
To Follow or Not to Follow: Understanding Issue/Pull-
Request Templates on GitHub

Journal: Transactions on Software Engineering

Manuscript ID TSE-2022-04-0159

Manuscript Type: Regular

Keywords: Issue Template, Pull-Request Template, GitHub, Open Source Software

*****For Peer Review Only*****

1

To Follow or Not to Follow: Understanding
Issue/Pull-Request Templates on GitHub

Zhixing Li, Yue Yu*, Tao Wang, Yan Lei, Ying Wang, and Huaimin Wang

Abstract—For most Open Source Software (OSS) projects, issues and Pull-requests (PR) are the primary means by which
stockholders of a project report and discuss software problems and code changes, and their descriptions are important for people to
understand them. To help ensure the informational quality of issue/PR descriptions, GitHub introduced the issue/PR template feature,
which pre-populates the description for anyone trying to open a new issue/PR. To better understand this feature, we report on a
large-scale, mixed-methods empirical study of templates that explores contents, impacts, and perceptions. Our results show that
templates typically contain elements to greet contributors, explain project guidelines, and collect relevant information. After template
adoption, the monthly volume of incoming issues and PRs decreases, and issues have fewer monthly discussion comments and longer
resolution duration. Although both contributors and maintainers positively rated the usefulness of templates from various aspects, they
also reported challenges in using templates (e.g., excessive and irrelevant information request) and suggested potential improvements
of the template feature (e.g., better user interaction and advanced automation). This work contributes to the informed use and targeted
improvement of templates to enhance OSS practitioners’ collaboration and interaction.

Index Terms—Issue Template, Pull-Request Template, GitHub, Open Source Software

✦

1 INTRODUCTION

Open source software (OSS) projects are generally devel-
oped and maintained in a distributed collaborative man-
ner [36], [38], [48]. The survival and sustainability of many
OSS projects relies on community contributors to submit
issues [8], [9] and Pull-requests (PRs) [24], [56]. Typically, is-
sues are used for reporting unexpected software behaviors,
and PRs are used for committing code changes. Both issue
discussion and PR evaluation is a collaborative process, in
which maintainers and contributors interact and commu-
nicate with each other [31], [54]. Before posting reasonable
feedback and making a decision on issues/PRs, maintainers
need to properly understand the issues/PRs by reading the
textual description filled by contributors. It is intuitive that
well-described issues/PRs would reduce project maintain-
ers’ cognitive load to gain a quick and correct understand-
ing, thus facilitating the collaboration between maintainers
and contributors.

However, issue/PR descriptions widely differ in their
quality. In many cases, issue/PR descriptions provide in-
adequate or inaccurate information [9], [19], which could
happen not only to OSS newcomers [49], but also to veterans
who contribute to a new project that has different poli-
cies [25]. The consequence is that maintainers’ information
needs can not be properly fulfilled by issue/PR descriptions

• Zhixing Li, Yue Yu, Tao Wang, and Huaimin Wang are with College of
Computer, National University of Defense Technology, Changsha, China.
E-mail: {lizhixing15, yuyue, taowang2005, hmwang}@nudt. edu.cn

• Yan Lei is with School of Big Data and Software Engineering, Chongqing
University, China.
E-mail: yanlei@cqu.edu.cn

• Ying Wang is with the Software College, Northeasthern University,
China.
E-mail: wangying@swc.neu.edu.cn.

*Corresponding author: Yue Yu, yuyue@nudt.edu.cn

at the very beginning [7], [12], [16]. They have to request
more details in additional iterations of interaction with the
contributors, leading to an increase in discussion overheads.
Moreover, it takes time for maintainers to wait for contrib-
utors’ responses [12], [26], [42], which can potentially slow
down the processing of an issue/PR.

To ensure the informational quality of issues/PRs, many
OSS projects suggest contributors first read the contribu-
tion guidelines before opening an issue/PR [20], [44], [62].
Additionally, OSS platforms have been providing better
tool support for issue/PR submission. For example, GitHub
introduced the issue/PR template feature [2], which allows
project maintainers to customize the information contribu-
tors are expected to include when they open new issues and
PRs (see Figure 1). Although this feature has been widely
used by popular projects for years on GitHub, little is known
about its usage in practice and how practitioners perceive it.

In this work, to achieve a better understanding of the
template feature, we conduct a large-scale, mixed-methods
empirical study of issue/PR templates, by answering the
following three research questions:

RQ1: What are the contents of templates? We identify tem-
plates in 524 popular GitHub projects. We first qualitatively
classify the elements contained in template files and then
quantitatively explore the frequency of inclusion of each
element among the projects. We find that templates typi-
cally contain elements to greet contributors, explain project
guidelines, and collect relevant information.

RQ2: What are the impacts of templates? We examine the
git commit history of each template file and identify the
adoption time of templates in each project. Then we use
regression discontinuity design analyses to evaluate longi-
tudinal effects of adopting templates on the submission, dis-
cussion, and resolution of issues/PRs. We observe that after
the template adoption, there are fewer monthly submissions

Page 1 of 15 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2

Fig. 1: GitHub Issue/PR Template example.

of issues and PRs, and issues have fewer monthly discussion
comments and longer monthly resolution duration.

RQ3: How do practitioners perceive templates? We con-
duct surveys with both contributors and maintainers of
the projects using templates to explore their perceptions
of templates. Most survey respondents positively rate the
usefulness of templates from various aspects. However,
they also reported 19 challenges in using templates, such
as requiring too many fields, and proposed 9 suggestions
to improve the template feature, such as improving user
interaction.

In summary, this paper makes the following contribu-
tions:

• We present a comprehensive overview of the categories
and distribution of the elements contained in templates,
which provides a quick reference for project maintain-
ers when creating a template.

• We characterize how project activities change after the
adoption of templates, which reveals the longitudinal
effects of templates in practice.

• We elucidate practitioners’ perceptions of the template
feature, which provides evidence for the usefulness
of templates and inspires tool designers to improve
current support.

The remainder of this paper is organized as follows.
Section 2 presents related work. Section 3 describes the
dataset used in this study. Sections 4, 5, and 6 report the
methods and results with respect to our three research ques-
tions. Section 7 provides additional discussions. Section 8
discusses the threats to the validity of the study. Finally, we
draw conclusions in Section 9.

2 RELATED WORK

We present the related work from two aspects: informational
quality in OSS collaboration and community documentation in
OSS projects.

2.1 Informational quality in OSS collaboration

So far, a large body of research has investigated the infor-
mational quality in OSS collaboration. For issue description,
Bettenburg et al. [9] conducted a survey with develop-
ers from three famous OSS projects to understand how
developers use the information in bug reports and what
problems they face. They presented the items considered
to be most important to developers (e.g., steps to reproduce
and stack traces) and revealed a mismatch between what
developers need and what bug reporters supply. Davies and
Roper [19] manually analyzed 1,600 bugs reports to explore
what information users had provided. They observed many
incomplete or inaccurate bug reports which often failed
to fulfill developers’ information needs. Breu et al. [12]
examined the bug reports collected from the projects Eclipse
and Mozilla, and identified a catalogue of questions asked in
bug reports. Their quantitative findings showed that many
questions were posted to request the missing information
for better understanding of the bugs.

As for the description of code changes, a study con-
ducted by Ram et al. [46] showed that the quality of the
description significantly affected the reviewability of code
changes, e.g., including a motivation in the description
was commonly considered to be essential by practitioners.
Pascarella et al. [42] analyzed 900 code review discussion
threads to investigate the information needed by reviewers
for proper code review. They constructed a taxonomy of
reviewers’ information needs, including rationale, code con-
text, and necessity. However, Bacchelli et al. [7] reported that
reviewers suffered from inferior description of code changes
which hindered their understanding of the changes. In the
meantime, Gousios et al. [25]’s survey with OSS contributors
showed that contributors were actually facing challenges in
submitting well-described PRs.

We can see that, both generating a good description
and achieving a correct understanding of the issues and
code changes have always been important but challenging.
Templates as a new feature used to ensure the informational
quality of issues/PRs deserve a in-depth investigation in
terms of its usage in practice and opportunities of improve-
ment.

2.2 Community documentations in OSS projects

Contributors need to learn the technical and social aspects
of an OSS project to participate. Therefore, project maintain-
ers usually provide documentations establishing standards
of behavior for their community and share them in the
project’s repository. Prior studies have investigated the us-
age of various community documentations in practice. For
example, Prana et al. [44] analyzed the contents of README
files in OSS projects and found that the most frequently
included sections are about specifying what the project does
and how to use the project. Elazhary et al. [20] inspected
the contributing guideline files in dozens of active projects

Page 2 of 15*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3

that used continuous integration (CI) tools. They observed
five categories of themes, including project orientation and
PR acceptance criteria. However, they also found that the
documented guidelines were not consistent with the actual
practices in some projects. To particularly understand the
process of adopting new feature requests, Zhang et al. [62]
examined the contributing guidelines collected from the
most popular GitHub projects. They identified four kinds of
information on handling feature requests and highlighted
that more than half of the studied projects had a low level
of openness with respect to accepting feature requests from
the community.

Tourani et al. [51] investigated the code of conduct files
in OSS projects and reported their popularity and content.
They found eleven commonly used code of conduct which
generally included five components to create a friendly com-
munity. Their investigation also revealed that the adoption
of code of conduct can be affected by various factors, such
as similarities among communities. By analyzing the dis-
cussions about code of conduct, Li et al. [30] further studied
how code of conduct was used to moderate behavior in
practice. Recently, Zhang et al. [59] conducted a preliminary
study on PR templates particularly in terms of impacts,
project characteristics, and non-adoption reasons. Neverthe-
less, templates’ contents deserve a more fine-grained inves-
tigation and templates’ impacts should be further examined
from a longitudinal perspective. Moreover, practitioners’
perceptions of templates, especially in terms of application
challenges and expected improvements, remain to be inves-
tigated.

Our work complement previous studies on OSS com-
munity documentation by providing a comprehensive un-
derstanding of issue/PR templates.

3 DATASET

In this section, we describe how we constructed the dataset,
including project selection and template identification.

3.1 Project Selection

We began with the top 1,000 most popular projects on
GitHub (by September 2020). As done in previous stud-
ies [50], [57], the number of stars was used as the proxy
for project popularity [10], [37]. We obtained the basic in-
formation of these projects via GitHub API [3] and selected
projects based on the following criteria:

• Projects should be for software development: Inspired by re-
cent work [65], we first removed projects whose program-
ming language was labeled as Null by GitHub. Then,
we selected projects whose description contains resource-
related keywords like “list” and “collection”. We manually
examined the selected projects and removed those for
resource sharing or learning.

• Projects should not be dead. We are interested in projects
that are still maintained, so we excluded projects which
did not receive any commit in the past three months.

• Projects should use GitHub issue/PR. We removed projects
of which the total number of received issues and PRs is 0
at the examination time.

Finally, we selected 802 projects involving 40 different
programming languages. Figure 2 further presents the dis-
tributions of the number of issues, the number of PRs, and
age for these projects.

Fig. 2: Distributions of the number of issues, the number of
PRs, and age for the studied projects.

3.2 Template Identification
For each project, we cloned its source code repository to our
local machine. And then we identified the template files and
their adoption time in the repository, as follows:

Identification of existence. We searched for the ex-
istence of template files from the latest snapshot of
the source code repository. To add a template on
GitHub, users should create a markdown file named
“ISSUE TEMPLATE/PULL REQUEST TEMPLATE” (not
case-sensitive) and place it in one of three locations: the
root directory, docs, and .github. Users can also cre-
ate a subdirectory named “ISSUE TEMPLATE/PULL RE-
QUEST TEMPLATE” within any of the three directories and
then add multiple template files with customized names
in the subdirectory. According to such conventions, we
identified 1,211 issue template files and 315 PR template
files by string matching. These template files involve 524
projects. More specifically, as shown in Figure 3, 277 projects
used both issue templates and PR templates, 228 projects
used only issue templates, and 19 projects used only PR
templates. In comparison, issue templates were used more
prevalently than PR templates in the studied projects (505
vs. 296).

24 19

228

277

778

Selected projects

Using both

issue and PR

Using only PR

Projects using

issue/PR template

Using only issue

template

Using both issue

and PR templates

Using only PR

template

228

6

13

277

Fig. 3: Distribution of the projects using issue/PR templates.

Identification of adoption. For each template file, we
performed the git log [15] command to extract all his-
torical commits (i.e., changes) to the file. The first commit
which represents the creation of the file was actually the

Page 3 of 15 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

4

template adoption time in a project. However, in cases
where a template file is replaced by multiple template files
(or vice versa), the git log command on the new file can
not recursively extract the change history of the original file,
which can cause a bias in the determination of the template
adoption time. To tackle this problem, we manually checked
the first commit message of each template file. If the commit
message contained update-related keywords (e.g., “update”
and “move”) rather than creation-related keywords (e.g.,
“add” and “create”), we retrieved the parent commit and
verified whether the corresponding snapshot contained an
older template file. If it did, we continued to check the first
commit message of that old template file. This process was
repeated until no older template files were found, and the
creation time of the last checked template file was treated as
the template adoption time.

4 RQ1: CONTENTS OF TEMPLATES

In this research question, we aim to identify the elements
contained in issue/PR templates. In the following sections,
we present the approach and the results

4.1 Methodology
To investigate what a typical issue/PR template looks like,
we applied a grounded theory methodology to analyze
the content of template files. As we had no predefined
categories, we used an open coding approach [32], [66].
Two authors jointly coded a random sample of template
files. For each file, they read the content and classified the
sentences into meaningful categories. When they disagreed
on the classification of a sentence, they discussed to reach
an agreement [13]. The coding process was stopped when
saturation of findings [22] was reached. Then, all categories
are further grouped into higher-level categories, and all
authors of the paper review and agree on the final taxonomy.
Afterward, according to the defined taxonomy of template
elements, the two coders further annotated all template files
to quantitatively investigate the distribution of each element
across all projects.

4.2 Results
Table 1 presents the taxonomy and distribution of elements
included in issue and PR templates. These elements can
be grounded into three meaningful categories: Greeting con-
tributors, Explaining project guidelines, and Collecting relevant
information. The remainder of this section examines the
popular and interesting elements in each category in more
detail.

4.2.1 Greeting contributors
At the beginning of some templates, several sentences may
be included to greet contributors. For example, some main-
tainers first express gratitude, especially in PR templates
(e.g., “Thank you for sending a PR. We appreciate you spending
time to help improve the Libra project”), and then introduce the
template in terms of whether some content can be erased
(e.g., “Before submitting your issue, don’t hesitate to remove the
above introductory text, possible empty sections (e.g. References),
and this tip”) and how some content should be edited (e.g.,

“Please replace each `[]` by `[X]` when the step is complete, and
replace ` ` with appropriate data”). If a project has multiple
sub-repositories or moves to a new repository, templates can
serve as a good reminder when contributors are submitting
an issue/PR and redirect submissions to the right place
(e.g., “AR.js repository has been moved, please check it out at:
https://github.com/AR-js-org/AR.js”). The redirection facility
can also be used to prevent issues/PRs from being mistak-
enly used (e.g., “Generally, questions about using Redis should
be directed to the [community](https://redis.io/community)”).

Interestingly, we also found that some projects
ask for donations in their issue templates (e.g.,
“Love JHipster? Please consider supporting our collective
https://opencollective. com/generator-jhipster/donate”). Consid-
ering that most projects used third-party donation platforms
like OpenCollective [40], GitHub can upgrade its sponsor
feature [60] to allow users to financially support not only
developers but also projects.

4.2.2 Explaining project guidelines

To state project conventions and guide contributors to sub-
mit issues and PRs, OSS projects usually create a set of
community documentation, such as the README file [45]
and contributing guideline file [20]. Both issue and PR
templates may be used to remind contributors to first read
community documentation to learn the contribution criteria
and processes before submission (e.g., “Before opening: - Read
the [contributing guidelines]” and “Before filling this issue, please
read the manual”). More specifically, some important contri-
bution practices might be highlighted in templates. Com-
pared with issue templates, PR templates mention more
practices regarding submission correctness and quality. For
example, contributors are requested to run the existing
tests to make sure that the code changes successfully pass
the tests and do not break the project. Contributors also
need to add tests for the changes to prove the fix or
new feature works (e.g., “all new code requires tests to ensure
against regressions” and “write necessary unit-test to verify your
logic correction”). Besides, some projects suggest contributors
discuss first before submission, which can avoid wasting
contributors’ time and effort on undesired work, especially
for new features and significant changes (e.g., “Requests for
new features should first be discussed on the developer forum”).

As previously reported, PR quality has a broad
meaning beyond code [26]. We have found that many
projects expected contributors to update documentation
(e.g., “Please make sure to document all user-facing changes
in the `CHANGELOG.md` file” and “(If changing the API
or CLI) I’ve documented the changes I’ve made (in the `docs`
directory)”). Moreover, contributors may be requested to
format the submission in terms of code style (e.g., “I’ve
followed the fastlane code style and run `bundle exec rubocop
-a` to ensure the code style is valid”), commit message (e.g.,
“Commit message has a short title & references relevant issues”),
and PR title (e.g., “Name the pull request in the form `[#issue]
[component] Title of the pull request`”).

In issue templates, more elements are included to guar-
antee that the reported issue is valid. A frequently men-
tioned practice is that contributors should not ask questions
using issues (e.g., “Please **do not** use the issue tracker for

Page 4 of 15*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

5

TABLE 1: The taxonomy and distribution of elements included in issue/PR templates

Category Element Distribution
issue templates PR templates

Greeting contributors

Introduce the template 33.33% 31.51%
Express gratitude 22.16% 32.53%
Redirect submissions to the right place 43.71% 5.14%
Mention OSS culture 5.59% 2.74%
Ask for donations 2.00% 0.00%

Explaining project guidelines

Read community documentation 22.95% 38.01%
Add tests for the changes 0.20% 53.42%
Update documentation 0.00% 39.73%
Formate the submission 5.99% 33.56%
Search first before submission 33.93% 5.48%
Not ask questions 36.13% 0.34%
Run the existing tests 0.00% 31.16%
Use the latest version 15.77% 2.05%
Target the right branch 2.00% 13.70%
Discuss first before submission 2.20% 12.67%
Sign CLA 0.00% 11.64%
Not disclose vulnerabilities 5.79% 1.03%
Make atomic contributions 0.40% 5.14%
Rebase the commits 0.00% 4.11%
Provide comments 0.00% 2.74%
List all contributors 0.00% 0.68%
First review others’ PRs 0.00% 0.34%

Collecting relevant information

Summary 56.29% 59.93%
Type 64.47% 26.71%
Environment 84.83% 4.11%
Steps to reproduce 82.44% 2.74%
Expected/Actual behavior 73.25% 7.88%
Related issues 4.39% 61.30%
Additional context 37.72% 14.38%
Motivation 19.16% 27.40%
Suggested solutions 38.72% 0.68%
Screenshot 23.75% 8.22%
Label 28.14% 1.03%
Log/debugging 15.97% 0.68%
Stack trace 15.77% 0.34%
Side effect 1.00% 13.01%
Location 6.39% 3.77%
Willingness 5.59% 0.34%
Assignee 2.79% 2.40%
List of main changes 0.20% 4.79%
Status 0.00% 4.45%
Severity 0.40% 0.00%
Knowledge level 0.40% 0.00%

personal support requests”). Instead, the commonly recom-
mended channels for asking questions about using a project
include Stack Overflow [6], projects’ forum, Slack [4], etc.
(e.g., “Do not use this bug tracker for questions. We have a
forum (https://discuss.codemirror.net) for those” and “For general
questions, please use the pug tag on stack overflow”). Because
the same bug might be encountered by multiple contrib-
utors [33], [39], project maintainers generally encourage
contributors to search first before submission to avoid du-
plicates (e.g., “Look for similar issues already posted (including
closed ones)” and “For bugs, do a quick search and make sure the
bug has not yet been reported”).

Additionally, because OSS projects usually have a rapid
release cycle [48], the problem found in an old version
might be already fixed in a subsequent version. Hence,

contributors are recommended to use the latest version to
verify whether the issue is still valid after updating. Maybe
due to the limited energy, some projects explicitly stated
that they do not deal with issues for outdated versions (e.g.,
“Please do not report an issue for a version of PHPUnit that is no
longer supported”).

4.2.3 Collecting relevant information
To comprehensively understand the submitted issues and
PRs, project maintainers need to collect a variety of rele-
vant information. Generally, contributors are requested to
first provide a summary to briefly describe the issue/PR
(e.g., “A clear and concise description of what the bug is”).
Issues/PRs submitted to achieve different kinds of tasks
tend to be processed with different priorities, e.g., bugs

Page 5 of 15 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

6

usually have higher priority than new features [26]. To
help maintainers reduce the effort required to classify a
high volume of submissions, contributors are expected
to specify the type of their issues/PRs. In practice, we
found two ways used to collect the type information.
The first approach is adding multiple template files, e.g.,
“ISSUE TEMPLATE/bug report.md” for reporting bugs and
“ISSUE TEMPLATE/feature request.md” for requesting new
features. When contributors click to create a new issue, they
will have the option to choose which type of issue they
intend to submit. The second approach is adding a field in
the template to ask contributors to freely describe the type
of their submission or to choose from a set of predefined
types. Besides, to quickly identify why an issue/PR is
needed, especially for feature requests, some projects hope
contributors to report the motivation behind the submission
(e.g., “Explain why this is a bug or a new feature for you” and
“Any relevant use-cases that you see”).

In addition to the above information which is commonly
gathered in both kinds of templates, project maintainers
collect more other information in issue templates. The most
frequently collected information is environment, including
platform, project version, configuration, etc. (e.g., “Which
versions of Redux, and which browser and OS are affected by
this issue?”). Interestingly, we observed that some projects
provided contributors with scripts for easily collecting the
environment information (e.g., “Run `gatsby info –clipboard`
in your project directory and paste the output here” and “run `ng
version` and paste output below”).

To figure out how the problem arose, project maintainers
usually ask contributors to clearly describe the steps to
reproduce the reported issue. The reproduction information
can be provided as a step-by-step textual description (e.g.,
“1. First Step 2. Second Step 3. and so on...” and “1. Go to
`...` 2. Click on `....` 3. Scroll down to `....` 4. See error”), code
snippets (e.g., “**Code snippet to reproduce** ```rust # Your
code goes here # Please make sure it does not require any external
dependencies```”), or demo applications (e.g., “we recommend
creating a small repo that illustrates the problem”). Additionally,
the expected/actual behaviors illustrate what contributors
expect to happen and what actually happens, which enable
maintainers to identify exactly what the problem is. For
GUI-related issues particularly, a screenshot is useful to
demonstrate the problematic behavior. If there is an error,
contributors can include the stack trace or log/debugging
information to help maintainers diagnose the problem (e.g.,
“If you’re reporting a crash, please copy the stack trace below”).

To facilitate the resolution of the submitted issues, some
projects asked whether there is any suggested solution (e.g.,
“Do you have any ideas on how we could fix this”) or whether
contributors have the willingness to work on the issues (e.g.,
“Would you be willing to resolve this issue by submitting a Pull
Request?” and “Is this a feature you’re prepared to implement,
with support from us?”). Interestingly, a few maintainers wish
to know contributors’ knowledge level so that they can
“formulate the response in an appropriate manner”.

Since abundant information has been collected in issues,
maintainers generally request PR contributors to link the
related issues, if any (e.g., “If your pull request relates to any
existing issues, please reference them by using the issue number
prefixed with #”). To thoroughly evaluate a PR, especially

when it introduces new features, some maintainers were
concerned about whether it introduced any side effect,
such as compatibility problems (e.g., “If this PR introduces
a breaking change, please describe the impact and a migration
path for existing applications”). In some projects, developers
are allowed to submit work that is still in progress. In order
to be quickly informed of such submissions, maintainers ask
contributors to submit a draft PR [1] (e.g., “If you intend to
work on PR over several days, please, create draft pull requests”)
or include a specific mark in PR title (e.g., “If the PR is work
in progress, please add the prefix `WIP:` to the beginning of the
title”) to clearly indicate the status of PRs.

RQ1: Templates contain a wide variety of elements
to greet contributors (e.g., expressing gratitude), explain
project guidelines (e.g., not asking questions and adding
tests for the changes), and collect relevant information
(e.g., steps to reproduce and related issues).

5 RQ2: IMPACTS OF TEMPLATES

The purpose of this research question is to investigate
whether several project activity indicators change after the
adoption of templates. We first present the method and then
report the results.

5.1 Methodology
To investigate whether the template adoption has impacts
on project activities, we conducted a longitudinal analysis.
We computed monthly project-level data for a period of
24 months centered around the adoption date of templates,
and employed Regression Discontinuity Design (RDD) [18],
[27] to model the impacts of template adoption along the
following three dimensions:

n submissions: the number of new issues/PRs submit-
ted during a month.

n comments : the number of discussion comments on
issues/PRs.

close time : the time spent from issue/PR submission to
close.

For the last two response variables, we first computed
the value at the level of individual issues/PRs, and then
computed the median over all issues/PRs per time window.
Figure 4 visualizes the trends in the three response variables
12 months before (month index ranging from -12 to -1
) and after (month index ranging from +1 to +12) the
adoption of templates.

To model the effects of template adoption, we followed
the prior studies [52], [63] and used three variables:

time: the index of time window from the start to the end
of the observation period, ranging from 1 to 24.

intervention: a binary value indicating whether a time
window is before (intervention=0) or after (intervention=1)
the template adoption.

time after intervention: the index of time window post
to the template adoption, ranging from 1 to 12.

Bases on the previous work [56], [58], we also controlled
for the following known variables:

proj age: the time span from project creation to the
current month, measured in months.

Page 6 of 15*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

7

(a) Submissions (b) Discussion comments (c) Close time

Fig. 4: Trends in response variables before and after the adoption of issue and PR templates, top and bottom respectively
(the horizontal line in each box is the median value across all projects).

n commits: the number of commits the project has re-
ceived until the current month.

n stars: the number of stars of the project until the
current month.

n forks: the number of forks of the project until the
current month.

team size: the number of core team members actively
participating in issue/PR discussions in the current month.

experience: the median number of prior issues/PRs sub-
mitted by the contributor computed over all issues/PRs per
month.

n open tasks: the median number of issues and PRs still
open at current issue/PR creation time computed over all
issues/PRs per month.

desc length: the median length of the issue/PR descrip-
tion computed over all issue/PRs per month.

We also used project name and programming language
to model random effects. To prevent multicollinearity from
affecting our coefficient estimates, we followed the recom-
mended criterion [17] and excluded variables for which
the VIF score is higher than 5. When modeling issue/PR
submissions, we excluded the variables team size, experience,
and desc length, as they are computed after issue/PR sub-
mission.

5.2 Results
Tables 2∼4 present the results of the fitted RDD models.
In addition to the coefficient, standard error, significance
level (indicated by stars), and the sum of squares, each table
also reports the marginal R-squared (R2) and conditional R2

to quantify the goodness-of-fit of models. We can see that
the models can explain more variability in the data when
considering both the fixed and random effects (conditional
R2 > marginal R2). In the following, we discuss the models
for each response variable.

5.2.1 Submission

Regarding the model of issue submissions (the columns be-
longing to Issue in Table 2), we observe that n stars explains
the largest amount of variability. Its positive coefficient
indicates that the more GitHub users starring a project, the
more issues the project will receive. This is expected as a
larger n stars indicates that a project is being used more
widely [11] and more users may submit issues to report the
experienced software problems or expected features. As for
the three template-related variables, the coefficient for inter-
vention is significant, indicating that the model detects a dis-
continuity at the adoption time of templates. The significant,
negative coefficient for time after intervention suggests that
the number of submitted issues presents a slight decreasing
trend after adoption.

TABLE 2: Issue/PR submission models. The response is
log(n submissions) per month.

Issue PR

Coeffs (Err.) Sum Sq. Coeffs (Err.) Sum Sq.

(Intercept) 1.996 (0.291) *** 2.273 (0.489) ***
log(prj age) -0.548 (0.074) *** 10.1 -0.443 (0.125) *** 3.5
log(n stars) 0.260 (0.014) *** 61.7 0.104 (0.021) *** 6.6

log(commits) 0.106 (0.009) *** 23.4 0.175 (0.018) *** 26.7
log(n open tasks) 0.113 (0.009) *** 32.0 0.135 (0.017) *** 18.4

time 0.001 (0.002) 0.1 0.008 (0.004) * 1.2
interventionTRUE -0.040 (0.019) * 0.8 -0.006 (0.033) 0.0

time after intervention -0.035 (0.003) *** 28.3 -0.029 (0.005) *** 10.1

Marginal R2 0.169 0.114
Conditional R2 0.800 0.800

*** p <0.001, ** p <0.01, * p <0.05

For the model of PR submissions (the columns belonging
to PR in Table 2), we see that commits explains the largest
amount of variability, indicating that the more commits a
project has, the more PRs the project will receive. This is

Page 7 of 15 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

8

in line with the previous finding that larger projects tend
to receive more PRs [56]. As for template-related variables,
the model does not detect any discontinuity at the adoption
time of templates as the coefficient for intervention is not
significant. However, the positive trend in the number of PR
submissions before the template adoption (the coefficient for
time is positive) is reversed, toward a decrease after adop-
tion (the coefficient for time after intervention is negative).

Overall, we observe a slight decreasing trend in both
the number of issue and PR submissions after the template
adoption. We speculate that it may be because templates
prevent contributors from submitting invalid issues/PRs,
as discussed in Section 4 (e.g., not ask questions and search
first before submission). Another possible reason is that some
contributors have challenges in filling out the templates
and finally abandon submitting issues/PRs, as reported
in Section 6.2.2. However, since there is a chance for a
software issue to be duplicately reported or solved by
multiple contributors [33], [39], it seems that the advantages
of templates in avoiding undesired contributions outweigh
the disadvantages in causing contribution abandonment.

5.2.2 Discussion
As for the model of issue discussion (the columns belonging
to Issue in Table 3), we find that desc length is strongly
associated with the number of issue comments. Its positive
coefficient indicates that issues with a longer description are
likely to receive more comments. This is expected because
issues described through longer texts usually have higher
complexity [58], and thus tend to be highly discussed. All
template-related variables present significant effects. The
negative coefficient for time means that the number of is-
sue comments is slightly reduced as time passes. And the
decreasing trend is accelerated by the template adoption, as
indicated by the negative coefficients for both intervention
and time after intervention.

TABLE 3: Issue/PR discussion models. The response is
log(median n comments) per month.

Issue PR

Coeffs (Err.) Sum Sq. Coeffs (Err.) Sum Sq.

(Intercept) 0.845 (0.117) *** -0.780 (0.252) **
log(prj age) -0.079 (0.026) ** 0.8 0.027 (0.063) 0.0
log(n stars) -0.046 (0.009) *** 2.2 0.040 (0.016) * 1.0

log(commits) 0.024 (0.006) *** 1.4 0.038 (0.013) ** 1.3
log(team size) 0.100 (0.009) *** 10.4 0.148 (0.021) *** 7.9

log(n open tasks) -0.005 (0.005) 0.1 0.053 (0.012) *** 2.9
log(experience) -0.030 (0.005) *** 3.6 -0.055 (0.005) *** 18.9

log(desc length) 0.111 (0.009) *** 12.8 0.071 (0.007) *** 18.5
time -0.004 (0.001) * 0.6 0.003 (0.003) 0.2

interventionTRUE -0.043 (0.014) ** 0.9 -0.092 (0.026) *** 2.0
time after intervention -0.005 (0.002) * 0.5 0.000 (0.004) 0.0

Marginal R2 0.118 0.150
Conditional R2 0.522 0.649

*** p <0.001, ** p <0.01, * p <0.05

For the model of PR discussions (the columns belonging
to PR in Table 3), we find that experience and desc length
are strongly associated with the number of PR comments.
Similar to the previous model, desc length presents a positive
effect, indicating that PRs with a longer description tend
to have more comments. The negative effect of experience

shows that PRs submitted by more experienced contribu-
tors are being discussed less. We present an assumption
that contributors with higher experience are more likely to
submit high-quality PRs [47], [53] which tend to trigger a
lower number of revisions and discussions. With respect
to template-related variables, the coefficient for intervention
reveals a discontinuity at the template adoption time. How-
ever, after adoption, templates do not impact PR discussion
in the long run since the coefficient for time after intervention
is not statistically significant.

Overall, we observe that with the adoption of templates,
issues are being discussed less, while PR discussions remain
unaffected. We assume that templates help to collect more
relevant information for understanding issues, and conse-
quently, comments posted to request the missing informa-
tion [12] is fewer. However, for PRs, even if they are not
properly described before template adoption, maintainers
can still understand the PRs by examining the code changes
and commit messages [34], [64] (to a certain degree at least)
without having to launch a discussion thread. Moreover,
PR discussions usually cover a wide variety of topics and
maintainers may mention multiple concerns in a single
comment [31]. Therefore, even though templates can avoid
certain problems at the initial PR submission, they do not
necessarily reduce the total number of PR comments.

5.2.3 Resolution

Considering the model of issue resolution (the columns
belonging to Issue in Table 4), we note that n open tasks
explains most of the variability, indicating that the more
tasks that are still open for discussion, the more time it
takes for maintainers to close the subsequent issues. This
is expected as a larger n open tasks means that maintainers
are experiencing a higher workload and they are more likely
to have low availability. As for template-related variables,
the model does not detect any discontinuity at the tem-
plate adoption time, as the coefficient for intervention is not
significant. Before the template adoption, we can observe
a slight decreasing trend in time-to-close of issues (the
coefficient for time is negative). However, after the adoption,
the decreasing trend in is reversed, toward a slight increase
(the coefficient for time after intervention is positive).

TABLE 4: Issue/PR resolution models. The response is
log(median close time) per month.

Issue PR

Coeffs (Err.) Sum Sq. Coeffs (Err.) Sum Sq.

(Intercept) 6.437 (0.595) *** 8.311 (0.641) ***
log(prj age) -0.297 (0.141) * 7.9 0.037 (0.154) 0.1
log(n stars) -0.393 (0.043) *** 153.5 0.010 (0.050) 0.1

log(commits) -0.064 (0.028) * 9.3 0.049 (0.043) 2.5
log(team size) -0.597 (0.043) *** 342.0 -0.325 (0.066) *** 44.6

log(n open tasks) 0.811 (0.026) *** 1778.8 0.490 (0.040) *** 278.4
log(experience) -0.004 (0.022) 0.1 -0.315 (0.017) *** 641.3

log(desc length) 0.139 (0.042) *** 19.5 0.287 (0.022) *** 308.9
time -0.030 (0.007) *** 35.8 0.003 (0.009) 0.2

interventionTRUE -0.037 (0.062) 0.7 -0.324 (0.088) *** 24.8
time after intervention 0.062 (0.009) *** 88.5 0.024 (0.013) . 6.9

Marginal R2 0.197 0.231
Conditional R2 0.612 0.561

*** p <0.001, ** p <0.01, * p <0.05

Page 8 of 15*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

9

For the model of PR resolution, (the columns belonging
to PR in Table 4), we observe that experience explains most of
the variability, indicating that PR submitters’ experience has
a strong effect on the time to close PRs. Moreover, the neg-
ative coefficient of experience reinforces the previous finding
that PRs submitted by more experienced contributors have
lower review latency [35], [61]. Regarding the template-
related variables, intervention has a statistically significant,
negative effect, indicating that the adoption of templates
reduces the time-to-close of PRs. However, the coefficient for
time after intervention shows that the effect is not significant
in the long run.

Overall, we observe that after the template adoption, on
average more time is required to close issues. However, the
adoption of templates is not associated with PR resolution.
A possible reason for the increase in the monthly time to
close issues is that templates reduce the number of invalid
issues which are usually closed faster than common issues
[41], and consequently, the time-to-close computed over
the issues submitted after the template adoption presents
an increasing trend. Regarding PR resolution, we assume
that PR revision and evaluation is usually a complex and
iterative process [21], [28], [58] and it is not easily affected
by templates applied in the very early stage.

RQ2: After adopting templates, on average, the
monthly volume of incoming submissions slightly
decreases for both issues and PRs. Moreover, there
are fewer monthly discussion comments and longer
monthly resolution latency on issues after template
adoption.

6 RQ3: PERCEPTIONS OF TEMPLATES

With this research question, we intend to understand OSS
practitioners’ perceptions of issue/PR templates, with re-
spect to templates’ usefulness, the challenges practitioners
face in using templates, and the improvements they would
like to add to the template feature. Below, we describe the
method and the results.

6.1 Methodology

To understand how practitioners perceive issue/PR tem-
plates, we conducted surveys with contributors and main-
tainers of the studied projects, respectively. In both sur-
veys, we first measured the usefulness of templates from
multiple aspects inspired by templates’ contents identified
in Section 4: “collect more relevant information”; “standard-
ize issue/PR description”; “explain project guidelines”; “guide
contributors to more easily submit issues/PRs”; “lead contribu-
tors to submit high-quality issues/PRs”; “warn about common
problems”; “discourage undesired submissions”. Specifically, we
asked participants about their level of agreement with these
statements using a 5-point Likert scale (“Strongly Disagree”,
“Disagree”, “Neither Agree nor Disagree”, “Agree”, and
“Strongly Agree”). We also included open-ended questions
for participants to provide feedback on what challenges they
are facing when using templates and what improvements
they suggest to enhance the template feature.

From the projects using templates presented in Section 3,
we selected the maintainers and contributors who submit-
ted issues/PRs to these projects after template adoption.
Then, we emailed surveys to a total of 500 maintainers
and 2,000 contributors who were randomly selected from
the candidates (yielding a 95% confidence level with a
1.96% error margin). After two weeks, we received 205
responses (42 from maintainers and 163 from contributors).
Regarding the demographic information of respondents,
71.4% of maintainers have over 5 years of OSS experience
and 71.2% of contributors have more than 3, which aligns
with recent surveys of OSS practitioners [23], [26], [31].
For free-text responses to open-ended questions, we applied
the open coding approach to classify them into meaningful
categories.

6.2 Results
6.2.1 Usefulness
Figure 5 shows the perceived usefulness of templates in
different tasks. For each task, we present contributors’ re-
sponses and maintainers’ responses in the same row. In ad-
dition to the frequency of responses, we add the aggregated
score result (i.e., median) for each bar, which ranges from 1
to 5, corresponding to the five answer options (as indicated
by the legend of the figure).

From the figure, we can see that the majority of survey
respondents agreed with most of the statements (median
> 3), indicating the commonly recognized usefulness of
templates. Especially, more than 80% of both contributors
and maintainers considered templates as useful in collect-
ing more relevant information and standardizing issue/PR
descriptions. However, about 50% of maintainers did not
positively rate templates’ usefulness in warning about com-
mon problems and discouraging undesired submissions.
This might be explained by the fact that some contributors
just ignored the templates when opening a new issue/PR,
as reported in Section 6.2.2.

Survey respondents also reported other benefits that
they thought templates can bring in, which include suggest-
ing the common solutions (e.g., “asking the software version
the submitter might realize the problem can be solved by upgrad-
ing”), facilitating impression formation (e.g., “project makes
a respectable impression”), and supporting multitasking [55]
across projects (e.g., “it is reassuring to have a template, so that
I can be confident I am remembering the right process and data
fields. I do not want to accidentally apply the process and data
fields from a different project.”)

6.2.2 Challenges
From survey responses on the challenges of using templates,
we collected 19 challenges as shown in Table 5. For each
challenge, the table also reports the number of mentions
among contributors and maintainers, respectively.

From contributors’ perspective, the top challenges are
relating to the information request. Thirteen respondents
complained that templates require too many fields. Par-
ticularly, some of them pointed out: “it raises the threshold
of minimum work required to report an issue” and “turns it
into a big chore to report a simple thing”. And the possible
negative consequences include “you might feel demotivated

Page 9 of 15 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

10

0 20 40 60 80 100020406080
Percentage

Contributors′ perception

collect more relevant information

standardize issue/PR description

explain project guidelines

guide contributors to more easily submit issues/PRs

lead contributors to submit high-quality issues/PRs

warn about common problems

discourage undesired submissions

91%7%2% 4

85%10%5% 4

67%24%9% 4

72%15%13% 4

71%18%11% 4

57%28%15% 4

63%21%16% 4

Median

0 20 40 60 80 100020406080
Percentage

Maintainers′ perception

85%10%5% 4

88%12%0% 4

63%32%5% 4

63%24%13% 4

68%27%5% 4

50%28%22% 3

48%24%28% 3

Median
Strongly disagree / 1 Disagree / 2 Neither agree or disagree / 3 Agree / 4 Strongly agree / 5

Fig. 5: Practitioners’ perception of the usefulness of templates

TABLE 5: Challenges experienced when using issue/PR
templates

Challenge CTRs MTRs

Templates ask for irrelevant information 15 -
Templates require too many fields 13 4
Templates’ text is too verbose 8 2
Template categories are not complete 5 2
Duplicate information requests 4 -
Templates are hard to follow 4 1
Additional time to create an issue/PR 3 -
Templates are poorly written 3 1
Language barriers 1 -
Lots of manual editing 1 -
Trouble with markdown syntax 1 -
Some information is not requested 1 -
Similar contents hinder general searching 1 -
Templates are ignored - 8
Difficulty to create an ideal template - 8
Lack of measures to enforce something - 3
Burden of making templates up-to-date - 2
Difficulty to configure the template - 2
Templates are poorly filled - 2

Abbreviations: CTRs-Contributors, MTRs-Maintainers

to go that extra mile” and “can scare away contributors”. This
challenge was also confirmed by 4 maintainers. Maybe due
to a wealth of information being collected, 15 contributors
mentioned that templates ask for irrelevant information
for some submissions. One example was “Often the template
contains many questions that seem irrelevant to the issue or PR
that I create”. Additionally, as for the way of offering the
required information, lots of manual editing was pointed
as a challenge by one respondent.

Some contributors suffered from problems with tem-
plates’ text. Eight of them reported that templates’ text is
too verbose (e.g., “It can be too much text, overwhelming people”
and “too much comments inside a template”). They thought
this challenge may “ruin the contributors experience and slow
down the process of opening issues/PR” or even “discourage

submissions”. Unfortunately, duplicate information requests,
mentioned by 4 contributors, can make a template more
verbose than it should be. Another 3 contributors mentioned
that templates are poorly written, which makes it harder
for contributors to understand the template. Additionally,
two respondents cited language barriers and trouble with
markdown syntax as challenges when reading templates.

Contributors also reported challenges regarding the
completeness of templates. As aforementioned, maintainers
can add multiple templates per type. However, five contrib-
utors’ feedback revealed that template categories are not
complete in some projects (e.g., “Sometimes an issue doesn’t
fit in any of the categories so we can’t follow the proposed
issue/PR structure”). Actually, two maintainers considered it
challenging to “make sure there are templates for all situations”.
More specifically, with respect to the detailed content of
templates, one contributor reported that some information
is not requested. It seems that including a “Anything else”
section in templates, where contributors are free to write
what they think maintainers should know, helps to guaran-
tee the completeness of collected information.

From the maintainers’ perspective, we can observe that
the main challenges are about template adherence. The most
frequently mentioned one is that templates are ignored, as
a maintainer explained: “Often bug reporters do not read the
template at all”. In some cases, the template may be partially
completed with certain fields ignored, and consequently,
several maintainers complained about the lack of measures
to enforce something. Additionally, even all fields of a
template are filled, a potential challenge is that templates
are poorly filled, as reported by 2 maintainers.

Furthermore, maintainers faced challenges in ensuring
templates’ quality. In particular, eight respondents referred
to the difficulty to create an ideal template. For example,
one maintainer specified that “The main challenge is deciding
how much information to ask for. Too much, and contributors will
opt to not make issues due to how hard it is to fill it out. Too little,
and maintainers will need to follow-up for extra details on almost
every issue”. Another 2 maintainers mentioned the burden
of making templates up-to-date (e.g., “updating the template
when it is no longer relevant”).

Page 10 of 15*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

11

6.2.3 Improvements

In the surveys, respondents suggested improvements on
the template feature, which are summarized in Table 6.
As in Table 5, this table also lists the number of mentions
of each suggestion among contributors and maintainers,
respectively.

TABLE 6: Suggested improvements on the template feature

Suggested improvement CTRs MTRs

Improve user interaction 13 7
Provide good template examples 5 2
Improve automation 4 3
Fields can be separately sorted 2 -
Better labeling support 2 -
More flexible workflow 1 -
Multiple templates per type 1 1
Provide a way to enforce something 1 5
Improve template visibility - 2

Abbreviations: CTRs-Contributors, MTRs-Maintainers

For both contributors and maintainers, the most recur-
rent suggestion is improving user interaction. Practitioners
suggested this improvement mainly because a large set of
comments, instructions, and information requests are mixed
in a single textarea and it is somewhat inconvenient to read
and fill out a template. The solutions suggested to tackle this
problem are various, ranging from “syntax highlighting” to
“provide an actual form with multiple fields”. Actually, GitHub
recently supported to create a template with web form fields
using YAML syntax (in beta) [5]. For future research, it
would be interesting to investigate whether this update can
fulfill practitioners’ expectation of better user interaction.
Another new feature requested to make it less burdensome
to submit and inspect issues/PRs is improving automation.
For example, one contributor expected: “if the tool is capable
of detecting unit tests in the PR, it could not show this item to
the contributor (or automatically check a check box)”. Providing
good template examples is also a recurrent suggestion (e.g.,
“Examples and defaults I can pick from”). Since many templates
have a similar structure, a list of ready-to-use templates for
certain universal cases would make it easier for a project
to configure templates. Interestingly, several respondents
desired multiple templates per type even though GitHub
already supported this feature.

For maintainers, one of the commonly mentioned im-
provements is providing a way to enforce something.
For example, one maintainer suggested: “making some parts
mandatory (so they cannot be removed)”. In addition to that,
a few maintainers expected to improve template visibility,
e.g., by refining the layout (“adding an explanation about the
template next to the template”).

For contributors, they also advocated better integration
between templates and existing functionalities on GitHub.
Two respondents suggested that fields can be separately
sorted so that “issues that belong to a similar topic can be
filtered to ease reading and going through them instead of just
listing them in chronological order”. Another two respondents
mentioned better labeling support (e.g., “the person submit-
ting the issue could select from a selection of labels open to them

by project maintainers”), which helps “to segment issues a bit
better”. Contributors also requested more flexible workflow
as presented in this quote: “Simpler initial reporting with a
follow up template if the developers need it”.

RQ3: Most OSS practitioners positively rated the use-
fulness of templates in supporting a variety of tasks.
However, contributors complained about the exces-
sive and irrelevant information requests and verbose
text, and maintainers had difficulty in creating high-
quality templates and suffered from contributors’ ne-
glect of templates. Both contributors and maintainers
proposed suggestions to improve the template fea-
ture, including better user interaction and advanced
automation.

7 DISCUSSIONS

Based on our findings, we provide additional discussion
and propose implications for tool designers.

7.1 Template roles

As presented in Section 4 and Section 6, templates can
play a variety of roles. In addition to the apparent role as
information collectors (i.e., collecting relevant information
to help project maintainers better understand the submit-
ted issues/PRs), templates can also serve as pre-submission
gatekeepers and just-in-time mentors.

Pre-submission gatekeepers. For popular OSS projects,
maintainers have to deal with a big volume of incoming
contributions and it can be challenging to perform the triage
and evaluation tasks [26]. Various tools (e.g., bots [57] and
CI [58]) have been used as post-submission gatekeepers to
ensure contribution quality and reduce maintainers work-
load. Our results show that templates can be used as pre-
submission gatekeepers increasing the likelihood that OSS
projects receive high-quality issues and PRs. On the one
hand, templates explain what makes a good issue/PR prior
to submission, which helps to ensure that the submitted
issues/PRs contain fewer problems. On the other hand, tem-
plates warn contributors about what kinds of submissions
are considered as undesired by maintainers, preventing
contributors from submitting invalid issues/PRs.

Just-in-time mentors. Community-based OSS projects
have high dependency on volunteers’ contributions and
thus a continuous influx of newcomers is important for the
sustainability of these projects [49]. To support newcomers’
onboarding, the proposed strategies include mentoring [14],
training [49], and providing contribution guidelines [20],
which are mainly applied before newcomers start their con-
tributions. As a complement to these strategies, templates
act as just-in-time mentors, guiding the activities of contribu-
tors at the time of filling a new issue/PR. Particularly, since
many OSS contributors are one time contributors [29] and
casual contributors [43], it seems more reasonable for them
to quickly figure out the contribution process and criteria
at the submission time without having to spend additional
time learning the project in advance.

Page 11 of 15 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

12

7.2 Template trade-offs
Our findings show that although templates are widely used
in popular projects and most practitioners provided positive
feedback on their usefulness (see Figure 5), contributors are
still facing various challenges when filling out templates
(see Table 5). Maintainers of OSS projects should be aware
of the following tradeoffs when using templates.

Completeness vs. Effortlessness. Complete information
is important for project maintainers to understand the sub-
mitted issues/PRs and make informed decisions. Therefore,
templates were generally perceived as useful by maintainers
in collecting more relevant information upon issue/PR sub-
mission. However, many contributors complained about the
heavy burden of providing a mass of information requested
in templates. Especially for simple problems and trivial code
changes, asking for too much information may result in
negative contribution experience and lead contributors to
abandon submitting an issue/PR [32]. Therefore, maintain-
ers should consider the trade-off between the completeness
of information requests and the effortlessness of information
provision.

Exhaustivity vs. Readability. In some templates, project
maintainers include detailed comments next to the section
headings for further elaboration, e.g., explaining the ne-
cessity of the requested information and suggesting the
way of providing such information. Providing exhaustive
elaboration is helpful for inexperienced contributors and
newcomers who lack knowledge about a specific project.
But then each contributor would have to go through a
lengthy template which can seem verbose and might dis-
courage some submissions. Therefore, maintainers should
consider the trade-off between the exhaustivity and read-
ability of template content. This can be partially supported
by better UI design: briefly listing all elements and allowing
easy navigation to the exhaustive elaboration about each
element.

Standardization vs. Flexibility. Standardization of is-
sues/PRs helps to reduce maintainers’ cognitive workload.
However, not all issues/PRs can be characterized with the
same set of attributes. As reported by some contributors,
even a project added multiple templates, they still could
suffer from incomplete template categories. Even worse, if
the defined attributes set is too large, contributors would
find many information requests are irrelevant to their sub-
mission, which may lead contributors to think “I am not
sure whether I should submit at all”. Therefore, maintainers
should consider the tradeoff between the standardization
and flexibility in describing issues/PRs. As one of our
survey respondents pointed out it is important to “Let
contributors know that the template is a recommendation, not a
strict rule”.

7.3 Implications for tool design
As shown in Table 6, there is room for improvements of the
template feature, e.g., better user interaction and advanced
automation. In addition to those specific suggestions, we
suggest GitHub as well as other OSS platforms focus on the
following general topics.

Structure. Our results to RQ1 show that a template
might contain a wide variety of elements which actually

can be grouped into several meaningful categories. A well-
structured template, e.g., organizing the elements accord-
ing to their categories rather than placing them arbitrar-
ily, makes intuitive sense and facilitates the readability of
contents. One possible improvement of the template feature
would be to allow maintainers to freely add multiple sepa-
rated subareas to group related elements.

Intelligence. The template feature would be more useful
if it is designed with a higher intelligence level. For example,
a lot of manual work would be reduced if templates can
automatically check whether certain specifications were fol-
lowed. Additionally, the template feature can be enhanced
with awareness (e.g., adaptively adjusting template contents
according to contributors experience level) and recommen-
dation (e.g., monitoring template adherence and recom-
mending which part of the template needs improvement).

Integration. The template feature should be integrated
with other tools in a more seamless way so that the in-
formation collected in templates can be effectively used
by other tools. For example, some categorical information
(e.g., submission type) can be used to label the submitted
issues/PRs. Besides, templates should avoid duplicating the
work of other tools, e.g., maintainers do not have to require
CLA information in templates if they have adopted a bot to
check such information after PR submission.

8 THREAT TO VALIDITY

In this section, we discuss limitations and potential threats
to validity of our work as follows.

Internal Validity. It is possible that we introduced bias
during the manual analysis of contents of template files
and responses of open-ended survey questions. To mitigate
this threat, we assigned two authors to perform the manual
processes in pairs and they carefully discussed to resolve
all categorization and annotation disagreement. As typical
for a survey, our sample may suffer from selection bias.
To mitigate this risk, we randomly selected the survey
candidates and designed our survey to be anonymous and
short in order to encourage responses.

External Validity. As we only examined a set of pub-
lic, popular projects hosted on GitHub, an external threat
concerns the generalizability of our results. Although we
have tried to mitigate this threat by using a diverse set of
GitHub projects with different domains and programming
languages, the dataset is small and not entirely represen-
tative of all OSS projects hosted on GitHub and other
platforms. Future work can replicate our study on more
other OSS projects as well as closed-source projects.

9 CONCLUSION

In this paper, we conducted an empirical study of the
issue/PR template feature on GitHub. By performing quali-
tative and quantitative analyses on a set of top popular OSS
projects and conducting surveys with OSS practitioners, we
investigated the usage, impacts, and practitioners’ percep-
tions of this feature. We found that templates generally
include a wide variety of elements to greet contributors,
explain project guidelines, and collect relevant information.
We also observed that the adoption of templates has im-
pacts on the submissions of both issues and PRs and the

Page 12 of 15*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

13

discussions and resolution of issues. Although most survey
respondents considered templates useful in supporting a
variety of tasks, both contributors and maintainers reported
challenges of using templates and suggested improvements
to enhance the template feature. Finally, we proposed im-
plications and suggestions for OSS practitioners and tool
designers.

ACKNOWLEDGMENTS

We would like to thank all our survey participants for their
time and insights. This work was supported by National
Grand R&D Plan (Grant No. 2020AAA0103504) and the
Major Key Project of PCL.

REFERENCES

[1] About github draft pull request. https://github.blog/2019-02-14-
introducing-draft-pull-requests/. Accessed: 2022-03-28.

[2] About github issue and pull request templates. https://github.
blog/2016-02-17-issue-and-pull-request-templates/. Accessed:
2022-03-28.

[3] About github rest api. https://docs.github.com/en/rest. Ac-
cessed: 2022-03-28.

[4] About slack. https://www.slack.com/. Accessed: 2022-03-25.
[5] Creating issue forms on github. https://docs.github.com/en/

communities/using-templates-to-encourage-useful-issues-
and-pull-requests/configuring-issue-templates-for-your-
repository\#creating-issue-forms. Accessed: 2022-03-28.

[6] Stack overflow. http://stackoverflow.com. Accessed: 2022-03-25.
[7] Alberto Bacchelli and Christian Bird. Expectations, outcomes,

and challenges of modern code review. In Proceedings of the
35th International Conference on Software Engineering, pages 712–721.
IEEE Press, 2013.

[8] Olga Baysal, Reid Holmes, and Michael W Godfrey. No issue
left behind: Reducing information overload in issue tracking. In
Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 666–677, 2014.

[9] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss,
Rahul Premraj, and Thomas Zimmermann. What makes a good
bug report? In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering, pages 308–318,
2008.

[10] Hudson Borges, Andre Hora, and Marco Tulio Valente. Under-
standing the factors that impact the popularity of github reposito-
ries. In 2016 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 334–344. IEEE, 2016.

[11] Hudson Borges and Marco Tulio Valente. What’s in a github
star? understanding repository starring practices in a social coding
platform. Journal of Systems and Software, 146:112–129, 2018.

[12] Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas Zimmer-
mann. Information needs in bug reports: improving cooperation
between developers and users. In Proceedings of the 2010 ACM
conference on Computer supported cooperative work, pages 301–310,
2010.

[13] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen. Cod-
ing in-depth semistructured interviews: Problems of unitization
and intercoder reliability and agreement. Sociological Methods &
Research, 42(3):294–320, 2013.

[14] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and
Sebastiano Panichella. Who is going to mentor newcomers in
open source projects? In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
pages 1–11, 2012.

[15] Scott Chacon and Ben Straub. Pro Git (Second Edition). Apress,
2018.

[16] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massi-
miliano Di Penta, Andrian Marcus, Gabriele Bavota, and Vincent
Ng. Detecting missing information in bug descriptions. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pages 396–407, 2017.

[17] Patricia Cohen, Stephen G West, and Leona S Aiken. Applied
multiple regression/correlation analysis for the behavioral sciences. Psy-
chology Press, 2014.

[18] Thomas D Cook, Donald Thomas Campbell, and Arles Day. Quasi-
experimentation: Design & analysis issues for field settings, volume
351. Houghton Mifflin Boston, 1979.

[19] Steven Davies and Marc Roper. What’s in a bug report? In Pro-
ceedings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, 2014.

[20] Omar Elazhary, Margaret-Anne Storey, Neil Ernst, and Andy
Zaidman. Do as i do, not as i say: Do contribution guidelines
match the github contribution process? In 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages
286–290. IEEE, 2019.

[21] Denae Ford, Mahnaz Behroozi, Alexander Serebrenik, and Chris
Parnin. Beyond the code itself: how programmers really look at
pull requests. In 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Society (ICSE-SEIS),
pages 51–60. IEEE, 2019.

[22] Patricia I Fusch and Lawrence R Ness. Are we there yet? data
saturation in qualitative research. The qualitative report, 20(9):1408,
2015.

[23] Marco Gerosa, Igor Wiese, Bianca Trinkenreich, Georg Link, Gre-
gorio Robles, Christoph Treude, Igor Steinmacher, and Anita
Sarma. The shifting sands of motivation: Revisiting what drives
contributors in open source. arXiv preprint arXiv:2101.10291, 2021.

[24] Georgios Gousios, Martin Pinzger, and Arie Van Deursen. An
exploratory study of the pull-based software development model.
In Proceedings of the 36th International Conference on Software Engi-
neering, pages 345–355. ACM, 2014.

[25] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli.
Work practices and challenges in pull-based development: the
contributor’s perspective. In Proceedings of the 38th International
Conference on Software Engineering, pages 285–296. IEEE, 2016.

[26] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and
Arie Van Deursen. Work practices and challenges in pull-based
development: the integrator’s perspective. In Proceedings of the
37th International Conference on Software Engineering, pages 358–368.
IEEE, 2015.

[27] Guido W Imbens and Thomas Lemieux. Regression discontinuity
designs: A guide to practice. Journal of econometrics, 142(2):615–635,
2008.

[28] Rahul N Iyer, S Alex Yun, Meiyappan Nagappan, and Jesse Hoey.
Effects of personality traits on pull request acceptance. IEEE
Transactions on Software Engineering, 2019.

[29] Amanda Lee, Jeffrey C Carver, and Amiangshu Bosu. Under-
standing the impressions, motivations, and barriers of one time
code contributors to floss projects: a survey. In Proceedings of the
39th International Conference on Software Engineering, pages 187–197.
IEEE Press, 2017.

[30] Renee Li, Pavitthra Pandurangan, Hana Frluckaj, and Laura Dab-
bish. Code of conduct conversations in open source software
projects on github. Proceedings of the ACM on Human-Computer
Interaction, 5(CSCW1):1–31, 2021.

[31] Zhixing Li, Yue Yu, Tao Wang, Shanshan Li, and Huaimin
Wang. Opportunities and challenges in repeated revisions to pull-
requests: An empirical study. Proceedings of the ACM on Human-
Computer Interaction, 1(CSCW):1–35, 2022.

[32] Zhixing Li, Yue Yu, Tao Wang, Gang Yin, Shanshan Li, and
Huaimin Wang. Are you still working on this? an empirical
study on pull request abandonment. IEEE Transactions on Software
Engineering, pages 1–1, 2021.

[33] Zhixing Li, Yue Yu, Minghui Zhou, Tao Wang, Gang Yin, Long
Lan, and Huaimin Wang. Redundancy, context, and preference:
An empirical study of duplicate pull requests in oss projects. IEEE
Transactions on Software Engineering, 2020.

[34] Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shan-
ping Li. Automatic generation of pull request descriptions. In
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 176–188. IEEE, 2019.

[35] Chandra Maddila, Chetan Bansal, and Nachiappan Nagappan.
Predicting pull request completion time: a case study on large
scale cloud services. In Proceedings of the 2019 27th acm joint meeting
on european software engineering conference and symposium on the
foundations of software engineering, pages 874–882, 2019.

[36] Audris Mockus, Roy T Fielding, and James Herbsleb. A case study
of open source software development: the apache server. In Pro-
ceedings of the 22nd international conference on Software engineering,
pages 263–272, 2000.

Page 13 of 15 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

14

[37] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan
Nagappan. Curating github for engineered software projects.
Empirical Software Engineering, 22(6):3219–3253, 2017.

[38] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka,
Kouichi Kishida, and Yunwen Ye. Evolution patterns of open-
source software systems and communities. In Proceedings of the
International Workshop on Principles of Software Evolution, pages 76–
85. ACM, 2002.

[39] Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N Nguyen, David
Lo, and Chengnian Sun. Duplicate bug report detection with a
combination of information retrieval and topic modeling. In Pro-
ceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering, pages 70–79. ACM, 2012.

[40] Cassandra Overney, Jens Meinicke, Christian Kästner, and Bogdan
Vasilescu. How to not get rich: An empirical study of donations
in open source. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, pages 1209–1221, 2020.

[41] Sebastiano Panichella, Gerardo Canfora, and Andrea Di Sorbo.
“won’t we fix this issue?” qualitative characterization and auto-
mated identification of wontfix issues on github. Information and
Software Technology, 139:106665, 2021.

[42] Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink,
and Alberto Bacchelli. Information needs in contemporary code
review. Proceedings of the ACM on Human-Computer Interaction,
2(CSCW):1–27, 2018.

[43] Gustavo Pinto, Igor Steinmacher, and Marco Aurélio Gerosa. More
common than you think: An in-depth study of casual contributors.
In Proceedings of the 23rd International Conference on Software Analy-
sis, Evolution, and Reengineering, pages 112–123. IEEE, 2016.

[44] Gede Artha Azriadi Prana, Christoph Treude, Ferdian Thung,
Thushari Atapattu, and David Lo. Categorizing the content of
github readme files. arXiv preprint arXiv:1802.06997, 2018.

[45] Gede Artha Azriadi Prana, Christoph Treude, Ferdian Thung,
Thushari Atapattu, and David Lo. Categorizing the content of
github readme files. Empirical Software Engineering, 24(3):1296–
1327, 2019.

[46] Achyudh Ram, Anand Ashok Sawant, Marco Castelluccio, and
Alberto Bacchelli. What makes a code change easier to review:
an empirical investigation on code change reviewability. In Pro-
ceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 201–212, 2018.

[47] Ayushi Rastogi, Nachiappan Nagappan, Georgios Gousios, and
André van der Hoek. Relationship between geographical location
and evaluation of developer contributions in github. In Proceedings
of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, pages 1–8, 2018.

[48] Eric Raymond. The cathedral and the bazaar. Knowledge Technology
& Policy, 12(3):23–49, 1999.

[49] Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and
Marco Aurélio Gerosa. Overcoming open source project entry
barriers with a portal for newcomers. In Proceedings of the 38th
International Conference on Software Engineering, pages 273–284.
ACM, 2016.

[50] Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and
Marco Aurélio Gerosa. Almost there: A study on quasi-
contributors in open-source software projects. In 2018 IEEE/ACM
40th International Conference on Software Engineering, pages 256–266.
IEEE, 2018.

[51] Parastou Tourani, Bram Adams, and Alexander Serebrenik. Code
of conduct in open source projects. In 2017 IEEE 24th international
conference on software analysis, evolution and reengineering (SANER),
pages 24–33. IEEE, 2017.

[52] Asher Trockman, Shurui Zhou, Christian Kästner, and Bogdan
Vasilescu. Adding sparkle to social coding: an empirical study
of repository badges in the npm ecosystem. In Proceedings of the
40th International Conference on Software Engineering, pages 511–522,
2018.

[53] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of social
and technical factors for evaluating contribution in github. In Pro-
ceedings of the 36th International Conference on Software Engineering,
pages 356–366. ACM, 2014.

[54] Jason Tsay, Laura Dabbish, and James Herbsleb. Let’s talk about
it: evaluating contributions through discussion in github. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 144–154. ACM, 2014.

[55] Bogdan Vasilescu, Kelly Blincoe, Qi Xuan, Casey Casalnuovo,
Daniela Damian, Premkumar Devanbu, and Vladimir Filkov. The
sky is not the limit: multitasking across github projects. In Pro-
ceedings of the 38th International Conference on Software Engineering,
pages 994–1005. IEEE, 2016.

[56] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu,
and Vladimir Filkov. Quality and productivity outcomes relating
to continuous integration in github. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, pages 805–816.
ACM, 2015.

[57] Mairieli Wessel, Bruno Mendes de Souza, Igor Steinmacher, Igor S.
Wiese, Ivanilton Polato, Ana Paula Chaves, and Marco A. Gerosa.
The power of bots: Characterizing and understanding bots in oss
projects. Proceedings of the ACM on Human-Computer Interaction,
2(CSCW), November 2018.

[58] Yue Yu, Gang Yin, Tao Wang, Cheng Yang, and Huaimin Wang.
Determinants of pull-based development in the context of contin-
uous integration. Science China Information Sciences, 59(8):080104,
2016.

[59] Mengxi Zhang, Huaxiao Liu, Chunyang Chen, Yuzhou Liu, and
Shuotong Bai. Consistent or not? an investigation of using pull
request template in github. Information and Software Technology,
page 106797, 2021.

[60] Xunhui Zhang, Tao Wang, Yue Yu, Qiubing Zeng, Zhixing Li, and
Huaimin Wang. Who, what, why and how? towards the monetary
incentive in crowd collaboration: A case study of github’s sponsor
mechanism. arXiv preprint arXiv:2111.13323, 2021.

[61] Xunhui Zhang, Yue Yu, Tao Wang, Ayushi Rastogi, and Huaimin
Wang. Pull request latency explained: An empirical overview.
arXiv preprint arXiv:2108.09946, 2021.

[62] Zheying Zhang, Outi Sievi-Korte, Ulla-Talvikki Virta, Hannu-
Matti Järvinen, and Davide Taibi. An investigation on the avail-
ability of contribution information in open-source projects. In 2021
47th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pages 86–90. IEEE, 2021.

[63] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir
Filkov, and Bogdan Vasilescu. The impact of continuous inte-
gration on other software development practices: a large-scale
empirical study. In 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 60–71. IEEE, 2017.

[64] Shurui Zhou, Stefan Stanciulescu, Olaf Leßenich, Yingfei Xiong,
Andrzej Wasowski, and Christian Kästner. Identifying features in
forks. In 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE), pages 105–116. IEEE, 2018.

[65] Shurui Zhou, Bogdan Vasilescu, and Christian Kästner. What the
fork: a study of inefficient and efficient forking practices in social
coding. In Proceedings of the 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 350–361. ACM, 2019.

[66] Thomas Zimmermann. Card-sorting: From text to themes. In
Perspectives on Data Science for Software Engineering, pages 137–141.
Elsevier, 2016.

Zhixing Li is an assistant professor in the Col-
lege of Computer at National University of De-
fense Technology (NUDT). He received his Ph.D.
degree in Computer Science from NUDT in
2021. His research goals are centered around
the idea of making the open source collabora-
tion more efficient and effective by investigating
the challenges faced by open source practition-
ers and designing smarter collaboration mecha-
nisms and tools.

Yue Yu is an associate professor in the Col-
lege of Computer at National University of De-
fense Technology (NUDT). He received his Ph.D.
degree in Computer Science from NUDT in
2016. He has won Outstanding Ph.D. Thesis
Award from Hunan Province. His research find-
ings have been published on ICSE, FSE, ASE,
TSE, MSR, IST, ICSME, ICDM and ESEM. His
current research interests include software en-
gineering, data mining and computer-supported
cooperative work.

Page 14 of 15*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

15

Tao Wang is an associate professor in the
College of Computer at National University of
Defense Technology (NUDT). He received his
Ph.D. degree in Computer Science from NUDT
in 2015. His work interests include open source
software engineering, machine learning, data
mining, and knowledge discovering in open
source software.

Yan Lei received the BA, MA, and Ph.D. degrees
in computer science and technology, all from
the National University of Defense Technology,
China. He is currently an Associate Professor at
the School of Big Data and Software Engineer-
ing, Chongqing University, China. His research
interests include intelligent software engineer-
ing, fault localization, and program repair.

Ying Wang received her doctoral degree in soft-
ware engineering from Northeastern University,
China, in 2019. She is currently an associate
professor at the Software College, Northeast-
ern University, China. Her research interests in-
clude program analysis, dependency manage-
ment, and software ecosystems. Her research
work has been regularly published in top con-
ferences and journals in the research commu-
nities of software engineering, including ICSE,
ESEC/FSE, and TSE and has received ICSE

2021 ACM SIGSOFT Distinguished Paper Award. She received Out-
standing Doctoral Dissertation Award of Liaoning province (2021), and
Nominees Award for Outstanding Doctoral Dissertation of China Com-
puter Federation (CCF) in 2020. She joined Microsoft Research Asia
StarTrack Program (2020). More information about her can be found at:
https://wangying-neu.github.io/.

Huaimin Wang received his Ph.D. in Com-
puter Science from National University of De-
fense Technology (NUDT) in 1992. He has been
awarded the “Chang Jiang Scholars Program”
professor and the Distinct Young Scholar, etc.
He has published more than 100 research pa-
pers in peer-reviewed international conferences
and journals. His current research interests in-
clude middleware, software agent, and trustwor-
thy computing.

Page 15 of 15 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

