. The removal of augmentation on the training
set means that the CL component also does not work, and only
test-time augmentation component works. The experimental re-
sults in Table 7 show that the combination of augmentation on
the training set and CL component has the largest performance
improvement, and test-time augmentation has no significant per-
formance improvement, but the model can still benefit from it.

Code Search. With the same ablation experimental setups as for
the code clone detection task, we conduct experiments on the code
search task. As shown in Table 8, we conclude that all three com-
ponents are necessary for the improvements. The last row shows
the result using only test-time augmentation, which is able to sig-
nificantly exceed the original state-of-the-art performance with-
out training with additional augmentation data. We speculate that
test-time augmentation is able to combine multiple augmentation
copies in the code retrieval process to make judgments and elim-
inate overconfident incorrect predictions on the original test set.
The penultimate row shows the experimental result of removing
CL component. In other words, it is obtained by the combination
of augmentation on the training set and test-time augmentation
acting on the model. Compared to the result of applying test-time
augmentation component only in the last row, we find that more
augmented data used for training may result in negative gains. One
possible reason is that the augmented data introduces more noise,
causing the model to choose from more candidates for the same
query during training. These results further illustrate the necessity
of curriculum learning on augmented data.

5.2 Effects of Augmentation Type
Since this paper considers multiple augmentation techniques, in this
section we explore the effects of augmentation techniques at differ-
ent granularities on the experimental results. We build transformed
datasets of the same size using augmentation techniques of different
granularities and train CodeBERT separately on these datasets for
algorithm classification task. Results are shown in Table 9. The first
row shows the results using all augmentation techniques of three

Table 8: Ablation Study on Code Search

Model MRR
GraphCodeBERT 0.696
GraphCodeBERT + DA + CL 0.720
w/o TTA 0.707
w/o CL 0.708
w/o DA-Training + CL 0.710

Table 9: Effects of Augmentation Types on Algorithm Classi-
fication

Model Precision MAP
All 93.63 92.91
w/o Declaration 92.13 90.88
w/o API 92.35 91.24
w/o Control 94.17 93.41

granularities, while the second to fourth rows show the results
without the augmentation techniques for the declaration, API, or
control stucture granularity, respectively. From the results, it can
be seen that not using the augmentation techniques of declaration
or API granularity leads to a decrease in results, while not using
the augmentation techniques of control sturcture leads to an in-
crease. This indicates that the augmentation of declaration and API
contribute more to the improvements, however, the control struc-
ture augmentation introduces more noise than contribution. We
speculate that changing the control structure has a greater impact
on the token order and context relative to the other two granular-
ities of augmentation techniques, and pre-trained models we use
are based on masked language modeling and are context sensitive.
These reasons make it more difficult for the models to learn the
knowledge and features introduced in the process of changing the
control structure. This finding also encourages the code pre-trained
model to further exploit structural information of source code in
order to better understand the program semantics.

Table 10: Effects of Pacing Function on Algorithm Classifica-
tion

Model Precision MAP
Random(baseline) 85.28 82.76
Anti 81.87 78.73
Linear 86.94 84.96
Step 86.39 84.35
Geom_progression 85.97 83.70
Root_2 86.98 84.96
Root_5 86.11 83.95
Root_10 87.38 85.33

5.3 Effects of Pacing Function
To understand how the model is impacted by the pace we go from
easy to hard examples, we evaluate the effects of different pacing

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun Xiong, Wei Dong, and Xiangke Liao

functions on the experimental results, as shown in Table 10. We
conduct experiments on POJ104 dataset in the algorithm classfica-
tion task. The learning order is determined by the scoring function
described in Section 3.3. The baseline model CodeBERT is trained
in a random order and the Anti method orders training samples
from hard to easy. The other methods learn training samples from
easy to hard, with the difference that at each epoch a different pro-
portion of the training data are fed to the model as determined by
their functions. We briefly introduce different pacing functions and
the details are described in Penha et al. [33]. The 𝐿𝑖𝑛𝑒𝑎𝑟 function
linearly increases the percentage of training data input to the model.
𝑆𝑡𝑒𝑝 function divides training data into several groups, and after
fixed epoches a group of training samples will be added for model
training. 𝑅𝑜𝑜𝑡_𝑛 and 𝐺𝑒𝑜𝑚_𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 functions correspond to
two extreme cases. 𝑅𝑜𝑜𝑡_𝑛 function feeds the model with a large
number of easy samples and then slowly increases the proportion
of hard samples, while 𝐺𝑒𝑜𝑚_𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 function does the oppo-
site. In the 𝑅𝑜𝑜𝑡_𝑛 function, 𝑛 is the hyperparameter, and the larger
the value of 𝑛, the more training data are fed to the model at the
beginning. All these functions are fed with the same training data
at the final stage of training.

In Table 10, we can see that feeding data from easy to hard has
a certain performance improvement, while the performance of in-
putting training samples from hard to easy is significantly worse
than the baseline in a random order. These results illustrates the
effectiveness of our curriculum learning strategy and scoring func-
tions. Comparison of different pacing functions shows that 𝐿𝑖𝑛𝑒𝑎𝑟
and 𝑆𝑡𝑒𝑝 functions achieve similar results as 𝑅𝑜𝑜𝑡_2 function. The
𝑅𝑜𝑜𝑡 functions obviously outperform the 𝐺𝑒𝑜𝑚_𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 func-
tion, which is consistent with the findings of Sohrmann et al. [44]
and Penha et al. [33]. The reasons are that the root function gives
the model more time to learn from harder instances and is better
than no CL in terms of statistical significance. In our experiments,
we used 𝑅𝑜𝑜𝑡_10 function for algorithm classification task, and
since we did not perform ablation study on the datasets of the other
two tasks, we use 𝐿𝑖𝑛𝑒𝑎𝑟 function by default. The performance on
these two tasks could probably be further improved with different
pacing functions, and we leave it for future work.

6 RELATEDWORK
6.1 Data Augmentation
Data augmentation aims to increase the data diversity and thus
the generalization ability of the model by various transformation
techniques. This approach is widely used in the computer vision
domain [42, 52, 59]. In recent years, researchers apply data augmen-
tation to code data as well [35, 36, 38, 54, 56]. A series of studies
are motivated by the fact that existing models are vulnerable to
adversarial examples, and they design methods to expose the vul-
nerability of models and improve the robustness of models. Our
aim is to make the models more generalizable and perform better
on real data, unlike the methods described above. Jain et al. [17]
improve accuracy in code summarization and type inference task
based on equivalent data transformations and unsupervised aux-
iliary tasks. Nghi et al. [6] propose a self-supervised contrastive
learning framework for code retrieval and code summarization
tasks. Our aim is similar to these studies, but we do not need to

design the objective function or model architecture. Without the
need for complicated model design, our approach accomplishes the
same goal by acting on the data only. We simply augments the data
and feeds the augmented data into the model in an easy-to-hard
manner. Therefore, our lightweight method can be easily applied
over existing models and various downstream tasks.

6.2 Curriculum Learning
Learning educational material in order from easy to difficult is
very common in the human learning process. Inspired by cogni-
tive science [39], researchers have found that model training can
also benefit from a similar curriculum learning setting. Since then,
CL has been successfully applied to image classification [12, 15],
machine translation [20, 34, 58], answer generation [24] and infor-
mation retrieve [33].

The core of CL lies in the design of the scoring function, that is,
how to define easy and hard samples. A straightforward approach
is to study the data to create specific heuristic rules. For example,
Bengio et al. [4] use images containing less varied shapes as easy
examples to be learned first. Tay et al. [47] use paragraph length
as an evaluation criterion for difficulty in the question answer
task. However, these are highly dependent on the task dataset and
cannot be generalized to general tasks. Guo et al. [14] examine
the examples in their feature space, and define difficulty by the
distribution density, which successfully distinguishes noisy images.
Xu et al. [53] generally distinguish easy examples from difficult ones
on natural language understanding tasks by reviewing the training
set in a crossed way. In this paper, similar to Xu et al. [53], we also
utilize cross validation to measure data difficulty by model itself, but
we also take the class distribution into consideration. We intuitively
solve the multiclass classification problem from a class perspective
by first transforming it into a classification of fewer easy classes
and then gradually increasing the number of difficult classes. At the
same time, we combine curriculum learning and data augmentation
to overcome the problem that augmented data is more difficult to
learn. We first learn the original data, then gradually transition
to augmented data, and experimentally illustrate and verify the
effectiveness of the design.

7 THREATS TO VALIDITY
There are several threats to validity of our method.
• Due to the use of test-time augmentation in our method, this
component cannot be easily applied to code generation tasks.
Augmentation on the training set and curriculum learning
are still applicable, e.g., Jain et al. [17] have achieved good
performance on the code summarization task using code
augmentation.
• The transformation techniques we use are not representative
of the whole. Due to the characteristics of various tasks and
datasets, some transformations may lead to large improve-
ments and some may bing no improvements. Therefore, we
release the datasets for replication and reducing experimen-
tal bias. Our approach is designed to be a lightweight com-
ponent that generalizes to multiple downstream tasks. For
specific downstream tasks, new augmentation techniques
can also be applied to optimize the performance.

Bridging Pre-trained Models and Downstream Tasks for Source Code Understanding ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

• Due to limited computed resource, we did not explore the
performance of our approach for the code clone detection
task on GraphCodeBERT or conduct ablation stuies on all
three tasks regarding the pacing function and transformation
type. In fact, there should be room for improvement and
interesting conclusions to be explored. We shall get better
results by searching for more suitable pacing functions and
transformation types for the other two tasks. We leave it for
future works.

8 CONCLUSION
In this paper, we focus on bridging pre-trained models and code-
related downstream tasks and propose a lightweight approach on
the fine-tuning paradigm, which is easy to implement on top of
various models. We build our approach on code pre-trained models
of CodeBERT and GraphCodeBERT, and these models substantially
outperform original models and achieve the state-of-the-art per-
formance on algorithm classification, code clone detection and
code search. Moreover, we apply our method to natural language
pre-trained model RoBERTa and it achieves comparable or better
performance than existing state-of-the-art code pre-trained models
fine-tuned on these tasks. This finding reveals that there is still
much room for improvement in existing pre-trained models for
source code understanding.

This paper focuses on code discriminative tasks. It is more chal-
lenging to apply our approach to code generation tasks. However,
generation tasks are data-hungry and may require more diverse
data for learning, such as code generation where multiple code
candidates are expected to be generated. In the future, it would
be interesting to combine our approach and prompt-based learn-
ing [25] to further exploit the potential of generative pre-trained
models on code generation tasks.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for
their insightful comments. This work was substantially supported
by National Natural Science Foundation of China (No. 61690203,
61872373, 62032019, and U1936213). This work was also supported
by the Major Key Project of PCL.

REFERENCES
[1] [n.d.]. Clang: a C language family frontend for LLVM. https://clang.llvm.org/
[2] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021.

Unified Pre-training for Program Understanding and Generation. In NAACL.
[3] A. Aho, M. Lam, R. Sethi, and J. Ullman. 2006. Compilers: Principles, Techniques,

and Tools (2nd Edition).
[4] Yoshua Bengio, J. Louradour, Ronan Collobert, and J. Weston. 2009. Curriculum

learning. In ICML ’09.
[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, J. Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, T. Henighan, R. Child,
A. Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language Models are Few-Shot Learners. ArXiv abs/2005.14165
(2020).

[6] Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2021. Self-Supervised Contrastive
Learning for Code Retrieval and Summarization via Semantic-Preserving Trans-
formations. Proceedings of the 44th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (2021).

[7] Kyunghyun Cho, B. V. Merrienboer, Çaglar Gulçehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase Represen-
tations using RNN Encoder–Decoder for Statistical Machine Translation. ArXiv
abs/1406.1078 (2014).

[8] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2020.
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.
ArXiv abs/2003.10555 (2020).

[9] J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT.

[10] J. Elman. 1993. Learning and development in neural networks: the importance of
starting small. Cognition 48 (1993), 71–99.

[11] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, X. Feng, Ming Gong, Linjun
Shou, Bing Qin, Ting Liu, Daxin Jiang, and M. Zhou. 2020. CodeBERT: A Pre-
Trained Model for Programming and Natural Languages. ArXiv abs/2002.08155
(2020).

[12] Chen Gong, D. Tao, S. Maybank, W. Liu, Guoliang Kang, and Jie Yang. 2016.
Multi-Modal Curriculum Learning for Semi-Supervised Image Classification.
IEEE Transactions on Image Processing 25 (2016), 3249–3260.

[13] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Jian Yin, Daxin Jiang, and M. Zhou. 2021. GraphCodeBERT:
Pre-training Code Representations with Data Flow. ArXiv abs/2009.08366 (2021).

[14] S. Guo, Weilin Huang, H. Zhang, Chenfan Zhuang, Dengke Dong, M. Scott,
and Dinglong Huang. 2018. CurriculumNet: Weakly Supervised Learning from
Large-Scale Web Images. ArXiv abs/1808.01097 (2018).

[15] Guy Hacohen and D. Weinshall. 2019. On The Power of Curriculum Learning in
Training Deep Networks. ArXiv abs/1904.03626 (2019).

[16] H. Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. ArXiv abs/1909.09436 (2019).

[17] Paras Jain, Ajay Jain, Tianjun Zhang, P. Abbeel, J. Gonzalez, and I. Stoica. 2020.
Contrastive Code Representation Learning. ArXiv abs/2007.04973 (2020).

[18] Lu Jiang, Deyu Meng, T. Mitamura, and A. Hauptmann. 2014. Easy Samples First:
Self-paced Reranking for Zero-Example Multimedia Search. Proceedings of the
22nd ACM international conference on Multimedia (2014).

[19] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In
EMNLP.

[20] Tom Kocmi and Ondrej Bojar. 2017. Curriculum Learning and Minibatch Bucket-
ing in Neural Machine Translation. In RANLP.

[21] A. Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classifica-
tion with deep convolutional neural networks. Commun. ACM 60 (2012), 84 –
90.

[22] K. Krueger and P. Dayan. 2009. Flexible shaping: How learning in small steps
helps. Cognition 110 (2009), 380–394.

[23] M. Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: De-
noising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. ArXiv abs/1910.13461 (2020).

[24] Cao Liu, Shizhu He, Kang Liu, and Jun Zhao. 2018. Curriculum Learning for
Natural Answer Generation. In IJCAI.

[25] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2021. Pre-train, Prompt, and Predict: A Systematic Survey
of Prompting Methods in Natural Language Processing. ArXiv abs/2107.13586
(2021).

[26] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, M. Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa:
A Robustly Optimized BERT Pretraining Approach. ArXiv abs/1907.11692 (2019).

[27] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou,
Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan,
Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021. CodeXGLUE:
AMachine Learning Benchmark Dataset for Code Understanding and Generation.
ArXiv abs/2102.04664 (2021).

[28] A. Mastropaolo, Simone Scalabrino, N. Cooper, David Nader-Palacio, D. Poshy-
vanyk, R. Oliveto, and G. Bavota. 2021. Studying the Usage of Text-To-Text
Transfer Transformer to Support Code-Related Tasks. 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE) (2021), 336–347.

[29] Tambet Matiisen, A. Oliver, T. Cohen, and J. Schulman. 2020. Teacher–Student
Curriculum Learning. IEEE Transactions on Neural Networks and Learning Systems
31 (2020), 3732–3740.

[30] R. Thomas McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right for the Wrong
Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference. ArXiv
abs/1902.01007 (2019).

[31] Nikita Moshkov, Botond Mathe, Attila Kertész-Farkas, Réka Hollandi, and P.
Horváth. 2020. Test-time augmentation for deep learning-based cell segmentation
on microscopy images. Scientific Reports 10 (2020).

[32] Lili Mou, Ge Li, L. Zhang, T. Wang, and Zhi Jin. 2016. Convolutional Neural
Networks over Tree Structures for Programming Language Processing. In AAAI.

https://clang.llvm.org/

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun Xiong, Wei Dong, and Xiangke Liao

[33] Gustavo Penha and C. Hauff. 2020. Curriculum Learning Strategies for IR. Ad-
vances in Information Retrieval 12035 (2020), 699 – 713.

[34] Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, B. Póczos, and
Tom Michael Mitchell. 2019. Competence-based Curriculum Learning for Neural
Machine Translation. In NAACL-HLT.

[35] Erwin Quiring, A. Maier, and K. Rieck. 2019. Misleading Authorship Attribution
of Source Code using Adversarial Learning. In USENIX Security Symposium.

[36] Md Rafiqul Islam Rabin, Nghi D. Q. Bui, Yijun Yu, Lingxiao Jiang, and M. A.
Alipour. 2020. On the Generalizability of Neural Program Analyzers with respect
to Semantic-Preserving Program Transformations. ArXiv abs/2008.01566 (2020).

[37] Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, W. Li, and Peter J. Liu. 2020. Exploring the Limits of
Transfer Learning with a Unified Text-to-Text Transformer. ArXiv abs/1910.10683
(2020).

[38] Goutham Ramakrishnan, Jordan Henkel, Zi Wang, Aws Albarghouthi, S. Jha,
and T. Reps. 2020. Semantic Robustness of Models of Source Code. ArXiv
abs/2002.03043 (2020).

[39] Douglas L. T. Rohde and D. Plaut. 1999. Language acquisition in the absence of
explicit negative evidence: how important is starting small? Cognition 72 (1999),
67–109.

[40] SantiagoMunz. 2021. Semantic Preserving Auto Transformation. https://github.
com/SantiagoMunz/SPAT

[41] Imran A. Sheikh, I. Illina, D. Fohr, and G. Linarès. 2016. LearningWord Importance
with the Neural Bag-of-Words Model. In Rep4NLP@ACL.

[42] Connor Shorten and T. Khoshgoftaar. 2019. A survey on Image Data Augmenta-
tion for Deep Learning. Journal of Big Data 6 (2019), 1–48.

[43] K. Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks
for Large-Scale Image Recognition. CoRR abs/1409.1556 (2015).

[44] M. Sohrmann, C. Berendonk, M. Nendaz, R. Bonvin, and Swiss Working Group
For Profiles Implementation. 2020. Nationwide introduction of a new competency
framework for undergraduate medical curricula: a collaborative approach. Swiss
medical weekly 150 (2020), w20201.

[45] Nitish Srivastava, Geoffrey E. Hinton, A. Krizhevsky, Ilya Sutskever, and R.
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. J. Mach. Learn. Res. 15 (2014), 1929–1958.

[46] Jeffrey Svajlenko, Judith F. Islam, I. Keivanloo, C. Roy, and Mohammad Mamun
Mia. 2014. Towards a Big Data Curated Benchmark of Inter-project Code Clones.
2014 IEEE International Conference on Software Maintenance and Evolution (2014),
476–480.

[47] Yi Tay, Shuohang Wang, Anh Tuan Luu, Jie Fu, Minh C. Phan, Xingdi Yuan, J.
Rao, S. C. Hui, and A. Zhang. 2019. Simple and Effective Curriculum Pointer-
Generator Networks for Reading Comprehension over Long Narratives. ArXiv
abs/1905.10847 (2019).

[48] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. ArXiv abs/1706.03762 (2017).

[49] Guotai Wang, Wenqi Li, M. Aertsen, J. Deprest, S. Ourselin, and Tom
Kamiel Magda Vercauteren. 2019. Aleatoric uncertainty estimation with test-
time augmentation for medical image segmentation with convolutional neural
networks. Neurocomputing 335 (2019), 34 – 45.

[50] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting Code Clones
with Graph Neural Network and Flow-Augmented Abstract Syntax Tree. 2020
IEEE 27th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER) (2020), 261–271.

[51] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source
Code. In IJCAI.

[52] Jerry W. Wei, A. Suriawinata, L. Vaickus, Bing Ren, Xiaoying Liu, Jason Wei, and
S. Hassanpour. 2019. Generative Image Translation for Data Augmentation in
Colorectal Histopathology Images. Proceedings of machine learning research 116
(2019), 10–24.

[53] Benfeng Xu, L. Zhang, Zhendong Mao, Q. Wang, Hongtao Xie, and Yongdong
Zhang. 2020. Curriculum Learning for Natural Language Understanding. In ACL.

[54] Noam Yefet, Uri Alon, and Eran Yahav. 2020. Adversarial examples for models of
code. Proceedings of the ACM on Programming Languages 4 (2020), 1 – 30.

[55] Hao Yu,Wing Lam, Long Chen, Ge Li, Tao Xie, and QianxiangWang. 2019. Neural
Detection of Semantic Code Clones Via Tree-Based Convolution. 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC) (2019), 70–80.

[56] Huangzhao Zhang, Z. Li, Ge Li, L. Ma, Yang Liu, and Zhi Jin. 2020. Generating
Adversarial Examples for Holding Robustness of Source Code Processing Models.
In AAAI.

[57] J. Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A Novel Neural Source Code Representation Based on Abstract Syntax
Tree. 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)
(2019), 783–794.

[58] Xuan Zhang, Manish Kumar, Huda Khayrallah, Kenton Murray, Jeremy Gwinnup,
Marianna J. Martindale, P. McNamee, Kevin Duh, and Marine Carpuat. 2018. An
Empirical Exploration of Curriculum Learning for Neural Machine Translation.

ArXiv abs/1811.00739 (2018).
[59] Zhun Zhong, L. Zheng, Guoliang Kang, Shaozi Li, and Y. Yang. 2020. Random

Erasing Data Augmentation. In AAAI.

https://github.com/SantiagoMunz/SPAT
https://github.com/SantiagoMunz/SPAT

	Abstract
	1 Introduction
	2 Preliminaries and Hypotheses
	2.1 Data Augmentation
	2.2 Curriculum Learning
	2.3 Hypotheses

	3 Proposed Approach
	3.1 Approach Overview
	3.2 Augmentation for Training Data
	3.3 Curriculum Strategy
	3.4 Test-Time Augmentation

	4 Experiments
	4.1 Data preparation
	4.2 Experimental Setups
	4.3 Algorithm Classification
	4.4 Code Clone Detection
	4.5 Code Search
	4.6 Summary

	5 Analysis
	5.1 Ablation Study
	5.2 Effects of Augmentation Type
	5.3 Effects of Pacing Function

	6 Related Work
	6.1 Data Augmentation
	6.2 Curriculum Learning

	7 Threats to Validity
	8 Conclusion
	Acknowledgments
	References

